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Abstract—In the last two decades substantial progress has
been made in the detection of hidden information or hidden
communication channels in media files or streams. Typically, it is
necessary to reliably detect in a huge set of files (image, audio, and
video) which of these files contain the hidden information. The
goal of this paper is to study the problem of hypothesis testing
based on quantized observations by using a parametric statistical
model with nuisance parameters and to apply the obtained tests
to the hidden information detection.

I. INTRODUCTION AND CONTRIBUTION

In a certain operational context of hidden information detec-

tion, the most important challenge is to get the detection algo-

rithms with analytically predictable and bounded probabilities

of false alarm and missed detection. These algorithms should

be immediately applicable without any supervised learning

methods using sets of training examples (i.e. without SVM-

based algorithms).

A detailed analysis of this problem shows that the following

theoretical challenges remain unsolved :

• How to deal with the quantized observations? How does

the quantization impact the probabilities of false alarm

and missed detection ?

• What is the benefits from using a parametric statistical

model of cover media (or cover channel) for hidden

information detection ?

The media files or streams are usually obtained by using digital

recording device which obligatory includes a quantization.

Physically, the parametric statistical model defines the media

or stream in the continuous observation space but the decision

should be done by using the quantized output. It is worth

noting that the existence of a quantizer between the sensor

and the estimation/decision algorithm leads to the increasing

complexity of estimation/decision methods. Many results from

the classical estimation theory are not applicable to quantized

data (for example, the Gauss-Markov theorem). Some results

on the statistical inference by using quantized observations

are available in the literature (see for instance [1], [2], [3]

for estimation and [4], [5], [1], [6], [7] for decision theory).

Nevertheless, the problem of binary decision with quantized

observations and nuisance parameters in the case of composite

hypotheses remain unsolved.

The contribution of this paper with respect to previously

published results is the following: 1) dealing with quantized

observations in the presence of nuisance parameters; 2) a
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new model of useful signal (the information hidden in the

least significant bit (LSB)); 3) the analysis of the (“non-

fine”) quantization impact on the probability of false alarm

and missed detection. Let us also stress that the problem

discussed in the paper is quite different from the previously

published works in signal detection [4], [5], [1], [6], [7] by

the fact that the quantizer cannot be optimized for hidden

information detection because it is chosen by the designers

of digital cameras, voice recorders, etc.

II. STATISTICAL DECISION BASED ON QUANTIZED

OBSERVATIONS

A. Model of quantized cover media

Let us assume that the observation vector Cn =
(c1, . . . , cn)

T which characterizes a cover media is defined

in the following manner :

Cn = Q1[Yn], Yn ∼ Pθ, (1)

where Q1[yi] = ⌊yi⌋ is the operation of uniform quantization

(integer part of yi) and the vector Yn = (y1, . . . , yn)
T follows

the distribution Pθ parameterized by the parametric vector θ
which describes the properties of media files or streams. In

the framework of hidden information detection, θ is a nuisance

parameter. The binary representation of c (the index is omitted

to seek simplicity) is c = Q1[y] =
∑q−1

i=0 bi2
i, where bi =

{0, 1}. A simplified model of quantization is used in this paper.

It is assumed that the saturation is absent, i.e. the probability of

the excess over the boundary 0 and 2q − 1 for the observation

y is negligible.

B. Problem statement : test between two hypotheses

First, let us define two alternative hypotheses for one

quantized observation z (seeking simplicity) :

H0 : z = c = Q1[y] ∼ QQ1
= [q0, . . . , q2q−1]

and

H1 : z=

{
Q2[y]+zs with probability R, zs ∈ {0, 1},
c = Q1[y] with probability 1−R,

where Q2[y] =
∑q−1

i=1 bi2
i, is an uniform quantization by using

2q−1 thresholds, Q2[y] ∼ QQ2
, zs ∼ Qs = B(1, p) is the

Bernoulli distribution which defines the hidden information

(usually p = 0.5). In the other words, to get the double

quantization Q2[y] from Q1[y] it is assumed that the LSB

is deleted, i.e. b0 ≡ 0. Hence, under hypothesis H1, the LSB

is used as a container of hidden information. In the rest of the

paper it is assumed that Q2[z] = Q2[y].



C. A known embedding rate. Two simple hypotheses : likeli-

hood ratio test

Let us suppose that the distributions Qs(zs) = 1/2, QQ1
,

QQ2
and the embedding rate R are exactly known. In this

case the likelihood ratio (LR) for one observation is written

as follows :

ΛR(z) = R
QQ2

(Q2[z])

2QQ1
(z)

+ (1−R). (2)

The most powerful (MP) Neyman-Pearson test over the class

Kα0
= {δ : P0(δ(Zn) = H1) ≤ α0}

is given by the following decision rule :

δR(Zn)=





H0 if ΛR(Zn)=

n∏

i=1

ΛR(zi) < h

H1 if ΛR(Zn)=
n∏

i=1

ΛR(zi) ≥ h

. (3)

The threshold h is defined as a solution of P0(ΛR(Zn) ≥ h) =
α0, where Pi(. . .) denotes the probability under hypothesis Hi,

i = 0, 1. The MP test δR(Zn) maximizes the power

βδR = 1− P1(δR(Zn) = H0) = 1− α1

over the class Kα0
.

D. The moments of approximate log likelihood ratio

Let us start with the simplest case of equation (2), where

Yn ∼ N (θ, σ2). It is easy to see that for any R the LR given

by (2) depends on the observations through the LR

Λ1(z) =
QQ2

(Q2[z])

2QQ1
(z)

computed under assumption that R = 1. The exact equation

of this log LR is given by :

log Λ1(Zn) =

n∑

i=1

1

2σ2

[
− (Q2[zi] + 1 + η2,i − θ)

2

+ (zi + 0.5 + η1,i − θ)
2
]
.

The exact expression of the log LR log Λ1(Zn) is complicated

due to the corrective terms η1,i and η2,i. The calculation

shows that the impact of these terms on the log LR is usually

negligible. The approximate (without the corrective terms)

equation of the log LR is simpler

logΛ̃1(Zn)=

n∑

i=1

1

2σ2

[
− (Q2[zi]+1−θ)

2
+(zi+0.5−θ)

2
]
.

(4)

Under hypothesis H0, the approximate log LR can be re-

written as follows

log Λ̃1(Zn) =

n∑

i=1

[
ζi(b0,i − 0.5)

σ2
− 1

8σ2

]
,

where ζi = zi+0.5− θ, b0,i = LSB(zi) and under hypothesis

H1 is

log Λ̃1(Zn) =

n∑

i=1

[
ξi(b0,i − 0.5)

σ2
+

1

8σ2

]
,

where ξi = Q2[zi] + 1− θ and b0,i = zs,i.
It follows from the central limit theorem that the ratio

log Λ̃1(Zn)− nEi

(
log Λ̃1(z)

)

σi

√
n

 

n→∞
N (0, 1), i = 0, 1,

where σ2
i = Vari

(
log Λ̃1(z)

)
, will converge in distribution

to the standard normal distribution as n goes to infinity. The

expectation and variance are denoted by Ei(. . .) and Vari(. . .)
under Hi, respectively. Hence, to compute the error probabili-

ties it is necessary to get the expectations and variances of the

approximate log LR. Under hypothesis H0, the expectation of

the approximate log LR is given by the following expression

m0 = E0

[
log Λ̃1(z)

]
= − 1

8σ2
+

ε

σ2
, (5)

where the coefficient ε defines the impact of the quantization.

This coefficient is given by

ε= E0 [ζ(b0 − 0.5)]

=
∞∑

m=−∞

[
Φ

(
2m+2−θ

σ

)
−Φ
(
2m+1−θ

σ

)]
(2m+1.5−θ)

2

−
∞∑

m=−∞

[
Φ

(
2m+1−θ

σ

)
−Φ
(
2m−θ

σ

)]
(2m+0.5−θ)

2
. (6)

Finally, the variance is given by

σ2
0=Var0

[
log Λ̃1(z)

]
=

E0

[
ζ2
]
−4ε2

4σ4
, (7)

where

E0

[
ζ2
]
=

∞∑

m=−∞

[
Φ

(
m+1−θ

σ

)
−Φ

(
m−θ

σ

)]
(m+0.5− θ)2.

Under hypothesis H1, the expectation and variance of the

approximate log LR are given by the following expressions

m1 = E1

[
log Λ̃1(z)

]
=

1

8σ2
, (8)

σ2
1 = Var1

[
log Λ̃1(z)

]
=

1

4σ4
E1

[
ξ2
]
, (9)

where

E1

[
ξ2
]
=

∞∑

m=−∞

[
Φ

(
2m+2−θ

σ

)
−Φ

(
2m−θ

σ

)]
(m+1−θ)2,

(10)

respectively. To illustrate the impact of the quantization, let us

assume the following parameters of the Gaussian cover media

model : R̃ = 1, θ ∈ [128; 132], σ = 1 and n = 200. The

comparison of theoretical equations for α1 with the Monte

Carlo simulation (106 repetitions) are presented in Figure 1.

This figure shows the probability of missed detection α1

calculated with (solid line) and without (dashed line) taking
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Figure 1. The impact of the quantization on the probability of missed
detection α1.

into account the impact of quantization for the prescribed

significance level α0 = 10−3. As it follows from Figure 1, the

impact of quantization on the probability of missed detection

α1 is significant.

The following simplified equations can be proposed for the

expectation and variance of the approximate log LR given by

(4) without taking into account the impact of quantization

mi = (−1)i+1 1

8σ2
, σ2

i =
1

4σ2
, i = 0, 1. (11)

Theorem 1: Let us assume that the true embedding rate

takes an arbitrary value R̃ : 0 < R̃ ≤ 1. The power βδ1

of the MP test (3) with the log LR log Λ̃1(Zn) given by (4)

can be approximated by

βδ1 ≃ 1− Φ

(
Φ−1(1− α0)

σ0

σ
R̃

− (m1 −m0)R̃
√
n

σ
R̃

)
(12)

for large n. The expectations mi and variance σ2
0 are computed

by using equations (5) - (10) (resp. (11)) with (resp. without)

taking into account the impact of quantization. The variance

σ2
R̃

is also computed with taking into account the impact of

quantization

σ2
R̃

=
1

4σ2

[(
E1

[
ξ2
]
+

1

16

)
R̃+

(
E0

[
ζ2
]
+

1

16
−ε

)
(1−R̃)

]

−
[
m1R̃+m0(1−R̃)

]2
(13)

or without taking into account the impact of quantization

σ2
R̃
=

1 + R̃− R̃2

4σ2
. (14)

The comparison of Monte Carlo simulation (with 106 repeti-

tions) of the test given by (3) with these two approaches is

depicted in Figure 2 for θ = 129, σ = 1.5 and n = 100. It is

easy to see that the results from the Monte Carlo simulation

perfectly coincide with equation (12) for βδ1 taking into

account of the impact of quantization.
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Figure 2. The power of the MP test given by (3) as a function of α0 :
with the impact of quantization βδ1

(dash dotted line); without the impact of

quantization β̃δ1
(dashed line); Monte Carlo simulation (solid line).

III. AN UNKNOWN EMBEDDING RATE

A. Two composite hypotheses

Let us assume that the distributions Qs, QQ1
, QQ2

are

known, but the embedding rate R is unknown. The following

alternative composite hypotheses have to be tested by using n
observations Zn representing the cover media :

H0 = {R ≤ r∗} against H1 = {R > r∗}. (15)

Hence, the LR (2) becomes

ΛR0,R1
(Zn) =

n∏

i=1

R1
1
2QQ2

(Q2[zi]) + (1−R1)QQ1
(zi)

R0
1
2QQ2

(Q2[zi]) + (1−R0)QQ1
(zi)

,

(16)

where R0 ≤ r∗ < R1. The main difficulty is that the values

of acceptable R0 and unacceptable R1 embedding rates are

unknown. The ultimate challenge for anyone in the case of

two composite hypotheses is to get a uniformly MP (UMP)

test δ which maximizes the power function

β(R) = 1− PR(δ(Zn) = H0),

where PR(. . .) denotes the probability under the assumption

that the embedding rate is equal to R, for any R > r∗ over

the class Kα0
=
{
δ : supR≤r∗ PR(δ(Zn) = H1) ≤ α0

}
. An

efficient solution is based on the asymptotic local approach

proposed by L. Le Cam [8]. The idea of this approach is

that the “distance” between alternative hypotheses depends on

the sample size n in such a way that the two hypotheses get

closer to each other when n tends to infinity. By using an

asymptotic expansion of the log LR, a particular hypothesis

testing problem can be locally reduced to a relatively simple

UMP hypothesis testing problem between two Gaussian scalar

means [8]. This approach is applied to the following model

Zn ∼ QR =

n∏

i=1

R
1

2
QQ2

(Q2[zi]) + (1−R)QQ1
(zi) .



Let us consider two converging sequences of hypotheses

Hj(n) = {R ∈ Rj(n)} (j = 0, 1). The sets Rj(n) are of

the form Rj(n) = r∗ + 1√
n
µr. The rate of convergence is

1√
n

. Seeking simplicity, let us denote the hypotheses H0(n) =

{R = r∗} and H1(n) = {R = r∗ + 1√
n
µr}. The log

LR log Λ
(
Zn;

1√
n
µr

)
= logQr∗+ 1√

n
µr

(Zn) − logQr∗ (Zn)

possess the following asymptotic expansion :

log Λ

(
Zn;

1√
n
µr

)
≃ 1√

n
µrζn(Zn; r

∗)− 1

2
µ2
rF(r∗)

where F(R) is the Fisher information and

ζn(Zn; r
∗) =

n∑

i=1

∂ logQR(zi)

∂R

∣∣∣∣∣
R=r∗

(17)

is the function of efficient score which is asymptotically

Gaussian

ζn(Zn; r
∗) 

{N (0,F(r∗)) under zi ∼ Qr∗

N (F(r∗)µr,F(r∗)) under zi ∼ Qr∗+ µr√
n

.

(18)

It can shown that the efficient score is given by

ζn(Zn; r
∗) =

n∑

i=1

ζ(zi; r
∗) =

n∑

i=1

Λ1(zi)− 1

r∗Λ1(zi) + (1− r∗)
(19)

and the Fisher information F(R) is

F(R) = ER

[
Λ1(z)− 1

RΛ1(z) + (1−R)

]2
.

Therefore, the local UMP test to chose between two alternative

hypotheses (15) is given by the following rule :

δr∗(Zn) =

{
H0 if ζn(Zn; r

∗) < h
H1 if ζn(Zn; r

∗) ≥ h
. (20)

B. Tractable likelihood ratio

As it follows from previous sections, in the case of arbitrary

embedding rate R, an optimal solution is based on the log LR

given by (16) if R0 and R1 are known or on the efficient score

given by (19) if they are unknown but the value r∗ is known.

It is easy to see that in both cases the useful information

obtained from observations Zn of cover media (with or without

a secret message) is concentrated in log Λ1(z). Let us denote

y
def.
= ζ(z; r∗), hence

y = f(x; r∗)
def.
=

ex − 1

r∗ex + 1− r∗
with x

def.
= log Λ1(z). (21)

The asymptotic normality of ζn(Zn; r
∗) =

∑n
i=1 ζ(zi; r

∗)
is warranted due to Le Cam expansion (see equation (18)).

Hence, to compute the loss of optimality of the MP test based

on log Λ1(Zn) given by (3) and designed for R = 1 against the

local MP test given by (20) with a certain value r∗ and against

the MP test based on log Λ
R̃
(Zn) when the true embedding

rate is R̃ it is sufficient to compute first two moments of

corresponding statistics under alternative hypotheses H0 and

H1, see details in [9].

C. A more realistic model of cover media

As it follows from equation (12), the power β of an optimal

test depends on the standard deviation σ of cover media for

a given rate of false alarm α0. Hence, to increase the power

β, someone has to reduce the standard deviation σ by using

a parametric model of cover media. As it is motivated in

[10], the observation vector (pixels) extracted from the cover

media file (digital image, for instance) by using a specially

chosen segment or mask is characterized “block by block” by

a regression model. Let us split the observation vector C in

M statistically independent n dimensional sub-vectors Cj , i.e.

CT = (CT
1 , . . . , C

T
M ). It is assumed that each segment Cj is

approximated by the following regression model :

Cj=Q1[Yj ], Yj=Hxj+ξ ∼ N (Hxj , σ
2
j In), j = 1, . . . ,M,

where H is a known [n× l] full rank matrix, n > l, In is an

(n× n) identity matrix, xj ∈ R
l is a nuisance parameter and

σ2 is the residual variance. The vector Cj (pixels) is extracted

from the cover media file (digital image, for instance) by using

a specially chosen segment or mask. The l columns of H span

a column subspace R(H) of the observation space Yj ∈ R
n.

Such a parametric model is an efficient method to reduce the

standard deviation σj . The new hypothesis testing problem

with a parametric model of cover media consists in deciding

between the following hypotheses

H0 : Z = C = Q1[Y ], Y = (Y T
1 , . . . , Y T

M )T ∈ R
Mn (22)

H1 : zi =

{
Q2[yi]+zs,i with probability R
ci=Q1[yi] with probability 1−R , (23)

where Yj ∼ N (Hjx, σ
2
j In). In practice, xj and σ2

j are

unknown. The theoretical aspects of dealing with nuisance

parameters in the framework of statistical decision theory is

discussed in [11]. An efficient approach to this problem is

based on the theory of invariance in statistics. The optimal

invariant tests and their properties in the context of image

processing have been designed and studied in [12], [13]. The

parameter vector xj can be estimated by using Q2[Yj ] which

is free from the embedded information. The “approximate”

log GLR is given by

log Λ̂1(Zj) ≃
1

σ2
j

[
P⊥
HQ2[Zj ]

]T
[B0 − 0.5 · 1n] +

n

8σ2
j

, (24)

where B0 = (b0,1, . . . , b0,n)
T , 1n = (1, . . . , 1)T and P⊥

H =
In −H(HTH)−1HT is a projection matrix.

Under hypothesis H0, the expectation and variance of the

“approximate” log GLR for the total observation vector Y are

given by the following expressions :

m0 = E0




M∑

j=1

log Λ̂1(Zj)


 ≃ M(2l − n)

8σ2 (25)

with 1
σ2 = 1

M

∑M
j=1

1
σ2

j

and

σ2
0=Var0




M∑

j=1

log Λ̂1(Zj)


≃M(n−l)

[
1

4σ2 +
1

16σ4

]
(26)



with 1
σ4 =

1
M

∑M
j=1

1
σ4

j

. Let us assume that the true embedding

rate takes an arbitrary value R̃ : 0 < R̃ ≤ 1. Under

hypothesis H1 with the true embedding rate R̃, the expectation

and variance of the “approximate” log GLR for the total

observation vector Y are given by the following expressions :

m
R̃
= E

R̃




M∑

j=1

log Λ̂1(Zj)


 ≃ M(2l − n+ 2R̃(n− l))

8σ2

(27)

and

σ2
R̃
=Var

R̃



M∑

j=1

log Λ̂1(Zj)


≃M(n− l)

4σ2 +
M(n− l)(1−R)2

16σ4

(28)

Theorem 2: Let us assume that the Lindeberg’s condition

imposed on the log LR log Λ̂1(Zj) is satisfied. It follows from

the central limit theorem that the following fraction

∑M
j=1 log Λ̂1(Zj)− E

R̃

[∑M
j=1 log Λ̂1(Zj)

]

√
Var

R̃

[∑M
j=1 log Λ̂1(Zj)

]  

M→∞
N (0, 1)

(29)

weakly converges to the standard normal distribution. For

large M , the power βδ1 of the test (3) with the log LR∑M
j=1 log Λ̂1(Zj) given by (24) can be approximated

βδ1 ≃ 1− Φ

(
Φ−1(1− α0)

σ0

σ
R̃

− (m
R̃
−m0)

σ
R̃

)
(30)

where m0, m
R̃

, σ0 and σ
R̃

are calculated by using equations

(25) - (28).

If the residual variance σ2
j is unknown, then the estimation

σ̂2
j = 1

n−l

∥∥P⊥
HQ2[Zj ]

∥∥2
2

is used in equation (24).

D. Relation between the proposed and some known heuristic

tests

The first right hand side term in equation (24) defines the

sensitivity of the test because the second right hand side

term
n

8σ̂2
does not depend on the embedded secret message.

The first right hand side term in equation (24) represents an

inner product of the vector of “residuals” ε = PHQ2[Zn],
i.e. the vector of projection of Yn on the orthogonal com-

plement R(H)⊥ of the column space R(H), and the vector

[B0 − 0.5 · 1n] composed of LSB(zi)− 0.5 :

n∑

i=1

=“weight”︷︸︸︷
σ̂−2 ·

=“residual” εi︷ ︸︸ ︷
(Q2[yi]−(Hx̂)i + 1)·

=LSB(zi)−0.5︷ ︸︸ ︷
(b0,i−0.5) . (31)

Let us now compare the last equation with the recently

developed WS steganalysers reputed very efficient [14], [15].

These steganalysers are based on the following statistics :

n∑

i=1

=“weight”︷︸︸︷
wi ·

=“residual” εi︷ ︸︸ ︷
(zi −F(z)i) ·

=2·(LSB(zi)−0.5)︷ ︸︸ ︷
(zi − zi) , (32)

where F(s) denotes a “filter” dedicated to estimate the cover-

image by filtering the stego-image, the weight wi is chosen

as 1
1+σ2

i

, σ2
i is the “local” variance and zi denotes the

nonnegative integer zi with the LSB flipped. As it follows

from equations (31) - (32), the steganalysers developed in [14],

[15] coincide with the first term of the tractable log GLR (24).

Nevertheless, the second right hand side term
n

8σ̂2
of (24)

is also necessary to correctly calculate the threshold h as a

solution of the following equation

P0(log Λ̂1(Zn) ≥ h) = α0.

IV. CONCLUSIONS

The problem of hypothesis testing using a parametric sta-

tistical model with nuisance parameters based on quantized

observations has been discussed. In practice this problem

is related to the detection of hidden information. Two new

phenomena have been studied : i) the impact of observation

quantization on the probabilities of false alarm and missed

detection; ii) the benefits from using a parametric statistical

model of cover media for hidden information detection.
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