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Sequent calculus

A calculus introduced by G. Gentzen in 1936 in order to prove a fundamental
theorem of logic.

A sequent of F is a triple X : I' — A, where X is a first-order signature and I"
and A are finite (possibly empty) multisets of Y-formulas.

The multiset I' is this sequent’s antecedent and A is its succedent. The
expressions I', B and B, I" denote the multiset union I' U { B}.

A first-order signature X is a set of first-order typed variables. A Y-formula is a

formula all of whose free variables are contain in the set ..
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Sequent calculus: Initial and cut rules

o > : Ay —TI',B > B,Ay — 1T
> . B _ p !mitial S AL A, —T..T,

cut

Sequent calculus: Structural rules

> : A —T 1L > : A —T
> : AB —T "V >: A —TI,B
> : AB,B — 7T > : A —TI.B,B
> AB T contrL > A T8 contrR

weakR
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Sequent calculus: Introduction rules

> : BA —7T > : C,A — 7T
> BrcA TN T BACA =T/
> : A —1I.B > A —TI.C
>: A —TI,BANC
> : BA —7T > . C,A — T
> : BvVC,A — T
> : A —I'B > A —TI.C

L

AR

VL

R

»:A —T.Bvc 'R ST A STt.BVvC
> : Ay —TI',B X C, Ay — Ty > : BA —TI',C

DL OR

> : BOC,A1,Ay —T'1,T > : A —I'B>C
¥ : A Bt/x] — T YU{c} : A — T, Blc/x]

> : AV B —T vL > : A —I'Va B
YU{c} : A/Ble/x] — T Y : A —T,Bt/z]
> :A3xB —-T ©° Y:A _ST.32B

Z:—>TTR Z:J_—>J_L

VR

IR
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The Cut-Elimination Theorem

A central result in proof theory (usually desired for any proof system of any
logic) is the cut-elimination theorem.

Theorem. If a sequent has a proof then it has a cut-free proof.
In other words: lemmas are not strictly speaking necessary.

An analogy from programming language: Instead of calling a subroutine, you can

“in-line” the routine.

Of course, one expects the size of programs (and cut-free proofs) to grow greatly.
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Cut-elimination, mathematics, and computation

Cut-free proofs of mathematically interesting theorems “do not exist in nature”.
They only exist “in principle”.
The cut-elimination theorem helps to validate a logic as well designed and as

consistent.

Proofs without cut have the subformula property: any formula in any sequent in

a cut-free proof is a subformula of a formula in the end-sequent.
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A one-sided sequent calculus for classical logic

Doing meta-theory about proof systems will be easier if we simplify formulas and

proofs.

A formula is in negation normal form (nnf) if it contains no occurrences of O and

if negations have only atomic scope.

Any formula can be rewritten to a classically equivalent formula that is in

negation normal form by rewriting it by a series of simple equivalences. For
example, == B = B and -(AA B) = (-AV —-B).

Now replace the two-side sequent > : I' — A with the one-side sequent
> : — ', A, but this time, assume that all formulas are in negation normal

form.

If we write =B in a sequent, we mean the negation normal form of —B.




Amphi 8: INF 542, 24.11.06

One-sided sequent proof system

> . —1I''B > . — IO
Y . —ST.BAC M sT—7 7 TR
> . — 1B, C Y. 5T
> Sr.Bve R ST o101

YU{c} : — T, Blc/z] Y . — I, B[t/x]

> : —T.veB ™ Y. _-T.9:8 °

> . —1I'1,B > . — Iy, —B
> . —>T.B.-B initial > . ST, T, cut

1R

We have organized things so that structural rules are not needed.

All inference rules are now invertible except for the dR rule. To retain
invertibility, one must ensure that dx B occurs in the upper premise as well as

the lower premise (via an implicit use of the contraction rule).
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Models for first-order logic

But what do formulas mean? While there are many ways to answer this, a

common approach uses the notion of models.

We must specify the domain of quantification: a set of objects about which

quantified variables range and terms denote.

An interpretation is a pair (D, I) where D is a non-empty set that serves as the
domain of quantification and where I is a mapping from both function and

predicate constants to functions:
If f is a function constant of arity n then I(f): D™ — D.
If n =0, then I(f) is some particular element of D.

If p is a predicate constant of arity n then I(p) : D™ — {t,f} (the characteristic

function for a subset of D™.

If n =0 then I(p) is a member of {t,f}.
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Variable assignments

A wariable assignment is a function ¢ from some set variables (the domain of ¢,

dom(¢)) to D.

Let ¢ be a term assignment and let d € D. By ¢[d/z] we denote the term
assignment that is defined for x to have value d. For all values in dom(¢) — {x},
the functions ¢ and ¢[x/d] are identical.

Given an interpretation I and an assignment ¢, we define the mapping I4 of

terms to D as follows:
If  is a variable, then I4(x) = ¢(x)

If f is an n-ary function symbol, then
Is(f(ti,.. o tn)) = 1(f)Lp(t1), ..., 1p(tn)),

A formula or term is closed if it contains no free variables. A formula that is

closed is also called a sentence.
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Interpretation of formulas

We write (D, I) =, B to denote that the formula B is true (is satisfied) in the
interpretation (D, I) and the term assignment ¢.

When D is understood, we shall simply write I =4 B.
o if Bis p(t1,...,tn) and I(p)(Ly(t1),...,1p(tn)) =t then I =4 B;

[y By AByif I'l= By and I =y Bo;
[y ByV By if I =4 By or I =4 Ba;
I =4 =B hold if I =4 B does not hold;
I =DB; D Byifnot I =4 By or I =4 Bo;
I =4 Va.Bifforalld € D, I =4 B, where ¢’ is ¢[d/x]; and
I =4 3x.B if for some d € D, I |=4 B, where ¢ is ¢|d/x].
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Models of sentences

B is satisfiable if there is an interpretation (D, I) and a term assignment ¢ such
that (D, I) =4 B. The formula B is valid if for every interpretation (D, I) and a

term assignment, we have (D, I) =4 B.

If B is a sentence then we write I = B to denote I |=4 B where ¢ is the unique

term assignment with an empty domain.

An interpretation (D, I) that makes a sentence B true ((D, ) = B) is said to be

a model for that sentence.
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Herbrand interpretations and models

A Herbrand interpretation is a first-order interpretation (D, I) where D is the set

of closed terms (over a fixed set of function constants) and
Io(F (b o t)) = F(Ip(t1), - To(tn)).

It is easy to see that in such an interpretation, term assignments become just
substitutions and that I,(t) = ¢(1).

When specifying a Herbrand interpretation, one only needs to specify the

interpretation of predicate symbols.

Equivalently: a Herbrand interpretation is specify a set of closed, atomic
formulas, say ‘H. Here, I(p(t1,...,t,)) =t if and only if p(t1,...,t,) € H.

Herbrand models are somethings called term models since the domain of
individuals are terms instead of more abstract objects. For example, in a
Herbrand model, the terms 1 + 2, 2 + 1, and 3 are three different terms (i.e.,

syntactic expressions).
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Soundness of sequent calculus

Let M be a Herbrand interpretation and let X :I' be a sequent, where
¥ =A{x1,...,x,}. Wesay that X : T is satisfiable in M if for every list of terms
t1,...,t, there is an F € I' such that M |= Flt1/x1,...,tn/xy].

We write M =X :T"if ¥ : T is satisfiable in M.
A sequent is unsatisfiable in M if it is not satisfiable.

The sequent X : T" is valid, denoted as = X : T' if for every interpretation M we
have M =X :T.

The Soundness Theorem: If the sequent X : I is provable then it is valid.

This is a fairly straightforward proof by induction on the structure of proofs.
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The Completeness Theorem

Proving the converse to soundness, namely, completeness is much more involved.
The Completeness Theorem: If the sequent X : I is valid then it is provable.

In fact, we will prove the contrapositive of this statement, namely, that if a
sequent does not have a proof then it is not valid. We shall show that an
unprovable sequent has a counter-model (an interpretation in which it is false)
that is also a Herbrand interpretation.

How can we know that a sequent does not have a proof?




