INF 542: Logic and Computability Lecture 8 — D. Miller 24.11.2006

Outline

- 1. Review of two-sided sequent calculus
- 2. One-sided sequent calculus
- 3. Models, Herbrand models
- 4. Soundness theorem
- 5. Completeness theorem

Sequent calculus

A calculus introduced by G. Gentzen in 1936 in order to prove a fundamental theorem of logic.

A sequent of F is a triple $\Sigma : \Gamma \longrightarrow \Delta$, where Σ is a first-order signature and Γ and Δ are finite (possibly empty) multisets of Σ -formulas.

The multiset Γ is this sequent's *antecedent* and Δ is its *succedent*. The expressions Γ, B and B, Γ denote the multiset union $\Gamma \cup \{B\}.$

A first-order *signature* Σ is a set of first-order typed variables. A Σ -formula is a formula all of whose free variables are contain in the set Σ .

Sequent calculus: Initial and cut rules

$$
\Sigma \; : \; B \; \longrightarrow B \; \; initial \qquad \frac{\Sigma \; : \; \Delta_1 \; \longrightarrow \Gamma_1, B \qquad \Sigma \; : \; B, \Delta_2 \; \longrightarrow \Gamma_2}{\Sigma \; : \; \Delta_1, \Delta_2 \; \longrightarrow \Gamma_1, \Gamma_2} \; cut
$$

Sequent calculus: Structural rules

$$
\frac{\Sigma : \Delta \longrightarrow \Gamma}{\Sigma : \Delta, B \longrightarrow \Gamma} \text{ weakL} \qquad \frac{\Sigma : \Delta \longrightarrow \Gamma}{\Sigma : \Delta \longrightarrow \Gamma, B} \text{ weakR}
$$

$$
\frac{\Sigma : \Delta, B, B \longrightarrow \Gamma}{\Sigma : \Delta, B \longrightarrow \Gamma} \text{ contrL} \qquad \frac{\Sigma : \Delta \longrightarrow \Gamma, B, B}{\Sigma : \Delta \longrightarrow \Gamma, B} \text{ contrR}
$$

The Cut-Elimination Theorem

A central result in proof theory (usually desired for any proof system of any logic) is the cut-elimination theorem.

Theorem. If a sequent has a proof then it has a cut-free proof.

In other words: lemmas are not strictly speaking necessary.

An analogy from programming language: Instead of calling a subroutine, you can "in-line" the routine.

Of course, one expects the size of programs (and cut-free proofs) to grow greatly.

Cut-elimination, mathematics, and computation

Cut-free proofs of mathematically interesting theorems "do not exist in nature". They only exist "in principle".

The cut-elimination theorem helps to validate a logic as well designed and as consistent.

Proofs without cut have the subformula property: any formula in any sequent in a cut-free proof is a subformula of a formula in the end-sequent.

A one-sided sequent calculus for classical logic

Doing meta-theory about proof systems will be easier if we simplify formulas and proofs.

A formula is in *negation normal form* (nnf) if it contains no occurrences of \supset and if negations have only atomic scope.

Any formula can be rewritten to a classically equivalent formula that is in negation normal form by rewriting it by a series of simple equivalences. For example, $\neg\neg B \equiv B$ and $\neg(A \land B) \equiv (\neg A \lor \neg B)$.

Now replace the two-side sequent $\Sigma : \Gamma \longrightarrow \Delta$ with the one-side sequent Σ : $\longrightarrow \neg \Gamma, \Delta$, but this time, assume that all formulas are in negation normal form.

If we write $\neg B$ in a sequent, we mean the negation normal form of $\neg B$.

One-sided sequent proof system

$$
\frac{\Sigma : \longrightarrow \Gamma, B \quad \Sigma : \longrightarrow \Gamma, C}{\Sigma : \longrightarrow \Gamma, B \land C} \land R \quad \frac{\Sigma : \longrightarrow \Gamma, \top}{\Sigma : \longrightarrow \Gamma, \top} \top R
$$
\n
$$
\frac{\Sigma : \longrightarrow \Gamma, B, C}{\Sigma : \longrightarrow \Gamma, B \lor C} \lor R \quad \frac{\Sigma : \longrightarrow \Gamma}{\Sigma : \longrightarrow \Gamma, \bot} \bot R
$$
\n
$$
\frac{\Sigma \cup \{c\} : \longrightarrow \Gamma, B[c/x]}{\Sigma : \longrightarrow \Gamma, \forall x B} \forall R \quad \frac{\Sigma : \longrightarrow \Gamma, B[t/x]}{\Sigma : \longrightarrow \Gamma, \exists x B} \exists R
$$
\n
$$
\frac{\Sigma : \longrightarrow \Gamma, B \quad \Sigma : \longrightarrow \Gamma_2, \neg B}{\Sigma : \longrightarrow \Gamma_1, \Gamma_2} cut
$$

We have organized things so that structural rules are not needed.

All inference rules are now invertible except for the ∃R rule. To retain invertibility, one must ensure that $\exists x B$ occurs in the upper premise as well as the lower premise (via an implicit use of the contraction rule).

Models for first-order logic

But what do formulas mean? While there are many ways to answer this, a common approach uses the notion of models.

We must specify the *domain of quantification*: a set of objects about which quantified variables range and terms denote.

An *interpretation* is a pair $\langle \mathcal{D}, I \rangle$ where $\mathcal D$ is a non-empty set that serves as the domain of quantification and where I is a mapping from both function and predicate constants to functions:

If f is a function constant of arity n then $I(f): \mathcal{D}^n \to \mathcal{D}$.

If $n = 0$, then $I(f)$ is some particular element of \mathcal{D} .

If p is a predicate constant of arity n then $I(p) : \mathcal{D}^n \to {\{\texttt{t},\texttt{f}\}}$ (the characteristic function for a subset of \mathcal{D}^n .

If $n = 0$ then $I(p)$ is a member of $\{\texttt{t},\texttt{f}\}.$

Variable assignments

A variable assignment is a function ϕ from some set variables (the *domain* of ϕ , dom (ϕ) to \mathcal{D} .

Let ϕ be a term assignment and let $d \in \mathcal{D}$. By $\phi[d/x]$ we denote the term assignment that is defined for x to have value d. For all values in dom(ϕ) – {x}, the functions ϕ and $\phi[x/d]$ are identical.

Given an interpretation I and an assignment ϕ , we define the mapping I_{ϕ} of terms to $\mathcal D$ as follows:

If x is a variable, then $I_{\phi}(x) = \phi(x)$

If f is an *n*-ary function symbol, then

$$
I_{\phi}(f(t_1,\ldots,t_n))=I(f)(I_{\phi}(t_1),\ldots,I_{\phi}(t_n)),
$$

A formula or term is closed if it contains no free variables. A formula that is closed is also called a sentence.

Interpretation of formulas

We write $\langle \mathcal{D}, I \rangle \models_{\phi} B$ to denote that the formula B is true (is satisfied) in the interpretation $\langle \mathcal{D}, I \rangle$ and the term assignment ϕ .

When D is understood, we shall simply write $I \models_{\phi} B$.

- if B is $p(t_1, \ldots, t_n)$ and $I(p)(I_{\phi}(t_1), \ldots, I_{\phi}(t_n)) = \mathbf{t}$ then $I \models_{\phi} B;$
- $I \models_{\phi} B_1 \wedge B_2$ if $I \models_{\phi} B_1$ and $I \models_{\phi} B_2$;
- $I \models_{\phi} B_1 \vee B_2$ if $I \models_{\phi} B_1$ or $I \models_{\phi} B_2$;
- $I \models_{\phi} \neg B$ hold if $I \models_{\phi} B$ does not hold;
- $I \models B_1 \supset B_2$ if not $I \models_{\phi} B_1$ or $I \models_{\phi} B_2$;
- $I \models_{\phi} \forall x.B$ if for all $d \in \mathcal{D}, I \models_{\phi'} B$, where ϕ' is $\phi[d/x]$; and
- $I \models_{\phi} \exists x.B$ if for some $d \in \mathcal{D}, I \models_{\phi'} B$, where ϕ' is $\phi[d/x]$.

Models of sentences

B is *satisfiable* if there is an interpretation $\langle \mathcal{D}, I \rangle$ and a term assignment ϕ such that $\langle \mathcal{D}, I \rangle \models_{\phi} B$. The formula B is *valid* if for every interpretation $\langle \mathcal{D}, I \rangle$ and a term assignment, we have $\langle \mathcal{D}, I \rangle \models_{\phi} B$.

If B is a sentence then we write $I \models B$ to denote $I \models_{\phi} B$ where ϕ is the unique term assignment with an empty domain.

An interpretation $\langle \mathcal{D}, I \rangle$ that makes a sentence B true $(\langle \mathcal{D}, I \rangle \models B)$ is said to be a model for that sentence.

Herbrand interpretations and models

A *Herbrand interpretation* is a first-order interpretation $\langle \mathcal{D}, I \rangle$ where $\mathcal D$ is the set of closed terms (over a fixed set of function constants) and

$$
I_{\phi}(f(t_1,\ldots,t_n))=f(I_{\phi}(t_1),\ldots,I_{\phi}(t_n)).
$$

It is easy to see that in such an interpretation, term assignments become just substitutions and that $I_{\phi}(t) = \phi(t)$.

When specifying a Herbrand interpretation, one only needs to specify the interpretation of predicate symbols.

Equivalently: a Herbrand interpretation is specify a set of closed, atomic formulas, say H. Here, $I(p(t_1, \ldots, t_n)) = \mathbf{t}$ if and only if $p(t_1, \ldots, t_n) \in \mathcal{H}$.

Herbrand models are somethings called *term models* since the domain of individuals are terms instead of more abstract objects. For example, in a Herbrand model, the terms $1 + 2$, $2 + 1$, and 3 are three different terms (i.e., syntactic expressions).

Soundness of sequent calculus

Let M be a Herbrand interpretation and let $\Sigma : \Gamma$ be a sequent, where $\Sigma = \{x_1, \ldots, x_n\}$. We say that $\Sigma : \Gamma$ is *satisfiable* in M if for every list of terms t_1, \ldots, t_n there is an $F \in \Gamma$ such that $M \models F[t_1/x_1, \ldots, t_n/x_n].$

We write $\mathcal{M} \models \Sigma : \Gamma$ if $\Sigma : \Gamma$ is satisfiable in \mathcal{M} .

A sequent is *unsatisfiable* in M if it is not satisfiable.

The sequent $\Sigma : \Gamma$ is valid, denoted as $\models \Sigma : \Gamma$ if for every interpretation M we have $\mathcal{M} \models \Sigma : \Gamma$.

The Soundness Theorem: If the sequent $\Sigma : \Gamma$ is provable then it is valid. This is a fairly straightforward proof by induction on the structure of proofs.

The Completeness Theorem

Proving the converse to soundness, namely, completeness is much more involved.

The Completeness Theorem: If the sequent $\Sigma : \Gamma$ is valid then it is provable.

In fact, we will prove the contrapositive of this statement, namely, that if a sequent does not have a proof then it is not valid. We shall show that an unprovable sequent has a counter-model (an interpretation in which it is false) that is also a Herbrand interpretation.

How can we know that a sequent does not have a proof?