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INF 542: Logic and Computability

Lecture 8 — D. Miller

24.11.2006
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Sequent calculus

A calculus introduced by G. Gentzen in 1936 in order to prove a fundamental

theorem of logic.

A sequent of F is a triple Σ : Γ −→ ∆, where Σ is a first-order signature and Γ

and ∆ are finite (possibly empty) multisets of Σ-formulas.

The multiset Γ is this sequent’s antecedent and ∆ is its succedent. The

expressions Γ, B and B, Γ denote the multiset union Γ ∪ {B}.

A first-order signature Σ is a set of first-order typed variables. A Σ-formula is a

formula all of whose free variables are contain in the set Σ.
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Sequent calculus: Initial and cut rules

Σ : B −→ B
initial

Σ : ∆1 −→ Γ1, B Σ : B, ∆2 −→ Γ2

Σ : ∆1, ∆2 −→ Γ1, Γ2
cut

Sequent calculus: Structural rules

Σ : ∆ −→ Γ
Σ : ∆, B −→ Γ

weakL
Σ : ∆ −→ Γ

Σ : ∆ −→ Γ, B
weakR

Σ : ∆, B, B −→ Γ

Σ : ∆, B −→ Γ
contrL

Σ : ∆ −→ Γ, B, B

Σ : ∆ −→ Γ, B
contrR
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Sequent calculus: Introduction rules

Σ : B, ∆ −→ Γ

Σ : B ∧ C, ∆ −→ Γ
∧L

Σ : C, ∆ −→ Γ

Σ : B ∧ C, ∆ −→ Γ
∧L

Σ : ∆ −→ Γ, B Σ : ∆ −→ Γ, C

Σ : ∆ −→ Γ, B ∧ C
∧R

Σ : B, ∆ −→ Γ Σ : C, ∆ −→ Γ

Σ : B ∨ C, ∆ −→ Γ
∨L

Σ : ∆ −→ Γ, B

Σ : ∆ −→ Γ, B ∨ C
∨R

Σ : ∆ −→ Γ, C

Σ : ∆ −→ Γ, B ∨ C
∨R

Σ : ∆1 −→ Γ1, B Σ : C, ∆2 −→ Γ2

Σ : B ⊃ C, ∆1, ∆2 −→ Γ1, Γ2
⊃L

Σ : B, ∆ −→ Γ, C

Σ : ∆ −→ Γ, B ⊃ C
⊃R

Σ : ∆, B[t/x] −→ Γ

Σ : ∆, ∀x B −→ Γ
∀L

Σ ∪ {c} : ∆ −→ Γ, B[c/x]

Σ : ∆ −→ Γ, ∀x B
∀R

Σ ∪ {c} : ∆, B[c/x] −→ Γ

Σ : ∆, ∃x B −→ Γ
∃L

Σ : ∆ −→ Γ, B[t/x]

Σ : ∆ −→ Γ, ∃x B
∃R

Σ : −→ ⊤
⊤R

Σ : ⊥ −→
⊥L
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The Cut-Elimination Theorem

A central result in proof theory (usually desired for any proof system of any

logic) is the cut-elimination theorem.

Theorem. If a sequent has a proof then it has a cut-free proof.

In other words: lemmas are not strictly speaking necessary.

An analogy from programming language: Instead of calling a subroutine, you can

“in-line” the routine.

Of course, one expects the size of programs (and cut-free proofs) to grow greatly.
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Cut-elimination, mathematics, and computation

Cut-free proofs of mathematically interesting theorems “do not exist in nature”.

They only exist “in principle”.

The cut-elimination theorem helps to validate a logic as well designed and as

consistent.

Proofs without cut have the subformula property: any formula in any sequent in

a cut-free proof is a subformula of a formula in the end-sequent.
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A one-sided sequent calculus for classical logic

Doing meta-theory about proof systems will be easier if we simplify formulas and

proofs.

A formula is in negation normal form (nnf) if it contains no occurrences of ⊃ and

if negations have only atomic scope.

Any formula can be rewritten to a classically equivalent formula that is in

negation normal form by rewriting it by a series of simple equivalences. For

example, ¬¬B ≡ B and ¬(A ∧ B) ≡ (¬A ∨ ¬B).

Now replace the two-side sequent Σ : Γ −→ ∆ with the one-side sequent

Σ : −→ ¬Γ, ∆, but this time, assume that all formulas are in negation normal

form.

If we write ¬B in a sequent, we mean the negation normal form of ¬B.
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One-sided sequent proof system

Σ : −→ Γ, B Σ : −→ Γ, C

Σ : −→ Γ, B ∧ C
∧R

Σ : −→ Γ,⊤
⊤R

Σ : −→ Γ, B, C

Σ : −→ Γ, B ∨ C
∨R

Σ : −→ Γ
Σ : −→ Γ,⊥

⊥R

Σ ∪ {c} : −→ Γ, B[c/x]

Σ : −→ Γ, ∀x B
∀R

Σ : −→ Γ, B[t/x]

Σ : −→ Γ, ∃x B
∃R

Σ : −→ Γ, B,¬B
initial

Σ : −→ Γ1, B Σ : −→ Γ2,¬B

Σ : −→ Γ1, Γ2
cut

We have organized things so that structural rules are not needed.

All inference rules are now invertible except for the ∃R rule. To retain

invertibility, one must ensure that ∃x B occurs in the upper premise as well as

the lower premise (via an implicit use of the contraction rule).
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Models for first-order logic

But what do formulas mean? While there are many ways to answer this, a

common approach uses the notion of models.

We must specify the domain of quantification: a set of objects about which

quantified variables range and terms denote.

An interpretation is a pair 〈D, I〉 where D is a non-empty set that serves as the

domain of quantification and where I is a mapping from both function and

predicate constants to functions:

If f is a function constant of arity n then I(f) : Dn → D.

If n = 0, then I(f) is some particular element of D.

If p is a predicate constant of arity n then I(p) : Dn → {t, f} (the characteristic

function for a subset of Dn.

If n = 0 then I(p) is a member of {t, f}.



Amphi 8: INF 542, 24.11.06 10/15

Variable assignments

A variable assignment is a function φ from some set variables (the domain of φ,

dom(φ)) to D.

Let φ be a term assignment and let d ∈ D. By φ[d/x] we denote the term

assignment that is defined for x to have value d. For all values in dom(φ) − {x},

the functions φ and φ[x/d] are identical.

Given an interpretation I and an assignment φ, we define the mapping Iφ of

terms to D as follows:

If x is a variable, then Iφ(x) = φ(x)

If f is an n-ary function symbol, then

Iφ(f(t1, . . . , tn)) = I(f)(Iφ(t1), . . . , Iφ(tn)),

A formula or term is closed if it contains no free variables. A formula that is

closed is also called a sentence.
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Interpretation of formulas

We write 〈D, I〉 |=φ B to denote that the formula B is true (is satisfied) in the

interpretation 〈D, I〉 and the term assignment φ.

When D is understood, we shall simply write I |=φ B.

• if B is p(t1, . . . , tn) and I(p)(Iφ(t1), . . . , Iφ(tn)) = t then I |=φ B;

• I |=φ B1 ∧ B2 if I |=φ B1 and I |=φ B2;

• I |=φ B1 ∨ B2 if I |=φ B1 or I |=φ B2;

• I |=φ ¬B hold if I |=φ B does not hold;

• I |= B1 ⊃ B2 if not I |=φ B1 or I |=φ B2;

• I |=φ ∀x.B if for all d ∈ D, I |=φ′ B, where φ′ is φ[d/x]; and

• I |=φ ∃x.B if for some d ∈ D, I |=φ′ B, where φ′ is φ[d/x].
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Models of sentences

B is satisfiable if there is an interpretation 〈D, I〉 and a term assignment φ such

that 〈D, I〉 |=φ B. The formula B is valid if for every interpretation 〈D, I〉 and a

term assignment, we have 〈D, I〉 |=φ B.

If B is a sentence then we write I |= B to denote I |=φ B where φ is the unique

term assignment with an empty domain.

An interpretation 〈D, I〉 that makes a sentence B true (〈D, I〉 |= B) is said to be

a model for that sentence.
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Herbrand interpretations and models

A Herbrand interpretation is a first-order interpretation 〈D, I〉 where D is the set

of closed terms (over a fixed set of function constants) and

Iφ(f(t1, . . . , tn)) = f(Iφ(t1), . . . , Iφ(tn)).

It is easy to see that in such an interpretation, term assignments become just

substitutions and that Iφ(t) = φ(t).

When specifying a Herbrand interpretation, one only needs to specify the

interpretation of predicate symbols.

Equivalently: a Herbrand interpretation is specify a set of closed, atomic

formulas, say H. Here, I(p(t1, . . . , tn)) = t if and only if p(t1, . . . , tn) ∈ H.

Herbrand models are somethings called term models since the domain of

individuals are terms instead of more abstract objects. For example, in a

Herbrand model, the terms 1 + 2, 2 + 1, and 3 are three different terms (i.e.,

syntactic expressions).
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Soundness of sequent calculus

Let M be a Herbrand interpretation and let Σ : Γ be a sequent, where

Σ = {x1, . . . , xn}. We say that Σ : Γ is satisfiable in M if for every list of terms

t1, . . . , tn there is an F ∈ Γ such that M |= F [t1/x1, . . . , tn/xn].

We write M |= Σ : Γ if Σ : Γ is satisfiable in M.

A sequent is unsatisfiable in M if it is not satisfiable.

The sequent Σ : Γ is valid, denoted as |= Σ : Γ if for every interpretation M we

have M |= Σ : Γ.

The Soundness Theorem: If the sequent Σ : Γ is provable then it is valid.

This is a fairly straightforward proof by induction on the structure of proofs.
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The Completeness Theorem

Proving the converse to soundness, namely, completeness is much more involved.

The Completeness Theorem: If the sequent Σ : Γ is valid then it is provable.

In fact, we will prove the contrapositive of this statement, namely, that if a

sequent does not have a proof then it is not valid. We shall show that an

unprovable sequent has a counter-model (an interpretation in which it is false)

that is also a Herbrand interpretation.

How can we know that a sequent does not have a proof?


