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Abstract—Accurate volume estimation in PET is crucial for 

different oncology applications. The objective of our study was to 

develop a new fuzzy locally adaptive Bayesian (FLAB) 

segmentation for automatic lesion volume delineation. FLAB was 

compared with a threshold approach as well as the previously 

proposed fuzzy hidden Markov chains (FHMC) and the Fuzzy C-

Means (FCM) algorithms. The performance of the algorithms 

was assessed on acquired datasets of the IEC phantom, covering a 

range of spherical lesion sizes (10-37mm), contrast ratios (4:1 and 

8:1), noise levels (1, 2 and 5 min acquisitions) and voxel sizes 

(8mm3 and 64mm3). In addition, the performance of the FLAB 

model was assessed on realistic non-uniform and non-spherical 

volumes simulated from patient lesions. Results show that FLAB 

performs better than the other methodologies, particularly for 

smaller objects. The volume error was 5%-15% for the different 

sphere sizes (down to 13mm), contrast and image qualities 

considered, with a high reproducibility (variation <4%). By 

comparison, the thresholding results were greatly dependent on 

image contrast and noise, whereas FCM results were less 

dependent on noise but consistently failed to segment lesions 

<2cm. In addition, FLAB performed consistently better for 

lesions <2cm in comparison to the FHMC algorithm. Finally the 

FLAB model provided errors less than 10% for non-spherical 

lesions with inhomogeneous activity distributions. Future 

developments will concentrate on an extension of FLAB in order 

to allow the segmentation of separate activity distribution regions 
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within the same functional volume as well as a robustness study 

with respect to different scanners and reconstruction algorithms. 

 
Index Terms— oncology, PET, segmentation, volume 

determination 

 

I. INTRODUCTION 

OSITRON Emission Tomography (PET) is now a widely 

used tool in the field of oncology, especially in 

applications such as diagnosis, and more recently radiotherapy 

planning [1] or response to therapy and patient follow-up 

studies [2]. On the one hand, accurate activity concentration 

recovery is crucial for correct diagnosis and monitoring 

response to therapy. On the other hand, applications such as 

Intensity-Modulated Radiation Therapy (IMRT) treatment 

planning using PET also require accurate shape and volume 

determination of the lesions of interest, in order to reduce 

collateral damage to healthy tissues and to ensure maximum 

dose delivered to the active disease. Various methodologies 

used for the determination of volume of interest (VOI) have 

been proposed. On the one hand, segmentation methods 

requiring a manual delineation of the boundaries of the object 

of interest have been established as laborious and highly 

subjective [2]. Alternatively, the performance of already 

available automatic algorithms is hampered by the low 

resolution and associated partial volume effects (PVE), as well 

as low contrast and signal to noise ratios generally 

characterizing PET images. 

 Most of the previously proposed work dealing with VOIs 

determination in PET use thresholding, either adaptive, based 

on a priori Computed Tomography (CT) knowledge [3], or a 

fixed threshold using values derived from phantom studies 

(from 30 to 75% of maximum local activity concentration 

value) [1], [2], [3]. Thresholding is however known to be 

significantly susceptible to noise and contrast variations, 

leading to variable VOIs determination as shown in recent 

clinical studies [4]. As far as automatic detection of lesions 

from PET datasets is concerned, different methodologies have 

been previously proposed including edge detection [5], 

watersheds [6], fuzzy C-Means [7] or clustering [8]. The 

performance of these algorithms is also sensitive to variations 

in lesion-to-background contrast and/or noise levels. In 
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addition, past work has in its majority considered the ability of 

such automatic methodologies for the detection of lesions 

(sensitivity), and not for their performance in terms of 

accuracy in the specific VOI determination task. Finally, all of 

the afore-mentioned algorithms have additional drawbacks 

associated with necessary pre- or post-processing steps. For 

example in the case of the watershed algorithm, a pre-

processing step using a filtering pass is required to smooth the 

image, and a post-processing step is necessary to fuse the 

regions resulting from the over-segmentation of the algorithm. 

Such a need for user-dependent initializations, pre- and post-

processing steps, or additional information like CT or expert 

knowledge render the use of these algorithms more 

complicated and the outcome dependent on choices made by 

the user in relation to these necessary steps.  

 Bayesian based image segmentation methods are 

automatic algorithms allowing noise modelling and have 

shown to be less sensitive to noise than other segmentation 

approaches due to their statistical modelling [9]. They offer an 

unsupervised estimation of the parameters needed for the 

image segmentation and limit the user’s input to the number of 

classes to be searched for in the image. Reconstructed images 

require no further pre- or post-processing treatment (such as 

for example filtering) prior to the segmentation process. 

Instead, image noise is considered as additional information (a 

parameter in the classification decision process) to be taken 

into account rather than to be filtered or ignored. They have 

only been previously used in PET imaging in the form of 

Hidden Markov Fields (HMF) [10] and more recently we have 

investigated the performance of hidden Markov chains (HMC) 

for volume determination, a faster model that was in addition 

extended to include fuzzy modelling, Fuzzy HMC (FHMC) 

[11]. Although FHMC was shown to provide overall superior 

results relative to the threshold reference methodology, 

independent of lesion contrast and image signal-to-noise ratio, 

it is unable to correctly segment objects <2 cm in diameter. 

This is mainly due to the 3D Hilbert-Peano path [12] used to 

transform the 3D volume into an 1D chain, since voxels 

defining small objects may find themselves far away from each 

other on the chain, thus being misidentified by the algorithm as 

noise and becoming not significant enough to form a class 

apart from the background. 

 Consequently, the main objectives of this study were to 

improve the segmentation of small objects by (a). developing a 

fuzzy local adaptive Bayesian (FLAB) model , and (b) 

comparing the performance of this new algorithm with that of 

the thresholding methodologies currently used in clinical 

practice as well as the Fuzzy C-Means (FCM) and the 

previously proposed FHMC algorithms. In addition, as a 

secondary objective we have also investigated the use of the 

Pearson’s system [13] in order to potentially improve the noise 

modelling used in the algorithm, instead of simply assuming a 

Gaussian distribution. 

 Different imaging conditions were considered in this 

study in terms of statistical quality, as well as lesion size and 

source-to-background (S/B) ratio. The images were 

reconstructed using an iterative algorithm, since this type of 

reconstruction algorithms form today’s state of the art in whole 

body PET imaging in routine clinical oncology practice [14]. 

In addition, the new FLAB algorithm was evaluated using 

simulated images of non homogeneous and non spherical 

tumors derived from tumors of patients undergoing 

radiotherapy.  

 

II. MATERIAL AND METHODS 

A. FLAB model 

The FLAB model is an unsupervised statistical methodology 

that takes place in the Bayesian framework. Let T  be a finite 

set corresponding to the voxels of a 3D PET image. We 

consider two random processes Y ( )
t t T

y ∈=  and 

X ( )
t t T

x ∈= . Y  represents the observed image and takes its 

values in �  whereas X  represents the “hidden” 

segmentation map and takes its values in the set { }1,...,C , 

with C being the number of classes. The segmentation problem 

consists of estimating the hidden X  from the available noisy 

observation Y . The relationship between X  and Y can be 

modeled by the joint distribution (X,Y)P , which can be 

obtained using the Bayes formula: 

(X,Y) (Y | X) (X)
(X | Y)

(Y) (Y)

P P P
P

P P
= =

 (1) 

(Y|X)P  is the likelihood of the observation Y  

conditionally with respect to the hidden ground-truth X , and 

(X)P  is the prior knowledge concerning X . The Bayes rule 

allows the determination of the posterior distribution of X  

with respect to the observation Y  : (X | Y)P . Contrary to 

the FHMC model [11], we do not assume here that a Markov 

process can model the prior distribution of X , thus 

simplifying its expression. 

 

The fuzzy measure 

 

The general idea behind the implementation of a fuzzy 

model within the Bayesian framework was previously 

introduced in [15], [16] and was used for a local Bayesian 

segmentation scheme in [15]. Its implementation is based on 

the incorporation of a finite number of fuzzy levels 
i

F  in 

combination with two homogeneous (or “hard”) classes, in 

comparison to the standard implementation where only a finite 

number of hard classes are considered. This model allows the 

coexistence of voxels belonging to one of two hard classes and 

voxels belonging to a “fuzzy level” depending on its 

membership to the two hard classes. While the statistical part 

of the algorithm models the uncertainty of the classification, 

with the assumption being that the voxel is identified but the 
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observed data is noisy, the fuzzy part models the imprecision 

of the voxel’s membership, with the assumption being that the 

voxel may contain both classes. One way to achieve this 

extension is to simultaneously use Dirac and Lesbegue 

measures, considering that X  in the fuzzy model takes its 

values in [ ]0,1  instead of { }1,...,CΩ = . We define therefore a 

new measure 
0 1ν δ δ ζ= + +  on [ ]0,1 , given that 0δ  and 1δ  

are the Dirac measures at 0 and 1, and ζ  is the Lesbegue 

measure on the fuzzy interval ] [0,1 . This approach is adapted 

for the segmentation of PET images since they are both noisy 

and of low resolution. The “noise” aspect when considering 

Bayesian models is the way the values of each class to be 

found in the image are distributed around a mean value. The 

noise model used, whose respective mean and variance are to 

be determined by the estimation steps, can therefore be 

adapted to image specific characteristics. Finally, the fuzzy 

measure facilitates a more realistic modelling of the objects’ 

borders transitions between foreground and background, 

allowing in such a way to indirectly account for the effects of 

blurring associated with low resolution PET images. 

 

Distribution of X (a priori model) 

 

Using 0 1ν δ δ ζ= + +
 
as a measure on [ ]0,1 , the a priori 

distribution of each 
t

x  can be defined by a density h  on 

[ ]0,1 , with respect to ν . If we assume that X  is a stationary 

process and that the distribution of each 
t

x  is uniform on the 

fuzzy class, this density can be written as: 

[ ]

[ ]

[ ] ] [

0

1

0 1

(0) 0

(1) 1

( ) 1  for 0,1

t

t

t

h P x p

h P x p

h P x p pε ε ε

= = =

= = =

= = = − − ∈

  (2) 

where, h  satisfies the following normalization condition: 
1

0
(0) (1) ( ) 1h h h dε ε+ + =�  

Using this simple modelling for the prior distribution leads to 

ignoring the spatial relationship of each voxel with respect to 

its local neighborhood. Although it is possible to include such 

spatial information using the contextual framework [15], the 

use of such modelling leads to an increase in the number of 

parameters to be handled, and in practice, no more than one or 

two neighbors can be actually taken into account. Hence, the 

contextual approach is not of interest since we aim to explore 

all the information available in the 3D volume around each 

voxel, i.e. at least 26 neighbors (8-connectivity extended in 

three dimensions). As an alternative, the adaptive framework 

[15] can be used. In this adaptive modelling, the spatial 

information is inserted into the estimation step of the algorithm 

(see section parameters estimation). 

 

Distribution of Y (observation or noise model) and the 

Pearson’s system 

In order to define the distribution of Y  conditional on X , 

let us consider two independent random variables 
0

Y  and 
1

Y , 

associated with the two “hard” values 0 and 1, whose densities 

0
f  and 

1
f  are characterized by means and variances 

( )2

0 0
,µ σ  and ( )2

1 1,µ σ  respectively. The mean and variance 

of each fuzzy level iF  are derived from the ones estimated in 

the two hard classes as follows: 

0 1

2 2 2 2 2

0 1

(1 )

(1 )

i

i

F i i

F i i

µ µ ε ε µ

σ σ ε ε σ

= − +

= − +
  (3) 

where, 
i

ε  is the value associated to a fuzzy level 
i

F  . For 

the case of two fuzzy levels 1

1

3
ε =  and 2

2

3
ε =  were used 

according to results previously published [11]. 

The assumption that the noise for each class of the observed 

data can fit a Gaussian distribution was considered as a first 

approximation as with the previous implementation of the 

FHMC algorithm [11]. In this work we propose the study of 

the Pearson’s system that contains seven other distributions. In 

this context, instead of using a Gaussian distribution, an 

additional step is introduced to detect which laws best fit the 

actual distribution of the voxels in the image, for each class 

considered at a given iteration of the estimation step of the 

algorithm. The theory behind the Pearson’s system has been 

previously detailed in [17] and a description of its use in 

mixture estimation and statistical image segmentation is given 

in [13]. Here, we briefly describe the Pearson’s system in our 

particular context. 

A distribution density f  on �  belongs to the Pearson’s 

system if it satisfies: 

2

0 1 2

1 ( )

( )

df y y a

f y dy c c y c y

+
= −

+ +
   (4) 

Different shapes of distributions as well as the parameters 

determining a given distribution are provided by the variations 

of the coefficients a , 
0

c , 
1

c  and 
2

c . For m =1, 2, 3 and 4, 

let us consider the first four statistical moments of a 

partition pY  of Y  defined by: 

( )

1 p

p p

Y

Y Y  for m 2
m

p

E

E E

µ

µ

� �= � �

� �� �= − ≥� �� �� �    (5) 

We also define two parameters 
1

γ  and 
2

γ  as follows: 

2

3 4
1 23 2

2 2

 and 
µ µ

γ γ
µ µ

= =  (6) 

where 1γ  is called “skewness” and 
2

γ  is called “kurtosis”. 
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The coefficients a , 
0

c , 
1

c  and 
2

c  are related to (5) and (6) 

by equations that can be found in the appendix (section A.1). 

Given

2

1 2

2 1 2 1 2 1

( 3)

4(4 3 )(2 3 )(2 3 6)

γ γ
λ

γ γ γ γ γ γ

+
=

− − − −
, the 

eight distribution density families { }1 8
,...,f f  contained in 

the system of Pearson can now be defined by a set of 

conditions using λ , 
1

γ  and 
2

γ  (see appendix, section A.2). 

These eight distribution density families are illustrated in 

figure 1. Finally, the protocol used for the determination of 

which density family best fits each measured distribution can 

be found in section A.3 of the appendix. 

 

0 1 2
��

��

1

3

8

N

II

I

IIIV

IV VI

VII

 
Fig. 1. The eight distribution families in the graph of Pearson, function of 

gamma1 and gamma 2 [17]. I for Beta I, II for type II, III for Gamma, IV for 

type IV, V for Inverse Gamma, VI for Beta II, VII for type VII and N for 

Normal. 

 

Parameters estimation 

 

The different parameters necessary to be estimated for 

the segmentation process are: 

0 1

2 2

0 0 1 1

( , )

( , )

( , , , )

A B

A p p

B

ω

µ σ µ σ

=

=

=
     (7) 

Both a priori ( A ) and noise ( B ) parameters are unknown and 

may vary from one image to another. An iterative procedure 

called Stochastic Expectation Maximization (SEM) [18], a 

stochastic version of the EM algorithm [19], is used for the 

estimation of these parameters. This is achieved by sampling a 

realization of X  according to its posterior distribution 

(X | Y)P  and computing empirical values of the parameters 

of interest using this realization. The stochastic nature of this 

procedure makes it less sensitive to the initial guess of the 

parameters using the K-Means [20] than deterministic 

procedures like the EM algorithm. The system of Pearson can 

be used as an additional step (inside each iteration of the 

algorithm) in order to determine the type of distribution to use. 

The posterior distribution d  (with respect to class c  for a 

given voxel t  used at iteration q ) for sampling the posterior 

realization is given by: 

1 1

,

1
1 1 1 1 1 1 1

,0 ,1 ,0 ,1
0

( | )

( | )

( |0) ( |1) (1 ) ( | )

q

t

q q

t c t

q q q q q q q

t t t t t t t

d c y

p f y c

p f y p f y p p f y dθ θ

− −

− − − − − − −

=

+ + − − �
 

(8) 

where, 
1
( | )

q

tf y c
−

is a density whose distribution type is 

chosen using the Pearson system and whose mean and variance 

were estimated at iteration 1q − , and 
1

,

q

t c
p −

 is the prior 

probability of voxel t  belonging to class c  estimated at 

iteration 1q − .  

In the adaptive framework priors are re-estimated using a local 

neighbouring window with priors ,t cp  depending on the 

position t  of the voxel in the image. Although in the 2D case, 

a window centred on the voxel of interest is used [15], for our 

application we use a 3D ”cube” centred on each voxel. The 

size of the estimation “cube” was experimentally determined 

for the specific application of PET imaging, since it depends 

on the size of the objects of interest (10-50mm in diameter) 

relative to the reconstructed voxel size (2×2×2 or 4×4×4 

mm
3
). An estimation cube should from one hand be small 

enough to yield good local characteristics [15], while on the 

other hand it should not be too large with respect to the size of 

the object of interest. Considering this, we tested two different 

estimation “cube” sizes; namely covering 3×3×3 and 

5×5×5 voxels.  

 It is worth noting that only the priors are concerned by the 

use of the adaptive framework. Noise parameters are estimated 

the same way as in the blind context [15]. The detailed 

description of the SEM algorithm in our context is given in the 

appendix (section B.1). 

 

 Segmentation 

 

In order to perform segmentation on a voxel by voxel basis, 

we need to use a criterion to classify each voxel as either part 

of the background or the functional VOI. For this purpose we 

use the maximum posterior likelihood (MPL) method as 

suggested by [15]. To compute a solution, the MPL method 

requires the parameters defining the a priori model (priors of 

each class for each voxel) as well as the noisy observation data 

model (mean and variance of each class), estimated using 

SEM. The MPL computes the posterior density and selects for 

each voxel the class that maximizes it, using the procedure 

described below. 

Let us consider ( | )
t

d yε  given by (8) computed using the 

parameters estimated by the SEM estimation algorithm. 
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Using ( | ) 1 (0 | ) (1| )
t t t

d F y d y d y= − − , the decision rule 

assigning the class c  or fuzzy level 
i

F  to the voxel t  

knowing the observed value 
t

y  is given by the following 

procedure: 

For each voxel, let { }0,1,
arg max ( | )

t tn F
c d n y

∈
= . If 

{ }0,1
t

c ∈ , then assign the hard class 0 ( 0
t

c = ) or 1 

( 1
t

c = ) to the voxel t . Else if 
t

c  belongs to the fuzzy 

domain (
t

c F= ), use ] [0,1
arg max ( | )

t tn
c d n y

∈
=  to 

determine its exact value using the quantitation of the fuzzy 

interval into fuzzy levels (see section 2.1.3) and assign one of 

the fuzzy levels to the voxel. In our implementation of FLAB, 

each 
t

c  can take four different values: 0 , 
1

3
, 

2

3
 and 1. 

B. Alternative approaches used for comparison 

 

Thresholding 

 

Various thresholding methodologies have been proposed in 

the past for functional volume determination [2], [3], [4]. For 

comparison purposes with the developed methodology, 

threshold at 42% of the maximum value inside the lesion was 

chosen for VOI determination, based on suggestions from 

previous publications [2], [3]. The methodology was 

implemented through region growing using the voxel of 

maximum intensity in the object of interest as a seed. Using a 

3-D neighborhood (26 neighbors) the region is iteratively 

increased by adding neighboring voxels if their intensity is 

superior or equal to the selected threshold value. The results 

derived using this method will be denoted from here onwards 

as T42. 

 

Fuzzy C-Means 

 

The Fuzzy C-Means algorithm was introduced in [21]. It was 

suggested for PET image segmentation in [7]. For the purpose 

of this study it was implemented using the following objective 

function O: 
2

1 1

( )
I J

e

ij ij i

i j

O mε ε ε
= =

= −��
 (9) 

where 1e ≥  is a weighting exponent and 
i

m  are the centre 

values of the classes. The weighting exponent e  controls the 

fuzzy aspect of the image and is usually set to 2 (hard 

segmentation is represented by 1e = ). The algorithm 

converges to the value at which the objective function has a 

local maximum. The results derived using this method will be 

denoted from here onwards as FCM. 

 

C. Validation studies 

 

Datasets 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. Different images used in the segmentation study; (a) ratio 4:1, 2 

min acquisition time, 64 mm3 voxels, (b) ratio 8:1, 2 min, 64 mm3, (c) ratio 

4:1, 2 min, 8 mm3, (d) ratio 8:1, 2 min, 8 mm3, (e) CT acquisition, (f) voxel-

by-voxel ground-truth generated using CT image on the PET image. Note the 

28 mm sphere is in plastic and not clearly seen (since its real diameter was 

unknown this sphere was excluded from any analysis in this work). 

 

Acquisitions of the IEC image quality phantom [22], 

containing six different spherical lesions of 10, 13, 17, 22, 28 

and 37 mm in diameter (figure 3(a)) were carried out in list-

mode format using a Philips GEMINI PET/CT scanner. The 

spatial resolution of this system is 4.9 mm full width at half 

maximum (FWHM) at the center of the field of view [23]. 

Partial volume effects are therefore expected to be significant 

even for the largest sphere. The 28 mm diameter sphere was 

not considered in this study since it was replaced by a hand-

made plastic sphere whose diameter was not known precisely. 

Different parameters were considered covering a large 

spectrum of configurations allowing assessment of the 

influence of different parameters susceptible to affect the 

functional VOI determination. The statistical quality of the 

images was varied by considering 1, 2 or 5 minutes list-mode 

time frames. Two different signal-to-background (S/B) ratios 
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(4:1 and 8:1) were considered, by introducing 7.4kBq/cm
3
 in 

the background and 29.6 or 59.2kBq/cm
3 

respectively in the 

spheres. Two different voxel sizes (2×2×2 or 4×4×4 mm
3
) 

were used in the reconstruction of each of the different 

statistical quality datasets using the 3D RAMLA algorithm, 

with specific parameters previously optimized for clinical use 

[14]. Visual illustration of the acquired images is given in 

figure 2. In addition, an estimation of the FLAB algorithm’s 

reproducibility was performed by considering five different 1 

minute list-mode time frames acquired consecutively and 

reconstructed using 8 mm
3
 voxels.  

  
(a) (b) 

  

     CE �  15 % CE �  19 % 

(c) (d) 

  

CE �  8 % CE �  6 % 

(e) (f) 

 

 
 (g) 

  

CE �  57 % CE �  37 % 

(h) (i) 

  

CE �  15 % CE �  11 % 

(j) (k) 
Fig. 3. (a) Graphical representation of the IEC phantom and illustration of 

the 3D box selection for the 22 mm sphere and examples of segmentation 

maps (only central slice is shown) ; (b-f) for the 22 mm sphere (8:1 contrast, 5 

min acquisition) and (g-k) for the 17 mm sphere (4:1 contrast, 2 min 

acquisition) with corresponding volume errors (computed on the whole 

volume): (b & g) PET ROI, (c & h) T42 map, (d & i) FCM map, (e & j) 

FHMC and (f & k) FLAB maps with 2 fuzzy levels (light and dark grey 

voxels). Both images are extracted from 8 mm3 voxel size reconstructions. 

 

 Finally, to test the algorithm against more clinically realistic 

conditions of tumor shapes, we simulated three lesions with 

non spherical shapes and inhomogeneous activity distributions. 

These lesions were generated using real lung tumor images 

from three patients undergoing 
18

FDG PET scans for 

radiotherapy treatment planning purposes. A ground-truth was 

drawn by a nuclear medicine physician (on a slice-by-slice 

basis) based on the reconstructed patient images. In the case of 

the first tumor, the simulated contrast between the region of 

the highest activity concentration and the rest of the tumor was 

around 2.2:1 whereas in the case of the second tumor, it is 

closer to 1.4:1. Finally, the third tumor is almost 

homogeneous. The overall contrast between the whole tumor 

and the background was 6:1 and 5:1 for the first and second 

tumors respectively and less than 2:1 for the third one. In 

terms of lesion size, the largest lesion “diameter” was 4.1 cm, 

2.9 cm and 1.5cm for the first, second and third lesion 

respectively. These lesions were subsequently placed within 

the lungs of the NCAT phantom [24]. No respiratory or 

cardiac motion was considered. Normal organ FDG 

concentration was assumed for the simulation [25], with the 

maximum activity concentration in the lesions being four times 

the mean activity concentration in the lungs. The NCAT 

emission and attenuation maps were finally combined with a 

model of the Philips PET/CT scanner previously validated 

with GATE [26]. A total of 45 million coincidences were 

simulated corresponding to the statistics of a standard clinical 

acquisition over a single axial field of view of 18 cm [26]. 

Images were subsequently reconstructed from the list mode 

output of the simulation using 8 mm
3
 voxels. As well as using 

all of the simulated true coincidences, images were 

reconstructed for each lesion using only 40% and 20% of the 

overall detected coincidences in order to evaluate the accuracy 

of the segmentation algorithms at different noise levels 

(similar to the IEC phantom study using 5, 2 and 1 min 

acquisitions for the image reconstruction). Visual illustration 

of these simulated tumor images (central slice), with their 

ground-truth drawn from the corresponding patient tumors are 

displayed in figures 7, 8 and 9 (a-c). Each segmentation 

algorithm considered was applied to the lesion and the 

segmentation map was compared with the ground-truth. Note 

that in this framework, the ground-truth does not need to be 

accurate with respect to the true patient image. What is 

important is that we are able to compare the segmentation 

obtained on the simulated image with the ground-truth used in 

the simulation. The corresponding segmentation maps (central 

slice) for each algorithm can be found in figures 7, 8 and 9 (d-

g). 

 

Analysis 

 

As our goal is not lesion detection in the whole body image 

but the estimation of a lesion’s volume with the best accuracy 

possible, we assume that the lesion has been previously 

identified by the clinician and automatically or manually 

placed in a 3-D “box” well encompassing the object (see 

(figure 3(a)). Although no significant impact on the 
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segmentation results was observed through small changes in 

placement or size of the box, certain conditions must be 

respected. Evidently it should be large enough to contain the 

entire extent of the object of interest and a significant number 

of background voxels so the algorithm is able to detect and 

estimate the parameters of the background class. On the other 

hand it should be small enough in order to avoid including 

neighboring tissues with significant uptake that would end up 

being classified as functional VOI, requiring manual post-

processing. However, the shape of this box does not have to be 

perfectly cubic or with specified dimensions (contrary to the 

FHMC case [11]), and as a result it could be drawn 

accordingly to exclude structures in the background that are of 

no interest. 

 Subsequently, the images of the selected area were 

segmented in two classes (functional VOI and background) 

using each of the methods under evaluation (T42, FCM, 

FHMC and FLAB). In the FHMC and FLAB cases, 

considering the optimization results obtained in [11], two 

fuzzy levels were considered in the segmentation process and 

the functional volumes were defined using the first hard class 

and the first fuzzy level. A voxel-to-voxel ground-truth was 

generated for the phantom dataset using the CT image 

registered with the PET reconstructed image (see figure 2(e) 

and 2(f)). Classification errors (CE) were then computed on a 

voxel-by-voxel basis following the definition used in [11]: 

( )
100

PCE NCE
CE

VoS

+
= ×  (10) 

PCE stands for positive classification errors, including voxels 

of the background that are classified as belonging to the object 

of interest, and NCE stands for negative classification errors 

including voxels of the object that are classified as belonging 

to the background. These classification errors essentially occur 

on the boundaries of the objects of interest because of activity 

“spill in” and “spill out”. If the segmentation results in PCEs 

and NCEs of equal amounts, the computed VOI would be very 

close to the true known volume whereas the shape and position 

of the object would be incorrect (this essentially occurs for 

objects >2 cm, while for smaller objects the errors are 

essentially PCE). As shown in equation 10, the total number of 

PCEs and NCEs is considered with respect to the number of 

voxels defining the sphere (VoS). Although the size of 

classification errors can be bigger than 100%, in the case 

where a large number of background voxels in the selected 

area of interest are misclassified as belonging to the sphere, 

maximum classification errors considered in this paper where 

limited to 100%, since any such values represent complete 

failure of the segmentation process. Although the combination 

of PCE and NCE into CE leads to a loss of information as far 

as the direction of the bias is concerned, classification errors 

represent more pertinent information than overall volume 

errors, which reflect neither accurate magnitude nor direction 

of the bias for a segmented volume. For comparison purposes 

overall volume errors (with respect to the known volume of the 

sphere) were also computed and shown in figure 6.  

 As far as the simulated tumors are concerned, both overall 

volume errors (with respect to the known volume of the 

ground-truth) and CE were computed. Since all the algorithms 

under investigation in this study perform binary segmentations 

(i.e. able to distinguish between tumor tissue and background 

only), no evaluation was performed of their ability to 

distinguish different regions within a given tumor. 

 

III. RESULTS 

 

Different segmentation maps obtained using each of the 

methods under evaluation (FHMC, FLAB, T42 and FCM) are 

presented in figure 3 (c-f) for a slice centered on the 22 mm 

sphere considering a “good quality” image (8:1 contrast and 5 

min acquisition) (fig. 3 (a)) to visually illustrate the variations 

of the segmentation maps obtained. Segmentation results in the 

case of a “lower quality” image (4:1 contrast and 2 min 

acquisition) and a smallest sphere (17 mm) (fig. 3 (g)) are 

presented in figure 3 (h-k). Both images are representative of 

the 8mm3 voxel size reconstructions. 

 In the different figures shown in this section the CE are 

given for all five spheres (10, 13, 17, 22 and 37 mm) and for 

both contrast ratios (4:1 on the left part of each figure, 8:1 on 

the right part) considered. The error bars in the figures 

represent the different results obtained for each of the 3 

different levels of image statistical quality considered. The top 

of the error bar is the result concerning the worst statistical 

quality images (1 min acquisition), the medium one concerns 

the medium quality (2 min acquisition), and the lowest one 

corresponds to the superior statistical quality (5 min 

acquisition). The only exception is figure 5 where the error 

bars represent the variability of the FLAB segmentation results 

considering the application of the algorithm on multiple 

images of 1 minute acquisitions (five independent 

realizations). 

Figure 4 contains the results on the optimization of the 

algorithm for the specific application of lesion segmentation in 

PET images. Considering the selected volume of interest 

around a lesion, the Pearson’s system systematically led to the 

detection of Beta I distributions for both the background and 

the lesion activity distributions (although with different 

parameters). However, the parameters 
1

γ  and 
2

γ  (see section 

2.1.3, eq. 6) placed the estimated distributions very close to 

the Gaussian one in the Pearson graph (as it can be seen in 

figure 1, the surface matching Beta I distribution (I) is in 

contact with the point defining the Normal distribution (N)). 

Consequently only small changes in the volume estimation 

results were consistently obtained using the Beta I instead of a 

Gaussian distribution (figure 4(a)). Considering these results 

the Gaussian distribution was kept in the final implementation 

of the algorithm for the description of both the background and 

lesion activity distributions. 

In terms of the size of the estimation “cube” used for the re-

estimation of the priors in the adaptive framework, a size of 
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3×3×3 voxels led to consistently better results across 

different lesion and voxel sizes as well as S/B contrast and 

noise configurations as shown in figures 4(b) and 4(c). Finally, 

figure 4(d) demonstrates the impact in terms of the improved 

results through the use of the adaptive estimation, for the 

8mm
3
 configuration. In this figure the FLAB segmentation 

results are compared to the results without adaptive estimation 

(FLB for Fuzzy Local Bayesian, using the same fuzzy levels 

implementation), where priors are the same for all the voxels 

of the image and are computed using the entire image instead 

of using only the local neighbourhood of each voxel. As is 

demonstrated by this figure, the inclusion of the adaptive 

estimation significantly improves the segmentation results 

throughout the different lesion sizes and contrast 

configurations considered. 

Results in relation to the FLAB algorithm’s reproducibility 

can be seen in figure 5. In this particular figure, error bars 

represent the variation of the segmentation results (mean and 

variance) using the five different images obtained from the 

consecutive 1 minute acquisitions. A variation of <4% in the 

segmented volumes was obtained from the application of the 

algorithm on the five different images for all spheres except 

from the 1 cm sphere which the algorithm consistently failed to 

correctly segment. This segmentation failure is most probably 

the cause of this larger variability observed for the segmented 

volume of the 1 cm sphere. 
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Fig. 4. (a) 
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Fig. 4. (b) 
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Fig. 4. (c) 
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Fig. 4. (d) 

Optimization of the FLAB algorithm. Classification errors for (a) Beta I 

distributions (detected using the Pearson’s system) or Gaussian distributions 

(for the 8mm3 voxel size); (b) 3x3x3 or 5x5x5 voxels for the estimation cube 

(for the 64mm3 voxel size) ; (c) 3x3x3 or 5x5x5 voxels for the estimation 

cube (for the 8mm3 voxel size) ; (d) with (FLAB) or without (FLB) adaptive 

estimation of priors (for the 8mm3 voxel size). The top of the error bar is the 

result concerning the worst statistical quality images (1 min acquisition), the 

medium one concerns the medium quality (2 min acquisition), and the lowest 

one corresponds to the superior statistical quality (5 min acquisition). 
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Fig. 5. Study of FLAB reproducibility using five different 1 minute list-mode 

time frames (reconstructed with 8mm3 voxel size). The error bars represent 

the variability of the FLAB segmentation results considering the application 

of the algorithm on multiple images of 1 minute acquisitions (five 

realizations) 
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Figure 6 presents the classification errors and corresponding 

overall volume errors relative to the CT-based ground-truth 

obtained using each approach, for both 64 and 8 mm
3
 voxel 

sizes (fig. 6(a)-(b) and 6(c)-(d) respectively). Globally, volume 

errors are very closely linked to classification errors: when the 

segmentation results in strictly NCE, the volume error 

(underestimation) is equal to the CE. When the segmentation 

results in only PCE, the volume error (overestimation) is also 

equal to the CE. And when both NCE and PCE occur, the 

volume error is inferior to the CE (it essentially occurs for 

medium-sized spheres). FLAB led to superior results in 

comparison to all the other methodologies on the whole 

dataset. The proposed algorithm gives good results (on 

average between 5 and 20% CE) independently of the contrast 

ratio and for all spheres except from the 1 cm one for which a 

minimum error of 25% was obtained for the most favorable 

configuration evaluated (8:1 contrast and a 5 min. acquisition). 

The use of a reconstruction voxel size of 8mm
3
 allowed an 

improvement in the segmented volume errors from 10-25% to 

5-15% for lesions between 1cm and 2cm. 

 

0

10

20

30

40

50

60

70

80

90

100

Configurations

C
la

s
s

if
ic

a
ti

o
n

 E
rr

o
r 

(%
)

FLAB FHMC FCM T42

37mm17mm10mm

Ratio 4:1

13mm 22mm 37mm17mm10mm 13mm 22mm

Ratio 8:1

 
Fig. 6. (a) 
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Fig. 6. (b) 
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Fig. 6. (c) 
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Fig. 6. (d) 

Comparison of performances for FLAB, FHMC, FCM and T42 on data 

reconstructed with (a) classification errors and (b) volume errors, for 64mm3 

and (c) classification errors and (d) volume errors, for 8 mm3 voxels. The top 

of the error bar is the result concerning the worst statistical quality images (1 

min acquisition), the medium one concerns the medium quality (2 min 

acquisition), and the lowest one corresponds to the superior statistical quality 

(5 min acquisition). 

 

 As shown in figure 6, T42 gave errors <20% for the three 

biggest spheres with the 8:1 contrast and 64 mm
3
 voxel size, 

while for a 4:1 contrast T42 did not manage to accurately 

segment any of the spheres. By reducing the reconstruction 

voxel size to 8mm
3 

an improvement was obtained in the results 

of the T42 with errors <15% for the three larger spheres and a 

contrast 8:1, while errors of <20% were obtained for the 

22mm and 37mm spheres with a 4:1 contrast ratio. In the case 

of the FCM algorithm errors of <20% and >40% were seen for 

lesions larger and smaller than 2 cm respectively. No 

substantial differences were seen in these results from the 

reduction in the reconstruction voxel sizes from 64 mm
3
 to 8 

mm
3
. Finally, FLAB performed better in comparison to the 

previously developed fuzzy Bayesian approach (FHMC) for 

all different lesion sizes and statistical image qualities 

considered with a larger magnitude effect (improvements of 

over 100% in the errors) observed in the spheres with a 

diameter <2 cm. Relative to the FLAB results globally larger 

improvements in the accuracy of the segmented volumes were 

observed for the FHMC algorithm with a reduction in the 
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reconstructed voxel size. On the other hand, in percentage 

terms the dependence of the algorithm results to the statistical 

quality of the images was similar for both the FLAB and 

FHMC results. 

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Fig. 7 (a) Real tumour used as model, (b) voxelized ground-truth (manually 

drawn) and its binary version, and (c) simulated tumour. Segmentation binary 

maps obtained using (d) T42, (e) FCM, (f) FHMC and (g) FLAB are shown. 

Image is 34x34 voxels with 8 mm3 voxels. 

 

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Fig. 8 (a) Real tumour used as model, (b) voxelized ground-truth (manually 

drawn) and its binary version, and (c) simulated tumour. Segmentation binary 

maps obtained using (d) T42, (e) FCM, (f) FHMC and (g) FLAB are shown. 

Image is 30x30 voxels with 8 mm3 voxels. 

 

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Fig. 9 (a) Real tumour used as model, (b) voxelized ground-truth (manually 

drawn) and its binary version, and (c) simulated tumour. Segmentation binary 

maps obtained using (d) T42, (e) FCM, (f) FHMC and (g) FLAB are shown. 

Image is 16x16 voxels with 8 mm3 voxels 

 

Figures 7, 8 and 9 show visual illustration of the 

segmentation maps obtained on the simulated tumors. Figure 

10 contains the results for both classification errors 

(NCE+PCE divided by the number of voxels defining the 

tumor ground-truth volume) and volume errors (with respect to 

known overall volume of the tumor) for each approach. 
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Fig. 10 (a) 
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Fig. 10 (b) 
Segmentation results for the three simulated tumours. (a) Classification errors 

and (b) overall volume errors. The top of the error bar is the result concerning 

the worst statistical quality images (20% of detected coincidences), the 

medium one concerns the medium quality (40%), and the lowest one 

corresponds to the superior statistical quality (100%). 

 

 The results for the first and third tumors (fig. 7) show the 

largest differences between the four algorithms. In the case of 

the first tumor, this difference can be attributed to the non-

uniform activity distribution (the contrast between the region 

of highest activity and the rest of the tumor is around 2.2:1) 

relative to the second tumor (closer to 1.4:1). Consequently, 

the segmentation results of T42 and FCM lead to large under 

evaluation (-30 to -50%) of the true volume of the first tumor 

since they limit themselves to the highest activity area, 

whereas in the case of the second tumor they are unable to 

differentiate between the two regions, hence recovering the 

entire tumor (less than 10% error for all methods). On the 

other hand, the third tumor despite being uniform is small with 

a low tumor to background ratio (1.5 cm in “diameter” and 

contrast <2:1). As a result, thresholding using 42% of 

maximum value fails completely (the region growing never 

stops and expands into the entire selection box) and FCM 

despite qualitatively satisfying results leads to a large over 
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evaluation (from 10 to 40% volume error depending on the 

image statistical quality) of the volume. As far as FHMC and 

FLAB are concerned, they are both able to recover the whole 

tumor in all cases with volume errors between 2% and <20% 

(see fig. 10). While FLAB in comparison with the FHMC 

performed better in terms of both the misclassification and the 

overall volume errors, FHMC results were less competitive 

with decreasing tumor sizes as seen also in the IEC phantom 

results (fig. 10). Finally, the variability of the results 

(demonstrated by the error bars in figure 10) considering the 

different noise levels was higher for FCM and T42, illustrating 

their lower robustness to noise in comparison to the fuzzy 

statistical approaches. 

 

IV. DISCUSSION 

 

 Over the past few years there has been an increasing interest 

in clinical applications such as the use of PET for IMRT 

planning, for which an accurate estimation of the functional 

volume is indispensable. Unfortunately, accurate manual 

delineation is impossible to achieve due to high inter- and 

intra-observer variability [2] resulting from the noisy and low 

resolution nature of the PET images. Current state of the art 

methodologies for functional volume determination involve 

the use of adaptive thresholding based on anatomical 

information or phantom studies. Thresholding however is 

known to be sensitive to contrast variation as well as noise 

[2,4], since it does not include any explicit modelling of noise 

or spatial relationship. In addition, proposed adaptive 

thresholding methodologies require a priori knowledge of the 

tumour volumes currently obtained by CT images, based on 

the non-valid assumption that the functional and anatomical 

volumes are the same [3]. In addition, proposed correction 

methodologies accounting for the effects of background 

activity levels depend on lesion contrast and background noise 

as well as being imaging system specific [4]. On the other 

hand, previously developed automatic algorithms have also 

shown dependence on the level of noise and lesion contrast, 

most frequently requiring pre- or post-processing steps and 

variable initialization parameter values depending on image 

characteristics rendering their use complicated and their 

performance highly variable. 

  We have previously developed and assessed the 

performance for functional volume segmentation of a modified 

version of the Hidden Markov Chains algorithm (FHMC) [11]. 

In this algorithm a number of fuzzy levels have been added to 

introduce the notion of imprecision allowing this way to 

account for the effects of low image spatial resolution in 

addition to the noise modelling (which is part of the standard 

HMC framework). Although the algorithm was shown to 

accurately segment functional volumes (errors <15%) for 

lesions >2cm throughout different contrast and noise 

conditions, it was unable to accurately segment lesions <2cm. 

The main reason behind the failure of FHMC concerning the 

segmentation of such small lesions was the small number of 

voxels associated with the object of interest in combination to 

image noise levels, and the Hilbert-Peano path [12] used to 

transform the image into a chain. The spatial correlation of 

such small objects is lost once the image is transformed into a 

chain, because the voxels belonging to the object may find 

themselves far away from each other in the chain, thus 

resulting in transition probabilities that prevent these voxels to 

form a class differentiated from the background. In addition, it 

was thought that the assumption of a Gaussian noise 

distribution in the images to be segmented may have also been 

partly responsible. 

 FLAB clearly improved the results of FHMC, essentially 

due to the adaptive estimation of the priors using the whole 3D 

neighbourhood of each voxel, as the results of figure 5-c 

clearly demonstrate. FLAB results obtained on the objects >2 

cm were similar to those obtained through the use of FHMC as 

were their respective robustness with respect to noise levels. 

Finally, FLAB resulted in faster computation times in 

comparison with the FHMC. 

 In addition, highly reproducible results (<4% variability, to 

compare with the 8 to 20% variability observed on manual 

segmentation [2]) were obtained for different image contrast 

ratios and lesion sizes >1cm. We should emphasize here that 

the performance of the FLAB in comparison to other 

segmentation algorithms was evaluated in this study on images 

reconstructed using a specific iterative reconstruction 

algorithm used today in clinical practise. Since the FLAB 

segmentation algorithm has been developed in order to better 

cope with variable noise and contrast characteristics it should 

be the least affected by such changes introduced as a result of 

using an alternative reconstruction algorithm [27]. On the 

other hand, the use of the system of Pearson for the 

determination of image voxel value distributions did not lead 

to significant changes or improvements in the results in 

comparison to the Gaussian assumption. Although this was 

shown to be the case for the images reconstructed using the 

specific iterative reconstruction algorithm used here it may not 

be the case if an alternative reconstruction algorithm is used, 

where potentially the use of the system of Pearson for the 

characterisation of the image voxel values distribution may 

still prove to play a role in the segmentation process and needs 

to be further investigated. 

 By comparison the use of T42 led, as expected, to 

segmented functional volumes greatly dependent on image 

contrast and noise levels while being comparable to the FLAB 

results considering medium image statistical quality and 

lesions >17mm with an 8:1 tumour to background ratio. 

Finally, the resulting volumes from the application of the 

automatic segmentation algorithm FCM were less dependent to 

image statistical quality but consistently failed to segment 

lesions <2cm.  

 In this study, as in every other phantom study presented to 

date in the literature, we have firstly considered the 

performance of the different algorithms for the segmentation 
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of uniformly filled spherical lesions. To our knowledge there 

has been no study up to now specifically investigating the 

functional volume segmentation task for inhomogeneous 

uptake lesions, for example lesions with necrotic or partially 

necrotic regions. Although it has not been the major aim of 

their work, Nestle et al demonstrated some evidence of the 

issues associated with the use of either fixed or background 

adjusted thresholding methodologies for lesions with 

inhomogeneous activity distributions and shapes in the clinical 

set up for non small cell lung cancer [4].  As it was shown in 

this study using simulated realistic lesions, the FLAB model is 

able to successfully deal with non-uniform lesion shapes and 

variable activity concentrations in contrast with the threshold 

based or fuzzy C-means segmentation algorithms considered. 

On the other hand, the binary 2-class modelling (background 

or lesion) is obviously not adequate to permit the 

differentiation of multiple regions inside the tumour with 

largely different activity concentrations, as well as extracting 

the overall tumour in the case of strong heterogeneity. 

However, whereas it seems difficult to improve threshold-

based segmentation methods in order to allow the 

identification of regions with variable activity concentration 

within the same functional volume of interest, the fuzzy model 

of FLAB may be extended to more than two hard classes to 

allow modelling a combination of inhomogeneous regions 

within a given volume. This could further enhance the use of 

FLAB for functional volume segmentation in future potential 

clinical applications. 

 The objectives of this study were to address the issue of 

functional volume determination and lesion segmentation. The 

FLAB model, as with any other segmentation algorithms, does 

not modify the values of the image voxels. As such, the use of 

the functional volume obtained with the FLAB algorithm, 

although is the closest to the true volume of the tumor as 

demonstrated by the results in this study, does not lead to the 

accurate activity concentration within the lesion. This is as a 

result of including voxels whose values have been decreased 

by spill-out from partial volume effects, usually leading to an 

under-estimation of the activity concentration whose 

magnitude depends on the size of the lesion [11]. Although the 

segmented volume should therefore not be used for directly 

recovering the accurate activity concentration, they can be 

used in combination with partial volume correction 

methodologies potentially allowing a more accurate correction 

in comparison to the use of anatomical volumes [28]. 

 

V. CONCLUSION 

A modified version of a fuzzy local Bayesian segmentation 

algorithm has been developed. The suggested approach 

combines statistical and fuzzy modelling in order to address 

specific issues in the segmentation of low resolution noisy 

PET images. It is automatic, fully 3D and uses adaptive 

estimation of priors to yield good local spatial characteristics 

that improve segmentation of small objects of interest. Results 

obtained with images of the IEC phantom reconstructed with 

the 3D RAMLA iterative algorithm have shown that it is more 

effective than the reference thresholding methodology and 

other previously proposed automatic algorithms such as 

FHMC or the FCM methods for functional volume 

determination in PET images. The algorithm has also been 

tested successfully against realistic simulated tumors, using 

real patient tumors as model, with non-spherical shape and 

inhomogeneous activity distributions. Future developments 

will concentrate on the incorporation into FLAB of three hard 

classes and three different fuzzy transitions, in order to allow 

the segmentation within the same lesion of variable activity 

distributions in the case of highly heterogeneous functional 

uptake in the tumor volumes. We will also evaluate the use of 

different noise models in an associated robustness study using 

acquisitions with different scanner models and reconstruction 

algorithms. 

APPENDIX 

A.1 Relationship between coefficients a , 
0

c , 
1

c  and 
2

c  and 

equations (5) and (6): 

2 1 2

1

2 1

( 3)

10 12 18
a

γ γ µ
µ

γ γ

+
= −

− −
 

2

2 2 1 1 2 1 2 1 2 1

0

2 1

(4 3 ) ( 3) (2 3 6)

10 12 18
c

µ γ γ µ γ γ µ µ γ γ

γ γ

− − + + − −
=

− −
 

2 1 2 1 2 1

1

2 1

( 3) 2 (2 3 6)

10 12 18
c

γ γ µ µ γ γ

γ γ

+ − − −
=

− −
 

2 1
2

2 1

(2 3 6)

10 12 18
c

γ γ

γ γ

− −
=

− −
 

 

A.2 Definition of the 8 distribution density families: 

1 0f f λ∈ ⇔ <          : Beta of the first kind (I) 

2 1 20 and 3f f γ γ∈ ⇔ = <    : Type II (II) 

3 2 12 3 6 0f f γ γ∈ ⇔ − − =    : Gamma (III) 

4 0 1f f λ∈ ⇔ < <       : Type IV (IV) 

5 1f f λ∈ ⇔ =          : Inverse Gamma (V) 

6 1f f λ∈ ⇔ >         : Beta II (VI) 

7 1 20 and 3f f γ γ∈ ⇔ = >   : Type VII (VII) 

8 1 20 and 3f f γ γ∈ ⇔ = =    : Normal (Gaussian) (N) 

 

Beta I and Gaussian distributions with respect to a class c  are 

defined as follows: 

2

2

( )1
( ) exp

22

c
c

cc

y
Gaussian y

µ

σσ π

	 
−
= −� �

 �   (18) 
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1 11
( ) (1 )

( , )
c

Beta y y y
B

α β

α β
− −= −

   (19) 

where 
( ) ( )

( , )
( )

B
α β

α β
α β

Γ Γ
=

Γ +
 is the Beta function (with Γ  

the Gamma function). 

 

We also have the following relationships between the 

parameters α  and β , and the mean and variance ( ˆ
c

µ , 
2ˆ
c

σ  

denote estimated mean and variance) of class c  (this is useful 

to get the parameters α  and β  from the estimated means and 

variances obtained through the SEM algorithm): 

c

α
µ

α β
=

+
  

2

2( ) ( 1)
c

αβ
σ

α β α β
=

+ + +
 

2

ˆ ˆ(1 )
ˆ 1c c

c

c

µ µ
α µ

σ

	 
−
= −� �

 �
  

2

ˆ ˆ(1 )
ˆ(1 ) 1c c

c

c

µ µ
β µ

σ

	 
−
= − −� �

 �
 

A.3 Recipe for identification of the best family to fit 

distributions of classes: 

Let us consider the voxels 1y , …, 
t

y  and their partitions 0Q  

and 1Q  into two classes. The moments can be estimated from 

empirical moments, and we use the following to detect which 

family best fits each distribution: 

1. Consider the partitions 0Q , 1Q  of ( )1,..., t
x x  defined by 

0 0
i

i Q x∈ ⇔ =  and 1 1
i

i Q x∈ ⇔ =  

2. For each class i  use 
i

Q  in order to estimate the ,m i
µ  

empirical moments by: 

1,
( )

i

t

t Q

i

i

y

Card Q
µ

∈
=

�
 

1,

,

( )

( )

i

m

t i

t Q

p i

i

y

Card Q

µ

µ
∈

−

=

�
  

for 2,3, 4m =  

3. For each class i , calculate 1,iγ  and 2,iγ  from the estimated 

,m i
µ  (m=1,2,3,4) according to (6). 

   4. For each class i , use 1,iγ , 2,iγ  and rules (appendix A.2) 

to determine which family its density f  belongs to. 

 

 

B.1 SEM algorithm: 

 

1) Give an initial value of the parameters 

0 0 0 0 2 0 0 2 0

,0 ,1 0 0 1 1, , , ( ) , , ( )t tp pω µ σ µ σ� �= � �  using K-

Means algorithm for the noise and equal probabilities for the 

priors. 

2) At each iteration q , 
qω  is obtained from 

1qω −
 and the 

data ( )1,..., t
y y  using: 

a) Choose a distribution for the classes 0 and 1 according to 

the Pearson system rules (section 2.1.3 and sections A.2 and 

A.3 of the appendix). 

For each 
t

y , compute the a posteriori probabilities 

(0 | )
q

td y  and (1| )
q

td y  using (8) and sample a value in 

the set { }0,1, F  according to (0 | )
q

td y , (1| )
q

td y  and 

1 (0 | ) (1| )
q q

t td y d y− −  ( F  representing the fuzzy 

voxels). Let us denote ( )1 ,...,q q

TR r r=  the posterior 

realization obtained through this sampling. 

Let { }0 | 0q q

tQ t r= =  and { }1 | 1q q

tQ t r= = ; 

- Reestimate the priors using: 

{ },

1
( ,c) for 0,1

( )
t

q q

c t j

j Ct

p r c
Card C

δ
∈

= ∈�  

where 
t

C  is the estimation cube centred on voxel t  and 

( ,b)aδ  the Kronecker  function.  

- Reestimate the noise parameters using: 

1ˆ
( )

q
c

t

t Qq

c q

c

y

Card Q
µ

∈+ =

�
 

1 2

2 1

ˆ( )

ˆ( )
( )

q
c

q

t c

t Qq

c q

c

y

Card Q

µ

σ

+

∈+

−

=

�
 for { }0,1c ∈  

For the means and variances of the fuzzy levels, use (3). 

Repeat step 2 until stabilization of the parameters. 

Stabilization is defined by a criterion of % change in the 

values of the parameters between two successive iterations (we 

used 0.1% and the algorithm usually stops before 25 iterations) 

and a maximum number of iterations if the stabilization 

criterion is not met (usually 50 iterations). 
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