
Submitted to UML'99.

Use Case Maps and UML for

Complex Software-Driven Systems

Daniel Amyot

School of Information Technology and Engineering, University of Ottawa

150 Louis-Pasteur, Ottawa, Ontario, K1N 6N5, Canada

damyot@site.uottawa.ca http://www.UseCaseMaps.org

Abstract. The Use Case Map (UCM) notation allows the description of complex

software-driven systems in terms of high-level causal scenarios. By superimpos-

ing scenario paths on a structure of abstract components, UCMs provide an inte-

grated view of behavior and structure at the system level. This paper presents

interesting features of UCMs in relation with several types of diagrams defined

in UML. It also shows how UCMs can bind scenarios and structures at the archi-

tectural level, how they help visualizing dynamic systems, how they enable

architectural reasoning, and how they help bridging the conceptual gap between

use cases and sequence, activity, and statechart diagrams.

1 Introduction

Complex software-driven systems are of many kinds, including object-oriented, agent-

based, real time, and distributed systems. They are characterized by many of the fol-

lowing attributes, which make them difficult to understand both in terms of technical

and management complexity: large scale, concurrency, decentralized control, timeli-

ness, dependability, diverse and feature-rich functionality, fluidity of run-time organi-

zation, and evolutionary requirements [12][25]. Such systems are often encountered in

the areas of telecommunications, defense, aerospace, and industrial control [6].

The Unified Modeling Language (UML) is a general-purpose modeling language

for specifying, visualizing, constructing and documenting the artifacts of software sys-

tems (in particular object-oriented and component-based systems), as well as for busi-

ness modeling and other non-software systems [27]. It includes many concepts and

notations useful for the description and documentation of multiple models, and it

enjoys a strong support from academic and industrial communities.

An important feature of UML, use cases are defined as sequences of actions a sys-

tem performs that yield observable results of value to a particular user (actor) [27].

Notations for scenarios and use cases, as well as design processes based on them, have

become very popular over the last few years [16][30]. For instance, the Rational Uni-

fied Process is a methodology based on UML that is use-case driven, i.e., where use

cases bind together five types of models (requirements, analysis, design, implementa-

tion, and testing) [22]. These models describe partial representations of the system.

UML 1.3 allows the description of complex software-driven systems and models

through the use of nine different diagram techniques. Each diagram provides a view of

a model from the aspect of a particular stakeholder, and each diagram must be seman-

Use Case Maps and UML for Complex Software-Driven Systems p. 2

tically consistent with all the others. In this paper, these diagrams are categorized into

two sets. The first set, called behavioral diagrams, focuses mainly of functional and

dynamic aspects of systems. It is comprised of five types of UML diagrams:

• Use case diagrams: Show actors and use cases together with their relationships.

They describe system functionalities from the user’s point of view.

• Sequence diagrams: Describe patterns of interaction among objects, arranged in

a chronological order. They originate from Message Sequence Charts [20].

• Collaboration diagrams: Show generic structure and interaction behavior of the

system.

• Statechart diagrams: Show the state space of a given context, the events that

cause the transitions of one state to another, and the actions that result.

• Activity diagrams: Capture the dynamic behavior of a system in terms of opera-

tions. They focus on flows driven by internal processing.

The second set, called structural diagrams, relates more to components and static char-

acteristics of systems. It includes these four types of UML diagrams:

• Class diagrams: Capture the vocabulary of a system. They show the entities in a

system and their general relationships.

• Object diagrams: Snapshots of a running system. They show object instances

(with data values) and their relationships at some point in time.

• Component diagrams: Show the dependencies among software components.

• Deployment diagrams: Show the configuration of run-time processing elements

and the software components, processes, and objects that live on them.

UML includes several implicit links between these two sets of diagrams (e.g.,

sequence and collaboration diagrams can use the entities defined in class diagrams).

However, UML does not emphasize any first-class and compact way of describing

large-scale units of behavior that emerge from the collective efforts of many system

components (e.g., transactions spanning a network) [12].

This paper describes a diagraming technique called Use Case Maps (UCMs) [8] as

a means to link behavior and structure in an explicit and visual way. UCMs are first-

class architectural entities that describe causal relationships between responsibilities,

which are bound to underlying organizational structures of abstract components. This

paper attempts to illustrate how UCMs can help bridging the conceptual gap between

the use cases in the use case model and other behavioral diagrams (sequence, state-

chart, and activity) in the analysis and design models. At the same time, UCM provide

a bird’s-eye view of activities from behavioral diagrams allocated to organizations of

components (and objects) in structural diagrams. This enables architectural reasoning

throughout the evolution of a system design.

Although this paper does not intend to be a tutorial on the UCM notation (the inter-

ested reader is invited to consult [8][11][13][28] for further details), it illustrates sev-

eral UCM features of potential interest to the UML community. Section 2 provides an

overview of the notation, through a simple telephony system example, and its relation

to use cases. Sections 3 and 4 present several relations between UCMs and, respec-

tively, behavioral diagrams and structural diagrams. Recent and future delevopments

related to UCMs are discussed in Section 5, then a conclusion follows.

Use Case Maps and UML for Complex Software-Driven Systems p. 3

2 Use Case Maps

2.1 Basics of the Notation

Use Case Maps are used to emphasize the most relevant, interesting, and critical func-

tionalities of a system. Responsibilities along causal paths can be internal to a compo-

nent or be observable. UCMs can represent specific scenarios, or else be abstract

(generic) and cover multiple scenario instances. With UCMs, scenarios are expressed

above the level of messages exchanged between components, hence they are not neces-

sarily bound to a specific organizational structure. UCMs provide a path-centric view

of system functionalities and improve the level of reusability of scenarios.

Figure 1(d) shows a simple UCM where a user (Alice) attempts to establish a tele-

phone call with another user (Bob) through some network of agents. Each user has an

agent responsible for managing subscribed telephony features such as Originating Call

Screening (OCS). Alice first sends a connection request (req) to the network through

her agent. This request causes the called agent to verify (vrfy) whether the called party

is idle or busy (conditions are italicized). If he is, then there will be some status update

(upd) and a ring signal will be activated on Bob’s side (ring). Otherwise, a message

stating that Bob is not available will be prepared (mb) and sent back to Alice (msg).

A scenario starts with a triggering event and/or a pre-condition (filled circle labeled

req) and ends with one or more resulting events and/or post-conditions (bars), in our

case ring or msg. We call route a path that links a cause to an effect. Intermediate

responsibilities (vrfy, upd, mb) have been activated along the way. Think of responsibil-

ities as tasks or computational functions to be performed. In this example, the responsi-

bilities are allocated to abstract components (boxes Alice, AgentA, Bob and AgentB),

which could be seen as objects, processes, agents, databases, or even roles, actors, or

persons. We call such superposition a bound map.

The construction of a UCM can be done in many ways. For example, one may start

by identifying the responsibilities (Figure 1(a)), although not necessarily with dia-

grams like this one. They can then be allocated to scenarios (Figure 1(b)) or to compo-

nents (Figure 1(c)). Components can be discovered along the way. Eventually, the two

views are merged to form a bound map (Figure 1(d)).

Fig. 1. Use Case Maps construction.

BobAlice

(a) Scenario responsibilities (b) Path allocation

(c) Component allocation (d) Bound map

vrfy
req

busy

idle
ring

msg

vrfy
req

mb upd ring
msg

AgentA AgentB
upd

mb

BobAlice

vrfy
req

ring
msg

AgentA AgentB

updmb

vrfy
req

busy

idle
ring

msg

upd

mb

Use Case Maps and UML for Complex Software-Driven Systems p. 4

Figure 1(d) is quite a simple diagram, yet it conveys a lot of information in a com-

pact form, and it allows for requirements engineers and designers to use two dimen-

sions (structure and behavior) to evaluate architectural alternatives for their system.

2.2 Additional Notation

To introduce further notation elements, new features can be added to this basic use

case. Figure 2 abstracts from the component instances introduced in Figure 1. The

components do not refer to Bob and Alice any longer, but they refer to more generic call

origination and termination roles (for both users and agents). Dashed components are

called slots and may be populated with different instances at different times. They can

represent roles of a particular class of components. In [8][11], Buhr introduces an

architectural notation with different types of components and richer semantics (active

processes, passive objects, groupings, pools of objects, interrupt service requests,

agents, mutex, etc.). He also discusses how to relate such components to classes of

objects. Since their definition would be outside the scope of this paper, the next exam-

ples will provide only but a few intuitive descriptions. The nature of the components

involved here does not really impact the UCM features emphasized in this paper.

The middle part of Figure 2 shows an enhanced version of the UCM in Figure 1(d)

that represents a whole class of related use case instances. It is referred to as the root

map because this UCM possesses containers (called stubs) for sub-maps (called plug-

ins). Stubs are of two kinds:

• Static stubs: represented as plain diamonds (see stub ST), they contain only one

plug-in, hence enabling hierarchical decomposition of complex maps.

Fig. 2. More complex call connection and new notation elements.

UserTUserO

req ring

msg

AgentO AgentT

SO ST

in1 in2out1 out3

out4out2

chk
in1

denied

allowed
out1

out2
md

in1 out1

OCSlist

vrfy
in2

busy
out3

out4
mb

idle

mrb

P
L

U
G

- I
N

S
 F

O
R
 S

O
R

O
O

T
 M

A
P

P
L

U
G

- I
N

 F
O

R
 S

T

Default ORIGINATING plug-in

TERMINATING plug-in

OCS plug-in

upd

Use Case Maps and UML for Complex Software-Driven Systems p. 5

• Dynamic stubs: represented as dashed diamonds (see stub SO), they may contain

several plug-ins, whose selection can be determined at run-time according to a

selection policy (often described with pre-conditions). It is also possible to select

multiple plug-ins at once (sequentially or in parallel), although the composition

then requires to be detailed outside the UCM diagram.

Path segments coming in and going out of stubs have been identified on the root map

(italicized labels). Although they are not required to be shown visually, their presence

helps to achieve unambiguous bindings of plug-ins to stubs. For instance, the originat-

ing dynamic stub SO has two plug-ins (ORIGINATING and OCS). The start point of the

ORIGINATING plug-in (in1) is bound to the incoming path segment in1, and the end

point out1 is bound to the outgoing segment out1. Figure 2 makes use of similar labels

for a clear binding relation between plug-ins and stubs, but in general names are differ-

ent and the relation has to be described explicitly.

The OCS plug-in shows a new component (the passive object OCSlist) that repre-

sents a list of screened numbers that the originating user (UserO) is forbidden to con-

tact. If UserO is subscribed to the Originating Call Screening service, then the OCS

plug-in is selected instead of the ORIGINATING plug-in. In this case, the called number

is checked against the list (chk). If the call is denied, a relevant message is prepared to

be sent back to the originating party (md).

The TERMINATING plug-in improves on the original UCM by allowing the update

(upd) and the ring result to be accompanied, concurrently, by the preparation of a ring-

back signal to be prepared and sent back to the originating party (mrb). Concurrency is

represented here by an AND-fork. The notation allows for alternative paths (OR-fork

and OR-join, as in the TERMINATING plug-in), concurrent paths (AND-fork and AND-

join), shared responsibilities, exception paths, timers, failure points, error handling,

and (a)synchronous interactions between paths, to name but a few elements.

By selecting plug-ins for the stubs in the integrated view, one can obtain a flattened

map, which still contains multiple possible end-to-end scenarios. Once stubs are

defined at key points on a path, it becomes easy to add new plug-ins, which could rep-

resent new features in our example. Existing maps and plug-ins can further be decom-

posed or extended (e.g., when a radically different service is added) with new paths

and new static and dynamic stubs.

2.3 UCMs and Use Cases in the Puzzle

A UML use case defines a set of use case instances, which are sequences of actions a

system performs that yield observable results of value to a particular actor [22]. Use

cases are usually described in plain text, although this representation can on occasion

be substituted by other behavior description techniques such as activity diagrams, stat-

echarts, or pre/post-conditions. When describing the interactions between the system

and the relevant external actors, a use case generally considers the system as a black

box where the internals are not shown. There exists a large conceptual gap between use

cases and their realization in terms of behavioral diagrams where the system’s internals

are refined with sub-components. Reasoning about this gap and the big picture using

the current UML diagrams is often puzzling since much mental effort is required to

integrate many details from many diagrams of different styles.

Use Case Maps and UML for Complex Software-Driven Systems p. 6

Figure 3 (adapted from [12]) presents the current UML pieces of the puzzle, and

Use Case Maps as the missing piece. UCMs reduce the effort required to put the other

pieces together and understand the big picture. UCMs should not be seen solely as an

extra step but more importantly as a rational, gray-box, and traceable progression from

use cases, where the focus is on system behavior (black-box), to more detailed behav-

ioral diagrams, where the focus is eventually put on component behavior (glass-box).

We use the term “gray-box” to represent that some design information is visible.

Fig. 3. UCMs as a missing piece of the puzzle.

In addition, the UCM notation contains features for expressing dynamic situations

that span whole systems in a compact form. Firstly, dynamic organizations of compo-

nents can be expressed using slots, pools, and dynamic responsibilities (not discussed

here) at the system level, while abstracting from code construction and deployment

aspects. Secondly, time-varying scenario patterns are representable using stubs and

plug-ins, as shown in Figure 2.

This paper does not claim that bridging the aforementioned conceptual gap or that

expressing dynamic situations is impossible with current UML diagrams and pro-

cesses. However, Use Case Maps represent a unique perspective that seems advanta-

geous for solving this puzzle and visualizing the big picture. The next sections further

illustrate several of these advantages in terms of existing UML diagrams.

UML structural

diagrams

Present classes,

objects, components,

and processing

elements, as well as

their relationships.

Although they may

be used to imply

behavior (by indicat-

ing associations),

they do not describe

actual behavior.

UML use cases

Provide textual

descriptions of

functionalities as seen

by external actors

(black-box).

Use Case Maps

Project gray-box visual

descriptions of system-level

behavior directly onto struc-

tures of abstract components

(not necessarily classes).

UML behavioral diagrams

Describe behavior in a way

that is detailed and focused

on the components, hence

making the system difficult

to understand (glass-box).

Provide a visual represen-
tation of use cases in

terms of causal sequences
of responsibilities along

paths.

 Provide a framework
for making detailed

design decisions to be
expressed in UML terms.

Visually associate
behavior with

structure at the system
level.

Use Case Maps and UML for Complex Software-Driven Systems p. 7

3 UCMs and Behavioral Diagrams

3.1 UCMs and Use Case Diagrams

Use case diagrams show actors and use cases together with their relationships. They

are particularly relevant to capture functional requirements or existing functionalities

in the use case model, but they can be used in other types of models as well.

UML use cases are black-box descriptions, while UCMs are more gray-box as they

show some of the details inside the system (e.g., topology of abstract components,

internal flow of actions, etc.). Like use cases, UCMs use signals, events, or messages

when communicating with actors outside the system (especially at start points and end

points), while they may use other communication semantics when communicating

with elements inside the system. No premature decision that would overspecify the

system should be taken at this level of abstraction. These decisions are left for other

models that make use of more appropriate notations, e.g., sequence diagrams.

UML use case diagrams have access to three types of relationships between use

cases, namely include, extend, and generalization [22]. To a great extent, the UCM

notation appears comprehensive enough to represent, in a compact way, use cases as

well as these relationships:

Include relationship: its purpose is to help clarify a use case by isolating and encapsu-

lating complex details (so they do not obscure the real meaning of the use case), and by

improving consistency (by factoring behavior included in several base use cases).

Inclusion can be achieved by placing a static stub on the path of a base use case.

This stub hides the details contained in its plug-in (the inclusion use case), and the

plug-in can be reused in multiple stubs, hence improving consistency among the

UCMs. The location of the inclusion point is stated visually on the path, and many

static stubs can be used to represent multiple inclusions. For example, see stub ST and

plug-in TERMINATING in Figure 2.

Extend relationship: the goal of extensions is to show that part of a use case is (poten-

tially) optional, that a subflow is executed only under certain (sometimes exceptional)

conditions, or that there may be a set of behavior segments of which one or several

may be inserted at an extension point in a base use case.

This relationship can be expressed in UCM terms with OR-forks, which may have

more than two (possibly guarded) alternatives. The denied path of the OCS plug-in and

the busy path of the TERMINATING plug-in (Figure 2) are both extensions of their

respective base use cases. Using visual hints like path labeling, color, shading, or thick-

ness, UCMs can emphasize the original base case (to distinguish the basic flow of

events from the alternative or exceptional ones), which otherwise could be lost into the

details. As an illustration, the allowed path of the OCS plug-in (in bold) represents the

base case, as opposed to the denied path which is the extension. The UCM notation

also provides other visual clues for exceptional, time-out, and error-handling paths.

Dynamic stubs represent another level of extension relationships. Such stubs may

have a default behavior (a plug-in that often contains an empty path), which can be

overridden by other plug-ins. The conditions under which a plug-in other than the

Use Case Maps and UML for Complex Software-Driven Systems p. 8

default one is chosen are described in the selection policy. For instance, the stub SO in

Figure 2 has a default plug-in (ORIGINATING) whose selection will be overridden in

favor of the OCS plug-in when the subscriber’s OCS feature is active.

UML use cases explicitly define extension points where additional behavior can be

added. There is no such concept in UCMs, as any path segment is an implicit point of

potential extension (e.g., for an OR-fork), except perhaps for dynamic stubs, which are

explicit extension points.

Use Case Generalization: generalization is used when two or more use cases have

commonalities in behavior, structure, and purpose. The shared part can then be

described in a new parent use case specialized by child use cases.

UCM scenarios that share common segments and purposes can be integrated

together with a combination of OR-forks and OR-joins, or more likely with multiple

dynamic stubs. The parent UCM represents the common parts in the original use cases,

and it contains dynamic stubs for the parts where the behaviors diverge (the latter

become plug-ins). A child UCM is constituted of a parent UCM whose stubs are occu-

pied by the appropriate plug-ins. However, generalization from multiple parents (mul-

tiple inheritance) would require the parent UCMs to be integrated together before

defining the plug-ins and how child UCMs would use them.

As an example, a Basic Call UCM could be represented as a flattened version of the

root map of Figure 2 where the default ORIGINATING plug-in occupies stub SO and

TERMINATING occupies ST. An OCS Call UCM would however use the OCS plug-in in

stub SO. Both the Basic Call and the OCS Call would be child UCMs of their parent

UCM (the root map), whose structure and behavior has been inherited and modified.

3.2 UCMs and Interaction Diagrams

UML defines two types of interaction diagrams. Sequence diagrams show the explicit

sequence of stimuli along vertical time axis (called lifelines) and are better for real-

time specifications and for complex scenarios. Collaboration diagrams show the rela-

tionships among instances and are better for understanding all of the effects on a given

instance and for procedural design. They essentially cover similar concepts, but in dif-

ferent forms. This section focuses mainly on sequence diagrams.

Use Case Maps can help deriving interaction diagrams (in the analysis and design

models) from use cases (in the use case model). UCMs do not explicitly define mes-

sage exchanges between components, but messages need to be constructed in such a

way that the causal relationships between responsibilities from different components

are satisfied. There are usually many ways to do so, depending on the available inter-

faces, communication channels, and protocols.

The causal path <req, vrfy, upd, ring>, which represents the base use base extracted

from the UCM in Figure 1(d), will serve as an example. In Figure 4(a), this sequence is

bound to the same component substrate, to which explicit communication channels

(lines) have been added, hence constraining the potential senders and receivers of each

message. Different decisions about the protocols and control can lead to multiple solu-

tions.

Use Case Maps and UML for Complex Software-Driven Systems p. 9

Fig. 4. Admissible sequence diagrams derived from a UCM path.

Figure 4(b) shows a situation where the four concurrent entities communicate

through simple protocols, resulting in straightforward exchanges of messages. How-

ever, if a more complex protocol is used between the two agents (e.g., a negotiation),

and if the control is attributed differently, then Figure 4(c) might be an admissible

sequence diagram derived from the same causal path. Whichever is the most appropri-

ate depends on design decisions that are not taken at the UCM level, but which needs

to be documented in the appropriate model for a better traceability.

Several papers have illustrated the derivation of valid Message Sequence Charts

(MSCs) from Use Case Maps [1][4][5]. Basic MSCs are similar in nature to sequence

diagrams. In [7], the authors introduce a mapping of UCMs to High-Level MSCs [20],

a notation that allows the recursive structuring of MSCs with constructs for sequence,

concurrency, alternative, iteration, and others (basic MSCs do have similar constructs,

but for messages, not sub-MSCs).

3.3 UCMs and Statechart Diagrams

This state machine formalism is an object-based variant of Harel’s Statecharts [15]. It

incorporates several concepts similar to those defined in ROOMcharts, a variant of

statecharts defined in the ROOM modeling language [24].

With statechart diagrams, the focus definitely becomes component behavior.

UCMs do not replace these diagrams, but they can guide their construction. Paths seg-

ments from (possibly many) UCM scenarios that are bound to a component need to be

integrated together to determine the component logic and states. At the same time, the

synthesis needs to cover the causal relationships between responsibilities in different

components that are refined in terms of message exchanges. Path segments that cross

component boundaries also help describing component interfaces. Statechart diagrams

may be influenced by the available classes of objects defined (possibly independently)

BobAlice

(a) A bound causal path

vrfy
req

idle
ring

AgentA AgentB

upd

Alice BobAgentA AgentB

(b) A first possible sequence diagram

req

msg1

ring

vrfy and upd

performed here

Alice BobAgentA AgentB

(c) A second possible sequence diagram

req
msg2

ring

msg3

msg4

Use Case Maps and UML for Complex Software-Driven Systems p. 10

in the class diagram. There is a mapping required between the UCM abstract compo-

nents and the objects, processes, and modules for which state machines are con-

structed. Again, this synthesis procedure can result in many valid solutions, hence the

design decisions need to be motivated (possibly by requirements outside the UCMs)

and documented in the appropriate models.

Figure 5(a) presents the UCM paths crossing the component AgentB from

Figure 1(d). A potential statechart for this path is illustrated in Figure 5(b), where

responsibilities, guards, and messages have been mapped respectively to states, condi-

tional transitions, and plain transitions. This particular example assumes that agents

have their own threads and are initially awaiting a specific message. Obviously, differ-

ent assumptions and requirements will lead to different statechart diagrams.

Fig. 5. Potential statechart diagram derived from UCM paths

The mapping from UCM paths to statechart diagrams is not always so straightfor-

ward. For instance, the components of Figure 2 would require more complex state-

charts in order to integrate multiple plug-ins (AgentO), to integrate multiple path

sources and destinations (AgentO), and to cover concurrent paths (AgentT).

Moving directly from Use Case Maps to state machines usually represents a big

step. Often, sequence diagrams can be used as an intermediate step. Decisions related

to the refinement of inter-component causal relationships would then be made at the

sequence diagram level. State machine still need to integrate these sequences together

in order to cover the different roles played by each component.

A method that generates communicating finite state machines (ROOMcharts) from

UCMs is presented in [20]. High-level MSCs are used as an intermediary step. UCMs

can also lead to other types of communicating entities. In [1][2][5], the authors use the

formal algebraic language LOTOS [18] to model the component-based behavior of the

system, while agent behaviors (for high-level prototypes) are generated in [9][10].

3.4 UCMs and Activity Diagrams

An activity diagram is a special case of a state diagram whose purpose is to focus on

flows driven by internal processing (as opposed to external events in ordinary state-

chart diagrams), hence it is essentially used to represent the state machine of a proce-

dure or a business workflow. Activity diagrams focus more on sequences of actions

and on conditions than on the components performing those actions.

Activity diagrams share many concepts (and even notation elements) with basic

Use Case Maps. UCM responsibilities are similar to activities. Both notations support

(a) Paths crossing AgentB

vrfy

busy

idle

AgentB

upd

mb

causescaused

causes

by msg1

msg2

ring

wait vrfy

mb

upd

msg1
[idle]

[busy]

ring

msg2

(b) A potential statechart

Use Case Maps and UML for Complex Software-Driven Systems p. 11

sequences of actions, as well as alternatives and concurrency. Start points and end

points also have similar purposes.

A complex activity may be refined into another activity diagram, just like UCMs

use static stubs for path decomposition. However, stubs appear to be more generic;

they allow for multiple incoming and outgoing paths, and dynamic stubs permits the

use of many plug-ins (refinements) whose selection is based on some policy. UCM

stubs proved to be a very useful artifact for expressing dynamic behaviors and struc-

tures in complex systems.

One of the strengths of UCMs resides in their ability to bind responsibilities to

components. Activity diagrams are usually not used in that way, although they support

such mapping to a limited extent. An activity diagram may be divided visually into

swimlanes, each separated from neighboring swimlanes by vertical solid lines on both

sides. Each swimlane represents responsibility for part of the overall activity, and may

eventually be implemented by one or more objects. Each action is assigned to one

swimlane, and transitions may cross lanes. There is no significance to the routing of a

transition path. Swimlanes can be interpreted as components in their simplest form;

they are one-dimentional and do not show in any way how components relate to each

other (e.g., by their relative position, or their very nature). UCMs provide an integrated

bird’s-eye view that includes this information. Such a view is almost essential for

understanding how behavior, represented as paths and (dynamic) responsibilities,

affect and modify the run-time structure of components in dynamic systems.

4 UCMs and Structural Diagrams

4.1 UCMs and Component-Based Diagrams

A UML component diagram is a graph of components connected by dependency rela-

tionships. Components may also be connected to components by physical containment

representing composition relationships. UML deployment diagrams show the configu-

ration of run-time processing elements and the software components, processes, and

objects that live on them. UML object diagrams present snapshots of running systems

in terms of object instances and their relationships at a particular moment in time.

The default UCM component notation, as defined by Buhr and Casselman in [8], is

abstract enough to represent many important aspects found in these three types of

UML structural diagrams. They can illustrate containment and other dependencies, be

of different types (passive, active, etc.), and even represent run-time instances (without

data). However, their main strength resides in the ability to describe dynamic structures

with static diagrams. With the help of slots, pools (of components) and UCM paths

with dynamic responsibilities, components can be created or destroyed, moved around,

made visible to other components, and so forth. UCMs with such components can

express, in an apparent static and concise way, complex dynamic issues that would oth-

erwise need to be stated with many snapshots of UML component-based diagrams.

This does not prevent one from using another structural notation underneath UCM

paths. Such paths can be used on top of several types of component-based diagrams

such as the ones in UML or the like.

Use Case Maps and UML for Complex Software-Driven Systems p. 12

4.2 Architectural Reasoning with UCMs

Use Case Maps allow for the early evaluation of architectural alternatives by acting as

a link between function (use cases) and form (structure). By decoupling the functions

from the structure, one can play on one aspect concurrently as well as independently of

the other. The previous UCMs illustrated different paths on the same structure of com-

ponents. UCMs also enable one to reuse the same paths on different alternative struc-

tures. For example, Figure 6(a) reuses the same causal path as Figure 4(a), but on a

different set of components. Here, no communicating agents are involved. Instead, the

responsibilities are allocated to more traditional telephony components such as a

Switch and a service node (SN), with different dependencies (e.g., communication

links). This will in turn lead to yet another different set of valid sequence diagrams and

different state machines further down the design cycle.

Fig. 6. Admissible sequence diagrams derived from a UCM path.

As they can easily be decoupled from structures, UCM paths improve the reusabil-

ity of scenarios and lead to behavior patterns that can be utilized across a wide range of

applications. On many occasions, UCMs may provide helpful visual patterns that stim-

ulate thinking and discussion about system issues and that may be reused [11].

Note also that the evaluation of architectural alternatives is done at a high level of

abstraction, without any early commitment to messages and protocols as in sequence

diagrams. Such diagrams require more efforts that could be wasted when the underly-

ing structure is modified.

Architectural reasoning also needs to cope with evolving system requirements.

Complex systems are seldom built from scratch. Instead, they evolve to accept new

technology and to accept new features. As shown by Velthuijsen [29], the addition of

new features is non-monotonic; they can and will change the operation of existing

functionalities. New technology can also change the assumptions on which functional-

ities are based. Use Case Maps provide mechanisms (e.g., stubs and plug-ins) for han-

dling the non-monotonic nature of system evolution. Moreover, it has been shown how

UCM practice can distinguish between chained decomposition (e.g., small scale

objects, threads, processes, modules, packages, etc.) and layering (e.g., operating sys-

tems, communication stacks, network middleware, etc.) [8][11][12]. The distinction

between these two architectural concepts help coping, among other things, with the

scalability and the maintainability of systems.

BobAlice

(a) Path bound to a new structure

vrfy
req

idle

ring

Switch

SN

Alice BobSwitch SN

(b) A possible sequence diagram

req
msg5

ring

msg6

upd

vrfy here
upd here

Use Case Maps and UML for Complex Software-Driven Systems p. 13

5 Discussion

5.1 Semantics and Tools for UCMs

The semantics of Use Case Maps and well-formedness rules are defined in terms of

hypergraphs [21]. A textual linear form for UCMs, expressed in XML [31], has also

been defined [3]. This form is suitable for input to different tools and for generating

documentation. Having this XML Document Type Definition also enables an easier

integration of UCMs with upcoming standards for UML such as the XML Metadata

Interchange (XMI) [17] and the UML eXchange Format (UXF) [26].

The UCM Navigator, a tool for constructing and editing Use Case Maps, makes use

of the hypergraph semantics and rules to provide sound transformations that ensure the

construction of correct maps [21]. This tool supports the path notation and Buhr’s com-

ponent notation, and it uses the XML form as its file format. Nested stubs and plug-ins

can be created, responsibilities can be easily bound to components, notation extensions

for agent systems and performance modeling are supported, documentation in PDF-

enabled PostScript is generated, and the tool is available for X11R5 on three platforms

(Linux, Solaris, and HP-UX).

5.2 UCMs for Formal Validation and Verification

Although UCMs possess a semi-formal semantics, they can be used to guide the gener-

ation of more formal models and specifications for complex systems. Over the years,

much work has been done on the derivation of LOTOS specifications [18] from UCMs

[1][5]. LOTOS is an algebraic language that can formalize the ordering of events found

in UCMs, even in the absence of a component structure. This enables formal verifica-

tion and verification of requirements, specifications, and designs, something that lacks

from many (OO) case tools. Other target formalisms include ROOM [7][24] and soon

SDL [2][19]. Note also that there exists recent work on how ROOM models can be

used to implement LOTOS specifications [1][14].

UCMs are currently used in several projects, some of which addressing issues

related to dynamic agencies [9][10] (where UCMs proved to be strong at describing

complex agent relationships), the avoidance and detection of undesirable interactions

between telephony features [5][9][10], the generation of functional test suites, and the

description of standards for emerging mobile telephony services [1][2][4].

Performance modeling is yet another application of UCMs. In [23], performance

becomes a property of paths, rather than a non-functional property of a whole system,

as it is usually considered to be. The notation was extended to include timestamps,

time constraints, event distributions, associations of processes and tasks to devices, etc.

Both the XML form and the UCM Navigator support these extensions. Integrating

other types of non-functional requirements is also under study.

5.3 Integrating UCMs and UML

UML is intended to be broadly applicable without extensions, because they might not

be universally understood, supported, and agreed upon. Instead, UML profiles provide

a standard way to use UML in a particular area without having to extend or modify

UML [27]. A profile is a predefined set of stereotypes, tagged values, constraints, and

Use Case Maps and UML for Complex Software-Driven Systems p. 14

notation icons that collectively specialize and tailor UML for a specific domain or pro-

cess (e.g., Objectory Process profile and Business Engineering profile). A profile does

not extend UML by adding any new basic concepts. Instead, it provides conventions

for applying and specializing standard UML to a particular environment or domain.

Integrating the UCM concepts in UML could be achieved to some extent by tailor-

ing an appropriate profile. Although this would not require any modification to the

UML standard, many of the most interesting UCM concepts would not be easily cov-

ered with current UML diagrams and semantics.

A second and obvious option would consist in adding the UCM notation to the set

of UML diagrams. Although this looks simple and sound, this would also add to the

redundancy that already exists among a somewhat large collection of UML diagrams.

The extension of existing diagramming techniques (e.g., activity diagrams) and

semantics to support original UCM concepts could represent a third option.

Finally, the substitution (or the reorganization) of one or more UML diagrams by

UCMs may also be considered as a potential option, which might however be difficult

to realize due to the existing (legacy) investment in the current standard and tools.

The best and most appropriate option is still a research topic. Nevertheless, it seems

important that standardization of these UCM concepts be achieved, independently of

the selected option. UML is certainly an excellent candidate where such standardiza-

tion could occur in the near future.

6 Conclusion

Use Case Maps relate very much to existing UML diagramming techniques, yet they

help filling the conceptual (gray-box) gap that exists between use cases and behavioral

diagrams. They also represent an interesting viewpoint for architectural reasoning, par-

ticularly in the context of complex and dynamic software-driven systems where the

behavior emerging from multiple components is often difficult to visualize.

This paper illustrated some of the most important concepts behind the UCM nota-

tion and usage. UCMs establish a useful linkage between behavioral diagrams and

structural diagrams at the system level, while allowing people to work independently

on these two dimensions. Architectural reasoning is promoted early in the design cycle

through the use of stubs, plug-ins, and dynamic components. Unbound UCM paths

become reusable scenario patterns that can be bound to multiple underlying compo-

nent structures. Though they are defined at an abstraction level higher than that of

exchanges of messages, UCM can guide the generation of detailed diagrams (e.g.,

sequence diagrams and statechart diagrams) and even formal specifications.

As the UCM notation becomes used in different projects, it becomes more stable

and robust. Tools started to emerge, and a UCM User Group was initiated at the begin-

ning of the year [28]. UML could benefit from many concepts found in UCMs. The

best place for this piece of the puzzle however still remains to be clarified.

Acknowledgements. I am grateful to Ray Buhr and Luigi Logrippo for numerous dis-

cussions on UCMs over the last six years. Many thanks to Tom Gray and Darcy

Quesnel for their useful comments on an earlier draft. This work was supported in part

by FCAR, NSERC, and CITO.

Use Case Maps and UML for Complex Software-Driven Systems p. 15

References

[1] Amyot, D., Hart, N., Logrippo, L., and Forhan, P.: “Formal Specification and Validation

using a Scenario-Based Approach: The GPRS Group-Call Example”. In: ObjecTime Work-

shop on Research in OO Real-Time Modeling, Kanata, Canada, January 1998.

http://www.csi.uottawa.ca/~damyot/wrroom98/wrroom98.pdf

[2] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., and Yi, Z.: “Formal Methods for

Mobility Standards”. In: IEEE 1999 Emerging Technology Symposium on Wireless Commu-

nications & Systems, Dallas, USA, April 1999.

http://www.UseCaseMaps.org/UseCaseMaps/pub/ets99.pdf

[3] Amyot, D. and Miga, A.: Use Case Maps Linear Form in XML, version 0.12, April 1999.

http://www.UseCaseMaps.org/UseCaseMaps/xml/

[4] Amyot, D. and Andrade, R.: “Description of Wireless Intelligent Network Services with

Use Case Maps”. In: SBRC’99, 17th Brazilian Symposium on Computer Networks, Salva-

dor, Brazil, May 1999. http://www.UseCaseMaps.org/UseCaseMaps/pub/sbrc99.pdf

[5] Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L.: “Use Case Maps for the Capture and

Validation of Distributed Systems Requirements”. In: ISRE'99, Fourth International Sym-

posium on Requirements Engineering, Limerick, Ireland, June 1999.

http://www.UseCaseMaps.org/UseCaseMaps/pub/re99.pdf

[6] Booch, G.: Software Architecture and the UML. Slide package, Rational Software, 1998.

http://www.rational.com/uml/img/arch.zip

[7] Bordeleau, F. and Buhr, R.J.A.: “The UCM-ROOM Design Method: from Use Case Maps

to Communicating State Machines”. Conference on the Engineering of Computer-Based

Systems, Monterey, USA, March 1997.

http://www.UseCaseMaps.org/UseCaseMaps/pub/UCM-ROOM.pdf

[8] Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented Systems, Prentice-

Hall, USA, 1995. http://www.UseCaseMaps.org/UseCaseMaps/pub/UCM_book95.pdf

[9] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S.: “High

Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Exam-

ple”. In: H.S. Nwana and D.T. Ndumu (Eds), PAAM’98, Third Conference on Practical

Application of Intelligent Agents and Multi-Agents, London, UK, March 1998, 277-295.

http://www.UseCaseMaps.org/UseCaseMaps/pub/4paam98.pdf.

[10] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S.: “Fea-

ture-Interaction Visualization and Resolution in an Agent Environment”. In: K. Kimbler

and L. G. Bouma (Eds), Fifth International Workshop on Feature Interactions in Telecom-

munications and Software Systems (FIW'98), Lund, Sweden, September 1998. IOS Press,

135-149. http://www.UseCaseMaps.org/UseCaseMaps/pub/fiw98.pdf.

[11] Buhr, R.J.A.: “Use Case Maps as Architectural Entities for Complex Systems”. In: Trans-

actions on Software Engineering, IEEE, December 1998, pp. 1131-1155.

http://www.UseCaseMaps.org/UseCaseMaps/pub/tse98final.pdf

[12] Buhr, R.J.A.: “Use Case Maps and UML”. Slide package, Carleton University, December

1998. http://www.UseCaseMaps.org/UseCaseMaps/pub/ucm_umlSlides98.pdf

[13] Buhr, R.J.A.: “Making Behaviour a Concrete Architectural Concept”. In: 32nd Annual

Hawaii International Conference on System Sciences (HICSS'99), Hawaii, USA, January

1999. http://www.UseCaseMaps.org/UseCaseMaps/pub/hicss99.pdf

Use Case Maps and UML for Complex Software-Driven Systems p. 16

[14] Hart, N.: Protocol Validation and Implementation: A Design Methodology Using LOTOS

and ROOM. M.Sc. thesis, SITE, University of Ottawa, Canada, April 1999.

[15] Harel, D. and Gery, E.: “Executable Object Modeling with Statecharts”. In: Proceedings of

the 18th International Conference on Software Engineering, Berlin, IEEE Press, March,

1996, pp. 246-257.

[16] Hurlbut, R. R.: Managing Domain Architecture Evolution Through Adaptive Use Case and

Business Rule Models. Ph.D. thesis, Illinois Institute of Technology, Chigago, USA.

http:// www.iit.edu/~rhurlbut/hurl98.pdf

[17] IBM, Unisys et al.: XMI (XML Metadata Interchange) Proposal, OMG document ad/98-10-

05, October 1998. http://www.software.ibm.com/ad/features/xmi.html

[18] ISO, Information Processing Systems, Open Systems Interconnection: LOTOS — A Formal

Description Technique Based on the Temporal Ordering of Observational Behaviour, IS

8807 (1989).

[19] ITU: Recommendation Z.100, Specification and Description Language (SDL). Geneva,

1994.

[20] ITU: Recommendation Z. 120: Message Sequence Chart (MSC). ITU, Geneva, 1996.

[21] Miga, A.: Application of Use Case Maps to System Design with Tool Support. M.Eng. the-

sis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada,

1998. http://www.UseCaseMaps.org/UseCaseMaps/ucmnav/

[22] Rational Software: Rational Unified Process 5.0, Cupertino, CA, 1998.

[23] Scratchley, C. and Miga, A., “A Use Case Map Editing Tool with Performance Prediction

Capabilities”. In: ObjecTime Workshop on Research in OO Real-Time Modeling, Kanata,

Canada, January 1998.

[24] Selic, B., Gullekson, G., and Ward, P.T.: Real-Time Object-Oriented Modeling, Wiley &

Sons, 1994.

[25] Selic, B. and Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. White

paper, ObjecTime Ltd., March 1998. http://www.ObjecTime.com/otl/technical/umlrt.pdf

[26] Suzuki, J. and Yamamoto, Y.: “Making UML Models Exchangeable over the Internet with

XML: UXF approach”. In: Proceedings of the First International Conference on the Uni-

fied Modeling Language (UML '98), Mulhouse France, June, 1998.

http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/index.html

[27] UML Revision Task Force: OMG Unified Modeling Language Specification, version 1.3

beta R1, April 1999. http://uml.systemhouse.mci.com/

[28] Use Case Maps Web Page and UCM Users Group, 1999. http://www.UseCaseMaps.org

[29] Velthuijsen, H.: “Issues of non-monotonicity in feature-interaction detection”. In: Third

Interntional Workshop on Feature Interactions in Telecommunications Software Systems,

Kyoto, Japan, October 1995.

[30] Weidenhaupt, K., Pohl, K., Jarke, Matthias, and Haumer, P.: “Scenarios in System Develop-

ment: Current Practice”. In: IEEE Software, March/April 1998, 34-45.

[31] W3 Consortium: Extensible Markup Language (XML) 1.0. W3C Recommendation, 10 Feb-

ruary 1998. http://www.w3.org/TR/REC-xml

