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ABSTRACT 
In Multidimensional Scaling, we want an Euclidean representation of a set of points described by a 
dissimilarity table. Since no exact solution is known, there is a large number of methods that give an 
approximated solution minimizing some criterion. This criterion is usually a least squares one, called 
Stress, that compares the known dissimilarities to the Euclidean distances calculated in representation. 
The best known methods are gradient descent-type and lead to local optima of Stress. Some other 
methods, based in a majorizing function (SMACOF method) or the Tunneling method, also cannot 
guarantee a global optimum. Finally, there are also implementations of genetic algorithms that are quiet 
slow. We propose a simple implementation of simulated annealing that gives good results. We define a 
grid of the space of representatrion of the solution, and we go over this grid according to the Metropolis 
rule. The grid could be thiner as the control parameter, that plays the role of the temperature, tend to 
zero. We have compared the performances of our method, and its results are comparable and 
sometimes better than those obtained with other methods. 
 
Key words: metric multidimensional scaling, analysis of vicenities, Stress, combinatorial optimization,  
                     Metropolis rule, discretization.  
 
RESUMEN 
En Escalamiento Multidimensional o Análisis de Proximidades, se quiere obtener una representación 
euclídea de un conjunto de puntos descritos por una tabla de disimilitudes. Como no existe una 
solución exacta, hay varios métodos propuestos para obtener una solución del problema minimizando 
un criterio. Este criterio es usualmente un criterio de mínimos cuadrados, llamado Stress, que compara 
las disimilitudes conocidas con las distancias euclídeas calculadas en la representación. Los métodos 
más conocidos son de tipo descenso de gradiente y conducen a óptimos locales del Stress. Algunos 
otros métodos, basados en una función de mayorización (método SMACOF) o el método de Tunneling, 
tampoco garantizan que se llegue a un óptimo global. Finalmente, existen también implementaciones 
de algoritmos genéticos que son un poco lentos. Se propone en este artículo una implementación 
simple del sobrecalentamiento simulado que da buenos resultados. Se define una malla del espacio de 
representación de la solución, y se recorre esta malla de acuerdo con la regla de Metrópolis. La malla 
se puede hacer más fina conforme avanzan las iteraciones y el parámetro de control, que juega el 
papel de la temperatura, tiende hacia cero. Hemos comparado el rendimiento de nuestro método, y los 
resultados son comparables o mejores que los de métodos conocidos.  
 
Palabras clave: escalamiento multidimensional métrico, análisis de proximidades, Stress, optimización 
                            combinatoria, regla de Metropolis, discretización. 

 
1. INTRODUCTION 

 
 Given a dissimilarity table (δij)n×n in a set  of objects Ω = {1,…,n}, we want to find a set of vectors 
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where dij(X) is the Euclidean distance between ix
r

 and jx
r

, calculated in IRp, and wij are weights associated to 

the dissimilarities; these weights can indicate, for example, some non available information with a null value. 
Eventually, the δij could be distances. The dimension p should be small, say 2 or 3. 
 
 In case that the δij are Euclidean, the solution of the problem is obtained with the diagonalization of the 

scalar products matrix j
t
i xx
rr

obtained from the δij by the Torgerson form (see Bouroche et al. (1977) or Cox & 

Cox (1995)), p being the number of non-zero eigenvalues of the scalar products matrix. 
 
 In the following section we present the best known methods that are proposed to minimize σ(X). All results 
presented in IR2. 
 
2. SOME KNOWN METHODS IN MULTIDIMENSIONAL SCALING 

 
 Kruskal (1964) proposed a method of the gradient descent-type for minimizing the normalized Stress, that 

is σ2 divided by the sum of ).X(d2
ij From a given initial configuration, it is improved by the translation of points 

ix
r

 in the direction of the gradient, by choosing sdome number of parameters that measure how much we 

approach the new point. 
 
 The SMACOF method, De Leeuw (1977) and De Leeuw (1988), uses a majorization function of σ2, 
decomposing in three terms. It can be proved that the sequence constructed by the majorization functions is 
not increasing and converges (to a local optimum). 
 
 The Tunneling method used by Groenen (1993a) and Groenen (1993b), constructs “tunnels” in the 
SMACOF’s majorization function, so as to “go to the other side of the hill” in a horizontal search of a state with 
equal value of Stress, and follow the search of optima of σ2(X) by SMACOF descent. 
 
 Mathar (1995) studied an implementation of genetic algorithms, using a crossing function between two 
configurations X1 and X2 that computes the convex combination λX1 + (1 - λ)X2. On the other hand, 
N’Gouenet (1995) uses also a genetic algorithm programmed in parallel. 
 
 Mathar & Žilinskas (1993) studied the convexity of the Stress function. Some studies of the optimality have 
been made in the simplest cases (see Pliner (1996) and Simantiraki (1996)). 
 
3. THE PROPOSED IMPLEMENTATION 

 
 We propose the use of simulated annealing, that has shown good performance in many combinatorial 
optimization problems Kirkpatrick et al. (1983), Aarts & Korst (1988) and mainly in Data Analysis (see  
De Amorim et al. (1992), Trejos (1992), Trejos et al. (1998)). It is known that simulated annealing converges 
asymptotically to the global optimum of the function to be minimized, and that a good finite-time 
implementation is essential. Particularly, it has to be chosen a procedure for estimating the initial value of the 
control parameter c0, a slow-decreasing law of the control parameter ck and a criterion for stopping the 
algorithm; finally, it must be defined the maximum value Lk for the number of iterations associated with each 
value of ck. The choice of these four parameters is called a cooling program. 
 
 In the implementation that we propose, a state I is a set of n vectors in a discretized space  IRp: 
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where I
ix
r
∈ (hℤ)p, hℤ = {x ∈ IR /x  = hr,  r ∈ ℤ} and h ∈ IR+. We will say that a state J is a neighbour of I if there 

exist l ∈ {1,…,n) and j ∈ {a,…,p} such that 
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je
r

 being the j-th canonical vector in IRp. The cardinal of the set of neighbours if I is then 2np. The procedure 

for generating a new state will be: 
 

1. Select at random l ∈ {1,…,n}. 

2. Select at random j ∈ {1,…,p}. 

3. Define J according to (2). 
  
 The algorithm SAMSCAL is an implementation of usual simulated annealing as described in Aarts & Korst 
(1988), using the procedure described for generating new configurations of points in IRp. 
 
4. RESULTS 

 
 We have applied the SAMSCAL algorithm over many examples, for comparing its performances with 
respect to the best known methods. We will call attraction rate r of a local minimum of Stress the percentage 
of times that this minimum is reached in a large number of executions of the program. For comparing our 

results to those obtained by other authors, we use the normalized Stress ,/ 22
δησ  where η is the sum of 

square dissimilarities; this ratio is the normalized Stress and usualy appears in the results of many authors. 

We note 2
optσ  the best value of 2σ  found with the program SAMSCAL and # the number of times that the 

algorithm has been applied. 
 
The fixed distances data 

 
 We consider a set of n points such that 
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 For many values of n we obtained the following results: 
 

 2
δ

2
opt /ησ  # r mean 

2
δ

2
opt /ησ  for Smacof 

4 points 0.028595479 80 100 % 0.02859548 0.02859547921 

6 points 0.071454137 224 88.8 % 0.07197208 - 

7 points 0.085922088 140 37.14 % 0.08599070  

 
 In the case of 7 points, we also found the local minimum 0.086029671, 62.86 % of the runs. 
 
Colas data 

 
 We consider the colas data reported in Green et al. (1989), that cross 10 beverages and shows the 
similarities between each couple, according to an experience with 38 students. Mathar (1995) found 152 local 
optima, whole Mathar & Žilinskas (1993) found 457. Using SAMSCAL, we found 30 local optima. 
 

2
δ

2
opt /ησ  # r SMACOF Groenen et al. (1995) 

0.0367837933 310 17.74 % 0.03678052 

 

 It should be noted that the mean error that we found is 0.0394416, while those found by Groenen et al. 
(1995) is 0.04145104, 0.4070994 and 0.04113443, according to different methods: Smacof, relaxed Smacof 
and Kruskal’s, respectively. 
 
 In the following table, we present the 4 best minima and their frequencies of appearance in 310 executions 
of the program. It can be seen that these four minima are very similar and that they are found in nearlly 50 % 
of the times. Also, the corresponding configurations are quiet similar. 
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Minima Frequency 
Cumulated 
frequency 

Percent (%) 
Cumulated 
percent (%) 

0.036786 

0.036860 

0.036975 

0.037363 

other 

55 

38 

24 

36 

157 

55 

93 

117 

153 

17.74 

12.26 

7.74 

11.61 

51.65 

17.74 

30.00 

37.74 

49.35 

100.0 

 
The 9 points example 

 
 In a plane, we consider 9 points that form a squared grid with 3 points equally spaced in each side, and we 
compute the usual Euclidean distance between the 9 points. In the table that follows we present some 
minima, as well as the results found with SAMSCAL, and  those shown in Groenen (1993b). 
 

 SCAL_SS 
Groenen (1993b),  

Multistart 

minimum # r r 

0.0000 

0.05671 

0.07391 

other 

274 

1 

12 

0 

95.47 

0.35 

4.14 

0.00 

72.0 

- 

19.5 

8.5 

 
Example of 10 random points in [-1, 1]

5
 

 

 This example is presented in Mathar & ilinskasZ
(

(1993). It consists on the Euclidean distances between 10 
point generated randomly in [-1, 1]5. These authors cite that they found 133 local minima. 
 

 SCAL_SS Mathar & ilinskasZ
(

(1993) 

2
δ

2
opt /ησ  0.036026404 0.036162536 

r 37.75 % 15.6 % 

Mean 0.0401566 0.0417546 

 
5.  CONCLUSIONS AND FURTHER RESEARCH 

  
 It can be seen over the presented examples that the results obtained with our method are as good those 
obtained with other methods, not only in the rate of attraction, but also in the mean values. 
 
 Some deeper studies have to be made, mainly in the effect of the grid over the solutions. A Monte Carlo 
simulation will soon be made. On the other hand, we have also made some research on the use of Tabu 
Search in Multidimensional Scaling; some results can be consulted in Trejos & Villalobos (in press). Finally, 
some ideas of a genetic algorithm implementation are also undertaken; these ideas will be compared to the 
genetic algorithms of Mathar (1995) and N’Gouenet (1995), as well to the other methods already considered. 
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