

Ph.D. dissertation

Supervisor Alexander Chatzigeorgiou
Advisors Maria Satratzemi, George Stephanides, Alexander Chatzigeorgiou

Department of Applied Informatics

University of Macedonia

Thessaloniki

August 2010

Evaluation and Improvement of Software Architecture:
Identification of Design Problems in Object-Oriented

Systems and Resolution through Refactorings

Nikolaos Tsantalis

2

2010, Nikolaos Tsantalis

The approval of this dissertation from the Department of Applied Informatics,
University of Macedonia does not necessarily denote the acceptance of the

author’s opinions on behalf of the Department (L.5343/32 ar.202 par.2).

3

Summary

Maintenance has gained the most important role in the life cycle of a software prod-
uct, since it occupies the largest percentage of software development costs. This can
be attributed to the fact that a software product should constantly evolve by providing
new features, error corrections, performance improvements, and integration of novel
technologies in order to remain competitive and diachronically successful. Despite the
major importance of software maintenance, the effort being invested by software
companies on preventive maintenance (i.e., improvement of design quality in order to
increase maintainability) is very limited (lower than 5% of total maintenance costs).
This fact indicates that there is a clear need for methods and tools that can be used by
the software industry in order to support preventive maintenance, since the manual
and human-driven inspection of source code requires tremendous effort and leads to
long-term benefits that do not add immediate value to the software product. To this
end, this work aims at developing methods and techniques that provide a concrete so-
lution for major design problems whose remedy improves design quality and facili-
tates increased maintainability. The developed methods face the problem of improv-
ing the design quality of an object-oriented system by means of identifying refactor-
ing opportunities which resolve bad smells existing in source code. This refactoring-
oriented approach has the ability to produce refactoring solutions which are feasible
and behavior preserving by examining a set of preconditions that should apply, pre-
evaluate the impact of the identified refactoring opportunities on certain aspects of
design quality and provide a ranking of the refactoring solutions allowing the prioriti-
zation of maintenance effort on parts of the program that would benefit the most.
Therefore, it can be claimed that this work provides the most adequate support for the
refactoring process which constitutes a major part of preventive maintenance.

4

Acknowledgements

I consider a great fortune and honor having Alexander Chatzigeorgiou as mentor and
supervisor. His attitude of life constitutes a guide for the pursuit of quality and morali-
ty not only in research but also in life. I cannot find a more suitable phrase to express
my feelings than the phrase of Alexander The Great for his teacher Aristotle: “I am
indebted to my father for living, but to my teacher for living well.”

I owe a lot of gratitude to my family for the emotional and financial support that they
offered to me through the years of my studies. I hope that my work and effort makes
them proud.

I am very grateful to a person that played a key role in my life, Marina. She always
stood by me, providing encouragement and strength to overcome the obstacles and
frustrations in this long research journey.

I would like to thank Marios Fokaefs, the “godfather” of JDeodorant, for setting up
the base for JDeodorant and participating in its baby development footsteps.

I would like also to thank Anastasios Alexiadis, Marios Fokaefs (again!) and Eric
Bouwers for the time and effort that they dedicated in the evaluation of the developed
methods. Their feedback was invaluable and helped significantly to improve the pro-
posed methods.

Finally, I would like to thank all the anonymous reviewers that participated in the re-
view process of the proposed methods. Their comments were essential for the forma-
tion of the methods presented in this work.

5

Contents

1 Introduction ... 10

1.1 Goal and approach ... 12

1.2 Contribution ... 13

1.3 Organization ... 14

2 Literature Review ... 16

2.1 Search-based approach .. 16

2.2 Metric-based approach .. 18

2.3 Visualization-based approach ... 19

2.4 Logic-based or pattern-based approach .. 21

2.5 Probabilistic approach ... 21

2.6 Remarks .. 22

3 Identification of Move Method Refactoring Opportunities 23

3.1 Introduction .. 23

3.2 Related Work .. 25

3.3 Method .. 27

3.3.1 Definition of distance .. 28

3.3.2 Move Method refactoring preconditions .. 31

3.3.2.1 Compilation preconditions ... 32

3.3.2.2 Behavior-preservation preconditions .. 33

3.3.2.3 Quality preconditions ... 33

3.3.3 Extraction of Move Method refactoring suggestions 34

3.3.4 Assessing the effect of the refactoring suggestions on design quality ... 36

3.3.5 Virtual application of Move Method refactoring suggestions 37

3.3.6 Demonstration of the method on a refactoring teaching example 38

3.4 JDeodorant Eclipse plug-in ... 40

3.5 Evaluation ... 41

3.5.1 Qualitative analysis ... 41

3.5.2 Evaluation with software metrics .. 45

3.5.3 Independent assessment ... 47

3.5.4 Evaluation of efficiency .. 49

4 Identification of Refactoring Opportunities Introducing Polymorphism 51

4.1 Introduction .. 51

4.2 Related Work .. 52

4.3 Technique .. 56

4.3.1 Identification of conditional structures performing state-checking 57

4.3.2 Identification of conditional structures performing RTTI 59

4.3.3 Handling of compound conditional expressions 59

4.3.4 Preconditions ... 62

4.3.5 Assessing the effect of the refactoring suggestions on design quality ... 62

4.3.6 Limitations ... 63

4.3.7 Demonstration of the technique on an open-source project 65

4.4 JDeodorant Eclipse plug-in ... 69

4.5 Evaluation ... 69

4.5.1 Evaluation of Precision and Recall .. 69

6

4.5.2 Correlation of quantitative factors with expert judgment 71

4.5.3 Threats to validity ... 73

4.5.4 Evaluation of Scalability ... 74

5 Identification of Extract Method Refactoring Opportunities 75

5.1 Introduction .. 75

5.2 Related Work .. 77

5.3 Method .. 81

5.3.1 Construction of the Program Dependence Graph 82

5.3.2 Block-based Slicing ... 85

5.3.3 Algorithms for the identification of Extract Method refactoring

opportunities ... 88

5.3.3.1 Identification of complete computation slices 88

5.3.3.2 Identification of object state slices ... 90

5.3.3.3 Determination of indispensable statements and parameters of the

extracted method .. 92

5.3.4 Rules regarding behavior preservation and usefulness of the extracted

functionality .. 93

5.3.4.1 Duplication of statements affecting the state of an object 94

5.3.4.2 Duplication of statements containing a class instance creation 95

5.3.4.3 Preservation of existing anti-dependences .. 96

5.3.4.4 Rules regarding the usefulness of the extracted code in terms of

functionality ... 98

5.3.5 Handling of try/catch blocks, branching and throw statements 98

5.4 JDeodorant Eclipse plug-in ... 100

5.5 Evaluation ... 101

5.5.1 Independent assessment ... 102

5.5.2 Impact on slice-based cohesion metrics .. 103

5.5.3 Impact on program behavior ... 105

6 Employing Eclipse JDT Core and LTK in JDeodorant 106

6.1 Representation of Java elements in JDT Core .. 106

6.2 Representation of Java elements in JDeodorant ... 110

6.3 Change notification for Java elements ... 112

6.4 Collecting AST nodes of the same type .. 114

6.5 Finding the subclasses of a given class ... 117

6.6 Implementing refactoring transformations on Java source code 119

7 Conclusions and Future Work ... 125

7.1 Discussion of evaluation results .. 125

7.2 General Conclusions .. 126

7.3 Future Research ... 126

Bibliography ... 128

Appendix A ... 136

Appendix B ... 138

7

List of Figures

Figure 3.1: UML model for the notation used in the proposed method. 28
Figure 3.2: Example of method modifying a data structure of a candidate target class.

 .. 35
Figure 3.3: Algorithm used for the extraction of Move Method refactoring
suggestions. .. 36
Figure 3.4: UML class diagram of the Video Store before the application of the first
Move Method refactoring. ... 38
Figure 3.5: Tooltip indicating a dependency between two refactoring suggestions. ... 40
Figure 3.6: Tooltip indicating the number of members that the highlighted method
accesses from each class. ... 41
Figure 3.7: Method drawRangeMarker() corresponding to the first extracted
suggestion for JFreeChart (version 0.9.6). ... 43
Figure 3.8: Handling of delegate methods in a refactoring suggestion for JEdit
(version 4.3pre12). ... 45
Figure 3.9: Evolution of metrics for JEdit (version 3.0). ... 47
Figure 3.10: Evolution of metrics for JFreeChart (version 0.9.6). 47
Figure 3.11: Method corresponding to suggestion 3 for SelfPlanner. 49
Figure 3.12: Method corresponding to suggestion 10 for SelfPlanner. 49
Figure 4.1: Algorithm for the identification of relevant named constants. 58
Figure 4.2: Example of compound conditional expression with AND operators. 60
Figure 4.3: Handling of compound conditional expressions with AND operators. 61
Figure 4.4: Handling of compound conditional expressions with OR operators. 61
Figure 4.5: Application of Replace Type Code with State/Strategy refactoring. 66
Figure 4.6: Application of Replace Conditional with Polymorphism refactoring. 68
Figure 4.7: Node inheritance hierarchy tree structure. .. 68
Figure 4.8: Grouping and sorting of the refactoring suggestions. 69
Figure 5.1: (a) complete computation slice for variable dy. (b) object state slice for
object reference fold. ... 76
Figure 5.2: (a) The code of a word counting program. (b) The lattice of
decompositions slices according to Gallagher and Lyle [38]. (c) The concept lattice of
decompositions slices according to Tonella [102]. .. 78
Figure 5.3: Code example to demonstrate the handling of method invocations. 83
Figure 5.4: Call graph for statement 5 of method main in Figure 5.3, along with the
sets of defined and used variables for each visited method (the actual references
through which the methods are invoked and parameters are highlighted in bold). 84
Figure 5.5: Code example containing an alias relationship between references a and b
(the composite variables that were added in the sets of defined and used variables due
to the existence of alias set 〈a, b〉 are highlighted in rectangles). 85
Figure 5.6: Method statement() and its corresponding control flow graph. 86
Figure 5.7: Control dependence graph of method statement(). 87
Figure 5.8: Method printDocument() and the corresponding control flow graph. 89
Figure 5.9: Method removeSelected() and the corresponding control flow graph.

 .. 91
Figure 5.10: Extraction of block-based slice SB(10, frequentRenterPoints, B2). 94

8

Figure 5.11: Extraction of block-based slice SB(10, frequentRenterPoints, B1). 95
Figure 5.12: Code example containing a loop carried anti-dependence. 96
Figure 5.13: Extraction of slice SB(9, thisAmount, B1) causing change in behavior.

 .. 97
Figure 5.14: JDeodorant calculator for slice-based cohesion metrics. 101
Figure 6.1: An example of a Java Model instance. .. 107
Figure 6.2: Abstract syntax tree creation for a given ICompilationUnit. 108
Figure 6.3: Representation of high-level Java elements. ... 110
Figure 6.4: Representation of Java elements existing within the body of a
method/constructor. ... 110
Figure 6.5: Representation of low-level Java elements. .. 111
Figure 6.6: Class ASTInformation holding the properties required for the recovery of
an ASTNode. ... 112
Figure 6.7: Implementation of the IElementChangedListener interface that can be
used to retrieve the CompilationUnits that have been changed, added or removed. . 113
Figure 6.8: Collection of IfStatement nodes existing within a given statement. 115
Figure 6.9: Collection of IfStatement nodes by extending abstract class ASTVisitor.

 .. 116
Figure 6.10: Collection of the subclass types for a given abstract type. 117
Figure 6.11: Creation of a new MethodDeclaration AST node. 121
Figure 6.12: Representation of TextEditChangeGroups in a CompilationUnitChange.

 .. 122
Figure 6.13: Implementation of abstract method createChange() for a single
CompilationUnitChange. ... 123
Figure 6.14: An example of user input page in the Replace Type Code with

State/Strategy refactoring wizard. .. 124

9

List of Tables

Table 1.1: Evolution of the proportion of maintenance cost over total software cost. 11
Table 3.1: Information required for extracting the entity sets of all system entities. .. 38
Table 3.2: Move Method refactoring suggestions for JFreeChart (version 0.9.6). 42
Table 3.3: Categorization of refactoring suggestions for JFreeChart (version 0.9.6). . 43
Table 3.4: Correlation between Entity Placement (EP) and Message Passing Coupling
(MPC)/Connectivity (Co). ... 47
Table 3.5: Move Method refactoring suggestions for SelfPlanner. 48
Table 3.6: Various size measures for the examined open-source projects. 50
Table 3.7: CPU times for each step required for the extraction of refactoring
suggestions. .. 50
Table 4.1: Replace Type Code with State/Strategy refactoring suggestions for Violet
(version 0.16). .. 65
Table 4.2: Replace Conditional with Polymorphism refactoring suggestions for Violet
(version 0.16). .. 67
Table 4.3: Size characteristics of the examined open-source projects. 70
Table 4.4: Precision and recall for the examined open-source projects. 71
Table 4.5: Logistic Regression Results for project Nutch (version 0.4). 72
Table 4.6: Various size measures for the examined open-source projects. 74
Table 4.7: CPU times for each step required for the extraction of refactoring
suggestions. .. 74
Table 5.1: Independent assessment of the identified refactoring opportunities. 102
Table 5.2: Average improvement of slice-based cohesion metrics. 104
Table 6.1: Mapping between classes in intermediate representation and AST nodes in
JDT Core. ... 111

10

Chapter 1

1 Introduction

The release of a software product does not signal the end of its life cycle. Instead, a
software product should constantly evolve by providing new features, error correc-
tions, performance improvements, and integration of novel technologies in order to
remain competitive in the demanding and rapidly changing software market. As a re-
sult, software maintenance plays the most important role in the survival and diachron-
ic success of a software product. Software maintenance activities can be divided into
four distinct categories:

1. Perfective: It includes changes which target at improving the software product,
such as the addition of new user requirements or the enhancement of perfor-
mance and usability.

2. Corrective: It includes changes which target at the repair of defects and re-
moval of bugs causing an incorrect or unexpected behavior of software.

3. Adaptive: It includes changes which target at the adoption of changing envi-
ronments, such as new operating systems, novel software platforms or frame-
works, new programming language features and updated versions of libra-
ries/components.

4. Preventive: It includes changes which target at improving the future maintai-
nability and reliability of the software system.

Several empirical studies [68, 79, 107] have shown that more than 75% of total main-
tenance costs concern adaptive and perfective maintenance. On the other hand, pre-
ventive maintenance corresponds to less than 5% of total maintenance costs. This fact
clearly illustrates that software companies prefer to invest on reactive maintenance
(i.e., perfective, corrective and adaptive) leading to immediate and short-term bene-
fits, rather than proactive maintenance (i.e., preventive) leading to long-term benefits.
This fact may also indicate that there is a lack of methods and tools that can be used
by the software industry in order to support preventive maintenance.

According to Polo et al. [90] that observed the evolution of software maintenance
costs from the early 1970s till the late 1990s based on the results of relevant empirical
studies shown in Table 1.1, there is an increasing trend of the proportion of mainten-
ance cost over total software cost. This increasing trend can be attributed to the in-
creased amount of legacy code that has been adapted in order to be integrated with
novel technologies and platforms. This phenomenon is referred to as legacy crisis
[97] to reflect that if the increasing trend of maintenance cost continues, eventually no
resources will be left to develop new systems.

11

Table 1.1: Evolution of the proportion of maintenance cost over total software cost.
Reference Date % maintenance cost

Pressman [92] 1970s 35%-40%
Lientz & Swanson [66] 1976 60%

Pigoski [89] 1980-1984 55%
Pressman [92] 1980s 60%
Schach [96] 1987 67%
Pigoski [89] 1985-1989 75%
Frazer [37] 1990 80%
Pigoski [89] 1990s 90%

A major factor affecting the effort required for maintenance tasks is the design

quality of software. The importance of design quality is evident in the literature of
software engineering through a large variety of books attempting to catalogue good
design practices that should be followed in order to build robust, flexible and extensi-
ble software systems. Gamma et al. [39] recorded a set of design patterns that can be
used as general reusable solutions to commonly occurring problems in software de-
sign. Riel [94] recorded a large set of empirical rules that can be used as heuristics in
the design process of object-oriented software systems. Finally, Martin [69] formu-
lated a set of principles that should govern the design of object-oriented systems in
order to be resilient to changing requirements and require reasonable maintenance ef-
fort.

However, it has been observed that the design quality of a software system deteri-
orates throughout its evolution due to insufficient initial design not being able to faci-
litate the implementation of novel requirements and software aging [87] caused by
changes during maintenance being inconsistent with the original design concept. De-
sign quality deterioration manifests itself in the form of design defects or flaws. In the
literature of software engineering there are two major works that attempted to syste-
matically record design flaws and propose solutions for their remedy. In the first
work, design flaws are referred to as antipatterns [19] to reflect that they are actually
poor solutions to recurring implementation and design problems, in contrast with de-
sign patterns. In the second work, design flaws are referred to as bad smells [36] in
the sense that they are code fragments whose structure indicates that a design prin-
ciple is probably violated and need to be restructured. Although antipatterns and bad
smells are very closely related concepts they present some major differences. Antipat-
terns have been used to describe high-level or global design flaws, while bad smells
have been used to describe low-level or local design flaws. In other words, an antipat-
tern may be the outcome of multiple bad smells existing in different parts of the code.
Due to the locality of bad smells their remedy is equivalent with the application of a
single refactoring [36] which can be defined as a code transformation that eliminates
the corresponding bad smell without altering the external behavior of the code. On the
other hand, the remedy for an antipattern may require the application of several con-
secutive refactorings or even more drastic solutions such as the redesign of parts of
the software. This almost one-to-one mapping of bad smells with refactorings makes
their adoption more appealing to the software maintenance community, since their
remedy is more straightforward compared to the solutions required for the antipat-
terns.

12

1.1 Goal and approach

The goal of this work is to develop methods and techniques that provide a concrete
solution for three bad smells which have been recognized by the software mainten-
ance community as major design problems. These bad smells are the following:

• Feature Envy [36] bad smell is a sign of violating the design principle of
grouping behavior (i.e., methods) with related data (i.e., attributes) and most
of the times appears in the form of “a method that is more interested in a class
other than the one it actually is in”. The effect of this violation is twofold,
since a class suffering from such bad smells has low cohesion (i.e., its methods
do not operate on common attributes or with each other in order to implement
the concept of the class) and at the same time it is coupled with other classes
of the program (i.e., its methods use attributes or methods from other classes
of the program in order to implement their functionality). As a result, the exis-
tence of Feature Envy smells in a class make the class more change-prone and
error-prone due to propagation of changes and errors from the classes that it
depends on, and decrease its understandability and testability due to the need
for understanding, debugging and testing the classes that it depends on in or-
der to implement new features or fix bugs. A solution to this design problem
can be given by moving the misplaced methods to the appropriate classes.

• State or Type Checking [54, 26] bad smell constitutes a direct violation of the
Open/Closed principle which states that “software entities (classes, modules,
functions, etc.) should be open for extension, but closed for modification”. It is
often employed as an alternative approach to polymorphism in order to simu-
late late binding and dynamic dispatch and manifests itself as conditional
statements that select an execution path either by comparing the value of a va-
riable representing the current state of an object with a set of named constants,
or by retrieving the actual subclass type of a reference through RunTime Type

Identification (RTTI) mechanisms. The effect of this violation is the introduc-
tion of additional complexity due to conditional statements consisting of many
cases, and code duplication due to conditional statements scattered in many
different places of the program that perform state-checking on the same cases
for different purposes [36]. As a result, the maintenance of multiple state-
checking code fragments operating on common states requires significantly
more effort and may introduce consistency errors. A solution to this design
problem can be given by replacing the conditional structures with calls to po-
lymorphic methods.

• Long Method [36] bad smell manifests itself by means of methods with large
size, high complexity and low cohesion among their statements. Such methods
require significantly more time and effort for comprehension, debugging, test-
ing and maintenance. A solution to this problem can be given by extracting
cohesive parts of a method which implement a distinct functionality into new
separate methods.

The developed methods face the problem of improving the design quality of an
object-oriented software system by means of identifying refactoring opportunities
which resolve bad smells existing in source code. This approach has three advantages
over existing approaches:

13

• It provides a complete solution to the problem of improving the design quality
by taking advantage of the fact that bad smells are directly mapped to specific
refactoring solutions.

• It has the ability to produce refactoring solutions which are feasible and beha-
vior preserving by examining a set of preconditions that should apply.

• It has the ability to pre-evaluate the effect of the identified refactoring oppor-
tunities on design quality, and thus provide a ranking of the refactoring solu-
tions allowing the prioritization of maintenance effort on parts of the program
that would benefit the most.

Furthermore, this refactoring-oriented approach covers all distinct activities of the
refactoring process which have been defined by Mens and Tourwé [71] as follows:

1. Identify places where software should be refactored (known as bad smells).
2. Determine which refactoring(s) should be applied to the identified places.
3. Guarantee that the applied refactoring preserves behavior.
4. Apply the refactoring.
5. Assess the effect of the refactoring on quality characteristics of the software.
6. Maintain the consistency between the refactored code and other software arti-

facts (such as documentation, design documents, tests, etc.).

Due to the radical differences in the nature of each design problem, a separate method
has been developed based on the specific structural characteristics of each bad smell.
The developed methods can be considered as semi-automatic, in the sense that the de-
signer will eventually decide whether an identified refactoring solution should be ap-
plied or not based on conceptual or other quality criteria which cannot be inferred
from purely structure-based program analysis. Consequently, the results of each me-
thod are evaluated by independent experts in order to determine whether the identified
refactoring opportunities are conceptually sound, useful and have positive impact on
design quality.

1.2 Contribution

The contribution of this thesis lies in the way that faces the problem of improving the
design quality of an object-oriented software system. More specifically, it follows an
approach that aims at identifying refactoring opportunities which resolve bad smells
existing in source code. In this way, it provides a complete solution for the design
problems being faced by covering all the activities of the refactoring process [71] in-
cluding the selection and application of appropriate refactoring transformations, while
existing approaches focus only the detection of design problems. Furthermore, it en-
sures that the extracted refactoring solutions are feasible and behavior preserving by
examining a set of preconditions and rules. Additionally, it pre-evaluates the effect of
the extracted refactoring solutions on design quality and provides a ranking mechan-
ism allowing the maintainers to prioritize their effort on parts of the program that
would benefit the most. As a result, it can be claimed that this approach provides the
most adequate support for the refactoring process which constitutes a major part of
preventive maintenance.

The developed methods have been implemented as an Eclipse plug-in, named
JDeodorant [49] that makes possible their evaluation on real software systems. Fur-
thermore, it can be employed by the software maintenance community in order to per-
form empirical studies on various research fields.

14

1.3 Organization

Chapter 2 presents a thorough literature review on the methods which have been
proposed for the detection of design flaws or the improvement of design quality, in
general. The research works are categorized based on the approach being followed for
the solution of the problem. Furthermore, the advantages and limitations of each ap-
proach are being discussed.

Chapter 3 presents a method for the detection of Feature Envy bad smells which
can be resolved by applying appropriate Move Method [36] refactorings. The ap-
proach is based on an algorithm that identifies a set of target classes where a given
method can be moved to, ranks the target classes according to the number of members
being accessed by the given method from each target class, and finally iterates over
the sorted set of target classes and selects the first one for which certain preconditions
are satisfied as the class where the given method should be moved to. A novel metric,
named Entity Placement is used in order to pre-evaluate the effect of the identified
refactoring opportunities on design quality and present them to the user in a sorted
manner according to their impact. The evolution of certain coupling and cohesion me-
trics when successively applying the refactoring solutions extracted for two open-
source projects has shown that the approach is able to identify refactoring opportuni-
ties which improve both coupling and cohesion aspects of design quality. The assess-
ment by an independent designer of the refactoring solutions extracted for a system
that he developed has shown that the approach is capable of identifying conceptually
sound refactoring opportunities.

Chapter 4 presents a technique for the detection of State Checking bad smells
which can be resolved by appropriate Replace Type Code with State/Strategy and Re-

place Conditional with Polymorphism [36] refactorings. The approach is based on
static source code analysis in order to identify problematic conditional structures per-
forming state-checking and group them according to their relevance. Relevant condi-
tional structures are considered those that operate on common named constants or per-
form RunTime Type Identification on subclass types belonging to the same inheritance
hierarchy. The philosophy behind this grouping is that the conditional structures be-
longing to the same group will eventually utilize the same inheritance hierarchy by
means of polymorphism. The size of the resulting groups is used as criterion for sort-
ing the corresponding refactoring opportunities. The higher the number of the refac-
toring opportunities belonging to a given group, the greater the impact of this group
on design quality, since the degree of polymorphism (i.e., the number of polymorphic
methods added to a single inheritance hierarchy) introduced to the system will be
higher. The precision and recall of the approach has been evaluated by comparing the
findings of an independent expert to the results of the technique on various open-
source projects. Logistic regression analysis has shown that the decision of the inde-
pendent expert to accept or reject the refactoring opportunities identified by the tech-
nique is affected positively by the number of polymorphic methods that will be added
to the same inheritance hierarchy and the average number of statements that will be
moved to its subclasses, while it is affected negatively by the number of subclasses
that will be created.

Chapter 5 presents a method for the detection of Long Method bad smells which
can be resolved by applying appropriate Extract Method [36] refactorings. The ap-
proach is based on two algorithms which aim at finding cohesive code fragments

15

within the body of a given method that implement a distinct functionality. The first
algorithm identifies code fragments containing the complete computation of a given
variable (complete computation slice), meaning that the resulting slice will contain all
the assignment statements modifying the value of this variable. The second algorithm
identifies code fragments containing all the statements affecting the state of a given
object (object state slice) by means of method invocations through references pointing
to this object. Moreover, a set of rules has been defined that examine whether the
identified code fragments can be extracted into separate methods without altering the
original program behavior. The assessment by an independent designer of the refac-
toring opportunities extracted for an open-source project has shown that the approach
is capable of identifying slices having a distinct and independent functionality com-
pared to the rest of the method and thus leading to extracted methods with useful
functionality, while it also helps significantly to resolve existing design flaws by de-
composing complex methods, removing duplicated code among several methods and
extracting code fragments suffering from Feature Envy. The evolution of certain slice-
based cohesion metrics when applying the refactoring solutions extracted for an open-
source project has shown that the approach is able to identify refactoring opportunities
which have a positive impact on the cohesion of the decomposed methods and lead to
highly cohesive extracted methods. Finally, the success rate of unit testing after the
application of the refactoring solutions extracted for an open-source project has
shown that the defined behavior preservation rules successfully exclude refactoring
opportunities that could possibly cause a change in program behavior.

Chapter 6 presents some design solutions that were adopted in the implementation
of JDeodorant Eclipse plug-in [49] in order to employ the Eclipse Java Development
Tools (JDT) API in an efficient manner regarding performance and memory require-
ments. Furthermore, it demonstrates along with code examples the way that the JDT
Core and Refactoring Language Toolkit (LTK) APIs were used in order to implement
important features of JDeodorant plug-in.

Chapter 7 discusses the evaluation results of the developed methods and provides
some general conclusions drawn from this work. Moreover, it discusses ways that the
developed methods can be employed for future research.

16

Chapter 2

2 Literature Review

The problem of improving the design of an already existing object-oriented software
system has been faced in the literature with a large variety of different approaches.
This chapter presents an attempt to categorize the related work based on the ap-
proaches being followed for the solution of the problem and discuss the advantages
and limitations of each approach.

2.1 Search-based approach

The works belonging to this category treat the problem of improving object-oriented
design by means of refactoring transformations as a search problem in the space of
alternative designs. In general, a search-based approach requires:

a. The modeling of a set of refactoring transformations as means to move
through the space of alternative designs.

b. The definition of a quality evaluation function (i.e., fitness function) that will
serve to rank the alternative designs.

c. The selection and configuration of a search technique that will be used to find
the optimal (or a near-optimal) design for the object-oriented system given as
input. The optimal solution is a design from which any move to alternative de-
signs does not improve the value of the fitness function.

Eventually, the outcome of such an approach is a sequence of refactoring transforma-
tions that should be consecutively applied in order to reach the optimal design in
terms of the employed fitness function. Some representative works of this category
are the following:

O’Keeffe and Ó Cinnéide [82, 84] proposed an approach for improving an aspect
of object-oriented design which is related with the correct utilization of inheritance.
As a result, the refactoring transformations used to move through the search space
were inheritance-related, such as Push Down Field/Method (i.e., move of a field or
method from a superclass to a subclass), Pull Up Field/Method (i.e., move of a field
or method from a subclass to a superclass), Extract/Collapse Hierarchy (i.e., introduc-
tion/removal of intermediate levels of inheritance), Replace Inheritance with Delega-
tion (i.e., replacement of an inheritance relationship between two classes with a com-
position relationship) and the reverse. The quality evaluation functions used to rank
the alternative designs were based on metrics from the QMOOD hierarchical design
quality model [7]. The search techniques used to find the optimal solution were three
different versions of a local search algorithm, namely first-ascent, steepest-ascent and
multiple-restart Hill Climbing, respectively, and a meta-heuristic technique, namely
Simulated Annealing. Their approach has been evaluated by comparing the results of
the employed search techniques and evaluation functions on two case studies.

17

O’Keeffe and Ó Cinnéide [83] extended the aforementioned experimental study
by using an additional search technique, namely a genetic algorithm, in order to com-
pare the effectiveness of four different search techniques. Their conclusions for each
category of search techniques are the following:

• Simulated annealing has the advantage that it is very robust against local op-
tima in the search space, but it requires a large number of parameters making
difficult its configuration for any given input. Moreover, the results vary con-
siderably across different input programs and the search is quite slow.

• The genetic algorithm has the advantage that it is easy to establish a set of pa-
rameters that work well in the general case, but suffers from the disadvantages
that it presents a significantly high computational cost and varies greatly in ef-
fectiveness for different input programs.

• Multiple-ascent hill climbing proved to be the most efficient search technique.
It is able to produce high-quality results across any input program, has a rela-
tively easy setup of the required parameters, and has significantly faster execu-
tion times compared to the rest techniques.

• Steepest-ascent hill climbing is able to produce high quality solutions, but can
be considered as rather slow due to its inability to escape local optima.

Seng et al. [98] proposed an approach for improving another aspect of object-
oriented design which is related with the cohesion of class modules. The refactoring
transformation that was used in order to move through the space of alternative designs
was Move Method. The selected fitness function was based on a combination of
coupling, cohesion, complexity and stability metrics. A genetic algorithm was em-
ployed as search technique where the genomes represent an ordered list of executed
refactorings which are updated through mutation and crossover operations. In order to
ensure that the resulting genomes contain feasible and behavior preserving refactor-
ings, they have developed a special model that enables the simulation of refactorings
by examining all necessary pre- and postconditions.

Harman and Tratt [45] distinguished search-based refactoring approaches into di-
rect and indirect approaches. In the direct approach the program is directly optimized,
since the refactoring steps are applied directly to the program, denoting moves from
the current design to a near neighbor design in the search space. This approach is best
suited to local search techniques, such as hill climbing and simulated annealing, be-
cause semantic preservation can only be ensured by applying valid transformations. In
the indirect approach the program is indirectly optimized, via the optimization of a
sequence of refactoring transformations that should be applied to the program. In this
approach the fitness function is computed indirectly, by applying the transformation
sequence to the program and measuring the improvement in the metrics of interest. In
the indirect approach, it is possible to apply global search techniques, such as genetic
algorithms, because the sequence of transformations can be subjected to arbitrary
crossover and mutation operations. Furthermore, they applied the concept of Pareto
optimality to the problem of class module cohesion optimization. An advantage of
Pareto optimality is that it allows to define multiple fitness functions and thus helps to
avoid the construction of a single complex function which requires the normalization
and weighted combination of several metrics. Moreover, it produces multiple optimal
refactoring sequences, allowing the designer to select an appropriate sequence based
on his preferences and conceptual criteria.

In general, the disadvantages of search-based approaches are the following:

18

• The provided solution is non-deterministic, since their outcome is affected by
randomness or initial configuration of parameters. This means that the solu-
tions resulting from different executions for the same input program may dif-
fer with each other.

• The provided outcome is a sequence of refactoring transformations that should
be accepted or rejected by the designer of the examined system in its entirety.
This means that search-based approaches do not offer to the designer the op-
portunity to exclude refactorings which are not conceptually sound, since any
deviation from the original refactoring sequence does not lead to the optimal
design.

• They require the determination of several arbitrary input parameters in order
to operate. Furthermore, the input parameters are based on the specific charac-
teristics of the program given as input for analysis.

2.2 Metric-based approach

The works belonging to this category are based on metrics in order to detect design
flaws, antipatterns, or bad smells. Some representative works of this category are the
following:

Tahvildari and Kontogiannis [100] used an object-oriented metrics suite consist-
ing of complexity, coupling and cohesion metrics to detect design flaws at class level.
In particular, their approach identifies possible violations of design heuristics by as-
sessing which classes of the system exhibit problematic metric values and then selects
an appropriate meta-pattern transformation that will potentially improve the corres-
ponding metric values. The first design heuristic being examined is named key classes
and refers to classes that manage a large amount of other classes or use them in order
to implement their functionality and thus exhibit high values of coupling and com-
plexity. The second design heuristic being examined is named one class - one concept
and its violation refers to classes implementing more than one concepts and thus
present low cohesion, or classes implementing a concept that is distributed among
many classes and thus are tightly coupled to other classes.

Trifu and Marinescu [104] proposed the concept of detection strategies as a means
to detect instances of a structural anomaly. A detection strategy is actually a composi-
tion of various metric rules (i.e., metrics that should comply with proper threshold
values) combined with AND/OR operators into a single rule that expresses a design
heuristic. The threshold values used in the metric rules were defined based on statis-
tical data collected from more than 60 Java and 50 C++ projects. The identified de-
sign problems can be eliminated based on corresponding restructuring strategies
which informally describe (i.e., in textual form) the required actions that should be
taken for the elimination procedure.

Salehie et al. [95] proposed a metric-based heuristic framework in order to detect
design flaws in object-oriented systems. The framework consists of three main com-
ponents. A generic object-oriented design knowledge-base used to store a set of de-
sign heuristics, metrics and flaws along with their relationships. A hot spot indicator
used to point out the most probable defective entities, namely hot spots, using primi-
tive classifiers. A design flaw detector used to locate possible design flaws in the pre-
determined hot spots using composite classifiers. The employed classifiers are actual-

19

ly rules based on metrics and fuzzy terms, such as high and low, which are quantified
by custom threshold values.

Trifu and Reupke [105] proposed an approach that is based on the idea of combin-
ing correlated indicators in order to diagnose certain design flaws, in analogy with the
medical world where a disease is diagnosed based on the presence of a specific con-
stellation of symptoms. They distinguish three kinds of indicators, namely aggregat-
ing indicators (single metrics or logical expressions combining metrics), structural
indicators (patterns in the structure of the code), and semantic indicators (the names of
certain program elements, such as variables). The diagnosis strategy being followed
consists of two parts. The first part automatically produces a set of design flaw in-
stance candidates based on heuristic rules used for checking the required indicators.
The second part verifies the semantic context of the design flaw instance candidates
based on a set of predefined questions asked to the designer of the system (i.e., the
actual design flaw instances are confirmed by the designer of the system).

Moha et al. [74] introduced DECOR, which is a method that embodies all steps
required for the specification and detection of code and design smells. Furthermore,
they proposed a detection technique, named DETEX, which constitutes an instantia-
tion of the DECOR method. The DETEX technique is comprised of four major steps.
Domain analysis performs a thorough analysis of the domain related with smells in
order to identify key concepts in their text-based descriptions. In this step, a taxonomy
and classification of smells is defined based on the key concepts in order to highlight
the similarities and differences among smells. The specification of smells is per-
formed using a domain-specific language (DSL) in the form of rules using the pre-
vious taxonomy. The rules describe the properties that a class must have to be consi-
dered a smell. The DSL allows defining properties for the detection of smells, speci-
fying the structural relationships among these properties and characterizing properties
according to their lexicon (i.e., names), structure (e.g., classes using global variables),
and internal attributes using metrics. The detection algorithms are automatically gen-
erated by parsing the rules defined in the specification process. Finally, the detection
algorithms are automatically applied on a model representation of the system under
examination produced during forward engineering or through reverse engineering of
its source code.

In general, the disadvantages of metric-based approaches are the following:
• The definition of the threshold values required for the metrics is subjective,

since it is arbitrary or based on statistical data. Furthermore, the results can be
affected by changing the threshold values.

• They focus on the detection of design flaws without providing specific solu-
tions in terms of refactoring opportunities that can be applied for their remedy.

2.3 Visualization-based approach

The works belonging to this category rely on visualization techniques in order to pro-
vide assistance for the detection of design flaws. Some representative works of this
category are the following:

Simon et al. [99] defined a cohesion metric based on Jaccard distance in order to
quantify the cohesion between attributes and methods. By visual interpretation of the
distances between the attributes and methods of a given program in a three-
dimensional perspective, the designer can identify methods and attributes which are

20

misplaced in a class other than the one that they should belong to based on access cri-
teria (i.e., the methods and fields that they access or are being accessed from). Such
identified cases constitute opportunities for the application of Move Method, Move
Field, Extract Class and Inline Class refactorings in order to improve the cohesion and
coupling of the program under examination.

Van Emden and Moonen [106] proposed an approach for the automatic detection
and visualization of instanceof and typecast code smells. The instanceof code smell
appears as a sequence of conditional statements that test an object for its type, while
the typecast code smell appears when an object is explicitly converted from one class
type into another. To this end, they developed a prototype code smell browser, named
jCOSMO, which visualizes the detected code smells in the form of a graph. In this
graph, the code smells are represented as additional nodes connected to the code enti-
ties that they appear in. In this way it is possible to discriminate which parts of the
system have the largest number of code smells and would benefit the most from re-
structuring.

Dhambri et al. [29] proposed a visualization-based approach and a tool that can be
used by software maintainers to detect design anomalies. The proposed visualization
framework is able to represent four types of information, namely quantitative, archi-
tectural, relational and semantic. Quantitative information is captured using metrics
extracted from source code. For example, the classes are displayed as 3D boxes and
the metrics are associated with three attributes of the 3D box, namely height, color
and twist. The height of a 3D box indicates the size of the corresponding class, while
the color indicates the position of the corresponding class in the distribution of a spe-
cific metric (e.g., classes having an extremely high metric value appear in red color).
Architectural information is used to represent the structure of the program in terms of
modules/packages. Relational information is used to represent reverse-engineered re-
lationships, such as association, generalization, aggregation and implementation rela-
tionships. Finally, semantic information refers to application domain knowledge that
can be determined by browsing the source code corresponding to the visualized ele-
ment.

Parnin et al. [88] proposed a catalogue of lightweight visualizations for design de-
fects being reported by automated inspection tools in order to assist the reviewers in
weeding out false positives. The authors divided the code smells according to the code
level that they appear into four different categories, namely statement, class, method
and collaboration code smells. Although each category of code smells shares some
common visualization elements, each code smell is visualized according to its specific
needs and characteristics. The authors argue that the direct visualization of code struc-
ture or metrics is not sufficient enough for the detection of design problems. Instead,
they argue that visualization is more helpful when it is applied on the design flaws
which are reported as candidates by code smell detection techniques.

In general, the disadvantages of visualization-based approaches are the following:
• They require significant human intervention for the interpretation of the cha-

racteristics and relationships of the visualized elements. As a result, the actual
detection of design flaws is completely based on human expertise.

• They are not scalable, since visual interpretation becomes more difficult as the
number of visualized elements and attributes increases.

21

2.4 Logic-based or pattern-based approach

The works belonging to this category use logic programming languages or pattern
matching techniques in order to detect refactoring opportunities. In general, this ap-
proach requires to express the program under examination and the bad smells to be
detected using the same abstract level notation, and then apply logic rules or pattern
matching in order to find matches of the bad smell expression into the program ex-
pression. Some representative works of this category are the following:

Kataoka et al. [52] proposed an approach for finding refactoring candidates based
on program invariants (i.e., pre- and post-conditions). More specifically, they employ
the Daikon tool for dynamically discovering invariants at specific program points
such as loop heads and procedure entries and exits. Their approach is based on the
fact that when a particular pattern of invariant relationships appears at a program
point, a specific refactoring is applicable.

Tourwé and Mens [103] employed a logic meta-programming technique to detect
bad smells and defined a framework that uses this information to propose adequate
refactorings. More specifically, they used SOUL (Smalltalk Open Unification Lan-
guage), which is a variant of Prolog and combines a declarative language at meta-
level with an object-oriented base language, such as Smalltalk. SOUL gives the ability
to express base-level programs (i.e., object-oriented programs) as logic terms, facts
and rules at the meta-level. Furthermore, meta-level programs (i.e., Prolog-like pro-
grams) can manipulate and reason about the structure of the base-level programs. In
order to detect Obsolete Parameter and Inappropriate Interfaces bad smells, the au-
thors defined logic rules at the meta-level that perform a search within the classes of a
program and find classes for which the bad smell rules apply. Based on the gathered
results, they present to the developer a list of refactorings that can be used to remedy
the detected bad smells.

Kosar et al. [58] proposed a context-free grammar in order to transform object-
oriented code into a higher abstract level notation, describe bad smells, apply refactor-
ings and check for code consistency after the application of refactorings at context-
free grammar level. The bad smells are actually described as patterns using the same
grammar notation and an automated pattern matching mechanism is applied in order
to detect instances of bad smells.

In general, the disadvantages of logic-based and pattern-based approaches are the
following:

• The definition of bad smells requires the knowledge of logic programming
languages, grammars or other notations.

• The logic rules or patterns used to define bad smells may not be able to cap-
ture actual instances that deviate from standard representation.

2.5 Probabilistic approach

The works belonging to this category depend on probabilistic models in order to clas-
sify whether a class presents a design problem or not. Some representative works of
this category are the following:

Khomh et al. [55] argued that existing approaches for the detection of design
problems do not handle the inherent uncertainty of the detection process (i.e., they do

22

not provide a degree of certainty for each one of the detected design problems). To
this end, they proposed an approach based on Bayesian Belief Networks (BBNs) to
specify design smells and detect them in programs. Within the context of design smell
detection, a BBN is a directed acyclic graph, where nodes correspond to either an in-
put (e.g., a metric value for a given class) if there are no incoming edges, to a decision
step if there are incoming edges (e.g., is a class part of a smell given the values of its
parent nodes?), or to an output node if there are no outgoing edges. A directed edge
between two nodes indicates a probabilistic dependency between the starting and end-
ing nodes. Eventually, the output of a BBN is a probability that a class is part of a de-
sign smell. In this way, it is possible to sort the candidate classes for a given design
smell and prioritize the inspection of classes with higher probability.

Ananda Rao and Narendar Reddy [4] proposed a quantitative method based on the
Design Change Propagation Probability (DCPP) matrix in order to detect two types of
bad smells, namely shotgun surgery [36] and divergent change [36]. These smells are
directly involved with the degree of change propagation among the modules of a pro-
gram. The DCPP matrix for a design of n code artifacts (e.g., classes) is a matrix of n
x n size, where entry (i, j) represents the probability that a design change in artifact i
requires change in j so as to preserve the overall operation of the program. The au-
thors suggest that if a row in the DCPP matrix contains high probability values with
respect to a particular artifact, a change to this artifact will require changes to the arti-
facts corresponding to the high probability values, indicating the existence of a shot-
gun surgery smell instance. On the other hand, if a column in the DCPP matrix con-
tains high probability values with respect to a particular artifact, then it can be in-
ferred that this artifact is likely to undergo frequent changes during evolution, indicat-
ing the existence of a divergent change smell instance.

A major disadvantage of probabilistic models, like Bayesian networks, is that the
required probabilities result based on a training set, which within the context of design
smell detection corresponds to metric values for classes which have been already de-
termined as valid instances. Obviously, the training set affects the classification re-
sults of the model on the actual data set. On the other hand, an advantage of Bayesian
models over other machine learning and statistical models is that they require signifi-
cantly smaller training sets in order to be effective.

2.6 Remarks

From this literature review of the related work it becomes evident that most research
works attempt to propose global solutions covering a large range of design flaws.
However, research and practice have shown that there exists no “silver bullet” for the
detection of design problems, since each code smell has its own specific structural
diversities and thus should be handled in a distinct manner. Furthermore, most re-
search efforts tend to solely focus on the detection of design problems without provid-
ing concrete solutions by means of refactoring transformations which are suitable for
their remedy. Finally, the vast majority of research works do not provide a quantified
estimate of the impact of each detected design flaw (or the potential effect of the re-
factoring transformations that remedy each detected design flaw) on the overall de-
sign quality of the program, not allowing the prioritization of preventive maintenance
effort according to maintainability improvement criteria.

23

Chapter 3

3 Identification of Move Method Refactoring Opportuni-

ties

The placement of attributes/methods within classes in an object-oriented system is
usually guided by conceptual criteria and aided by appropriate metrics. Moving state
and behavior between classes can help to reduce coupling and increase cohesion, but
it is non-trivial to identify where such refactorings should be applied. This chapter
presents a method for the identification of Move Method refactoring opportunities
which resolve a very common manifestation of Feature Envy bad smell. An algorithm
that employs the notion of distance between system entities (attributes/methods) and
classes extracts a list of behavior-preserving refactorings based on the examination of
a set of preconditions.

3.1 Introduction

According to several principles and laws of object-oriented design [39, 69] designers
should always strive for low coupling and high cohesion. A number of empirical stu-
dies have investigated the relation of coupling and cohesion metrics with external
quality indicators. Basili et al. [8] and Briand et al. [14] have shown that coupling me-
trics can serve as predictors of fault-prone classes. Briand et al. [15] and Chaumun et
al. [20] have shown high positive correlation between the impact of changes (ripple
effects, changeability) and coupling metrics. Brito e Abreu and Melo [18] have shown
that Coupling Factor [17] has very high positive correlation with defect density and
rework. Binkley and Schach [11] have shown that modules with low coupling (as
measured by the Coupling Dependency Metric) require less maintenance effort, have
fewer maintenance faults and fewer run-time failures. Chidamber et al. [22] have
shown that high levels of coupling and lack of cohesion are associated with lower
productivity, greater rework and greater design effort. Consequently, low coupling
and high cohesion can be regarded as indicators of good design quality in terms of
maintenance.

Coupling or cohesion problems manifest themselves in many different ways, with
Feature Envy bad smell being the most common symptom. Feature Envy is a sign of
violating the principle of grouping behavior with related data and occurs when a me-
thod is “more interested in a class other than the one it actually is in” [36]. Feature
Envy problems can be solved in three ways [36]:

a. By moving a method to the class that it envies (Move Method refactoring).
b. By extracting a method fragment and then moving it to the class that it envies

(Extract + Move Method refactoring).
c. By moving an attribute to the class that envies it (Move Field refactoring).

The correct application of the appropriate refactorings in a given system improves
its design quality without altering its external behavior. However, the identification of

24

methods, method fragments or attributes that have to be moved to target classes is not
always trivial, since existing metrics may highlight coupling/cohesion problems but
do not suggest specific refactoring opportunities.

The proposed method considers only Move Method refactoring as solution to the
Feature Envy design problem. Moving attributes (fields) from one class to another has
not been considered, since this strategy would lead to contradicting refactoring sug-
gestions with respect to the strategy of moving methods. Moreover, fields have
stronger conceptual binding to the classes in which they are initially placed, since they
are less likely than methods to change once assigned to a class.

In this work, the notion of distance between an entity (attribute or method) and a
class is employed, to support the automated identification of Feature Envy bad smells.
To this end, an algorithm has been developed that extracts Move Method refactoring
suggestions. For each method of the system, the algorithm forms a set of candidate
target classes where the method can possibly be moved by examining the entities that
it accesses from the system classes (system classes refer to the application or program
under consideration excluding imported libraries or frameworks). Then, it iterates
over the candidate target classes according to the number of accessed entities and the
distance of the method from each candidate class. Eventually, it selects as final target
class the first one that satisfies a certain list of preconditions related with the applica-
tion of Move Method refactorings. The examination of preconditions guarantees that
the extracted refactoring suggestions are applicable and preserve the behavior of the
code.

Obviously, in large applications several refactoring suggestions may be extracted
hindering the designer to assess the effect of each refactoring opportunity. To this
end, a novel metric named Entity Placement is proposed to rank the refactoring sug-
gestions according to their effect on the design. This metric is based on two prin-
ciples: a) the distances of the entities belonging to a class from the class itself should
be the smallest possible (high cohesion), and b) the distances of the entities not be-
longing to a class from that class should be as large as possible (low coupling).

The actual application of the refactoring suggestions on source code in order to
calculate the Entity Placement metric value that the resulting systems would have can
be very time-consuming, especially when the number of suggestions is large. The
proposed method offers the advantage of evaluating the effect of a Move Method re-
factoring without actually applying it on source code. This is achieved by virtually
moving methods and calculating the Entity Placement metric.

It should be emphasized that the proposed method is by no means a fully automat-
ic approach. In other words, after the extraction of the refactoring suggestions the de-
signer is responsible for deciding whether a refactoring should be applied or not based
on conceptual or other design quality criteria. For example, cases that require the de-
signer's knowledge on the examined system are User Interface methods that should
not be moved to classes holding data due to the Model-View-Controller pattern, test
methods that should be not moved to the classes being tested, and methods of a com-
posing class that should not be moved to its contained classes due to composition rela-
tionships. The tool implementing the proposed method assists the designer to deter-
mine the reason for selecting a specific target class over other possible target classes.

The evaluation of the proposed method consists of four parts. The first part con-
tains a qualitative analysis of the refactoring suggestions extracted for an open-source

25

project, along with some interesting insights obtained from the inspection and applica-
tion of the suggestions. The second part studies the evolution of coupling and cohe-
sion metrics when successively applying the refactoring suggestions extracted for two
open-source projects. In the third part of the evaluation, an independent designer pro-
vides feedback concerning the conceptual integrity of the refactoring suggestions ex-
tracted for the system that he developed. The last part refers to the efficiency of the
method based on the computation time required for the extraction of refactoring sug-
gestions on various open-source projects.

3.2 Related Work

Simon et al. [99] defined a distance-based cohesion metric, which measures the
cohesion between attributes and methods. This metric aims at identifying methods
that use or are used by more features of another class than the class that they belong
to, and attributes that are used by more methods of another class than the class that
they belong to. The calculated distances are visualized in a three-dimensional perspec-
tive supporting the developer to manually identify refactoring opportunities. Howev-
er, visual interpretation of distance in large systems can be a difficult and subjective
task. The approach does not evaluate the effect of each refactoring on the design of
the resulting system inhibiting the selection of those refactorings that will actually
improve the design. Moreover, the case studies used for demonstrating their approach
are small systems written by the authors with very obvious bad smells. The proposed
method is inspired by the work of Simon et al. in the sense that it also employs the
Jaccard distance. However, the difference lies in the fact that the proposed method
defines the distance between an entity (attribute or method) and a class enabling the
direct extraction of refactoring suggestions, while the approach of Simon et al. defines
the distance between two entities and thus its output requires the application of clus-
tering techniques or visual interpretation in order to extract Move refactoring sugges-
tions to specific classes. To summarize, the proposed method exhibits the following
advantages compared to the approach followed by Simon et al.:

1. It clearly indicates which methods and to which class they should be moved.
2. It suggests refactorings which are applicable and behavior-preserving by ex-

amining a list of preconditions.
3. It efficiently ranks multiple Move Method refactoring suggestions based on

their positive influence on the design of the system.
4. It has been evaluated on real open-source projects.
5. It has been fully automated and implemented as an Eclipse plug-in, allowing

the developer to apply the suggested refactorings on source code.

Tahvildari and Kontogiannis [100] used an object-oriented metrics suite consist-
ing of complexity, coupling and cohesion metrics to detect classes for which quality
has deteriorated and re-engineer detected design flaws. In particular, they identify
possible violations of design heuristics by assessing which classes of the system exhi-
bit problematic metric values and then select an appropriate meta-pattern that will po-
tentially improve the corresponding metric values. A limitation of their approach is
that it indicates the kind of the required transformation but does not specify on which
specific methods, attributes or classes this transformation should be applied (this
process requires human interpretation). Moreover, in case of multiple potential sug-
gestions the approach does not evaluate their effect in order to rank them.

26

O’Keeffe and Ó Cinnéide [82] treat object-oriented design as a search problem in
the space of alternative designs. For this purpose, they employ search algorithms,
such as Hill Climbing and Simulated Annealing, using metrics from the QMOOD hie-
rarchical design quality model [7] as a quality evaluation function that ranks the alter-
native designs. The refactorings used by the search algorithms to move through the
space of alternative designs are only inheritance-related (Push Down Field/Method,
Pull Up Field/Method and Extract/Collapse Hierarchy).

Seng et al. [98] used a special model that examines a set of pre- and postcondi-
tions in order to simulate the application of Move Method refactorings and a genetic
algorithm to propose Move Method refactoring suggestions that improve the class
structure of a system based on a fitness function. Their approach also includes an ini-
tial classification process which excludes from optimization, methods playing special
roles in the system’s design, such as getter and setter methods, collection accessors,
delegation methods, state methods, factory methods and methods participating in de-
sign patterns. The approach followed by Seng et al. has the following disadvantages
compared to the proposed method:

1. It produces as output a sequence of refactorings that should be applied in order
to reach an optimal system in terms of the employed fitness function. If the
designer decides not to apply some of the suggested refactorings then the re-
sulting system might be worse than a system resulting from other sequences
that have not been presented as solutions to the designer. Moreover, the appli-
cation of the refactoring suggestions might lead to new refactoring opportuni-
ties (not originally present in the initial system), which are not taken into ac-
count in the resulting solution. On the contrary, a stepwise approach in which
after the application of each refactoring the system is re-evaluated and a new
list of refactorings that improve the current system is extracted (including any
new refactoring opportunities that might have arisen), provides the possibility
to the designer to assess the conceptual integrity of the suggestions at each
step. Consequently, the designer is able to determine a sequence of refactoring
applications that are conceptually sound and at the same time optimize certain
software metrics.

2. It employs a genetic algorithm that makes random choices on mutation and
crossover operations and as a result the outcome of each execution on the
same input system may differ. Moreover, the outcome depends on initial pa-
rameter settings decided by the user. On the contrary, a deterministic approach
which suggests refactorings based on Feature Envy criteria always results to
the same solution for a certain system.

3. Its efficiency is limited by the following factors: a) it requires numerous gen-
erations in order to converge to a solution, b) the algorithm has to be executed
several times (10 times for the case study used in the evaluation) in order to
gather the common refactoring suggestions from all executions that will be re-
ported as final results, since each execution might lead to different results, c)
the algorithm includes in the optimization process all movable methods re-
gardless of whether they suffer from Feature Envy problems or not.

4. It requires the definition of an arbitrary trapezoidal function for the normaliza-
tion of certain metrics (such as WMC and NOM), a calibration run for opti-
mizing each metric separately and the specification of weights used in the de-
finition of the employed fitness function. On the contrary, the Entity Place-
ment metric does not rely on any arbitrary definitions.

27

Concerning the evaluation of refactoring effect on design quality the following
approaches appear in the literature.

Kataoka et al. [53] proposed a quantitative evaluation methodology to measure the
maintainability enhancement effect of refactoring. They defined three coupling me-
trics (return value, parameter and shared variable coupling) in order to evaluate the
refactoring effect. By comparing the metric values before and after the application of
refactorings, they evaluate the degree of maintainability enhancement. The definition
of each metric contains a coefficient that accounts for inter-class coupling. The coef-
ficient values are based on the specific characteristics of the system under study.
However, the authors do not provide a systematic approach for estimating the coeffi-
cient values. Moreover, they did not include cohesion as a metric for evaluating the
modification of maintainability caused by refactorings.

Du Bois et al. [31] theoretically analyzed the best and worst case impact of refac-
torings on coupling and cohesion dimensions. The refactorings they studied are Ex-
tract Method, Move Method, Replace Method with Method Object, Replace Data
Value with Object and Extract Class. According to the authors, moving a method that
does not refer to local attributes or methods, or is called upon by only few local me-
thods will increase cohesion. Additionally, moving a method that calls external me-
thods more frequently than it is called will decrease import coupling. These observa-
tions are in agreement with the principles on which the proposed method is based.

The cumulative effect of move refactorings (in the sense that their application
eventually leads to a system where behavior and data are grouped together properly)
could be theoretically also achieved by clustering techniques. However, the object-
oriented clustering techniques found in the literature [73, 67] refer to the partitioning
and modularization of systems at package level rather than class level. Clustering
techniques at class level could possibly lead to an optimal system in terms of coupling
and cohesion. However, such techniques would present a solution that is an aggregate
of multiple Move Method refactorings which the designer should accept or reject in
its entirety. A stepwise approach on the other hand, might not lead to an optimal solu-
tion but offers the advantage of gradual change of a system, allowing the designer to
assess the conceptual integrity of the refactoring suggestions at each step.

3.3 Method

An object-oriented system is considered to be well-designed in terms of coupling and
cohesion when its entities (attributes/methods) are grouped together according to their
relevance. During analysis, relevance is usually evaluated on a conceptual basis.
However, during design and implementation, relevance can be practically assessed
considering the attributes and methods that a method accesses.

The notation required for the formalization of the proposed method is graphically
illustrated in the UML class diagram of Figure 3.1. The model represents the types,
properties and relationships which are necessary in order to identify Feature Envy bad
smells for a given Java program.

28

Type

NonPrimitiveType

-name : String

ClassType CompositeType

ArrayTypeMapType CollectionType

type
1

e
le

m
e
n
tT

y
p
e

1keyType

valueType

1

1

-type : ClassType

Class

-name : String

VariableDeclaration
type

1

Field
Parameter

superclass

1

implemented

Interfaces

*

LocalVariableDeclaration

fields

*

ownerClass

1

-name : String

Method

VariableAccess

declaration
1

MethodBody
methods

1

ownerClass

*

returnType
1

p
a
ra

m
e
te

rs *

methodBody

0..1

variable

Accesses
*

lo
c
a
lV

a
ri
a
b
le

D
e
c
la

ra
ti
o
n
s

*

Statement

-name : String

-arguments

-invokeExpression

MethodInvocation

declaringMethod
1

d
e
c
la

ri
n
g
C

la
s
s1

*

methodInvocations
statements*

MethodInvocationStatement

-returnedExpression

ReturnStatement AssignmentStatement

1

m
e
th

o
d
In

v
o
c
a
ti
o
n

-leftHandSide

-rightHandSide

Assignment

assignments*

a
s
s
ig

n
m

e
n
t

1

-operand

-operator

PrefixExpression

-operand

-operator

PostfixExpression

prefixExpressions

postfixExpressions

*

*

type 1

1

ty
p
e

+int

+double

+byte

+short

+char

+long

+float

+boolean

+void

«enumeration»

PrimitiveType

+public

+private

+protected

«enumeration»

AccessModifier

+abstract

+static

+final

+synchronized

«enumeration»

Modifier

*
modifiers

1

a
c
c
e
s
s
M

o
d
if
ie

r

Figure 3.1: UML model for the notation used in the proposed method.

Within the context of the above model, a program has as property the ClassTypes

that it contains (denoted as program.classTypes), excluding imported library or frame-
work class types.

3.3.1 Definition of distance

A class in object-oriented programming consists of attributes and methods. Attributes
may also be references to other classes of the system (i.e., attributes whose type is a
system class), in order to provide access to the functionality of these classes. As a re-
sult, a method can access directly attributes and methods of the class that it belongs to
and also attributes and methods of other classes through references. Likewise, an
attribute can be accessed directly from methods of the class that it belongs to and also
from methods of other classes that have a reference to that class.

For each entity (attribute/method), a set of the entities that it accesses (if it is a
method) or the entities that it is accessed from (if it is an attribute) is defined.

The entity set of an attribute attr contains the following entities:

• the methods directly accessing attr that belong to the same class with attr
• the methods accessing attr that belong to other classes of the system (accesses

can be performed either through getter and setter invocations or in exceptional
cases directly when attr has public visibility)

The entity set of a method m contains the following entities:

• the directly accessed attributes that belong to the same class with m
• the accessed attributes that belong to other classes of the system
• the directly accessed methods that belong to the same class with m
• the accessed methods through reference that belong to other classes of the sys-

tem

29

Apart from the entity sets of methods and attributes, the entity set of a class C is also
defined and contains the following entities:

• all attributes that belong to class C
• all methods that belong to class C

For the formation of entity sets the following rules should be taken into account.
Rules are given in both a descriptive and a formal manner (auxiliary functions are de-
fined in Appendix A):

1. Attributes that are references to classes of the system are not considered as entities
nor added to the entity sets of other entities, since such references are essentially a
pipeline to the state or behavior of another class.

(a) if ∃ f ∈ c.fields where f.type ∈ program.classTypes ∨
(elementType = elementTypeOfCollection(f) ≠ null ∧
elementType ∈ program.classTypes)
then do not add f to the entity set of Class c

(b) if ∃ variable ∈ m.methodBody.variableAccesses
where variable.declaration is Field f ∧ (f.type ∈ program.classTypes ∨
(elementType = elementTypeOfCollection(f) ≠ null ∧
elementType ∈ program.classTypes))
then do not add f to the entity set of Method m

2. Getter and setter methods are not considered as entities nor added to the entity sets
of methods and attributes, since they do not offer functionality except for access to
attributes. However, the attributes to which they provide access are added to the
entity sets. For an attribute that is a collection of objects, the methods that return
an element at a specific position, or return an iterator/enumeration of the elements
are considered as getters, while the methods that add an element to or replace an
element of that collection are considered as setters.

(a) if ∃ m ∈ c.methods where (isGetter(m) ≠ null ∨ isSetter(m) ≠ null ∨
isCollectionGetter(m) ≠ null ∨ isCollectionSetter(m) ≠ null)
then do not add m to the entity set of Class c

(b) if ∃ methodInv ∈ m.methodBody.methodInvocations where
(Field f = isGetter(methodInv.declaringMethod) ≠ null ∨
Field f = isSetter(methodInv.declaringMethod) ≠ null ∨
Field f = isCollectionGetter(methodInv.declaringMethod) ≠ null ∨
Field f = isCollectionSetter(methodInv.declaringMethod) ≠ null)
then do not add methodInv.declaringMethod to the entity set of Method m
if f ≠ null ∧ (f.type ∉ program.classTypes ∨
(elementType = elementTypeOfCollection(f) ≠ null
∧ elementType ∉ program.classTypes))
then add f to the entity set of Method m

3. Static attributes and methods are not considered as entities nor added to the entity
sets of methods and attributes, since they can be accessed or invoked from any
method without having a reference to the class that they belong to. An instance
method requires the existence of a reference to a target class in order to be moved
to that class, and as a result it cannot be moved to a class from which it accesses
only static members.

30

(a) if ∃ f ∈ c.fields where f.modifiers ∋ static
then do not add f to the entity set of Class c

(b) if ∃ m ∈ c.methods where m.modifiers ∋ static
then do not add m to the entity set of Class c

(c) if ∃ variable ∈ m.methodBody.variableAccesses
where variable.declaration is Field f ∧ f.modifiers ∋ static
then do not add f to the entity set of Method m

(d) if ∃ methodInv ∈ m.methodBody.methodInvocations
where methodInv.declaringMethod.modifiers ∋ static
then do not add methodInv.declaringMethod to the entity set of Method m

4. Delegate methods are not considered as entities nor added to the entity sets of me-
thods, since they do not offer functionality except for delegating a responsibility
to another method. However, the method to which they delegate is added to the
entity sets. The treatment of delegations is recursive (in the case of a chain of del-
egations, only the final non-delegate method is considered).

(a) if ∃ m ∈ c.methods where isDelegate(m) ≠ null
then do not add m to the entity set of Class c

(b) if ∃ methodInv ∈ m.methodBody.methodInvocations where
nonDelegateMethod =
finalNonDelegateMethod(methodInv.declaringMethod) ≠ null ∧
(Field f = isGetter(nonDelegateMethod) = null ∧
Field f = isSetter(nonDelegateMethod) = null ∧
Field f = isCollectionGetter(nonDelegateMethod) = null ∧
Field f = isCollectionSetter(nonDelegateMethod) = null)
then add nonDelegateMethod to the entity set of Method m
if f ≠ null ∧ (f.type ∉ program.classTypes ∨
(elementType = elementTypeOfCollection(f) ≠ null
∧ elementType ∉ program.classTypes))
then add f to the entity set of Method m

5. In case of a recursive method, the method itself is not added to its entity set, since
a self-invocation does not constitute a dependency with the class that the method
belongs to.

if ∃ methodInv ∈ m.methodBody.methodInvocations
where methodInv.declaringMethod = m
then do not add methodInv.declaringMethod to the entity set of Method m

6. Access to attributes/methods of classes outside the system boundary (e.g., library
classes) is not taken into account. That is because in this approach the library
classes are assumed to be fixed from the programmer's perspective and therefore
are not subject to refactoring.

The similarity between a method and a class should be high when the number of
common entities in their entity sets is large. In order to calculate the similarity of the
entity sets the Jaccard similarity coefficient is used. For two sets A and B the Jaccard
similarity coefficient is defined as the cardinality of the intersection divided by the
cardinality of the union of the two sets:

31

()
BA

BA
BAimilarity

∪

∩
=,s

The Jaccard distance measures the dissimilarity between two sets. For two sets A
and B the Jaccard distance is defined as:

()),(11 BAsimilarity
BA

BA

BA

BABA
BA,cetandis −=

∪

∩
−=

∪

∩−∪
=

Let e be an entity of the system, C a class of the system and Sx the entity set of
entity or class x. The distance between an entity e and a class C is calculated as fol-
lows:

Definition 1.

if the entity e does not belong to the class C, the distance is the Jaccard distance of
their entity sets:

{ }
Ce

iC
Ce

Ce

i

eSwhere
SS

SS
Cecetandis

∈
=

∪
∩

−= ,1),(

Definition 2.

if the entity e belongs to the class C, e is not included in the entity set of class C:

}{\,1),(eSSwhere
SS

SS
Cecetandis CC

Ce

Ce =′
′∪

′∩
−=

In this way, it is ensured that all distance values range over the interval [0, 1]. If
the distance between a class and an entity that belongs to it was calculated without
excluding e from the entity set of the class, the intersection of their entity sets could
never be equal to their union and thus the distance could never obtain the value 0.

3.3.2 Move Method refactoring preconditions

According to Opdyke [86], each refactoring is associated with a set of preconditions
which ensure that the behavior of a program will be preserved after the application of
the refactoring. In order to describe the preconditions that should be satisfied for a
Move Method refactoring in a formal manner, the following set of auxiliary functions
is defined:

boolean matchingSignature(Method m1, Method m2) ≡
 (m1.name = m2.name) ∧
 (m1.returnType = m2.returnType) ∧
 (size of m1.parameters = size of m2.parameters) ∧
 for i = 1 to size of m1.parameters
 m1.parameters[i].type = m2.parameters[i].type

boolean abstract(Method m) ≡
 m.ownerClass is interface ∨ m.modifiers ∋ abstract

(set of Field) inheritedFields(Class c) ≡
 return f ∈
 {inheritedFields(c.superclass) ∪ c.superclass.fields}
 where f.accessModifier ≠ private

32

(set of Method) inheritedMethods(Class c) ≡
 return m ∈
 {inheritedMethods(c.superclass) ∪ c.superclass.methods}
 where m.accessModifier ≠ private ∧ ~abstract(m)

* In the case where class c does not explicitly inherit a superclass, then its superclass
is java.lang.Object.

 (set of Method) abstractMethodsToBeOverriden(Class c) ≡
 return m1 ∈ {abstractMethodsToBeOverriden(c.superclass) ∪

c.superclass.methods} where abstract(m1) ∧
(∄ m2 ∈ c.methods ∧ matchingSignature(m1, m2))

* An abstract method cannot be declared as final, static, or private.

(set of Method) interfaceMethodsToBeImplemented(Class c) ≡
 for i = 1 to size of c.implementedInterfaces

return m ∈ {interfaceMethodsToBeImplemented(c.implementedInterfaces[i])
∪ c.implementedInterfaces[i].methods}

* An interface may extend more than one interfaces.

The preconditions that should be satisfied for a Move Method refactoring are divided
into three categories, namely compilation preconditions which ensure that the code
will compile correctly, behavior-preservation preconditions which ensure that the be-
havior of the code will be preserved and quality preconditions which ensure that cer-
tain design quality properties will not be violated. In all the precondition functions the
method parameter (m or m1) refers to the method to be moved and the class parameter
(t) refers to the target class.

3.3.2.1 Compilation preconditions

1. The target class should not contain a method having the same signature with the
moved method.

noSimilarLocalMethodInTargetClass(Method m1, Class t) ≡ ∄ m2 ∈ t.methods ∧ matchingSignature(m1, m2)

This issue can be resolved by renaming the moved method.

2. The method to be moved should not override an abstract method. Moving a me-
thod that overrides an abstract method would lead to compilation problems, since
the overriding of abstract methods is obligatory for concrete classes.

notOverridesAbstractMethod(Method m1) ≡ ∄ m2 ∈ {abstractMethodsToBeOverriden(m1.ownerClass) ∪
interfaceMethodsToBeImplemented(m1.ownerClass)} ∧
matchingSignature(m1, m2)

This issue can be resolved by keeping the original method as delegate to the
moved method.

3. The method to be moved should not contain any super method invocations or su-
per field accesses.

33

4. The target class should not be an interface, since interfaces contain only abstract
methods and not concrete ones.

3.3.2.2 Behavior-preservation preconditions

1. The target class should not inherit a method having the same signature with the
moved method. Moving a method which has the same signature with an inherited
method of the target class would lead to the overriding of the inherited method, af-
fecting the behavior of the target class and its subclasses.

noSimilarInheritedMethodInTargetClass(Method m1, Class t) ≡ ∄ m2 ∈ inheritedMethods(t) ∧ matchingSignature(m1, m2)

This issue can be resolved by renaming the moved method.

2. The method to be moved should not override an inherited method. Moving a me-
thod that overrides a concrete method would affect the behavior of the source
class and its subclasses, since the source class would inherit the behavior of the
method defined in its superclass.

notOverridesInheritedMethod(Method m1) ≡ ∄ m2 ∈ inheritedMethods(m1.ownerClass) ∧ matchingSignature(m1, m2)

This issue can be resolved by keeping the original method as delegate to the
moved method.

3. The method to be moved should have a reference to the target class either through
its parameters or through source class fields (including inherited fields) of target
class type. In order to preserve the behavior of the code, the methods originally
invoking the method to be moved should be modified to invoke it through that
particular reference after its move. On the contrary, a local variable of target class
type declared inside the body of the method to be moved cannot serve as a refer-
ence to target class, since it is not accessible outside the method.

validReferenceToTargetClass(Method m, Class t) ≡
∃ variable ∈ m.methodBody.variableAccesses where variable.declaration ∈
{m.parameters ∪ m.ownerClass.fields ∪ inheritedFields(m.ownerClass)} ∧
variable.declaration.type = t.type

4. The method to be moved should not be synchronized. The synchronization me-
chanism of Java ensures that when one thread is executing a synchronized method
of an object, all other threads that invoke synchronized methods of the same ob-
ject suspend the execution until the first thread is done with the object. As a result,
the move of a synchronized method could create concurrency problems to the ob-
jects of the source class.

3.3.2.3 Quality preconditions

1. The method to be moved should not contain assignments of a source class field
(including inherited fields). In that case the assigned field cannot be passed as pa-
rameter to the moved method, since parameters are passed by-value in Java and as
a result the value of the field will not change after the invocation of the moved
method. The alternative approach of passing a parameter of source class type to
the moved method and invoking the setter method of the assigned field would in-
crease the coupling between the source and target class, since the moved method

34

would get coupled to the source class. Moreover, a method that changes the value
of a field has stronger conceptual binding with the class where the field belongs to
compared to a method that simply accesses the value of the field.

noSourceClassFieldAssignment(Method m) ≡ ∄ assignment ∈ m.methodBody.assignments
where assignment.leftHandSide ∈
{m.ownerClass.fields ∪ inheritedFields(m.ownerClass)} ∧ ∄ postfixExpression ∈ m.methodBody.postfixExpressions
where postfixExpression.operand ∈
{m.ownerClass.fields ∪ inheritedFields(m.ownerClass)} ∧
(∄ prefixExpression ∈ m.methodBody.prefixExpressions
where prefixExpression.operand ∈
{m.ownerClass.fields ∪ inheritedFields(m.ownerClass)} ∧
(prefixExpression.operator = ‘+ +’ ∨ prefixExpression.operator = ‘− −’))

2. The method to be moved should have a one-to-one relationship with the target
class. In this way, a method which participates in a one-to-many composition rela-
tionship cannot be suggested to be moved from the composing class (the source
class that it originally belongs to) to the contained class (target class).

one-to-oneRelationshipWithTargetClass(Method m, Class t) ≡ ∄ variable ∈ m.methodBody.variableAccesses where variable.declaration ∈
{m.ownerClass.fields ∪ inheritedFields(m.ownerClass) ∪
m.parameters ∪ m.methodBody.localVariableDeclarations} ∧
((variable.declaration.type is ArrayType aType ∧ aType.type = t.type) ∨
(elementType = elementTypeOfCollection(variable.declaration) ≠ null ∧
elementType = t.type))

3.3.3 Extraction of Move Method refactoring suggestions

The algorithm used for the extraction of Move Method refactoring suggestions is ap-
plied to all method entities of a system and consists of four main parts:

1. Identification of the set of candidate target classes T by examining the entity
set of method m.

2. Sorting of set T according to the number of entities that method m accesses
from each target class in descending order at first level, and according to the
distance of method m from each target class in ascending order at second lev-
el.

3. Examination of whether method m modifies a data structure in the candidate
target classes.

4. Suggestion of moving method m to the first candidate target class that satisfies
all the preconditions, following the order of the sorted set T.

It should be noted that the Jaccard distance, which is used for sorting the candi-
date target classes when the method under examination accesses an equal number of
entities from two or more classes, ensures that the candidate target classes will be ex-
amined in an order that promotes the classes having fewer entities. This property is
desired since it leads to the decomposition of God classes [94] and the equal redistri-
bution of functionality among the system classes. The notion of distance is also em-

35

ployed as a means to rank multiple refactoring suggestions as it will be explained in
Section 3.3.4.

The third part of the algorithm aims at identifying cases where the method under
examination modifies a data structure in a candidate target class by invoking an ap-
propriate method of the target class and passing as argument one of its parameters. In
such a case, it is considered that the method under examination has a strong concep-
tual binding with the specific target class regardless of the number of entities that the
method accesses from the other candidate target classes. For example, in Figure 3.2a
method removeLocation(Location) has three candidate target classes, namely
TaskManager, LocationManager and Location. It accesses one entity from each
candidate target class and none from the source class. It invokes method removeLo-
cation() through field locationManager and passes parameter loc as argument
to the invoked method. More importantly, method removeLocation() of class Lo-
cationManager (Figure 3.2b) actually removes the passed argument from list lo-
cations that contains objects of Location class type. As a result, class Location-
Manager is considered a better choice for moving the method under examination
compared to the other candidate target classes.

public class MyPlannerData {

private TaskManager tasks;
private LocationManager locationManager;

public boolean removeLocation(Location loc) {

Task[] ts = tasks.tasks();
for (int i = 0; i < ts.length; i++) {

if (ts[i].locationID() == loc.id())
ts[i].setLocationID(

locations.getLocationAnywhereInstance().id());
}
return locationManager.removeLocation(loc);

}
}

(a) Method under examination
public class LocationManager {

private ArrayList<Location> locations;

protected boolean removeLocation(Location l) {
if (!locations.contains(l))

return false;
locations.remove(l);
LocationPair[] lps = getDistancePairs(l);
for (int i = 0; i < lps.length; i++) {

distances.remove(lps[i]);
}
return true;

}
}

(b) Invoked method belonging to candidate target class
Figure 3.2: Example of method modifying a data structure of a candidate target class.

A formal description of the algorithm used for the extraction of Move Method refac-
toring suggestions is shown in Figure 3.3.

36

extractMoveMethodRefactoringSuggestions(Method m)
T = {}
S = entity set of m

for i = 1 to size of S
entity = S[i]
T = T ∪ {entity.ownerClass}

sort(T)
suggestions = {}
for i = 1 to size of T

if (T[i] ≠ m.ownerClass ∧ modifiesDataStructureInTargetClass(m, T[i]) ∧
preconditionsSatisfied(m, T[i]))

suggestions = suggestions ∪ {moveMethodSuggestion(m→ T[i])}
if suggestions ≠ ∅

return suggestions
else

for i = 1 to size of T
if T[i] = m.ownerClass

return {}
else if preconditionsSatisfied(m, T[i])

return {moveMethodSuggestion(m→ T[i])}
return {}

Figure 3.3: Algorithm used for the extraction of Move Method refactoring sugges-
tions.

Function modifiesDataStructureInTargetClass(Method m, Class t) which deter-

mines whether method m modifies a data structure in the candidate target class t is
formally described in Appendix B. Function preconditionsSatisfied(Method m, Class
t) returns true if all preconditions of Section 3.3.2 are satisfied. In the case where me-
thod m accesses the same number of entities and has the same distance from two or
more candidate target classes then suggestions are extracted for all the classes for
which the preconditions are satisfied.

3.3.4 Assessing the effect of the refactoring suggestions on design quality

In a large software system it is reasonable to expect that several Move Method refac-
toring suggestions will be extracted. In that case, it should be possible to distinguish
the most effective refactorings in terms of their impact on the design.

The proposed method follows the widely accepted principle of low coupling and
high cohesion [40]. To this end, the distances of the entities belonging to a class (in-
ner entities) from the class itself should be the smallest possible (high cohesion). At
the same time the distances of the entities not belonging to a class (outer entities)
from that class should be as large as possible (low coupling). This can be ensured by
considering for each class the ratio of average inner to average outer entity distances.
For each class, the closer this ratio to zero is, the safer it can be concluded that inner
entities have correctly been placed inside the class and outer entities to other classes.
A formula that provides the above information for a class C is given by:

37

()

()
Centities

Cecetandis

Centities

Cecetandis

ementEntityPlac

Ce

j

Ce

i

C

j

i

∉

∈
=
∑

∑

∉

∈

,

,

where e denotes an entity of the system. In the special case where a class does not
have inner entities the above formula cannot be calculated.

The weighted metric for the entire system which considers the number of entities
in each class is given by:

∑
∈

=
i

i

C

C
i

System ementEntityPlac
entitiesall

Centities
ementEntityPlac

The lower the value of this metric is, the more effective is the specific refactoring
for the entire system. The classes that do not have inner entities are not included in the
above metric.

3.3.5 Virtual application of Move Method refactoring suggestions

In order to evaluate which of the Move Method refactoring suggestions are the most
effective ones, one could apply each one of them on source code and then recalculate
the distances between the entities and the classes to measure the Entity Placement me-
tric for each of the resulting systems. However, the actual application of the suggested
refactorings on source code adds a significant overhead due to disk write operations
(once for applying each refactoring and once for undoing it).

To overcome this problem all suggested refactorings are virtually applied. This is
achieved by updating the entity sets of the entities/classes which are involved in the
move of the corresponding method and calculating the Entity Placement metric for the
resulting entity sets.

The virtual move of a method from the source class to a target class is performed
as follows:

1. The tag indicating to which class the method belongs is changed from source
class to target class.

2. The entity sets of all methods accessing the method are updated according to
the new tag.

3. The entity sets of all attributes that are being accessed by the method are up-
dated according to the new tag.

4. The method is removed from the entity set of the source class.
5. The method is added to the entity set of the target class.

The distances which have to be recalculated after the virtual application of a refac-
toring are: a) the distances from the source and the target class of the entities whose
entity set has been affected from the virtual application (i.e., methods that access the
moved method and fields being accessed from the moved method), b) the distances
from the source and the target class of the entities whose entity set contains at least
one entity of the source and/or the target class. The rest of the distances remain un-
changed, since the entity sets of the classes that do not participate in the refactoring
are the same compared to the initial system.

38

The extracted refactoring suggestions are ranked in an ascending order according
to the corresponding Entity Placement metric values. Eventually, all refactoring sug-
gestions for which the resulting system has a lower Entity Placement value than the
current system are considered as refactorings that can improve the design of the sys-
tem.

3.3.6 Demonstration of the method on a refactoring teaching example

To demonstrate the application of the proposed method, a widely known example for
refactorings has been used, namely Fowler’s Video Store [36]. The initial version of
the program is intentionally not well designed. Its design is gradually improved by
applying successive refactorings. A snapshot of the evolving system exactly before
the application of the first Move Method refactoring has been taken.

The UML class diagram of the examined snapshot is shown in Figure 3.4. The ar-
row indicates the move of method getCharge(Rental) from class Customer to
class Rental, as suggested by the author of the example.

+getDaysRented() : int

+getMovie() : Movie

-_daysRented : int

Rental

+addRental(arg:Rental)()

+amountFor(aRental:Rental)() : double

+getCharge(aRental:Rental)() : double

+getName() : String

+statement() : String

-_name : String

Customer

+getPriceCode() : int

+getTitle() : String

+setPriceCode(arg:int)()

-_priceCode : int

-_title : String

+CHILDRENS : int

+NEW_RELEASE : int

+REGULAR : int

Movie

*

_rentals

1

_movie

Figure 3.4: UML class diagram of the Video Store before the application of the first

Move Method refactoring.

To calculate the distances between the entities and the classes of the system, it is
necessary to construct their entity sets as shown in Table 3.1. The entity set of each
entity contains the attributes and methods that it accesses (if it is a method) and the
methods accessing it (if it is an attribute).

Table 3.1: Information required for extracting the entity sets of all system entities.
Entity name Accessed attributes Accessed methods Accessing methods
Movie::_title N/A N/A Customer::statement()

Movie::_priceCode N/A N/A
Customer::statement()
Customer::getCharge(Rental)

Rental::_daysRented N/A N/A
Customer::statement()
Customer::getCharge(Rental)

Customer::_name N/A N/A Customer::statement()

Customer::statement()

Customer::_name
Movie::_priceCode
Rental::_daysRented
Movie::_title

Customer:: getCharge(Rental) N/A

Customer::getCharge(Rental)
Movie::_priceCode
Rental::_daysRented

- N/A

N/A: Not Applicable

As it can be observed from Table 3.1 the attributes that are references to classes of
the system, namely Customer::_rentals and Rental::_movie are not consi-
dered as entities and do not participate in the entity sets of other system entities. The
getter and setter methods of the system, namely Customer::addRental(Rental),
Customer::getName(), Rental::getDaysRented(), Rental::getMovie(),
Movie::getPriceCode(), Movie::getTitle(), Movie::setPriceCode()
are also not considered as entities. However, the attributes to which they provide

39

access (Customer::_name, Rental::_daysRented, Movie::_priceCode,
Movie::_title) are added to the entity sets of the system entities. The static
attributes Movie::CHILDRENS, Movie::NEW_RELEASE and Movie::REGULAR are
also not considered as entities and do not participate in the entity sets of the system
entities accessing them. Finally, the method Customer::amountFor(Rental) that
delegates to Customer::getCharge(Rental) is not considered as entity and its
invocation from method Customer::statement() is replaced with the method that
it delegates to.

To extract refactoring suggestions for method Customer::getCharge(Rental) a
set of candidate target classes T should be identified by examining its entity set.

The entity set of method getCharge(Rental) is:

SgetCharge() = {Movie::_priceCode, Rental::_daysRented}

and consequently the set of candidate target classes for getCharge(Rental) is:

TgetCharge() = {Movie, Rental}

Since method getCharge(Rental) accesses an equal number of entities from
both candidate target classes (i.e., entity _priceCode from Movie and _daysRented from
Rental), the two candidate target classes will be sorted according to their distance from
method getCharge(Rental).

The entity sets of the candidate target classes are the following:

SRental = {Rental::_daysRented}

SMovie = {Movie::_title, Movie::_priceCode}

The distances between method Customer::getCharge(Rental) and the can-
didate target classes are calculated as:

() 5.0
2

1
11(),

()

() =−=
∪

∩
−=

ntalReearggetCh

ntalReearggetCh

SS

SS
ntalReearggetChcetandis

() 667.0
3

1
11(),

()

() =−=
∪

∩
−=

MovieearggetCh

MovieearggetCh

SS

SS
MovieearggetChcetandis

The target class having the lowest distance from method getCharge(Rental) is
Rental and since all preconditions are satisfied with the specific target class, a Move
Method refactoring suggestion is extracted indicating the move of method get-
Charge(Rental) to class Rental. The second candidate target class Movie will
not be examined by the algorithm since a Move Method refactoring suggestion has
been already extracted. However, it should be noted that if class Movie was examined
as target class the preconditions would not be satisfied since method get-
Charge(Rental) has a local reference to class Movie which is not accessible out-
side the method.

40

3.4 JDeodorant Eclipse plug-in

The proposed method has been implemented as an Eclipse plug-in [49] that not only
identifies Feature Envy bad smells but also allows the user to apply the refactorings
that resolve them on source code. Moreover, the tool pre-evaluates the effect on de-
sign quality of all refactoring suggestions, assisting the user to determine the most ef-
fective sequence of refactoring applications. The plug-in employs the ASTParser of
Eclipse Java Development Tools (JDT) to analyze the source code of Java projects
and the ASTRewrite to apply the refactorings and provide undo functionality. JDeo-
dorant offers some novel features concerning the application of Move Method refac-
torings:

a. It automatically determines whether the original method should be turned into
a method that delegates to the moved one. The delegate method is necessary
when other classes apart from the source class invoke the method to be moved
and prevents these classes from changing the way in which they invoke the
moved method.

b. It automatically identifies dependencies between the refactoring suggestions
and provides tooltip support aiding the user to resolve them (Figure 3.5). For
example, if the method associated with refactoring suggestion X invokes a me-
thod which is associated with another Move Method refactoring suggestion Y,
a tooltip informs that suggestion Y (corresponding to the invoked method)
should be applied before X (corresponding to the invoking method).

c. It automatically moves to the target class all the private methods of the source
class which are invoked only by the moved method.

d. When the user inspects a method which is suggested to be moved, the tool
provides tooltip support indicating the number of members that it accesses
from each class (Figure 3.6). In this way the user can more easily realize the
Feature Envy problem.

Figure 3.5: Tooltip indicating a dependency between two refactoring suggestions.

41

Figure 3.6: Tooltip indicating the number of members that the highlighted method

accesses from each class.

3.5 Evaluation

The proposed method has been evaluated in four ways:

a. A qualitative analysis of the refactoring suggestions extracted by the proposed
method is provided by listing, categorizing and discussing the results for an
open-source project.

b. The effect on two aspects of design quality, namely coupling and cohesion is
assessed by measuring their evolution when successively applying the sug-
gested refactorings on two open-source projects.

c. Issues regarding conceptual integrity are assessed by requesting from an inde-
pendent designer to provide feedback on the refactoring suggestions extracted
by the proposed method for the system that he developed.

d. The efficiency of the proposed method is evaluated by measuring the compu-
tation time with regard to the size of various open-source projects.

For the purpose of evaluation four open-source Java projects have been used, which
are relatively active and mature, namely JFreeChart, JEdit, JMol and Diagram.

3.5.1 Qualitative analysis

In order to investigate the kind of Move Method refactoring suggestions extracted by
the proposed method, the suggestions have been divided into three main categories,
according to the characteristics of the method to be moved:

1. The method does not access any entity from the source class.
2. The method accesses more entities from the target class than the source class.
3. The method accesses an equal number of entities from the source and target

classes.

The suggestions belonging to the first category constitute relatively clear cases of
Feature Envy. The second and third category refer to cases where the method to be
moved has dependency on fields and/or methods of the class that it belongs to. The
philosophy behind the suggestions of the third category is that when a method ac-
cesses the same number of fields/methods from the source and target classes it should
be placed to the smaller class (in terms of the total number of fields/methods), since

42

smaller classes are more easily maintained [16]. Obviously, for all categories the de-
signer should take into account conceptual parameters in order to decide whether the
refactoring should be applied or not.

The application of the proposed method to JFreeChart 0.9.6 resulted in 23 Move
Method refactoring suggestions leading to a system with lower Entity Placement me-
tric value than the initial system. Table 3.2 contains the source class, method and tar-
get class for each suggestion along with the number of members (fields/methods) that
the method accesses from the source and target classes. The suggestions are sorted in
ascending order according to the corresponding Entity Placement metric values.

Table 3.2: Move Method refactoring suggestions for JFreeChart (version 0.9.6).

id Source class Method Target class

#accessed

source

members

#accessed

target

members

1
chart.renderer.
HorizontalIntervalBarRenderer

drawRangeMarker chart.Marker 0 2

2 chart.plot.ContourPlot drawDomainMarker chart.Marker 0 3
3 chart.plot.ContourPlot drawRangeMarker chart.Marker 0 3
4 chart.StandardLegend createDrawableLegendItem chart.LegendItem 1 2
5 chart.axis.DateAxis previousStandardDate chart.axis.DateTickUnit 0 3

6
chart.renderer.
HorizontalShapeRenderer

drawRangeMarker chart.Marker 0 2

7
chart.renderer.
MinMaxCategoryRenderer

drawRangeMarker chart.Marker 0 2

8
chart.renderer.
VerticalIntervalBarRenderer

drawRangeMarker chart.Marker 0 2

9 chart.MeterLegend createLegendItem chart.LegendItem 0 1
10 data.TimeSeriesCollection getX data.RegularTimePeriod 2 3
11 chart.StandardLegendItemLayout doHorizontalLayout chart.LegendItemCollection 1 1
12 chart.StandardLegendItemLayout doVerticalLayout chart.LegendItemCollection 1 1
13 chart.JFreeChart drawTitle chart.AbstractTitle 0 4
14 data.DynamicTimeSeriesCollection getX data.RegularTimePeriod 2 3
15 chart.MeterLegend updateInformation chart.plot.MeterPlot 0 3
16 chart.plot.PiePlot getPaint chart.renderer.PaintTable 2 2
17 chart.axis.DateAxis nextStandardDate chart.axis.DateTickUnit 1 2
18 chart.plot.PiePlot getOutlineStroke chart.renderer.StrokeTable 2 2
19 chart.plot.PiePlot getOutlinePaint chart.renderer.PaintTable 2 2
20 chart.demo.CompassDemo adjustData data.DefaultMeterDataset 0 2
21 chart.demo.ThermometerDemo setMeterValue data.DefaultMeterDataset 0 3
22 chart.renderer.AbstractRenderer getSeriesPaint(int, int) chart.renderer.PaintTable 2 2

23 chart.demo.CompassDemo
pick1PointerAction-
Performed

chart.plot.CompassPlot 1 3

* all class names are preceded by package “com.jrefinery.”

To illustrate the soundness of the extracted suggestions the first suggestion of Ta-
ble 3.2 is analyzed. Method drawRangeMarker(), shown in Figure 3.7, does not
access any field or method from class HorizontalIntervalBarRenderer that it
belongs to. The method has 6 parameters in total from which two are not used at all
inside the body of the method (CategoryPlot plot, Shape dataClipRegion),
while two other correspond to Java API class types (Graphics2D g2, Rectan-
gle2D axisDataArea) and thus their types cannot constitute valid target classes.
Consequently, method drawRangeMarker() has two candidate target classes,
namely ValueAxis and Marker. It invokes two methods of class Marker through
parameter marker and one method of class ValueAxis through parameter axis
and therefore is suggested to be moved to class Marker. Moreover, class Marker is
sufficiently smaller than class ValueAxis and constitutes a Data class [36] since it

43

contains only fields and getter methods. This refactoring suggestion is a typical case
of moving behavior close to data.

public void drawRangeMarker(Graphics2D g2,

CategoryPlot plot, ValueAxis axis, Marker marker,
Rectangle2D axisDataArea, Shape dataClipRegion) {

double value = marker.getValue();
Range range = axis.getRange();
if (!range.contains(value)) {

return;
}
double x = axis.translateValueToJava2D(marker.getValue(),

 axisDataArea);
Line2D line = new Line2D.Double(x, axisDataArea.getMinY(),

 x, axisDataArea.getMaxY());
g2.setPaint(marker.getOutlinePaint());
g2.draw(line);

}

Figure 3.7: Method drawRangeMarker() corresponding to the first extracted sug-
gestion for JFreeChart (version 0.9.6).

As it can be observed from Table 3.2, in 13 out of 23 refactoring suggestions, the

target class belongs to a different package than that of the source class. The sugges-
tion of such kind of refactorings is desirable, since their application may reduce the
degree of package dependencies. Moreover, it is harder to identify such refactoring
opportunities by manual inspection of the source code, since they require the exami-
nation of classes that belong to different packages. Table 3.3 shows the refactoring
suggestions belonging to each category.

Table 3.3: Categorization of refactoring suggestions for JFreeChart (version 0.9.6).
category suggestion ids #suggestions

1 {1,2,3,5,6,7,8,9,13,15,20,21} 12/23
2 {4,10,14,17,23} 5/23
3 {11,12,16,18,19,22} 6/23

As it can be observed from Table 3.3 about half of the suggestions (12 out of 23)

refer to methods that do not access any field or method from the source class. Moreo-
ver, 10 out of 11 suggestions belonging to categories 2 and 3 refer to methods that
access only fields (no methods) from the source class. In these cases the accessed
fields can be passed as parameters to the moved method, resulting in a method that is
no longer coupled to the source class. On the contrary, if a method invokes methods
of the source class, a parameter of source class type should be added to the moved
method in order to be able to invoke them after its move. In this case the moved me-
thod remains coupled to the source class. The Entity Placement metric promotes sug-
gestions where methods access only fields from the source class, since such refactor-
ings lead to less coupled methods.

The analysis of the refactorings suggested by the proposed method offered some
additional interesting insights:

a. By successively applying the suggested refactorings in JFreeChart 0.9.6 three cas-
es of already existing duplicated code emerged. Specifically, the application of the
suggestions 1 and 6 (Table 3.2) resulted in the move of two identical methods

44

named drawRangeMarker to class Marker that not only had the same signature
but also the same body. Two similar cases of duplicated code have been revealed
by suggestions 7, 8 and 10, 14 (Table 3.2), respectively. Both pairs of suggestions
had as result the move of identical methods (drawRangeMarker, getX) to a
common target class (Marker, RegularTimePeriod, respectively). Obvious-
ly, it is easier for a designer to detect duplicate methods when they exist in the
same class, rather than when they are scattered throughout different system
classes.

b. The inspection of the refactoring suggestions in JEdit (version 4.3pre12) revealed
that several Move Method suggestions were extracted due to the special handling
of delegate methods by the proposed method. In the example of Figure 3.8, me-
thod lineComment() of class org.gjt.sp.jedit.textarea.TextArea in-
vokes methods getLineText() and getLineStartOffset() that delegate to
methods of JEditBuffer through field buffer. Moreover, it accesses 3 me-
thods rangeLineComment(), getSelectedLines(), selectNone() and
one field caret of class TextArea, while it invokes 5 methods of class JEdit-
Buffer through field buffer. An approach that does not properly handle dele-
gate methods would erroneously consider that method lineComment()accesses
6 entities of class TextArea and 5 entities of class JEditBuffer, thus prohibit-
ing the suggestion of moving the method to class JEditBuffer. On the other
hand, an approach that properly handles delegate methods would consider that
method lineComment()accesses 7 entities of class JEditBuffer and 4 enti-
ties of class TextArea.

c. The refactoring suggestions 20, 21 and 23 (Table 3.2) extracted for JFreeChart
(version 0.9.6) refer to cases where the source class is a Graphical User Interface
(GUI) class which extends class JPanel from Java Swing API (CompassDemo,
ThermometerDemo). The corresponding source class methods (adjustData,
setMeterValue and pick1PointerActionPerformed) actually modify
attributes (through setter methods) of source class fields which can be considered
as references to classes holding data. These methods are invoked by ActionListen-
ers which are implemented in the source class and are used to handle ActionE-
vents on various GUI components (such as buttons and combo boxes) placed on
the user interface of the source class. The method suggests that the methods could
be moved to the corresponding data classes (DefaultMeterDataset and Com-
passPlot). Although these suggestions can be considered as valid in terms of the
number of accessed members, they are not conceptually sound since the methods
which are related to UI functionality should be separate from the data classes that
they may access (according to the Model-View-Controller pattern). This kind of
suggestions can be avoided by applying the method separately on the various
modules that the system under examination may consist of (e.g., domain classes,
GUI classes, database classes, etc.). To this end, the developed tool offers to the
designer the possibility of applying the method on a specific package of the ex-
amined project. This issue could be also resolved by excluding from examination
the methods which are invoked by implemented UI Listener methods (such as me-
thod actionPerformed of the ActionListener interface) using an appropri-
ate precondition.

d. In several of the examined projects, it has been observed that they contain test
classes along with the application source code. A test class is responsible for test-
ing whether the behavior of an application class is correct. It usually creates an in-

45

stance of the class being tested and contains special methods that invoke methods
of the tested class with a given input in order to compare the returned result with
the expected one. Obviously, the suggestion of moving a test method to the class
being tested is not conceptually sound. To this end, the developed tool automati-
cally excludes from the analysis the classes that either extend class ju-
nit.framework.TestCase from JUnit 3.x API, or contain at least one method
annotated with the @Test annotation (JUnit 4.x API).

protected JEditBuffer buffer;

public final String getLineText(int lineIndex) {

return buffer.getLineText(lineIndex);
}

public int getLineStartOffset(int line) {

return buffer.getLineStartOffset(line);
}

public void lineComment() {

if(!buffer.isEditable()) {
getToolkit().beep();
return;

}
String comment =

buffer.getContextSensitiveProperty(caret,"lineComment");
if(comment == null || comment.length() == 0) {

rangeLineComment();
return;

}
comment += ' ';
buffer.beginCompoundEdit();
int[] lines = getSelectedLines();
try {

for(int i = 0; i < lines.length; i++) {
String text = getLineText(lines[i]);
buffer.insert(getLineStartOffset(lines[i])
+ StandardUtilities.getLeadingWhiteSpace(text), comment);

}
}
finally {

buffer.endCompoundEdit();
}
selectNone();

}
Figure 3.8: Handling of delegate methods in a refactoring suggestion for JEdit (ver-

sion 4.3pre12).

3.5.2 Evaluation with software metrics

In this part of the evaluation, the most effective refactoring suggestions according to
the Entity Placement metric value have been successively applied to open-source
projects and the evolution of coupling and cohesion has been studied. The underlying
assumption is that refactorings leading to systems with reduced coupling and in-
creased cohesion have a positive effect on design quality. The projects which have
been selected for the analysis are JEdit 3.0 (425 classes) and JFreeChart 0.9.6 (459
classes).

46

There is a wide variety of coupling and cohesion metrics found in the literature
[12, 13]. The criterion for choosing the appropriate metrics for the evaluation of the
proposed method is that the metrics should be sensitive enough to capture small code
changes in an object-oriented system, such as the move of a method from one class to
another.

The Message Passing Coupling (MPC) metric [64] has been employed for mea-
suring the evolution of coupling. MPC for a class C is defined as the number of invo-
cations of methods not implemented in class C by the methods of class C. Among the
import coupling metrics that consider method-method interactions, MPC evaluates
coupling employing the total number of method invocations, while the others measure
the number of distinct methods invoked (e.g., RFC [21]). Other more coarse-grained
metrics, such as CBO [21] and Coupling Factor [17] have not been considered, be-
cause they estimate coupling based on the number of coupled classes and therefore
their value might not change when a method is moved.

The redefined Connectivity metric by [12], which has been originally proposed by
[46], has been employed for measuring the evolution of cohesion. Connectivity for a
class C is defined as the number of method pairs of class C where one method invokes
the other or both access a common attribute of class C, over the total number of me-
thod pairs of class C. Its difference with the other cohesion metrics is that it considers
two methods m1, m2 to be cohesive, not only if they access a common attribute but
also if m1 invokes m2 or vice versa. In the implementation of Connectivity metric, the
constructors and the accessor (getter and setter) methods have not been considered as
methods, since the cohesion of a class is artificially increased if constructors are taken
into account and decreased if accessor methods are taken into account [12].

While there is some degree of definitional relevance between Entity Placement
and the aforementioned metrics, their major difference lies in the fact that the Jaccard
distance (on which Entity Placement is based) is essentially a similarity metric while
MPC and Connectivity are based on an absolute count.

Concerning cohesion, Connectivity considers two methods either as cohesive or
non-cohesive, while a distance in the numerator of Entity Placement quantifies the
degree of similarity between a method and the class to which it belongs. For exam-
ple, a class might have a Connectivity value of 1(absolute cohesion) because all of its
methods invoke each other; however, in the case where these methods invoke also
methods from other classes, the numerator of Entity Placement will reveal that the
similarity of these methods to the class to which they belong is not absolute (i.e., the
average distance is not zero).

Concerning coupling, MPC does not capture the “positive” coupling (expressed
by messages being sent from a class to itself), while a distance in the denominator of
Entity Placement quantifies for a given class also the similarity of foreign entities
from the classes to which they belong. For example, the existence of a method that
invokes only methods from its class is not being taken into account in the value of
MPC, while it is considered (positively) in the denominator of Entity Placement.
Moreover, the MPC metric does not have an upper limit representing the worst case
while the worst case for the denominator of Entity Placement occurs when for a given
class all foreign entities access all entities from this class and none from the class to
which they belong (i.e., the average distance is zero).

47

The evolution of Entity Placement, MPC and Connectivity for projects JEdit and
JFreeChart is shown in Figures 3.9 and 3.10, respectively. At each step the refactoring
corresponding to the lowest Entity Placement metric value has been applied. The x-
axis represents the successive refactorings that have been performed.

0.8854

0.8856

0.8858

0.886

0.8862

0.8864

0.8866

0.8868

0.887

0.8872

0.8874

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Entity Placement

0.019

0.0191

0.0192

0.0193

0.0194

0.0195

0.0196

0.0197

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MPC

0.458

0.46

0.462

0.464

0.466

0.468

0.47

0.472

0.474

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Connectivity

Figure 3.9: Evolution of metrics for JEdit (version 3.0).

0.8915

0.892

0.8925

0.893

0.8935

0.894

0.8945

0.895

0.8955

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Entity Placement

0.03135

0.0314

0.03145

0.0315

0.03155

0.0316

0.03165

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MPC

0.395

0.4

0.405

0.41

0.415

0.42

0.425

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Connectivity

Figure 3.10: Evolution of metrics for JFreeChart (version 0.9.6).

As it can be observed, the application of successive Move Method refactorings,

which according to the method reduces the Entity Placement metric value, in general
reduces coupling and increases cohesion. The Pearson correlation coefficient between
Entity Placement and Message Passing Coupling/Connectivity for the two projects is
shown in Table 3.4.

Table 3.4: Correlation between Entity Placement (EP) and Message Passing Coupling

(MPC)/Connectivity (Co).
Project EP-MPC correlation EP-Co correlation

JEdit (version 3.0) 0.9572* -0.9616*
JFreeChart (version 0.9.6) 0.9483* -0.9246*
* Correlation is significant at the 0.01 level (2-tailed)

The correlation between Entity Placement and coupling, as measured by MPC, is
strongly positive and statistically significant for both projects. The correlation be-
tween Entity Placement and cohesion, as measured by Connectivity is strongly nega-
tive and statistically significant for both projects. Thus, it can be argued that a meas-
ure of how well methods and attributes are placed in classes according to the Jaccard
distance is a good criterion for ranking Move Method refactoring suggestions.

3.5.3 Independent assessment

In this experiment an independent designer assessed the conceptual integrity of the
refactoring suggestions extracted by the proposed method for the system that he de-
veloped.

The project that has been examined is called SelfPlanner [93] and is an intelligent
web-based calendar application that plans the tasks of a user using an adaptation of
the Squeaky Wheel Optimization framework. It is the outcome of a research project of
the Artificial Intelligence Group at the department of Applied Informatics, University

48

of Macedonia, Greece. It consists of a planning engine developed in C++ and a
client/server application developed in Java. The evaluation focused on the
client/server application, since JDeodorant analyzes Java source code. The application
(version 1.11) consists of 34 classes and 5800 lines of code. The reasons for selecting
the specific project are:

• It is a rather mature research project which has been constantly evolving for
more than a year. Moreover, it has been subject to continuous adaptive main-
tenance due to constant requirement changes. Therefore, it is reasonable to ex-
pect that it offers several refactoring opportunities.

• The client/server part of the application was designed and developed by a sin-
gle person. As a result, the developer that participated in the experiment had
complete and deep knowledge of the system’s architecture.

• The developer that participated in the experiment is an experienced program-
mer with knowledge of object-oriented design principles that enabled him to
assess the refactoring suggestions extracted by the proposed method and pro-
vide valuable feedback.

• The developer that participated in the experiment was able to dedicate a signif-
icant amount of time on studying and commenting on the refactoring sugges-
tions extracted by the proposed method.

The refactoring suggestions extracted by the proposed method for SelfPlanner along
with the opinion of the independent designer are shown in Table 3.5.

Table 3.5: Move Method refactoring suggestions for SelfPlanner.

id Source class Method Target class

#accessed

source

members

#accessed

target

members

designer’s

opinion

1 data.Task getStepPoint data.DomainPrefs 0 2 A
2 FileManager savePlannerData Planner 0 4 A
3 FileManager saveData data.MyPlannerData 0 1 D
4 MyPlannerServer solve Planner 0 3 A
5 Planner getFilteredTaskIntervals data.Task 2 4 A
6 FileManager addNewDefaultTemplates data.TemplateManager 0 2 A
7 data.MyPlannerData removeLocation data.LocationManager 0 1 A
8 data.MyPlannerData reloadTemplates data.TaskManager 0 1 A
9 data.MyPlannerData removeTask data.TaskManager 0 1 A

10 data.LocationPair concerns data.Location 0 1 D
* all class names are preceded by package “gr.uom.csse.ai.myplanner.”
A: total agreement, D: conceptual disagreement

As it can be observed from Table 3.5, the independent designer agreed in 8 out of
10 refactoring suggestions. Moreover, 9 out of 10 refactoring suggestions refer to me-
thods that do not access any field or method from the source class and therefore con-
stitute clear cases of Feature Envy. The method corresponding to suggestion 5 ac-
cesses two fields from the source class.

Method saveData() corresponding to suggestion 3 (Figure 3.11) has one candi-
date target class, namely MyPlannerData. It invokes two methods of the target class
through parameter data and its purpose is to save the data of the corresponding user
as a serialized object. The independent designer supported that the methods which are
exclusively related to file operations should be located in class FileManager and
thus disagreed with this suggestion.

49

public void saveData(MyPlannerData data) throws IOException {
data.getTemplateManager().resetTemplates();
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(data.user() + ".spdata", false));
out.writeObject(data);
out.close();

}

Figure 3.11: Method corresponding to suggestion 3 for SelfPlanner.

Method concerns() corresponding to suggestion 10 (Figure 3.12) invokes me-
thod equals() of class Location through two different fields (l1, l2) that can
both serve as reference to target class. By moving this method to class Location one
of the fields will be replaced with this reference and the other will be passed as pa-
rameter, resulting in a method with 3 parameters of Location type. The independent
designer stated that the method will become more complicated if it is moved.

private Location l1;
private Location l2;

public boolean concerns(Location loc1, Location loc2) {

return ((l1.equals(loc1) && l2.equals(loc2)) ||
 (l1.equals(loc2) && l2.equals(loc1)));
}

Figure 3.12: Method corresponding to suggestion 10 for SelfPlanner.

3.5.4 Evaluation of efficiency

The process which is required for the extraction of Move Method refactoring sugges-
tions in a given system consists of the following steps:

a. Parsing of the system under study using the Abstract Syntax Tree (AST) Pars-
er of Eclipse JDT.

b. Determination of system entities and construction of the corresponding entity
sets.

c. Calculation of the distances between all system entities and system classes.
d. Application of the algorithm for the extraction of Move Method refactoring

suggestions to all method entities of the system. Moreover, all extracted refac-
toring suggestions are virtually performed in order to calculate the Entity
Placement metric value that the system would have if they were actually ap-
plied.

Table 3.6 contains various size measures for 4 open-source projects. The measure
of examined methods refers to the methods that constitute entities of the system under
study. This means that the constructors, accessor methods, static methods and dele-
gate methods are not included in this measure. The measure of total suggestions also
includes the refactoring suggestions having a higher Entity Placement value than the
initial system. Table 3.7 presents the required computation time for each step of the
process.

50

Table 3.6: Various size measures for the examined open-source projects.
measures Diagram 1.0.1 JMol 9.0 JEdit 3.0 JFreeChart 0.9.6

#classes 214 316 425 436
#examined
methods

727 1435 1864 1847

LOC 23119 49668 71897 106840
#total
suggestions

34 246 58 58

Table 3.7: CPU times for each step required for the extraction of refactoring sugges-

tions.
step Diagram 1.0.1 JMol 9.0 JEdit 3.0 JFreeChart 0.9.6

a 1150 ms 2150 ms 3780 ms 6300 ms
b 30 ms 100 ms 125 ms 80 ms
c 400 ms 2100 ms 3480 ms 3050 ms
d 4.7 sec 133.2 sec 47.1 sec 52 sec

* Measurements performed on Intel Core 2 Duo E6600 2.4 GHz, 2 GB DDR2 RAM

As it can be observed from Table 3.7, the most time-consuming part of the process
is the virtual application of the extracted refactoring suggestions. The calculation of
the Entity Placement metric value that the system will have after the virtual applica-
tion of a refactoring suggestion requires a recalculation of distances between the enti-
ties and the classes which are affected by the move of the corresponding method. This
part can be very time-consuming, since it involves the construction of the union and
intersection between several entity sets.

The total CPU time required for the last step primarily depends on the number of
the extracted refactoring suggestions. This is evident from the CPU time required for
JMol, which has the largest number of refactoring suggestions compared to the other
examined systems. The CPU time required for the last step is also affected by the size
of the system, since in larger systems more distances have to be calculated. The re-
sults satisfy the intuition, since performance is affected by the size of the underlying
problem.

51

Chapter 4

4 Identification of Refactoring Opportunities Introducing

Polymorphism

Polymorphism is one of the most important features offered by object-oriented pro-
gramming languages, since it allows to extend/modify the behavior of a class without
altering its source code, in accordance to the Open/Closed Principle. However, there
is a lack of methods and tools for the identification of places in the code of an existing
system that could benefit from the employment of polymorphism. To this end, a tech-
nique that extracts refactoring suggestions introducing polymorphism is proposed.
The approach ensures the behavior-preservation of the code and the applicability of
the refactoring suggestions based on the examination of a set of preconditions.

4.1 Introduction

Polymorphism has been widely recognized as one of the most important features of
object-oriented programming languages. Term polymorphism actually refers to sub-
type polymorphism which according to Day et al. [24] allows code written in terms of
some type T to actually work for all subtypes of T. The main advantage of polymor-
phism is that it allows client classes to depend on abstractions [39, 69]. An abstraction
(abstract class or interface) can be extended by adding new subclasses that conform to
its interface (i.e., override its abstract methods). However, the client classes that de-
pend on abstractions do not have to change in order to take advantage of the behavior
defined in the new subclasses.

Despite the sedulous teaching of polymorphism in object-oriented programming
courses and its detailed presentation and discussion in books appealing to profession-
als, state-checking is often employed as an alternative approach to polymorphism in
order to simulate late binding and dynamic dispatch. State-checking manifests itself
as conditional statements that select an execution path either by comparing the value
of a variable representing the current state of an object with a set of named constants,
or by retrieving the actual subclass type of a reference through RunTime Type Identi-

fication (RTTI) mechanisms. The aforementioned symptoms usually result from ei-
ther poor quality of the initial design or software aging [87] caused by requirement
changes that were not anticipated in the original design. State-checking introduces
additional complexity due to conditional statements consisting of many cases and
code duplication due to conditional statements scattered in many different places of
the system that perform state-checking on the same cases for different purposes [36].
As a result, the maintenance of multiple state-checking code fragments operating on
common states may require significant effort and introduce errors.

Although the employment of polymorphism in object-oriented systems is consi-
dered as an important design quality indicator, there is a lack of tools that either iden-
tify state-checking cases in an existing system or eliminate them by applying the ap-

52

propriate refactorings on source code. To this end, a technique is proposed for the
identification and elimination of state-checking problems in Java projects that has
been implemented as an Eclipse plug-in. An advantage of the proposed approach over
metric-based approaches is the fact that all identified problems are actual cases of
state-checking rather than ordinary conditional statements. Moreover, the examination
of a set of preconditions ensures that the refactoring suggestions are both applicable
and behavior-preserving.

The approach can be considered as semi-automatic, since after the extraction of
the refactoring suggestions the designer is responsible for deciding whether a state-
checking case should be eliminated or not based on conceptual and design quality cri-
teria. Regarding the automation of the identification process, the main difference of
the proposed technique with state-of-the-art Integrated Development Environments
(IDEs) offering refactoring support (e.g., Eclipse 3.5, Netbeans 6.7, IntelliJ IDEA 8.1,
Visual Studio 2008 along with Refactor! Pro 2.5) is that IDEs determine which refac-
torings are applicable based on the selection of a code fragment by the developer,
while the proposed technique identifies refactoring opportunities without requiring
any human intervention. Moreover, the proposed technique assists the designer to de-
termine the effectiveness of the identified refactoring opportunities by grouping them
according to their relevance and sorting them according to various quantitative cha-
racteristics.

The evaluation of the proposed technique consists of three parts. The first part
presents the precision and recall of the approach by comparing the refactoring oppor-
tunities identified by an independent expert to the results of the proposed technique on
various open-source projects. The second part of the evaluation investigates the im-
pact of three quantitative factors on the decision of the independent expert to accept or
reject the refactoring opportunities identified by the proposed technique. The last part
refers to the scalability of the technique based on the computation time required for
the extraction of refactoring suggestions on various open-source projects which differ
in size characteristics.

4.2 Related Work

According to Gamma et al. [39], polymorphism simplifies the definitions of clients,
decouples objects from each other, and lets them vary their relationships to each other
at run-time. To this end, polymorphism plays a key role to the structure and behavior
of most design patterns. In the literature of object-oriented software engineering, sev-
eral empirical studies have investigated the impact of polymorphism and design pat-
terns on external quality indicators related with software maintenance.

Brito e Abreu and Melo [18] have shown that Polymorphism Factor [17], which is
defined as the number of methods that override inherited methods divided by the
maximum number of possible distinct polymorphic situations, has a moderate to high
negative correlation with defect and failure densities as well as with rework. In other
words, the appropriate use of polymorphism in an object-oriented design should de-
crease the defect density and rework. However, they have also supported that very
high values of Polymorphism Factor (above 10%) are expected to reduce these bene-
fits, since the understanding and debugging of a highly polymorphical hierarchy is
much harder than the procedural counterpart.

53

Prechelt et al. [91] conducted a controlled experiment to compare design pattern
solutions to simpler alternatives in terms of maintenance. The subjects of the experi-
ment were professional software engineers that were asked to perform a variety of
maintenance tasks. The independent variables were the programs and change tasks,
the program version (there were two different functional equivalent versions of each
program, a pattern-based version and an alternative version with simpler solutions)
and the amount of pattern knowledge of the participants. The dependent variables
were the time taken for each maintenance task and the correctness (i.e., whether the
solutions fulfilled the requirements of the task). In most of the cases the experimental
results had shown positive effects from the use of design patterns, since maintenance
time was reduced compared to the simpler alternative versions.

Ng et al. [77] performed a controlled experiment on maintaining JHotDraw to
study whether the introduction of additional patterns through program refactoring is
beneficial regardless of the work experience of the maintainers. For this reason, they
used two sets of subjects in their experiment, namely experienced and inexperienced
maintainers. They compared two maintenance approaches where in the first approach
the subjects performed the maintenance tasks directly on the original program, while
in the second approach the subjects performed the maintenance tasks on a refactored
version of the original program using additional design patterns to facilitate the re-
quired changes. The empirical results have shown that, to complete a maintenance
task of perfective nature, the time spent even by the inexperienced maintainers on the
refactored version was much shorter than that of the experienced subjects on the orig-
inal version.

Ng et al. [78] studied whether maintainers utilize deployed design patterns, and
when they do, which tasks they more commonly perform. For this reason, they refined
an anticipated change facilitated by the deployment of design patterns into three finer-
grained maintenance tasks, namely adding new concrete participants, modifying the
existing interfaces of a participant, and introducing a new client. They concluded that
regardless of the type of tasks performed by maintainers when utilizing deployed de-
sign patterns for anticipated changes, the delivered code is significantly less faulty
than the code developed without utilizing patterns.

Other empirical studies have shown that maintenance effort does not only depend
on the design quality of a given program (as expressed by the employment of design
principles or the existence of design patterns), but also on human factors such as the
experience, skills and education of the software developers and maintainers.

Arisholm and Sjøberg [5] performed a controlled experiment in order to investi-
gate the effect of delegated versus centralized control style on the maintainability of
object-oriented software. To this end, two categories of developers (namely expe-
rienced and inexperienced) performed several change tasks on two alternative designs
that had a centralized and delegated control style, respectively. The results of the ex-
periment have shown that the most experienced developers required less time to main-
tain the software with delegated control style than with centralized control style, while
novice developers had serious problems in understanding the delegated control style
and performed much better with the centralized control style. Consequently, they con-
cluded that maintainability of object-oriented software depends, to a large extent, on
the skill of the maintainers.

Du Bois [30] performed a series of controlled experiments to investigate whether
the application of two reengineering patterns [26], namely Refactor to Understand

54

and Split Up God Class, can improve program comprehension. The experiment in-
volving the decomposition of god classes verified that the particular education of the
subject performing the comprehension task affects the way in which a god class is de-
composed.

Wendorff [109] reported on a large commercial project where the uncontrolled
use of patterns has contributed to severe maintenance problems. The reasons causing
the maintenance problems were that some pattern instances were misused by software
developers who had not understood the rationale behind their employment, many
software developers overestimated the future volatility of requirements and opted for
patterns to build flexibility at the cost of an undesirable increase of complexity, the
change of requirements over the lifetime of the project led some pattern instances to
become obsolete, and finally some pattern instances were embellished with additional
features which were not actually needed. Consequently, the inappropriate application
of patterns may have a negative effect on flexibility and maintainability of object-
oriented software.

Concerning performance, it is widely believed that the replacement of conditional
logic by a polymorphic method call deteriorates performance due to the introduction
of an additional indirection through the virtual function table. Demeyer [27] investi-
gated the performance trade-off that is involved when introducing virtual functions by
comparing the execution time of four C++ benchmark programs which contain large
conditionals against refactored versions where the conditionals were replaced by vir-
tual function calls. The results of the experiment have shown that the optimized code
which was generated by three C++ compilers for the refactored versions performed
equally or even better compared to the conditional counterparts.

The catalogue of refactorings by Fowler et al. [36] refers to state-checking as the
Switch Statements bad smell. They argued that the main problem of this smell is code
duplication, since the same switch statement is usually scattered in many different
places of the code. In such a case, the adaptive maintenance of the code is rather diffi-
cult, since the addition of a new clause requires the identification and modification of
all these multiple switch statements. The object-oriented paradigm offers the poly-
morphism mechanism as an elegant way to solve this problem. Fowler et al. proposed
two refactorings that eliminate the state-checking code and introduce a new inherit-
ance hierarchy, namely Replace Type Code with Subclasses and Replace Type Code

with State/Strategy. The difference between the two refactorings is that in the first one
the inheritance hierarchy is constructed by creating subclasses of the class that origi-
nally contained the state-checking code, while in the second one a new State/Strategy
inheritance hierarchy is created and the class that originally contained the state-
checking code becomes the Context class in the State/Strategy design pattern. It is im-
portant to mention that the Replace Type Code with Subclasses refactoring is not ap-
plicable when the value of the state changes at runtime, since the class type of an ob-
ject cannot be changed after its creation. Fowler et al. also proposed the Replace Con-

ditional with Polymorphism refactoring that eliminates the state-checking code in the
case where the inheritance hierarchy already exists.

Demeyer et al. [26] proposed Reengineering Patterns as a way to codify and
record knowledge about modifying legacy software. Reengineering patterns emphas-
ize on the process of moving from an existing legacy solution to a new refactored so-
lution. Their difference with refactorings is that they also include a process for the
detection of the symptoms and a discussion of the impact of changes that the refac-

55

tored solution may introduce. Within the context of state-checking elimination De-
meyer et al. proposed several reengineering patterns which are closely related to spe-
cific refactorings. For example, the reengineering patterns Transform Self Type

Checks and Transform Client Type Checks are related to Replace Type Code with

Subclasses and Replace Conditional with Polymorphism refactorings, respectively.
Moreover, the reengineering patterns Factor Out State and Factor Out Strategy are
related to Replace Type Code with State/Strategy refactoring. The detection process of
the symptoms for the aforementioned reengineering patterns is given in the form of
guidelines that should be followed by the maintainers in order to manually determine
whether a specific conditional statement performs state-checking. Therefore, these
guidelines do not constitute a concrete technique that could be automated by means of
tools.

Kerievsky [54] proposed a wider set of refactorings as solutions to the design
problem of Conditional Complexity. The selection of the appropriate refactoring solu-
tion depends on the purpose of the conditional logic behind a complex conditional
statement. For example, if conditional logic controls the state transitions of an object,
then the Replace State-Altering Conditionals with State refactoring should be applied.
In the case where conditional logic controls which of several variants of a calculation
will be executed, then the Replace Conditional Logic with Strategy refactoring should
be applied. Kerievsky also introduced two novel refactorings that eliminate condition-
al structures by introducing polymorphism. The first is Replace Conditional Dis-

patcher with Command that breaks down a conditional structure into a collection of
Command [39] objects and replaces conditional logic with code to fetch and execute
the Command objects. The second is Move Accumulation to Visitor that introduces a
Visitor [39] in order to remove a conditional structure that is used to obtain data from
instances of classes having different interfaces. Although, the author provides a de-
tailed description on the steps required to apply the proposed refactorings (known as
mechanics) along with examples from real-world software, the way to identify cases
in the code that could benefit from these refactorings is left up to the designer.

Van Emden and Moonen [106] proposed an approach for the automatic detection
and visualization of instanceof and typecast code smells. The instanceof code smell
appears as a sequence of conditional statements that test an object for its type, while
the typecast code smell appears when an object is explicitly converted from one class
type into another. An interesting part of their approach is the visualization of the de-
tected code smells in the form of a graph, where the code smells are presented as ad-
ditional nodes connected to the code entities that they belong to. In this way it is poss-
ible to discern which parts of the system have the largest number of code smells and
would benefit the most from refactoring.

Trifu and Reupke [105] proposed an approach that is based on the idea of combin-
ing correlated indicators in order to diagnose certain design flaws, in analogy with the
medical world where a disease is diagnosed based on the presence of a specific con-
stellation of symptoms. They distinguish three kinds of indicators, namely aggregat-
ing indicators (single metrics or logical expressions combining metrics), structural
indicators (patterns in the structure of the code), and semantic indicators (the names of
certain program elements, such as variables). Within the context of state-checking
they have specified a design flaw named explicit state checks. The indicators used for
the diagnosis of the specific design flaw are: a) methods that contain “switch” or “if-
else-if” conditional structures, and b) checks should be performed on an
attribute/property/parameter that semantically indicates the state of the current object

56

instance (i.e., a variable that contains the string “state” in its name). The evaluation of
the explicit state checks design flaws that were diagnosed in three open-source
projects has shown that the employed indicators exhibit low precision when they are
triggered individually or even simultaneously.

O’Keeffe and Ó Cinnéide [84] proposed a search-based approach for improving
the design of object-oriented programs without altering their behavior. To this end,
they formulated the task of design improvement as a search problem in the space of
alternative designs. The quality evaluation functions used to rank the alternative de-
signs were based on metrics from the QMOOD hierarchical design quality model. The
refactorings used by the search techniques to move through the space of alternative
designs were inheritance-related (Push Down Field/Method, Pull Up Field/Method,
Extract/Collapse Hierarchy, Replace Inheritance with Delegation, Replace Delegation
with Inheritance and many others). Their approach has been validated by two case
studies, in which the results of the employed search techniques (Hill Climbing and
Simulated Annealing) and evaluation functions have been compared. This work is not
directly associated with the elimination of conditional complexity or the introduction
of new inheritance hierarchies and polymorphism as a remedy to conditional com-
plexity. However, some of the refactorings used to move through the space of alterna-
tive designs may affect the degree of abstraction and polymorphism in a given system.
A disadvantage of search-based approaches is that their results rely heavily on the pa-
rameterization of the employed search techniques [83].

Ó Cinnéide [80, 81] proposed a method for the automatic introduction of design
patterns in terms of refactoring transformations. Based on the observation that design
patterns can be decomposed into sequences of minipatterns (a minipattern is a design
motif that occurs frequently but is a lower-level construct compared to a conventional
design pattern), he proposed a set of six reusable minitransformations that can define
most of the design pattern transformations if composed properly. A minitransforma-
tion consists of a precondition, an algorithmic description of the transformation, and a
postcondition that ensure behavior preservation. Ó Cinnéide also proposed the con-
cept of precursor as a starting point for a design pattern transformation. A precursor is
a design structure that serves as an indicator of the need for applying a specific design
pattern in future maintenance stages. However, the description of most precursors is
by nature quite vague (including the precursor of State pattern) and thus their identifi-
cation cannot be automated.

4.3 Technique

Let us consider that a state-checking code fragment exists inside the body of method
m belonging to class C. The following sets will be used for the description of the pro-
posed technique:

IVC : the set of Instance Variables (non-static fields) of class C

MC : the set of non-static Methods of class C

Pm : the set of Parameters of method m

LVm : the set of Local Variables declared inside the body of method m and before the
state-checking code fragment

NC : the set of Named Constants of all system classes (static final fields of int,
short, char, or byte type and enum constant declarations)

57

4.3.1 Identification of conditional structures performing state-checking

A code fragment that performs state-checking based on named constants can be either
a switch statement or an if/else if statement (each if statement should be the
else clause of the previous if statement, except for the first one).

The set of candidate State Variables SV (variables that can possibly hold a value
representing the current state) is the subset of variables from the union of IVC, Pm and
LVm sets having int, short, char, byte, or enum type:

SV = {x ∈ {IVC ∪ Pm ∪ LVm}: typex = primitive ∨ typex = enum}

In the case where the state-checking code fragment under study is a switch
statement s consisting of n cases the following conditions should be satisfied:

1. The expression of s should be a variable v belonging to SV or an invocation of
the getter method of a variable v belonging to SV provided that v is an instance
variable.

2. For each switch case c of s, the expression of c should be a named constant
belonging to NC.

3. n should be greater than one, or equal to one provided that a default case
exists.

In the case where the state-checking code fragment under study is an if/else
if statement consisting of n if statements the following conditions should be satis-
fied:

1. The expression of each if statement should be (or should contain a condition-
al sub-expression that is) an infix expression with equality operator. Moreover,
one of the operands should be a variable v belonging to SV or an invocation of
the getter method of a variable v belonging to SV provided that v is an instance
variable, while the other operand should be a named constant belonging to NC.

2. Variable v should be common in all infix expressions of the n if statements.
3. n should be greater than one, or equal to one provided that a final else clause

exists.

If all conditions are satisfied the following information is extracted:

a. the state variable v
b. the set of Identified Named Constants (INC) that participate in the specific

state-checking code fragment along with the code corresponding to each
named constant

It is quite possible that the set of identified named constants INC for a specific
state-checking code fragment does not contain all the named constants that the state
variable v is actually related with. The identification of all relevant states (represented
by named constants) is very important in order to create a State inheritance hierarchy
that can be also utilized by other state-checking code fragments which may operate on
different but relevant named constants. Otherwise, it could be possible to generate
multiple inheritance hierarchies that constitute different concrete implementations of
essentially the same state abstraction, causing serious design flaws.

The proposed technique follows two complementary approaches in order to identi-
fy the set of Additional Named Constants (ANC) which are conceptually related with
the state variable v but do not participate in the specific state-checking code fragment.
The set of additional named constants ANC is also added to the information that is

58

extracted for each state-checking code fragment along with the code corresponding to
the default case or final else clause.

Approach based on the state variable v:

a. If variable v is an instance variable of class C, then all methods of class C are
examined for assignments where the left hand side is variable v.

b. If variable v is a local variable or parameter of method m, then only method m
is examined for assignments where the left hand side is variable v.

If the right hand side of these assignments is a named constant belonging to NC
set but not to INC set (NC \ INC), then the named constant is added to the ANC set.

Approach based on the sets of identified named constants INC:

The concept behind this approach is that if two state-checking code fragments op-
erate on at least one common named constant (the intersection of their INC sets is not
empty), then their state variables are conceptually related with all the named constants
belonging to the union of their INC sets. Thus, a single State inheritance hierarchy
should be created for both state-checking code fragments having as many concrete
state subclasses as the named constants belonging to the union of their INC sets.

To this end, an algorithm (Figure 4.1) is proposed that identifies the maximum
number of conceptually relevant named constants by searching for common named
constants among the INC sets of all state-checking code fragments. Let us consider
that INCi is the set of identified named constants for state-checking code fragment i.
The INC sets are sorted in a list INCList according to their cardinality in descending
order. The examination of the INC sets in descending order increases the probability
of identifying a larger number of conceptually relevant named constants (in a single
iteration) compared to a random order. A set of named constants namedConstants is
used to temporarily store the conceptually relevant named constants, while a set of
indexes indexSet is used to temporarily store the indexes of INC sets which have
common elements.

while INCList not empty

namedConstants = INC0
indexSet = {0}
do

previousCardinality = |namedConstants|
for(i=1; i<size of INCList; i++)

if(namedConstants ∩ INCi ≠ Ø)
namedConstants = namedConstants ∪ INCi
indexSet = indexSet ∪ {i}

while(previousCardinality < |namedConstants|)

for each index j in indexSet
ANCj = namedConstants \ INCj

remove INCj from INCList

Figure 4.1: Algorithm for the identification of relevant named constants.

The proposed approach is unable to identify named constants which conceptually
belong to a group of relevant states but do not participate in any conditional structure
performing state-checking (i.e., they do not belong to the union of all INC sets) or are

59

not assigned to any variable holding the current state (state variable v). Usually, such
named constants express possible states or types that will become active in a future
software release or are already active states whose functionality is covered by the de-
fault case or final else clause of the related state-checking code fragments (and
thus they do not participate directly in state-checking). Obviously, such cases of
named constants require human intervention to be discovered.

4.3.2 Identification of conditional structures performing RTTI

A code fragment that performs RunTime Type Identification can be an if/else if
statement (each if statement should be the else clause of the previous if statement,
except for the first one) consisting of n if statements.

The set of candidate Superclass Type Variables (STV) is the subset of variables
from the union of IVC, Pm and LVm sets having the type of a system class which is in-
herited by other classes of the system.

A valid case of RunTime Type Identification should satisfy the following condi-
tions:

1. The expression of each if statement should be (or should contain a condition-
al sub-expression that is) either:
a. An instanceof expression where the left operand is a variable v belong-

ing to STV, while the right operand is a class type that inherits the super-
class type corresponding to variable v.

b. An infix expression with equality operator where one of the operands is
the invocation of method getClass() over a variable v belonging to STV
(v.getClass()), while the other operand is a type literal (Type.class) which
is a subclass of the superclass type corresponding to variable v.

2. Variable v should be common in all expressions of the n if statements.
3. n should be greater than one, or equal to one provided that a final else clause

exists.

If all conditions are satisfied the following information is extracted:

a. the variable v (reference to superclass type)
b. the set of Identified Subclass Types (IST) that participate in the specific

if/else if statement along with the code corresponding to each subclass
type

c. the inheritance hierarchy tree structure corresponding to the identified class
types

d. the code corresponding to the final else clause

4.3.3 Handling of compound conditional expressions

In the case where the expression of an if statement consists of sub-expressions com-
bined with conditional AND operators (&&), the proposed technique identifies which
sub-expression actually performs state-checking and constructs a new conditional ex-
pression from the other sub-expressions. The remaining expression will replace the
original expression, when the code of the then clause is going to be moved to the ap-
propriate subclass.

To this end, the original expression is represented as a binary expression tree
where all the parent nodes are conditional AND operators and the leaf nodes are the

60

actual sub-expressions. Next, all the leaf nodes are examined (according to the first
condition of the aforementioned rules) to identify a sub-expression that performs
state-checking. If more than one sub-expressions are found to perform state-checking,
then the technique selects the sub-expression whose state variable exists in the state-
checking expressions of all the other if statements. The remaining expression is con-
structed by removing the identified leaf node from the binary tree and by replacing its
parent node with its sibling node.

In the code example of Figure 4.2 the expression of the first if statement consists
of three sub-expressions combined with conditional AND operators.

if (dragMode == DRAG_MOVE && x > 0 && selected instanceof Node) {

...
}
else if (dragMode == DRAG_LASSO) {

...
}

Figure 4.2: Example of compound conditional expression with AND operators.

The binary expression tree of the compound expression of Figure 4.2 is shown in
Figure 4.3a. After examining the leaf nodes of the binary expression tree, two out of
the three sub-expressions can be considered as valid state-checking expressions. The
first one “dragMode == DRAG_MOVE” is an equality comparison of variable drag-
Mode with the named constant DRAG_MOVE, while the third one “selected in-
stanceof Node” is an instanceof expression used for the purpose of RunTime
Type Identification. From the two valid state-checking expressions the first sub-
expression is selected “dragMode == DRAG_MOVE”, since variable dragMode ap-
pears in the state-checking expression of the second if statement “dragMode ==
DRAG_LASSO”. Consequently, the remaining expression is constructed by removing
leaf node “dragMode == DRAG_MOVE” from the tree and by replacing its parent
node “&&” with its sibling node “x > 0”, as shown in Figure 4.3b. Finally, the re-
maining expression will be the compound conditional expression “x > 0 && se-
lected instanceof Node”.

In the case where the expression of an if statement consists of sub-expressions
combined with conditional OR operators (||) and all sub-expressions perform state-
checking on the same variable holding the current state, the functionality of the then
clause is common for all the named constants that participate in the state-checks. In
order to avoid the duplication of the then clause in all the concrete subclasses corres-
ponding to the named constants that participate in the state-checks, an intermediate
class is introduced in the created State/Strategy inheritance hierarchy between the ab-
stract class playing the role of State/Strategy and the corresponding concrete sub-
classes. The intermediate class overrides the polymorphic method of the
State/Strategy superclass with the common functionality of the then clause, while the
concrete subclasses simply inherit the intermediate class without overriding the poly-
morphic method. The name of the intermediate class is extracted from the correspond-
ing named constants employing a Longest Common Subsequence (LCS) algorithm. In
the code example of Figure 4.4a the expressions of both if statements consist of two
sub-expressions combined with a conditional OR operator. Figure 4.4b shows the re-
sulting State inheritance hierarchy which has two intermediate classes (Destroy,
Conquer) containing the common functionality of the corresponding if statements.

61

dragMode == DRAG_MOVE

&&

x > 0

&&

selected instanceof Node

a) Binary expression tree of a compound conditional expression

dragMode == DRAG_MOVE

&&

x > 0

&&

selected instanceof Node

b) Construction of the remaining expression

Figure 4.3: Handling of compound conditional expressions with AND operators.

public boolean getWinningCondition() {

if(cardType == DESTROY_GREEN_ARMY || cardType == DESTROY_BLUE_ARMY) {
...

}
else
if(cardType == CONQUER_ASIA_AFRICA || cardType == CONQUER_ASIA_EUROPE) {

...
}

}

a) Example of compound conditional expressions with OR operators

+getWinningCondition()

Destroy

+getWinningCondition()

Conquer

DestroyGreenArmy DestroyBlueArmy ConquerAsiaAfrica ConquerAsiaEurope

+getWinningCondition()

«interface»

CardType

b) Resulting State hierarchy with an intermediate inheritance level

Figure 4.4: Handling of compound conditional expressions with OR operators.

62

4.3.4 Preconditions

According to Opdyke [86], each refactoring is associated with a set of preconditions
which ensure that the behavior of a program will be preserved after the application of
the refactoring. The proposed technique examines all valid cases of state-checking
and disqualifies those cases that do not satisfy the following set of preconditions:

1. The state-checking code fragment should not contain assignments of local va-
riables belonging to the LVm set (variables of method m declared before the
state-checking code fragment) or parameters belonging to Pm. In the case
where such a variable is passed as parameter to the polymorphic method, its
value would not change after the execution of the polymorphic method, since
parameters are passed by-value in Java. This could possibly affect the beha-
vior of the code that followed the state-checking code fragment after the appli-
cation of the refactoring. An exception to this rule is the case where the state-
checking code fragment contains assignments of a single variable belonging to
the union of LVm and Pm sets that is returned inside or after the state-checking
code fragment.

2. The state-checking code fragment cannot be extracted if it resides inside the
body of an iteration statement (for, while, do-while) and contains unstruc-
tured control flow statements (break, continue). The reason is that if a
branch of the state-checking code is extracted as a separate method, then the
contained unstructured control flow statement will not be surrounded by any
iteration thus leading to a compilation error.

3. The state-checking code fragment should not contain any super method in-
vocations, since the move of the code containing such invocations to the cor-
responding subclass would lead to compilation problems.

4. The names of the created classes belonging to the State/Strategy inheritance
hierarchy should not be the same with the names of already existing classes in
the same package or even in different packages. In the first case, it is not poss-
ible to have two classes with the same name in the same package. In the
second case, the classes of the system that do not explicitly import the already
existing class will present errors due to the ambiguous type of the conflicting
class name. This issue can be resolved by renaming the classes of the
State/Strategy hierarchy that lead to conflict.

4.3.5 Assessing the effect of the refactoring suggestions on design quality

It is reasonable to expect that several cases of state-checking may exist in a software
system, especially when it consists of many classes. As a result, it is really important
to be able to distinguish the refactoring suggestions which have greater effect on the
design of the system. To this end, the proposed technique provides a sorting mechan-
ism for the identified refactoring opportunities.

First of all, the refactoring suggestions are grouped according to their relevance. It
can be considered that there are two kinds of grouping based on the nature of state-
checking. The first one involves the cases that perform state-checking based on
named constants and the grouping criterion is the named constants found in common.
The second one involves the cases that perform RunTime Type Identification based
on subclass types and the grouping criterion is the common inheritance hierarchy that
the subclass types may belong to. The philosophy behind this kind of grouping is that
the refactoring suggestions belonging to the same group will eventually utilize the

63

same inheritance hierarchy (that either is going to be created or already exists). The
groups of refactoring suggestions are sorted according to their size. The higher the
number of the refactoring suggestions belonging to a group, the greater the impact of
the specific group on design quality, since the degree of polymorphism (i.e., the num-
ber of polymorphic methods added to a single inheritance hierarchy) introduced to the
system will be higher. In the case where two groups have the same size, they are
sorted according to the average number of statements per branch (state) of the state-
checking code fragments that they contain. Finally, the refactoring suggestions are
also sorted within the group that they belong to according to the number of cases per-
forming state-checking at each class of the group (at first level) and the average num-
ber of statements per branch of each state-checking code fragment in the group (at
second level).

It should be noted that the refactoring suggestions within a group are independent
with each other, in the sense that the application of a refactoring does not affect the
other suggestions. In other words, the application of all refactorings belonging to a
group leads to the same code regardless of the order in which they are applied.

4.3.6 Limitations

As already mentioned in the introduction, the proposed approach is semi-automatic in
the sense that the decision of whether a refactoring suggestion should be accepted or
not is left up to the designer of the examined program. Consequently, a limitation of
the approach is that the effectiveness of the refactoring identification technique relies
on the expertise of the designer. In general, the designer should consider three factors
in order to derive a decision:

1. The number of conditional structures that perform state-checking on specific
named constants throughout the code of the program. Obviously, the larger the
number of these conditional structures, the more severe the design problem is.
The proposed technique assists the designer by grouping the suggestions ac-
cording to the relevance of the named constants participating in the condition-
al structures and sorting the resulting groups of suggestions according to their
size.

2. The possibility of adding a new state to an already existing group of states due
to a future change in requirements. Obviously, if the designer is absolutely
sure that the addition of new states in the future is not possible, there is no
need to replace the existing solution with one that introduces polymorphism.
This factor can be determined based on the requirements of the program under
examination.

3. The trade-off between the flexibility that may be introduced by the employ-
ment of State pattern and the complexity that may be caused by the number of
concrete State subclasses being added. Obviously, the smaller the number of
added State subclasses and the larger the size of code being moved to them,
the more beneficial the refactoring is.

Assuming that the maintainer of the program under examination has a sufficient
knowledge of its design structure and requirements, and exploits effectively the assis-
tance provided by the proposed technique, the time required for the examination of
the refactoring suggestions is significantly reduced.

The proposed technique does not cover all refactoring opportunities that introduce
polymorphism. Kerievsky [54] proposed a catalogue of refactorings that replace simp-

64

ler solutions to specific design problems with solutions introducing design patterns
and consequently polymorphism. However, each design pattern requires a completely
different approach for the identification of cases where it can be introduced. As a re-
sult, it is impossible to build a common technique that covers all refactoring opportun-
ities introducing design patterns. It should be noted, though, that state-checking condi-
tional logic has been widely recognized as an important design flaw in object-oriented
software [36, 26, 54], since conditional logic is considered as one of the most com-
mon sources of complexity.

It should be noted that conditional structures performing RTTI can be refactored
(in order to eliminate the conditionals by employing polymorphism) either by apply-
ing “Replace Conditional with Polymorphism” [36] or by applying “Move Accumula-
tion to Visitor” [54]. In the first case the code contained in the conditional branches is
moved to the subclasses of a common hierarchy, while in the second case the code is
accumulated in a single Visitor class and double-dispatch is employed. In this particu-
lar context, the second approach (i.e., the Visitor design pattern) is required when the
designer wants to avoid “polluting” the subclasses with additional operations [39]. For
both cases the proposed technique would identify the need for introducing polymor-
phism; however, the selection between the two aforementioned solutions depends on
factors that cannot be automatically determined. The tool currently automates only the
application of the first solution.

Another issue deals with the existence of additional refactoring opportunities on
the conditional structures performing state-checking. Usually, such conflicting refac-
torings involve the extraction of the code residing in conditional branches as new sep-
arate methods (this activity constitutes part of the Refactor to Understand reengineer-
ing pattern introduced by Demeyer et al. [26], the extraction of code that is duplicated
between a conditional structure and other parts of the program as a single method, and
even the move of a conditional structure (or the method containing it) to another class
due to Feature Envy [36] design problem. The aforementioned refactorings can be
considered as low-level transformations compared to more sophisticated refactorings
introducing polymorphism and design patterns, and thus should be applied first. It
should be noted that if the application of low-level refactorings does not affect the
branching structure of conditional statements, then the refactoring opportunities intro-
ducing polymorphism will be preserved.

Finally, the conditional operator ?: (also known as the ternary operator) has not
been considered by the proposed technique. The ternary operator is used in the form
of conditional expression

condition ? value_if_true : value_if_false

where value_if_true is returned if condition is true, and value_if_false otherwise. This
conditional expression is most commonly used as the right hand side of assignment
statements. As a result, its usage potential is limited compared to if and switch
statements. Moreover, it is not suitable for the representation of multiple cases or ex-
ecution branches, since it results in overcomplicated code which is difficult to read
and understand. For these reasons, the conditional expression with ternary operator is
rarely used compared to if and switch statements.

65

4.3.7 Demonstration of the technique on an open-source project

This section presents the refactoring suggestions extracted by the proposed technique
for an open-source project and demonstrates the application of two representative re-
factorings on source code. The examined open-source project is named Violet (ver-
sion 0.16) and is a UML editor intended for students, teachers, and authors who need
to produce simple UML diagrams quickly [47]. The extracted suggestions will be pre-
sented separately for the two kinds of refactoring solutions which are supported by the
proposed technique.

The suggestions corresponding to Replace Type Code with State/Strategy refac-
torings are summarized in Table 4.1.

Table 4.1: Replace Type Code with State/Strategy refactoring suggestions for Violet

(version 0.16).

Id

C
la

ss

M
et

h
o
d

N
a
m

ed
 c

o
n

st
a

n
ts

D
ef

a
u

lt
 c

a
se

N
a
m

e
o
f

v
a

ri
a
b

le
 h

o
ld

-

in
g
 t

h
e

st
a

te

K
in

d
 o

f
v
a
ri

a
b

le
 h

o
ld

in
g

th
e

st
a

te

#
ca

se
s

in
 a

 c
la

ss
 u

ti
li

zi
n

g

th
e

sa
m

e
h

ie
ra

rc
h

y

#
ca

se
s

in
 a

 s
y

st
em

 u
ti

li
z
-

in
g
 t

h
e

sa
m

e
h

ie
ra

rc
h

y

A
v
er

a
g
e

#
st

a
te

m
en

ts
 p

e
r

b
ra

n
ch

1 GraphPanel mouseDragged
DRAG_MOVE
DRAG_LASSO

No dragMode field

3 3

16

2 GraphPanel paintComponent
DRAG_RUBBERBAND
DRAG_LASSO

No dragMode field 6.5

3 GraphPanel mouseReleased
DRAG_RUBBERBAND
DRAG_MOVE

No dragMode field 3.5

4
MultiLine-
String

setLabelText
LEFT
CENTER
RIGHT

No justification field 1 1 1

* all class names are preceded by package “com.horstmann.violet.framework.”

The group of refactoring suggestions 1-3 (Table 4.1) is related to named constants
representing different drag modes. The active drag mode affects the way that UML
components are painted in the diagram, as well as the handling of various mouse
events. It can be considered that the State inheritance hierarchy created for this group
of refactorings will be sufficiently utilized, since three polymorphic methods will be
added (the number of polymorphic methods being added is equal to the size of the
group) and a relatively large number of statements (as it is evident from the last col-
umn of Table 4.1) will be moved to the corresponding overriding methods in the con-
crete State subclasses when the refactorings of the group are applied. The application
of Replace Type Code with State/Strategy refactoring for the third suggestion is dem-
onstrated in Figure 4.5.

As it can be observed from Figure 4.5a, method mouseReleased in class
GraphPanel contains an if/else if statement that performs state-checking. The
state variable is instance variable dragMode having int type, while the set of identi-
fied named constants INC is {DRAG_RUBBERBAND, DRAG_MOVE} and the set of addi-
tional named constants ANC that results as described in Section 4.3.1 is {DRAG_NONE,

66

DRAG_LASSO}. After the application of the refactoring, class GraphPanel plays the
role of Context in the State/Strategy pattern, as shown in Figure 4.5b. The type of the
state variable dragMode has been changed to the type of the abstract class DragMode
playing the role of State/Strategy. The state-checking code fragment has been re-
placed with an invocation of the polymorphic method mouseReleased through state
variable dragMode. Finally, each concrete State subclass (e.g., class DragMove that
represents named constant DRAG_MOVE) overrides the polymorphic method mouse-
Released by copying the statements of the corresponding conditional branches.

public class GraphPanel extends JPanel {

 private Graph graph;

 private ToolBar toolBar;

 private double zoom;

 private Point2D mouseDownPoint;

 private int dragMode;

 private static final int DRAG_NONE = 0;

 private static final int DRAG_MOVE = 1;

 private static final int DRAG_RUBBERBAND = 2;

 private static final int DRAG_LASSO = 3;

 private static final int CONNECT_THRESHOLD = 8;

 public void mouseReleased(MouseEvent event) {

 Point2D mousePoint = new Point2D.Double(

 event.getX()/zoom, event.getY()/zoom);

 Object tool = toolBar.getSelectedTool();

 if(dragMode == DRAG_RUBBERBAND) {

 Edge prototype = (Edge)tool;

 Edge newEdge = (Edge)prototype.clone();

 if(mousePoint.distance(mouseDownPoint) >

 CONNECT_THRESHOLD

 && graph.connect(newEdge,

 mouseDownPoint, mousePoint)) {

 setModified(true);

 setSelectedItem(newEdge);

 }

 }

 else if(dragMode == DRAG_MOVE) {

 graph.layout();

 setModified(true);

 }

 dragMode = DRAG_NONE;

 revalidate();

 repaint();

 }

}

public class GraphPanel extends JPanel {

 private Graph graph;

 private ToolBar toolBar;

 private double zoom;

 private Point2D mouseDownPoint;

 private DragMode dragMode = new DragNone();

 public static final int DRAG_NONE = 0;

 public static final int DRAG_MOVE = 1;

 public static final int DRAG_RUBBERBAND = 2;

 public static final int DRAG_LASSO = 3;

 private static final int CONNECT_THRESHOLD = 8;

 public void mouseReleased(MouseEvent event) {

 Point2D mousePoint = new Point2D.Double(

 event.getX()/zoom, event.getY()/zoom);

 Object tool = toolBar.getSelectedTool();

 dragMode.mouseReleased(tool,mousePoint,this);

 setDragMode(DRAG_NONE);

 revalidate();

 repaint();

 }

} Original class playing the role of Context
public abstract class DragMode {

 public abstract int getDragMode();

 public abstract void mouseReleased(Object tool,

 Point2D mousePoint, GraphPanel graphPanel);

} Abstract class playing the role of State
public class DragMove extends DragMode {

 public int getDragMode() {

 return GraphPanel.DRAG_MOVE;

 }

 public void mouseReleased(Object tool,

 Point2D mousePoint, GraphPanel graphPanel) {

 graphPanel.getGraph().layout();

 graphPanel.setModified(true);

 }

} Concrete State subclass representing DRAG_MOVE

a) original code b) refactored code
Figure 4.5: Application of Replace Type Code with State/Strategy refactoring.

The suggestions corresponding to Replace Conditional with Polymorphism refac-

torings are summarized in Table 4.2.

67

Table 4.2: Replace Conditional with Polymorphism refactoring suggestions for Violet
(version 0.16).

Id

C
la

ss

M
et

h
o
d

S
u

b
cl

a
ss

 t
y
p

es

D
ef

a
u

lt
 c

a
se

N
a
m

e
o

f
su

p
er

cl
a
ss

 t
y
p

e

re
fe

re
n

c
e

K
in

d
 o

f
su

p
er

cl
a
ss

 t
y
p

e

re
fe

re
n

c
e

#
ca

se
s

in
 a

 c
la

ss
 u

ti
li

zi
n

g

th
e

sa
m

e
h

ie
ra

rc
h

y

#
ca

se
s

in
 a

 s
y
st

em
 u

ti
li

z
-

in
g
 t

h
e

sa
m

e
h

ie
ra

rc
h

y

A
v
er

a
g
e

#
st

a
te

m
en

ts
 p

e
r

b
ra

n
ch

1
Sequence-
Diagram-
Graph

layout
CallNode
ImplicitParameterNode

No n
local
variable

2

4

1

2
Sequence-
Diagram-
Graph

removeEdge CallNode Yes end
getter
invocation

1

3 CallEdge getPoints
CallNode
PointNode

Yes n
local
variable

1 5.3

4
Package-
Node

addNode
ClassNode
InterfaceNode
PackageNode

Yes n parameter 1 1.5

* all class names are preceded by package “com.horstmann.violet.”

The group of refactoring suggestions 1-4 (Table 4.2) is related to subclass types
that belong to the inheritance hierarchy of interface Node. The classes belonging to
the Node inheritance hierarchy represent elements that participate in UML diagrams.
The conditional structures corresponding to this group of suggestions perform Run-
Time Type Identification based on the actual subclass type of the Node reference. The
application of Replace Conditional with Polymorphism refactoring for the third sug-
gestion is demonstrated in Figure 4.6.

As it can be observed from Figure 4.6a, method getPoints in class CallEdge
contains an if/else if statement that performs RTTI. The reference to superclass
type is local variable n whose type is Node. The set of identified subclass types IST is
{CallNode, PointNode} and the conditional statement has also a final else clause
(default implementation). The inheritance hierarchy tree structure corresponding to
the identified subclass types is shown in Figure 4.7. The abstract class Rectangu-
larNode has eleven more subclasses which have not been included in the Class Dia-
gram of Figure 4.7. After the application of the refactoring, the conditional code per-
forming RTTI has been replaced with an invocation of the polymorphic method get-
Points (declared in interface Node) through local variable n, as shown in Figure
4.6b. Each subclass belonging to IST overrides the polymorphic method getPoints
by copying the statements of the corresponding conditional branches, while class Ab-
stractNode provides the default implementation by copying the statements of the
final else clause.

68

public class CallEdge extends SegmentedLineEdge {

 public ArrayList getPoints() {

 ArrayList a = new ArrayList();

 Node n = getEnd();

 Rectangle2D start = getStart().getBounds();

 Rectangle2D end = n.getBounds();

 if (n instanceof CallNode &&

 ((CallNode)n).getImplicitParameter() ==

 ((CallNode)getStart()).

 getImplicitParameter()) {

 Point2D p = new Point2D.Double(

 start.getMaxX(),

 end.getY() - CallNode.CALL_YGAP / 2);

 Point2D q = new Point2D.Double(

 end.getMaxX(), end.getY());

 Point2D s = new Point2D.Double(

 q.getX() + end.getWidth(), q.getY());

 Point2D r = new Point2D.Double(

 s.getX(), p.getY());

 a.add(p);

 a.add(r);

 a.add(s);

 a.add(q);

 }

 else if (n instanceof PointNode) {

 a.add(new Point2D.Double(

 start.getMaxX(), start.getY()));

 a.add(new Point2D.Double(

 end.getX(), start.getY()));

 }

 else {

 Direction d = new Direction(

 start.getX() - end.getX(), 0);

 Point2D endPoint =

 getEnd().getConnectionPoint(d);

 if (start.getCenterX() < endPoint.getX())

 a.add(new Point2D.Double(

 start.getMaxX(), endPoint.getY()));

 else

 a.add(new Point2D.Double(

 start.getX(), endPoint.getY()));

 a.add(endPoint);

 }

 return a;

 }

}

public class CallEdge extends SegmentedLineEdge {

 public ArrayList getPoints() {

 ArrayList a = new ArrayList();

 Node n = getEnd();

 Rectangle2D start = getStart().getBounds();

 Rectangle2D end = n.getBounds();

 n.getPoints(a, start, end, this);

 return a;

 }

}

Original class after the replacement of conditional

code with polymorphic method invocation
public abstract class AbstractNode implements Node {

 public void getPoints(ArrayList a,

 Rectangle2D start, Rectangle2D end,

 CallEdge callEdge) {

 Direction d = new Direction(

 start.getX() - end.getX(), 0);

 Point2D endPoint =

 callEdge.getEnd().getConnectionPoint(d);

 if (start.getCenterX() < endPoint.getX())

 a.add(new Point2D.Double(

 start.getMaxX(), endPoint.getY()));

 else

 a.add(new Point2D.Double(

 start.getX(), endPoint.getY()));

 a.add(endPoint);

 }

}
Existing class AbstractNode providing

the default implementation
public class CallNode extends RectangularNode {

 public void getPoints(ArrayList a,

 Rectangle2D start, Rectangle2D end,

 CallEdge callEdge) {

 if (getImplicitParameter() ==

 ((CallNode)callEdge.getStart())

 .getImplicitParameter()) {

 Point2D p = new Point2D.Double(

 start.getMaxX(),

 end.getY() - CallNode.CALL_YGAP / 2);

 Point2D q = new Point2D.Double(

 end.getMaxX(), end.getY());

 Point2D s = new Point2D.Double(

 q.getX() + end.getWidth(), q.getY());

 Point2D r = new Point2D.Double(

 s.getX(), p.getY());

 a.add(p);

 a.add(r);

 a.add(s);

 a.add(q);

}

 }

}

Existing class CallNode providing the

functionality of the first branch
a) original code b) refactored code

Figure 4.6: Application of Replace Conditional with Polymorphism refactoring.

+getPoints()

«interface»

Node

+getPoints()

AbstractNode

+getPoints()

PointNode RectangularNode

+getPoints()

CallNode

default

implementation

overriding

of default

implementation

Figure 4.7: Node inheritance hierarchy tree structure.

69

4.4 JDeodorant Eclipse plug-in

The proposed technique has been implemented as an Eclipse plug-in [49] that not on-
ly identifies state-checking problems but also allows the user to apply the refactorings
that resolve them on Java source code. Moreover, the tool groups the refactoring sug-
gestions according to their relevance and sorts them within their groups according to
the quantitative characteristics described in Section 4.3.5, assisting the user to deter-
mine an appropriate sequence of refactoring applications. The plug-in employs the
ASTParser of Eclipse Java Development Tools (JDT) to analyze the source code of
Java projects and the ASTRewrite to apply the refactorings and provide undo functio-
nality. Figure 4.8 shows the way that the refactoring suggestions are presented to the
user. The first column indicates the type of the extracted refactorings (Replace Type

Code with State/Strategy or Replace Conditional with Polymorphism), while the
second column indicates the method that contains the corresponding state-checking
code fragment. By double-clicking on a row of the table the corresponding state-
checking code fragment is highlighted in the Eclipse editor. The third and fourth col-
umns indicate the number of relevant refactoring suggestions belonging to the same
group at a system and class level, respectively. The final column shows the average
number of statements per branch of the corresponding state-checking code fragment.

Figure 4.8: Grouping and sorting of the refactoring suggestions.

4.5 Evaluation

The proposed technique has been evaluated in three ways:

a. The precision and recall of proposed technique is evaluated by performing an
experiment to compare the refactoring opportunities identified by an indepen-
dent expert to the results of the technique on various open-source projects.

b. The correlation of three quantitative factors (which are used to sort the refac-
toring suggestions extracted by the technique) with the decision of the inde-
pendent expert to accept or reject the refactoring opportunities identified by
the proposed technique is investigated.

c. The scalability of the proposed technique is evaluated by measuring the com-
putation time required for the application of the technique with regard to the
size of various open-source projects.

4.5.1 Evaluation of Precision and Recall

To evaluate the performance of the proposed technique in terms of exactness and
completeness, an experimental study is performed in order to compare the findings of
an independent expert to the results of the proposed technique on various open-source
projects.

70

The expert that participated in the experiment had significant experience in soft-
ware design (he has been working for more than 12 years as a telecommunications
software designer) and deep knowledge of object-oriented design principles and pat-
terns. Moreover, he was unfamiliar with the proposed technique and was able to dedi-
cate a significant amount of time on analyzing the projects under study. The motiva-
tion behind his participation in the experiment was the utilization of the results for his
PhD research on aspect-oriented design.

The projects which have been selected for the experiment are Violet 0.16 which is
a UML editor intended for educational purposes, Ice Hockey Manager 0.1.1 which is
a hockey team management game, and Nutch 0.4 which is a web crawler. The reasons
for selecting these specific projects were:

• Their source code is open and publicly available allowing the replication of
the experiment.

• They have a relatively small size allowing the independent expert to adequate-
ly examine them.

• They are implemented in Java programming language enabling the analysis of
their source code by the proposed technique.

• The selected software releases correspond to rather immature versions, thus
offering potential refactoring opportunities.

• They originate from different application domains allowing, to some extent,
the generalization of the conclusions.

The size characteristics of the examined projects are shown in Table 4.3.

Table 4.3: Size characteristics of the examined open-source projects.
measure Violet 0.16 IHM 0.1.1 Nutch 0.4

#classes 75 86 295
#methods with body 377 629 1389
total #conditional
structures

231 245 1495

source lines of code 6910 8662 23579
* source lines of code (SLOC) have been measured using SLOCCount

The exact question that has been asked to the independent expert was: “Which are

the conditional structures that should be replaced with an instance of State design pat-
tern, or employ an RTTI mechanism that should be replaced with a polymorphic
call?”. True Occurrences are considered the refactoring opportunities reported by the
independent expert. This set of True Occurrences is the baseline against which the
proposed technique is compared when calculating precision and recall. The measures
required for the classification of the results are defined as follows:

• True Positive: A refactoring opportunity identified by the independent expert,
and also by the proposed technique.

• False Positive: A refactoring opportunity identified by the proposed technique,
but not by the independent expert.

• False Negative: A refactoring opportunity identified by the independent ex-
pert, but not by the proposed technique.

• True Negative: A conditional structure which has not been considered to offer
a refactoring opportunity by the independent expert and has not been sug-
gested as a refactoring opportunity by the proposed technique.

71

The precision and recall for the examined projects are given in Table 4.4. It has
been observed that when excluding from the suggestions of the proposed technique
the conditional structures having an average number of statements per branch which is
lower than two (i.e., conditional structures with a relatively small number of state-
ments), the precision of the technique is significantly improved. The measures result-
ing from the application of the threshold (i.e., average number of statements per
branch >= 2) are given inside parentheses wherever a change was observed.

Table 4.4: Precision and recall for the examined open-source projects.
Project Violet 0.16 IHM 0.1.1 Nutch 0.4

True Occurrences (TO) 7 9 17
True Positives (TP) 4 9 (7) 17
False Positives (FP) 4 (0) 12 (0) 13 (1)
False Negatives (FN) 3 0 (2) 0
True Negatives (TN) 220 (224) 224 (236) 1465 (1477)
Precision: TP/(TP+FP) 50% (100%) 43% (100%) 57% (94%)
Recall: TP/(TP+FN) 57% 100% (78%) 100%
Accuracy:
(TP+TN)/(TP+FP+FN+TN)

97% (99%) 95% (99%) 99% (100%)

The false negatives refer to conditional structures using this keyword in place of

the variable holding the current state, whereas the proposed identification technique
requires the existence of an instance variable, local variable, or method parameter. A
conditional code that compares this keyword with a set of named constants (having
the type of the class corresponding to this keyword) cannot be considered as a case
of state-checking, since the value of this reference cannot change after object crea-
tion and as a result the state of the object cannot be modified at runtime. The indepen-
dent expert supported that such cases could be eliminated by introducing a subclass
(of the class corresponding to this reference) for each named constant that partici-
pates in the conditional and overriding the method that contains the conditional in
each created subclass (i.e., by applying the Replace Type Code with Subclasses refac-
toring).

The independent expert reported a few cases where the variable holding the cur-
rent state was a field inherited from a superclass. The proposed technique failed to
collect these cases, because it requires the fields holding the current state to belong in
the same class where the corresponding state-checking code fragment exists. The rea-
son for this requirement is to make feasible the change of the original type of the field
to the type of the abstract class playing the role of State. However, the expert sup-
ported that the original solutions should not be replaced with an instance of State pat-
tern, and as a result, they were not considered as false negatives.

4.5.2 Correlation of quantitative factors with expert judgment

The goal of this experiment is to assess the correlation of three factors with the deci-
sion of the independent expert to accept or reject the refactoring opportunities identi-
fied by the proposed technique. These factors are:

a. The number of conditional structures performing state-checking on the same
set of named constants or equivalently the number of polymorphic methods
that can be added in the same inheritance hierarchy of states.

72

b. The number of alternative states belonging to a set of named constants or
equivalently the number of concrete State subclasses that will be created in an
inheritance hierarchy of states.

c. The average number of statements per branch in a conditional structure per-
forming state-checking or equivalently the average number of statements that
will be moved to the concrete State subclasses of an inheritance hierarchy.

The null and alternative hypotheses being tested are the following:

H0a : The decision of accepting or rejecting a refactoring opportunity is not affected
by factor a.

H1a : The decision of accepting or rejecting a refactoring opportunity is affected by
factor a.

H0b : The decision of accepting or rejecting a refactoring opportunity is not affected
by factor b.

H1b : The decision of accepting or rejecting a refactoring opportunity is affected by
factor b.

H0c : The decision of accepting or rejecting a refactoring opportunity is not affected
by factor c.

H1c : The decision of accepting or rejecting a refactoring opportunity is affected by
factor c.

The hypotheses will be tested by univariate logistic regression analyses, one for
each factor. The dependent variable is a binary variable representing “agreement” or
“disagreement” on the refactoring opportunities identified by the proposed technique,
while the independent variable in each case is the corresponding factor. The values for
the dependent variable were derived from the True Positives and False Positives of
the experiment described in Section 4.5.1. A True Positive corresponds to an “agree-
ment” of the independent expert with a refactoring opportunity identified by the pro-
posed technique, while a False Positive corresponds to a “disagreement” of the inde-
pendent expert with a refactoring opportunity identified by the proposed technique.
The values for the independent variables (i.e., the three factors being examined in the
experiment) were provided by the tool implementing the proposed technique. The da-
ta for the analysis have been drawn from project Nutch 0.4, since it provides the larg-
est number of suggestions (N=30 cases). The results from the analysis are shown in
Table 4.5.

Table 4.5: Logistic Regression Results for project Nutch (version 0.4).
Factor B (S.E.) Wald X

2
df Nagelkerke R

2
p

a 1.777 (0.648) 7.533 1 0.783 0.006
b -0.716 (0.254) 7.930 1 0.657 0.005
c 2.624 (0.920) 8.124 1 0.712 0.004

Since the p-value is less than the significance level (0.05) for all three factors, the

null hypotheses can be rejected and claimed that the decision for accepting a refactor-
ing opportunity is affected by all factors. In particular, considering the coefficients
(B), the decision is affected positively by the number of polymorphic methods to be
added to the same hierarchy of states (factor a) and the average number of statements
that will be moved to the State subclasses (factor c), while it is affected negatively by

73

the number of State subclasses that will be created (factor b). In other words, the in-
dependent expert tends to agree with the refactoring opportunities that sufficiently
utilize a newly created inheritance hierarchy of states (by belonging to a relatively
large group of opportunities that will utilize the same hierarchy of states), move a rel-
atively large number of statements from the conditional branches to the corresponding
State subclasses, and introduce hierarchies of states with a relatively small number of
State subclasses. The proposed technique takes into account these quantitative factors
when sorting the extracted refactoring suggestions in order to assist the designer in
assessing their effect on design quality.

4.5.3 Threats to validity

Since the two experiments have different goals, their major threats are listed separate-
ly [110].

Threats to internal validity:

As threats to internal validity are considered those factors that may cause interfe-
rences regarding the relationships being investigated.

For the first experiment (Section 4.5.1), which is related with the evaluation of
precision and recall of the technique, there is a possibility that the human expert has
missed a number of refactoring opportunities while examining the code of the projects
or misclassified a number of non-valid cases as refactoring opportunities. Obviously,
these threats affect the reported precision and recall of the technique. The first threat
is mitigated by the fact that the selected projects were relatively small in size and thus
could be adequately examined by the independent expert. Moreover, the independent
expert was motivated to perform a detailed and infallible analysis of the projects un-
der study by the fact that the results would be utilized for his PhD research. The
second threat is mitigated by the expertise of the evaluator and his past experience
with design patterns in industrial software development.

For the second experiment (Section 4.5.2), which is related with the correlation of
quantitative factors with expert judgment, there may have been omitted other impor-
tant factors that affect the decision of the independent expert, such as the possibility
of adding a new state to an already existing group of states due to a future change in
requirements. Obviously, this threat could affect the accuracy of a multivariate predic-
tion model which involves more than one independent variables as predictors at the
same time, and for this reason, univariate regression analysis has been performed for
each factor separately. In any case, the investigated statistical relationships do not
prove a causal relationship between the factors and the expert's decision.

Threats to external validity:

Since the experiments have been performed employing a single expert as evalua-
tor and a small number of projects, the study suffers from the usual threats to external
validity. In other words, these factors limit the possibility to generalize the findings
beyond the selected experimental settings (projects and evaluator). For example, in
the experiment regarding the correlation of quantitative factors with expert judgment,
the logistic regression results for the other two projects that have been considered in
the first experiment (Violet 0.16 and IHM 0.1.1) were not statistically significant.

74

4.5.4 Evaluation of Scalability

The process required for the extraction of the refactoring suggestions in a given sys-
tem consists of the following steps:

a. Parsing of the system under study using the ASTParser of Eclipse JDT.
b. Examination of all conditional statements (switch, if/else if statements)

in the given system in order to identify valid cases of state-checking. Moreo-
ver, the valid cases of state-checking are checked against the set of precondi-
tions defined at Section 4.3.4.

Table 4.6 contains various size measures for four open-source projects, namely
Nutch 1.0, FreeCol 0.8.3, JMol 11.6.21, and JFreeChart 1.0.13. Table 4.7 presents the
required computation time for each step of the process.

Table 4.6: Various size measures for the examined open-source projects.
measures Nutch 1.0 FreeCol 0.8.3 JMol 11.6.21 JFreeChart 1.0.13

#classes 582 613 548 1037
#methods
with body

2554 5104 6337 9960

#conditional
structures

2391 5598 10730 8042

source lines
of code

42955 83258 106237 143062

* source lines of code (SLOC) have been measured using SLOCCount

Table 4.7: CPU times for each step required for the extraction of refactoring sugges-

tions.
step Nutch 1.0 FreeCol 0.8.3 JMol 11.6.21 JFreeChart 1.0.13

a 7984 ms 17250 ms 13200 ms 20890 ms
b 200 ms 578 ms 1780 ms 734 ms

* Measurements performed on Intel Core 2 Duo E6600 2.4 GHz, 2 GB DDR2 RAM

The CPU time required for the first step depends on the size of the system under
examination in terms of lines of code, since all field and method declarations (includ-
ing the statements inside the body of each method) are parsed and analyzed. The CPU
time required for the second step primarily depends on the total number of conditional
structures found in the system under examination. The proposed technique requires
access to the Abstract Syntax Tree (AST) information both during the identification of
refactoring opportunities and the application of refactorings which are eventually se-
lected by the user. A limitation regarding scalability is that the AST information of
large projects occupies a large amount of heap memory causing OutOfMemory ex-
ceptions. This issue can be resolved either by applying the proposed technique on
smaller components of a project (e.g., packages) or by removing AST information for
classes that do not exhibit any refactoring opportunities.

75

Chapter 5

5 Identification of Extract Method Refactoring Opportuni-

ties

The extraction of a code fragment into a separate method is one of the most widely
performed refactoring activities, since it allows the decomposition of large and com-
plex methods and can be used in combination with other code transformations for fix-
ing a variety of design problems. Despite the significance of Extract Method refactor-
ing towards code quality improvement, there is limited support for the identification
of code fragments with distinct functionality that could be extracted into new me-
thods. The goal of the proposed approach is to automatically identify Extract Method
refactoring opportunities which are related with the complete computation of a given
variable (complete computation slice) and the statements affecting the state of a given
object (object state slice). Moreover, a set of rules is proposed that exclude from be-
ing suggested as refactoring opportunities cases of slices whose extraction could pos-
sibly cause a change in program behavior.

5.1 Introduction

According to several empirical studies procedures/modules with large size [6], high
complexity [41], and low cohesion [72] require significantly more time and effort for
comprehension, debugging, testing and maintenance. A solution to this kind of design
problems is given by Extract Method refactoring [36] which simplifies the code by
breaking large methods into smaller ones and creates new methods which can be
reused. However, existing IDEs and research approaches have focused on automating
the extraction of statements which are indicated by the developer without providing
support for the automatic identification of code fragments that could benefit from de-
composition. Abadi et al. [1] stressed the inadequate support that is offered by modern
IDEs for various cases requiring the application of Extract Method refactoring.

Extract Method refactoring is employed for fixing several design flaws such as
Duplicated Code [36] where the same code structure existing in more than one places
is extracted into a single method, Long Method [36] where parts of a large and com-
plex method having a distinct functionality are extracted into new methods, Feature

Envy [36] where a part of a method using several data of another class is initially ex-
tracted into a new method and then moved to the class that it envies. The wide use of
Extract Method refactoring has been evident in several empirical studies [75, 76] that
analyzed the refactoring operations performed by programmers using the Eclipse IDE.

The proposed approach covers the identification of refactoring opportunities
which a) extract the complete computation of a given variable (referred to as complete

computation slice) into a new method, b) extract the statements affecting the state of a
given object (referred to as object state slice) into a new method. A complete compu-
tation slice is a slice that contains all the assignment statements of a given variable
within the body of a method, while an object state slice is a slice that contains all the

76

statements modifying the state of a given object (by method invocations through ref-
erences pointing to this specific object) within the body of a method. It should be em-
phasized that object state slice has no relevance with the concept of object slice intro-
duced by Liang and Harrold [65] which is defined as “the statements in the methods

of a particular object that might affect the slicing criterion”. Figure 5.1 illustrates two
code examples for a complete computation slice and an object state slice, respectively.

The evaluation of the approach has shown that both complete computation and ob-
ject state slices are able to capture code fragments implementing a distinct and inde-
pendent functionality compared to the rest of the original method and thus lead to ex-
tracted methods with useful functionality.

public void translate(double dx, double dy){

 if (getParent() == null) {

 dy = TOP_GAPY - getBounds().getY();

 }

 else {

 double y = getBounds().getY() + dy;

 y = Math.max(y,

 getParent().getBounds().getMinY()

 - topHeight / 2);

 y = Math.min(y,

 getParent().getBounds().getMaxY()

 - topHeight / 2);

 dy = y - getBounds().getY();

 }

 super.translate(dx, dy);

}

public void draw(Graphics2D g2) {

 super.draw(g2);

 Color oldColor = g2.getColor();

 g2.setColor(color);

 Shape path = getShape();

 g2.fill(path);

 g2.setColor(oldColor);

 g2.draw(path);

 Rectangle2D bounds = getBounds();

 GeneralPath fold = new GeneralPath();

 fold.moveTo((float)(bounds.getMaxX()

 - FOLD_X), (float)bounds.getY());

 fold.lineTo((float)bounds.getMaxX()

 - FOLD_X, (float)bounds.getY() + FOLD_X);

 fold.lineTo((float)bounds.getMaxX(),

 (float)(bounds.getY() + FOLD_Y));

 fold.closePath();

 oldColor = g2.getColor();

 g2.setColor(g2.getBackground());

 g2.fill(fold);

 g2.setColor(oldColor);

 g2.draw(fold);

 text.draw(g2, getBounds());

}
(a) (b)

Figure 5.1: (a) complete computation slice for variable dy. (b) object state slice for
object reference fold.

The contribution of the proposed approach lies at the following points:

a. It introduces the concept of object state slice as a means to capture code that
modifies the state of a given object and proposes an algorithm for the identifi-
cation of such slices.

b. It proposes a set of rules that exclude from being suggested as refactoring op-
portunities cases of slices whose extraction could possibly cause a change in
program behavior. Moreover, these rules cover the idiomorphic aspects of ob-
ject-oriented programming languages.

c. It does not require any human intervention for the identification of refactoring
opportunities. It can be regarded as semi-automatic in the sense that the de-
signer will eventually decide whether an identified refactoring opportunity is
beneficial or not.

d. It has been evaluated on a well-known open-source project.
e. It has been implemented as an Eclipse plug-in [49] allowing the reproduction

of the results of the performed empirical study as well as its development by
the software maintenance community.

77

5.2 Related Work

The vast majority of the papers found in the literature of function extraction are based
on the concept of program slicing. According to Weiser [108], a slice consists of all
the statements in a program that may affect the value of a variable x at a specific point
of interest p. The pair (p, x) is referred to as slicing criterion. In general, slices are
computed by finding sets of directly or indirectly relevant statements based on control
and data dependences. After the original definition by Weiser, several notions of slic-
ing have been proposed. Concerning the employment of runtime information, static
slicing uses only statically available information to compute slices, while dynamic
slicing [57] uses as input the values of variables for a specific execution of a program
in order to provide more accurate slices. Concerning flow direction, in backward slic-
ing a slice contains all statements and control predicates that may affect a variable at a
given point, while in forward slicing [9] a slice contains all statements and control
predicates that may be affected by a variable at a given point. Concerning syntax pre-
servation, syntax-preserving slicing simplifies a program only by deleting statements
and predicates that do not affect a computation of interest, while amorphous slicing
[43] employs a range of syntactic transformations in order to simplify the resulting
code. Concerning slicing scope, intraprocedural slicing computes slices within a sin-
gle procedure, while interprocedural slicing [48] generates slices that cross the boun-
daries of procedure calls. Program slicing has several applications in various software
engineering domains such as debugging, program comprehension, testing, cohesion
measurement, maintenance and reverse engineering [101, 10, 42].

A direct application of program slicing in the field of refactorings is slice extrac-

tion, which has been formally defined by Ettinger [34] as the extraction of the compu-
tation of a set of variables V from a program S as a reusable program entity, and the
update of the original program S to reuse the extracted slice. Within the context of
slice extraction the literature can be divided into two main categories according to Et-
tinger [34]. In the first category belong the methodologies that extract slices based on
a set of selected statements which are indicated by the user (arbitrary method extrac-

tion). In the second category belong the methodologies that extract slices based on a
variable of interest at a specific program point which is indicated by the user.

The first approach for decomposing a procedure was proposed by Gallagher and
Lyle [38]. They introduce the concept of decomposition slice as a slice that captures
all computation on a given variable. The decomposition slice for a variable v is the
union of the slices that result by using as seed statements in slicing criteria the state-
ments that output variable v along with the last statement of the procedure. As output
statement is considered a statement that prints or returns the value of a given variable.
They also defined dependence relations between the resulting decomposition slices of
a procedure. Two decomposition slices S(υ) and S(w) are considered as independent if
their intersection is empty (S(υ) ∩ S(w) = ∅). Decomposition slice S(υ) is considered
as strongly dependent on S(w) if S(υ) is a proper subset of S(w) (S(υ) ⊂ S(w)). The de-
pendence relationships between the decomposition slices are used to construct the lat-

tice of decomposition slices, which can be considered as a directed graph where nodes
represent the decomposition slices of a procedure and edges represent the strongly
dependent relationships between them. Figure 5.2b shows the lattice of decomposition
slices for the code in Figure 5.2a. The decomposition slices for the output variables of
the code in Figure 5.2a are the following: S(c) = {12, 13, 24}, S(nc) = {11, 12, 13, 14,

78

24}, S(nl) = {9, 12, 13, 15, 17, 18, 24}, S(inword) = {8, 12, 13, 15, 16, 20, 21, 24},
and S(nw) = {8, 10, 12, 13, 15, 16, 20, 21, 22, 24}.

As it can be observed from Figure 5.2b, S(c) is strongly dependent on all other de-
composition slices and S(inword) is strongly dependent on S(nw). Tonella [102] intro-
duced the concept lattice of decomposition slices as an extension to decomposition
slice graph [38] in order to represent weak inferences (i.e., shared statements which
are not decomposition slices) between decomposition slices. For example, statement
15 in Figure 5.2a is shared by decomposition slices S(nl), S(inword) and S(nw) but
does not form a decomposition slice. Figure 5.2c illustrates the concept lattice of de-
composition slices for the code in Figure 5.2a.

By examining Figure 5.2c, it can be observed that by traversing the concept lattice
from the bottom to the decomposition slice of a variable v whose computation is in-
tended to be extracted, the slice of variable v is the union of the statements in the tra-
versed decomposition slices, while the statements that will be duplicated if the slice is
extracted is the union of the statements in the traversed decomposition slices exclud-
ing the decomposition slice of variable v. The lattice of decomposition slices is used
by Gallagher and Lyle [38] in order to construct the complement of a decomposition
slice (i.e., the statements that should remain in the original procedure after the extrac-
tion of the decomposition slice). The proposed approach in a similar manner com-
putes the indispensable statements corresponding to a slice. The indispensable state-
ments are statements that although belong to the slice, should not be removed from
the original method due to the existence of remaining statements in the original me-
thod (i.e., statements not belonging to the slice) which are dependent on them.

S(c)

S(inword)

S(nw)S(nl)S(nc)

(a) (b) (c)

Figure 5.2: (a) The code of a word counting program. (b) The lattice of decomposi-
tions slices according to Gallagher and Lyle [38]. (c) The concept lattice of decompo-

sitions slices according to Tonella [102].

79

The major difference of the proposed approach with decomposition slicing is re-
lated with the selection of the seed statements which are required to derive the compu-
tation of a given variable. The decomposition slicing technique uses as seed state-
ments the statements that output the variable under consideration along with the last
statement of the procedure. However, the selected seed statements may include code
which is irrelevant with the computation of the variable under consideration, or even
lead to the inclusion of additional irrelevant statements in the resulting slices due to
the use of multiple variables within the seed statements. On the other hand, the pro-
posed approach uses as seed statements the statements where the variable under con-
sideration is defined, leading to slices that contain the pure variable computation.

Cimitile et al. [23] proposed a specification driven slicing process for identifying
reusable functions based on the precondition and postcondition of a given function.
Initially, a symbolic execution technique is used to recover the preconditions for the
execution of each statement and predicate existing within the body of the function.
Eventually, the statements whose preconditions are equivalent to the pre and post
conditions of the function serve as candidate entry and exit points of the computed
slice (i.e., a pair of statements restricting the expansion of the slice within their boun-
daries). A limitation of the approach is that human intervention is required to asso-
ciate the data of the function’s specification with the program variables, to define the
set of output variables of the function and to provide invariant assertions that cannot
be automatically derived.

Lanubile and Visaggio [62] introduced the notion of transform slicing as a method
for extracting reusable functions. A transform slice includes the statements which
contribute directly or indirectly to transform a set of input variables into a set of out-
put variables. The computation of a transform slice is similar to the computation of a
static backward slice with the difference that it expands until the statements that de-
fine values for the input variables are included in the slice. Transform slicing uses
output statements as seeds for the slicing criteria, or the last program statement if it is
not possible to find an output statement in the proper place. A limitation of the ap-
proach is that it presupposes the knowledge that a function is performed in the ex-
amined code and its specification in terms of input and output data. This kind of in-
formation can be provided only by means of human interaction. Moreover, the under-
lying method has not been empirically evaluated.

Kang and Bieman [51] proposed the input-output dependence graph (IODG) as a
means to model and visualize the dependency relationships between inputs and out-
puts of a module. Based on the IODG representation of a module they defined the de-
sign-level cohesion (DLC) measure which provides an objective criterion for evaluat-
ing and comparing alternative design structures. Moreover, the DLC measure can be
used as a criterion to determine whether or not a given module should be redesigned
or restructured. Based on the IODG representation and the DLC measure they defined
eight basic restructuring operations (i.e., module decomposition and composition op-
erations) and described a process for applying the restructuring operations to improve
design of system modules. The main limitation of the approach is that the restructur-
ing process requires human intervention in order to specify expected marginal DLC
levels of the examined modules, to decompose the IODG of the poorly designed
modules in appropriate partitions exhibiting higher DLC level, and to locate unneces-
sarily decomposed modules based on the IODG visualization and aided by coupling,
size, and/or reuse measures.

80

Lakhotia and Deprez [60] proposed a transformation, called Tuck, which can be
used to restructure a program by breaking its large functions into smaller ones. The
tuck transformation consists of three steps: Wedge, Split, and Fold. The wedge is a
program slice that contains all the statements that influence a given set of seed state-
ments. The split transformation splits the original function into two single-entry, sin-
gle-exit (SESE) regions, one containing all the computations relevant to the set of
seed statements and the other containing all the remaining computations. The trans-
formation introduces new variables or renames variables and composes the two new
regions so that the overall computation remains unchanged. Finally, the fold trans-
formation creates a function for the SESE region corresponding to the seed statements
and replaces the statements by a call to this function. A major limitation of the ap-
proach is that the tuck transformation requires as external input a set of seed state-
ments, and a foldable subgraph (i.e., a subgraph where there is no edge from its exit
node to any node of the subgraph) containing the seed statements. Furthermore, the
evaluation performed by Komondoor and Horwitz [56] has shown that the perfor-
mance of the approach was poor on a dataset of “difficult” cases because it does not
allow the duplication of predicates, promotes statements in a non-intelligent manner
(i.e., copies/moves unnecessary code to the extracted function) and does not handle
exiting jumps.

Komondoor and Horwitz [56] proposed a method that takes as input the control
flow graph of a procedure and a set of statements to be extracted (marked statements)
and applies semantics-preserving transformations to make the marked statements
form a contiguous, well-structured block that is suitable for extraction. The applied
transformations are the reordering of unmarked statements in order to make the
marked statements contiguous, the duplication of predicates in both the extracted and
original procedure, the promotion of unmarked statements to the marked ones, and the
special handling of exiting jumps such as return, break and continue statements. The
first disadvantage of the approach is that it requires external intervention for the selec-
tion of the initial marked statements (which can be performed by the programmer or
program analysis tools). The second disadvantage of the approach is that it does not
allow the duplication of assignment statements and loop predicates leading to missed
extraction opportunities in favor of low code duplication.

Harman et al. [44] introduced a variation of the algorithm proposed by Komon-
door and Horwitz [56] which is based on amorphous procedure extraction. Amorph-
ous extraction relaxes the syntactic constraints of the original program in order to en-
able the application of simplifying transformations. However, it retains the require-
ment that the extracted program and the original must be semantically equivalent. The
goal of the proposed variation is to minimize the need for statement promotion (i.e.,
when a statement which was not originally marked for extraction must be extracted to
preserve the semantics of the program) and predicate duplication in order to make the
extraction process more precise. The main limitation of the approach is that it requires
the identification of marked statements (i.e., the statements whose extraction is de-
sired) to be performed by an external identification tool or a software maintainer.

Jiang et al. [50] performed an empirical study on six open-source projects in order
to evaluate the splitability of procedures. Concerning the frequency of splitable pro-
cedures, they concluded that the majority of procedures are not splitable, while those
which are splitable can be split into two or three subprocedures. Furthermore, they
studied the overlap distribution of splitable procedures. Overlap is a measure of code
duplication between the resulting subprocedures. The higher the overlap, the more

81

cohesive the original procedure is, and therefore, less likely to be splitable. They con-
cluded that the splitability of a procedure depends on the inter-dependency between
its subprocedures. The higher the inter-dependency of subprocedures, the more state-
ments they share with each other, and splitting generates a larger amount of dupli-
cated code. Finally, the empirical results have shown a strong correlation between
procedure size and splitability in the case of 2-way splitable procedures.

The aforementioned methods apart from requiring significant external input in
terms of seed statements or input/output variables in order to operate, concern only
procedural programming languages. Therefore, they do not take into account impor-
tant issues regarding various aspects of object-oriented programming languages.

Maruyama [70] simplified an interprocedural slicing algorithm proposed by Lar-
sen and Harrold [63] by making it intraprocedural and then introduced the concept of
block-based region into the resulting algorithm. A basic block is a sequence of con-
secutive statements in which flow of control enters at the beginning and leaves at the
end without halt or possibility of branching except at the end. Maruyama employed a
block-partitioning algorithm in order to decompose the control flow graph of a me-
thod into basic blocks and form several block-based regions used for restricting the
expansion of slice within their boundaries. In this way it is possible to extract more
than one slices for a given slicing criterion by using the appropriate block-based re-
gions, compared to classic static slicing algorithms that extract only a single slice for
a given slicing criterion by using the whole source method as target region. Although
the approach of Maruyama was the first to cover slice extraction in object-oriented
programming languages, it suffers from several limitations. It requires the indication
of a variable of interest at a specific program point by the programmer in order to op-
erate. It does not handle behavior preservation issues that can be raised from duplica-
tion of statements. It does not guarantee that the complete computation of the variable
indicated by the user will be extracted as a separate method. Finally, it does not sup-
port extraction opportunities which are related with objects but only with variables of
primitive type.

5.3 Method

The proposed method handles two main categories of Extract Method refactoring op-
portunities. The first category refers to variables (having primitive data types or being
object references) whose value is modified by assignment statements throughout the
body of the original method. The second category refers to object references (which
are local variables or fields of the class containing the original method) pointing to
objects whose state is affected by method invocations throughout the body of the orig-
inal method. It should be noted that the state of an object reference is affected by me-
thod invocations that modify the value of at least one of its attributes. In the first case,
the goal is to extract the complete computation of a given variable (complete compu-

tation slice), while in the second case, the goal is to extract all the statements modify-
ing the state of a given object (object state slice) within the scope of the original me-
thod. The aforementioned goals ensure at a certain degree that the extracted code will
exhibit useful functionality. To achieve these goals the proposed approach employs
the union of static slices by different means according to the specific needs of each
category. According to De Lucia et al. [25] the unions of static slices which rely on
slicing algorithms that do preserve a subset of the direct data and control dependence
relations of the original program are valid slices.

82

5.3.1 Construction of the Program Dependence Graph

The proposed approach employs the Program Dependence Graph (PDG) in order to
represent the methods under examination. The Program Dependence Graph was in-
itially introduced by Ferrante et al. [35] in order to represent control and data flow
dependences between the operations of a procedure. The nodes of a PDG represent
the statements of the corresponding procedure. Each node has a set of defined va-
riables which consists of the variables whose value is modified by an assignment, and
a set of used variables which consists of the variables whose value is used at the cor-
responding statement. A control dependence edge from node p to node q denotes that
the execution of statement q depends on the control conditions of statement p. The
sets of defined and used variables are employed to compute data dependences be-
tween the statements throughout the procedure control flow. A data dependence edge
from node p to node q due to variable x denotes that statement p defines variable x,
statement q uses variable x and there exists a control flow path from statement p to q
without an intervening definition of x.

Later on, Horwitz et al. [48] introduced the System Dependence Graph (SDG) in
order to represent procedure calls between PDGs and face the problem of interproce-
dural slicing (i.e., slicing that crosses the boundaries of procedure calls). A procedure
call is represented using a call-site vertex, while the information transfer is
represented using four kinds of parameter vertices, namely actual-in and actual-out
on the calling side (representing assignment statements that copy the values of the ac-
tual parameters to the call temporaries and from the return temporaries, respectively)
and formal-in and formal-out in the called procedure (representing assignment state-
ments that copy the values of the formal parameters from the call temporaries and to
the return temporaries, respectively). The PDGs are connected using three kinds of
edges: a call edge is added from each call-site vertex to the corresponding procedure-
entry vertex, a parameter-in edge is added from each actual-in vertex at a call site to
the corresponding formal-in vertex in the called procedure, and a parameter-out edge
is added from each formal-out vertex in the called procedure to the corresponding ac-
tual-out vertex at the call site.

Larsen and Harrold [63] extended the System Dependence Graph (SDG) proposed
by Horwitz et al. [48] to represent object-oriented programs. They introduced the
Class Dependence Graph (ClDG) to represent the methods and instance variables be-
longing to a class. Additionally, they proposed ways to represent inherited methods,
class instantiations and polymorphic method calls. Liang and Harrold [65] improved
the aforementioned approach by providing a way to distinguish data members for dif-
ferent objects instantiated from the same class.

Since the proposed approach aims at extracting intraprocedural slices (i.e., slices
that extend within the boundaries of a method) as new separate methods, the PDG re-
presentation has been adopted which does not include any method call representation
elements. However, the information regarding the state of the objects being refe-
renced inside the body of a method is crucial for the formation of precise and correct
slices, as well as the preservation of program behavior after code extraction. The state
of an object reference can be modified or accessed by invoked methods which modify
or access the fields of the object inside their body. These methods can be invoked di-
rectly by using the object reference as invoker, or indirectly by passing the object ref-

83

erence as parameter to another method which in turn uses the object reference as in-
voker.

Let us assume that statement s inside the body of method m invokes a method
through object reference r or passes object reference r as parameter to a method. A
partial call graph is recursively generated starting from method m that includes only
the method calls which are associated with object reference r (i.e., methods which are
actually invoked through the original reference r or the original reference r is passed
as parameter to them). While the partial call graph is constructed, the fields which are
modified or used inside the body of each visited method are added to the sets of de-
fined and used variables of statement s, respectively. These fields are represented as
composite variables (i.e., variables consisting of more than one parts), where the last
part is the name of the corresponding field and the initial part is the actual reference
through which the field was modified or accessed.

In the code example of Figure 5.3, statement 5 of method main invokes method
addRental through object reference customer and passes as parameter to the in-
voked method object reference rental. The partial call graph corresponding to this
method invocation is shown in Figure 5.4. At each method node in the call graph the
sets of defined and used variables are shown, where the formal parameters have been
replaced with the actual parameters (e.g., in method addElement of class Vector,
formal parameter obj has been replaced with actual parameter rental) and this
reference has been replaced with the actual invoker reference (e.g., in method ad-
dRental of class Customer, this reference has been replaced with the actual in-
voker reference customer). The sets of defined and used variables for statement 5
are actually the unions of the defined and used variable subsets, respectively, for each
method in the call graph.

The computation of data dependences in the PDG of method m takes also into ac-
count the composite variables which are related with the state of object references ex-
isting in the body of m. These additional data dependences allow the formation of
more precise and correct slices and at the same time enable the extraction of code that
affects the state of a given object reference.

public class Customer {

 private String _name;

 private Vector _rentals = new Vector();

 public Customer (String name) {

 _name = name;

 }

 public void addRental(Rental arg) {

 _rentals.addElement(arg);

 }

1 public static void main(String args[]) {

2 Customer customer =

new Customer("customer");

3 Movie movie =

 new Movie("title",Movie.NEW_RELEASE);

4 Rental rental = new Rental(movie, 3);

5 customer.addRental(rental);

 }

}

public class Vector<E> extends AbstractList<E> {

 protected Object[] elementData;

 protected int elementCount;

 protected int capacityIncrement;

 public synchronized void addElement(E obj) {

 modCount++;

 ensureCapacityHelper(elementCount + 1);

 elementData[elementCount++] = obj;

 }

 private void ensureCapacityHelper(int minCapacity){

 int oldCapacity = elementData.length;

 if (minCapacity > oldCapacity) {

 Object[] oldData = elementData;

 int newCapacity = (capacityIncrement > 0)

 ? (oldCapacity + capacityIncrement)

 : (oldCapacity * 2);

 if (newCapacity < minCapacity) {

 newCapacity = minCapacity;

 }

 elementData =

 Arrays.copyOf(elementData, newCapacity);

 }

 }

}
Figure 5.3: Code example to demonstrate the handling of method invocations.

84

main

Customer::addRental

Vector::addElement

customer._rentals

rental

customer.addRental(rental)

customer._rentals.addElement(rental)

Def Use

customer._rentals.modCountcustomer._rentals.modCount

customer._rentals.elementCountcustomer._rentals.elementCount

customer._rentals.elementData

--

Vector::ensureCapacityHelper
Def Use

customer._rentals.elementData

customer._rentals.capacityIncrement

customer._rentals.elementData

customer._rentals.ensureCapacityHelper(customer._rentals.elementCount + 1)

rental

Def Use

customer

rental

--

Def Use

Figure 5.4: Call graph for statement 5 of method main in Figure 5.3, along with the

sets of defined and used variables for each visited method (the actual references
through which the methods are invoked and parameters are highlighted in bold).

The proposed approach adopted a variety of code analysis techniques in order to fur-
ther increase the precision and correctness of the resulting slices.

a. Alias analysis [85]: An alias relationship exists between two references when
they refer to the same object in memory during program execution. The set of ref-
erences in which each element pair satisfies an alias relationship is called an alias

set. Alias analysis is a method for extracting alias sets by static code analysis.
Alias analysis techniques are mainly divided into two categories, namely flow in-

sensitive where the execution order of statement is not taken into account and flow

sensitive where the execution order of statements is taken into account. Flow sen-
sitive techniques follow the control flow of a program in order to determine alias
relationships and as a result they can extract more accurate alias relations com-
pared to flow insensitive approaches. Landi et al. [61] have introduced the concept
of reaching alias sets in order to compute flow sensitive alias relationships. A
reaching alias set for a given statement is a collection of alias sets which apply
just before the execution of this statement. For example, in the code of Figure 5.5
the reaching alias set for both statements 5 and 6 is 〈a, b〉, since after the execu-
tion of statement 4 references a and b point to the same object in memory. The
proposed approach handles the existence of a reaching alias set RASet for state-
ment s in the following way:

For each composite variable in the sets of defined and used variables of statement
s whose first part is a reference r belonging to an alias set A of RASet, an addition-
al number of composite variables is added (to the set of defined or used variables,

85

respectively) which is equal to the number of references belonging to alias set A
(excluding r) by replacing the first part of the composite variable with each one of
the aliases of reference r.

In the example of Figure 5.5, the additional composite variables that were added
in the sets of defined and used variables are highlighted in rectangles. In this way,
it is ensured that in the case of an alias relationship all statements affecting the
state of the same object in memory will be extracted together regardless of the ac-
tual references through which the methods changing the object’s state are invoked.

public class Buffer {

 private String s = "";

 public void append(String s) {

 this.s += s;

 }

1 public void method() {

2 Buffer a = new Buffer();

3 Buffer b;

4 b = a;

5 a.append("a");

6 b.append("b");

 }

}

a.s, b.s
Def Use

a.s, b.s, a

b.s, a.s, bb.s, a.s

Figure 5.5: Code example containing an alias relationship between references a and
b (the composite variables that were added in the sets of defined and used variables

due to the existence of alias set 〈a, b〉 are highlighted in rectangles).

b. Polymorphic method call analysis [63, 65]: A polymorphic method call occurs
when an abstract method is invoked through a reference of abstract type. Usually,
the actual subclass type of the reference can be determined only at runtime. When
the type of the caller reference cannot be statically determined, all concrete im-
plementations of the abstract method are visited in the respective call graph. In
this way, it is ensured that the state information associated with the caller refer-
ence covers all possible subclass types that the reference may obtain at runtime.

5.3.2 Block-based Slicing

Traditional intraprocedural slicing algorithms use the entire method body as a region
where the slice may expand starting from the statement of the slicing criterion. How-
ever, within the context of slice extraction, where the goal is to extract the resulting
slice as a new separate method, the extraction of a slice that expands throughout the
entire method body is not always feasible. Maruyama introduced the concept of
block-based slicing [70] as a means for producing more than one slices for a given
slicing criterion. This is achieved by constructing block-based regions within the body
of a method, which can be used to restrict the expansion of a slice within their boun-
daries. In the proposed approach, block-based slicing helps to determine regions of
the original method where slices starting from statements that belong to different
blocks and concern the computation of the same variable can be extracted together as
a union. The block-based regions of method m can be determined in the following
way:

As a first step, the control flow graph of method m is constructed in order to de-
compose it into basic blocks. A basic block is a sequence of consecutive statements in
which flow of control enters at the beginning and leaves at the end without halt or

86

possibility of branching except at the end. A block-partitioning algorithm [3] marks as
leader nodes the first node, the join nodes (i.e., the nodes which have two or more in-
coming flow edges), and the nodes that immediately follow a branch node (i.e., a node
which has two or more outgoing flow edges) in the control flow graph of the method.
For each leader node, its basic block consists of itself and all subsequent nodes up to
the next leader or the last node in the control flow graph. Figure 5.6 illustrates the
control flow graph (decomposed into basic blocks) for method statement() used in
a well-established refactoring example [36].

1 public String statement() {

2 double totalAmount = 0;

3 int frequentRenterPoints = 0;

4 Enumeration rentals = _rentals.elements();

5 String result = "Rental Record for " + getName() + "\n";

6 while(rentals.hasMoreElements()) {

7 Rental each = (Rental) rentals.nextElement();

8 double thisAmount = each.getCharge();

9 if(each.getMovie().getPriceCode() == Movie.NEW_RELEASE

&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;

 else

11 frequentRenterPoints++;

12 result += "\t" + each.getMovie().getTitle() + "\t"

 + String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;

 }

14 result += "Amount owed is "

 + String.valueOf(totalAmount) + "\n";

15 result += "You earned " + String.valueOf(frequentRenterPoints)

 + " frequent renter points";

16 return result;

 }

R(B1)

R(B2)

R(B3)

2

3

4

5

6

B1

B2

7

8

9

B3

10
B4

14

15

16

B7

11
B5

12

13
B6

basic

block

leader

T

T

F

F

join node

branch

node

first node

Figure 5.6: Method statement() and its corresponding control flow graph.

Maruyama defined as reachable blocks (Reach(B)) for basic block B, the set of

blocks that can be reached from B on the control flow graph without traversing loop-
back edges. For example, the reachable blocks for basic block B3 in the control flow
graph of Figure 5.6 is set Reach(B3) = {B3, B4, B5, B6}, since the loopback edge from
statement 13 to statement 6 is excluded from being traversed.

Based on the definition of reachable blocks, Maruyama defined as block-based

region R(Bn) for boundary block Bn the set of nodes which belong to Reach(Bn). Fig-
ure 5.6 depicts the statements that belong to regions R(B1), R(B2) and R(B3), respec-
tively. In terms of program dependency, a block-based region can be considered as a
subgraph of the program dependence graph of method m which contains as depen-
dence edges only the edges that start from and also end to nodes of the region. It
should be noted that a loop-carried data dependence belongs to the region subgraph, if
additionally the loop node through which the dependence is carried belongs to the
nodes of the region. Formally, the edges belonging to region R(B) is set

EB(R(B)) = {p c→ q ∈ E(m) | p, q ∈ R(B)} ∪

 {p d→ q ∈ E(m) | p, q ∈ R(B)} ∪

 {p)(ld→ q ∈ E(m) | l, p, q ∈ R(B)}

where E(m) is the set of all edges in the PDG of method m,
p c→ q denotes a control dependence edge from node p to node q,

87

p d→ q denotes a loop-independent data dependence edge from node p to node q, and

p)(ld→ q denotes a loop-carried data dependence edge from node p to node q which

is carried by loop l.

Assuming that slicing criterion (n, u) is given, which consists of statement n be-
longing to method m and variable u that is defined or used in statement n, it is neces-
sary to determine the block-based regions in which a slice can be computed for the
specific slicing criterion. To achieve this, the control dependence graph (i.e., the pro-
gram dependence graph containing only control dependence edges) of method m is
constructed. Figure 5.7 shows the control dependence graph of method state-
ment() decomposed into basic blocks (block-based CDG). The control dependence
graph actually represents the nesting of statements inside a method (assuming that the
code does not include unstructured control flow or exception flow).

1

2 3 4 5 6

7 8 9

10 11

14 15 16
B1 B7B2

B3

12 13
B6

B5B4

leader

method entry

Figure 5.7: Control dependence graph of method statement().

Assuming that node r is the node that directly dominates the leader node of basic

block B, Maruyama defined as dominated blocks (Dom(B)) for basic block B, the set
of blocks that are dominated by node r (a block is considered dominated by r if there
exists a transitive control dependence from r to this block). For example, the leader
node of block B3 (node 7) is directly dominated by node 6 in the control dependence
graph of Figure 5.7. As a result, the dominated blocks for basic block B3 are the
blocks that are dominated by node 6, namely {B3, B4, B5, B6}.

The sets of reachable and dominated blocks are used to compute the set of boun-

dary blocks for statement n Blocks(n) in the following way:

1. For each basic block B of method m compute the sets of blocks Reach(B) and
Dom(B).

2. If the basic block of statement n is contained in set {Reach(B) ∩ Dom(B)},
then block B is added to the set of boundary blocks for statement n.

For example, the boundary blocks for statement 8 in Figure 5.6, which belongs to
basic block B3, is set Blocks(8) = {B1, B2, B3}, since block B3 is contained in the inter-
section of reachable and dominated blocks for basic blocks B1, B2 and B3.

The block-based regions in which a slice can be computed for slicing criterion (n,
u) are the regions of the boundary blocks for statement n (Blocks(n)). For example,
the block-based regions for slicing criterion (8, thisAmount) are R(B1), R(B2) and
R(B3), since the boundary blocks for statement 8 is set Blocks(8) = {B1, B2, B3}.

88

5.3.3 Algorithms for the identification of Extract Method refactoring opportun-

ities

The proposed approach provides two main algorithms for the identification of Extract
Method refactoring opportunities. The first algorithm identifies refactoring opportuni-
ties where the complete computation of a local variable or parameter (complete com-

putation slice) can be extracted, meaning that the resulting slice will contain all the
assignment statements modifying the value of the local variable. The second algo-
rithm identifies refactoring opportunities where all the statements affecting the state
of an object (object state slice) can be extracted. The object reference can be a local
variable which is declared inside the body of the original method, a parameter of the
original method, or a field of the class containing the original method. Both algo-
rithms do not require any user input (i.e., selection of statements or variables) in order
to operate.

5.3.3.1 Identification of complete computation slices

The proposed algorithm takes as input a method declaration m and returns a set of
slice extraction refactoring suggestions for each variable declared inside method m
whose value is modified by at least one assignment statement, covering the complete
computation of the corresponding variable. The algorithm consists of the following
steps:

1. Identify the set of local variables V which are declared inside method m.
2. For each variable v ∈ V identify the set of seed statements C which contain an as-

signment of variable v. These statements along with variable v form a set of slic-
ing criteria (c, v), where c ∈ C.

3. For each statement c ∈ C compute the set of boundary blocks Blocks(c).
4. Calculate the common boundary blocks for the statements in set C as

() ()
Cc

cBlocksCBlocks
∈

= .

5. For each slicing criterion (c, v), where c ∈ C, and boundary block Bn ∈ Blocks(C)
compute the block-based slices SB(c, v, Bn). Block-based slice SB(c, v, Bn) is the
set of statements that may affect the computation of variable v at statement c
(backward slice), extracted from the program dependence subgraph corresponding
to region R(Bn).

6. For each Bn ∈ Blocks(C) the union of slices () ()
Cc

nBnB BvcSBvCUS
∈

= ,,,, is a

slice that covers the complete computation of variable v within the region R(Bn).

This algorithm produces for each variable v declared inside method m, a number
of slices which is equal to the size of Blocks(C), where C is the set of statements con-
taining an assignment of variable v.

The application of the algorithm will be demonstrated on a well-established refac-
toring teaching example [28]. Figure 5.8 illustrates method printDocument() and
its control flow graph decomposed into basic blocks.

89

1 public void printDocument(Packet document) {

2 String author = "Unknown";

3 String title = "Untitled";

4 int startPos = 0, endPos = 0;

5 if (document.message_.startsWith("!PS")) {

6 startPos = document.message_.indexOf("author:");

7 if (startPos >= 0) {

8 endPos = document.message_.indexOf(

 ".", startPos + 7);

9 if (endPos < 0)

10 endPos = document.message_.length();

11 author = document.message_.substring(

 startPos + 7, endPos);

 }

12 startPos = document.message_.indexOf("title:");

13 if (startPos >= 0) {

14 endPos = document.message_.indexOf(

 ".", startPos + 6);

15 if (endPos < 0)

16 endPos = document.message_.length();

17 title = document.message_.substring(

 startPos + 6, endPos);

 }

 } else {

18 title = "ASCII DOCUMENT";

19 if (document.message_.length() >= 16)

20 author = document.message_.substring(8, 16);

 }

21 System.out.println(author);

22 System.out.println(title);

 }

2

3

4

5

6

B1

B2

18

19

B10

7

8
B3

9

10
B4

12

B6

11
B5

13

14
B7

15

16
B8

17
B9

F

F

F

F

20

B11

21

22

B12

F

F

T

T

T

T

boundary blocks

of statement 11

boundary blocks

of statement 20

T

T

Figure 5.8: Method printDocument() and the corresponding control flow graph.

Assume that the computation of variable author is intended to be extracted as a

separate method. The algorithm is applied as follows:

a. The assignment statements of variable author are statements 11 and 20 (under-
lined in the code of Figure 5.8).

b. The sets of boundary blocks for statements 11 and 20 are Blocks(11) = {B1, B2, B3,
B5} and Blocks(20) = {B1, B10, B11}, respectively (as shown in the control flow
graph of Figure 5.8).

90

c. The intersection of the two sets of boundary blocks is Blocks({11, 20}) = {B1}
and as a result only block-based region R(B1) can be used as region for the union
of the resulting static slices.

d. The block-based static slices for statements 11 and 20 are SB(11, author, B1) =
{2, 4, 5, 6, 7, 8, 9, 10, 11} and SB(20, author, B1) = {2, 5, 19, 20}, respectively.

e. The union of the static slices is USB({11, 20}, author, B1) = {2, 4, 5, 6, 7, 8, 9,
10, 11, 19, 20}.

5.3.3.2 Identification of object state slices

The proposed algorithm takes as input a method m and returns a set of slice extraction
refactoring suggestions for each reference inside method m pointing to an object
whose state is affected by at least one statement containing an appropriate method in-
vocation. The algorithm consists of the following steps:

1. Identify the set of object references R existing inside method m. These references
are local variables, parameters of m, or fields of the class containing m having a
non-primitive type.

2. For each object reference r ∈ R identify the set of fields Fr which are modified
through reference r by method invocations inside the body of m. This is achieved
by searching in the defined variables of each statement for composite variables
having reference r as first part.

3. For each field f ∈ Fr identify the set of seed statements Cf within the body of m
that contain f in their set of defined variables. These statements along with varia-
ble f form a set of slicing criteria (c, f), where c ∈ Cf.

4. For each statement c ∈ Cf compute the set of boundary blocks Blocks(c).
5. Calculate the common boundary blocks for the statements in each set Cf (referring

to defined variable f) as () ()
fCc

f cBlocksCBlocks
∈

= .

6. Calculate the common boundary blocks for all Blocks(Cf), ∀ f ∈ Fr (referring to
object reference r) as () ()

rFf

fCBlocksrBlocks
∈

= .

7. For each slicing criterion (c, f), where c ∈ Cf, f ∈ Fr and boundary block Bn ∈
Blocks(r) compute the block-based slices SB(c, f, Bn). Block-based slice SB(c, f, Bn)
is the backward slice extracted from the program dependence subgraph corres-
ponding to region R(Bn).

8. For each Bn ∈ Blocks(r) the union of slices for field f is
() ()

fCc

nBnfB BfcSBfCUS
∈

= ,,,, .

9. For each Bn ∈ Blocks(r) the union of slices for reference r
() ()

rFf

nfBnB BfCUSBrUS
∈

= ,,, is a slice that contains all the statements in me-

thod m affecting the state of the object referenced by r.

This algorithm produces for each reference r, a number of slices which is equal to
the size of Blocks(r).

The application of the algorithm will be demonstrated on a real example taken
from an open-source project, namely Violet 0.16 [47]. Figure 5.9 illustrates method
removeSelected() and its control flow graph decomposed into basic blocks.

91

public class GraphPanel extends JPanel {

 private Graph graph;

 private Set selectedItems;

1 public void removeSelected() {

2 Iterator iter = selectedItems.iterator();

3 while (iter.hasNext()) {

4 Object selected = iter.next();

5 if (selected instanceof Node) {

6 graph.removeNode((Node) selected);

 }

7 else if (selected instanceof Edge) {

8 graph.removeEdge((Edge) selected);

 }

 }

9 if (selectedItems.size() > 0)

10 setModified(true);

11 repaint();

 }

}

2

3

B1

B2

4

5

B3

6
B4

9
B7

T

T

F

10
B8

11
B9

T F

7
B5

8
B6

T

F

F boundary blocks

of statement 8

boundary blocks

of statement 6

public abstract class Graph {

 private ArrayList nodes;

 private ArrayList edges;

 private transient ArrayList nodesToBeRemoved;

 private transient ArrayList edgesToBeRemoved;

 private transient boolean needsLayout;

 public void removeNode(Node n) {

 if (nodesToBeRemoved.contains(n)) return;

 nodesToBeRemoved.add(n);

 for (int i = 0; i < nodes.size(); i++) {

 Node n2 = (Node) nodes.get(i);

 n2.removeNode(this, n);

 }

 for (int i = 0; i < edges.size(); i++) {

 Edge e = (Edge)edges.get(i);

 if (e.getStart() == n || e.getEnd() == n)

 removeEdge(e);

 }

 needsLayout = true;

 }

 public void removeEdge(Edge e) {

 if (edgesToBeRemoved.contains(e)) return;

 edgesToBeRemoved.add(e);

 for (int i = nodes.size() - 1; i >= 0; i--) {

 Node n = (Node)nodes.get(i);

 n.removeEdge(this, e);

 }

 needsLayout = true;

 }

}
Figure 5.9: Method removeSelected() and the corresponding control flow graph.

Assume that the statements affecting the state of the object referenced by field
graph are intended to be extracted as a separate method. The algorithm is applied as
follows:

a. The set of fields Fgraph which are modified through reference graph consists of the
following composite variables:
1. graph.nodesToBeRemoved.elementData
2. graph.nodesToBeRemoved.size
3. graph.nodesToBeRemoved.modCount
4. graph.needsLayout
5. graph.edgesToBeRemoved.elementData
6. graph.edgesToBeRemoved.size

92

7. graph.edgesToBeRemoved.modCount
b. Fields 1-3 are defined at statement 6, while fields 4-7 are defined at statements 6

and 8. The resulting slicing criteria are eleven in total, based on the following sets
of seed statements:
1. Cgraph.nodesToBeRemoved.elementData = {6}

2. Cgraph.nodesToBeRemoved.size = {6}

3. Cgraph.nodesToBeRemoved.modCount = {6}
4. Cgraph.needsLayout = {6, 8}
5. Cgraph.edgesToBeRemoved.elementData = {6, 8}
6. Cgraph.edgesToBeRemoved.size = {6, 8}
7. Cgraph.edgesToBeRemoved.modCount = {6, 8}

c. The sets of boundary blocks for statements 6 and 8 are Blocks(6) = {B1, B2, B3,
B4} and Blocks(8) = {B1, B2, B3, B5, B6}, respectively (as shown in the control
flow graph of Figure 5.9).

d. The resulting intersections of basic blocks are:
1. Blocks(Cgraph.nodesToBeRemoved.elementData) = {B1, B2, B3, B4}

2. Blocks(Cgraph.nodesToBeRemoved.size) = {B1, B2, B3, B4}

3. Blocks(Cgraph.nodesToBeRemoved.modCount) = {B1, B2, B3, B4}
4. Blocks(Cgraph.needsLayout) = {B1, B2, B3}
5. Blocks(Cgraph.edgesToBeRemoved.elementData) = {B1, B2, B3}
6. Blocks(Cgraph.edgesToBeRemoved.size) = {B1, B2, B3}
7. Blocks(Cgraph.edgesToBeRemoved.modCount) = {B1, B2, B3}

e. The final intersection of basic blocks is Blocks(graph) = {B1, B2, B3} and as a re-
sult block-based regions R(B1), R(B2) and R(B3) can be used as regions for the un-
ion of the resulting static slices.

f. In this code example, the resulting slices are the same for all slicing criteria. More
specifically, SB(c, f, B1) = {2, 3, 4, 5, 6, 7, 8}, SB(c, f, B2) = {3, 4, 5, 6, 7, 8} and
SB(c, f, B3) = {4, 5, 6, 7, 8}, where f ∈ Fgraph and c ∈ Cf.

g. Consequently, the resulting unions of slices are also the same for all fields belong-
ing to Fgraph. More specifically, USB(Cf, f, B1) = {2, 3, 4, 5, 6, 7, 8}, USB(Cf, f, B2)
= {3, 4, 5, 6, 7, 8} and USB(Cf, f, B3) = {4, 5, 6, 7, 8}, where f ∈ Fgraph.

h. Finally, the unions of slices for reference graph are USB(graph, B1) = {2, 3, 4, 5,
6, 7, 8}, USB(graph, B2) = {3, 4, 5, 6, 7, 8} and USB(graph, B3) = {4, 5, 6, 7, 8},
respectively.

As it can be observed from the code of method removeSelected() in Figure 5.9,
statements 2-8 exhibit a distinct functionality compared to the rest of the statements,
which is related with the removal of the selected nodes and edges from the graph ob-
ject corresponding to field graph.

5.3.3.3 Determination of indispensable statements and parameters of the extracted

method

Indispensable statements are statements that belong to a given slice but should not be
removed from the original method after slice extraction to assure that the original me-
thod remains operational (i.e., are statements required by the statements that remain in
the original method in order to operate correctly). Indispensable statements are com-
puted in the following way based on Maruyama’s approach [70]:

Let N(m) be the set of all nodes and E(m) the set of all edges in the PDG of me-
thod m. Let SB be a block-based slice resulting from the region of boundary block B

93

(R(B)). Let UB be the set of remaining nodes after the nodes of SB are removed from
N(m) (UB = {N(m) \ SB}).

Let NCD be the set of nodes belonging to SB on which nodes belonging to UB are
control dependent (i.e., there exists a control dependence edge from a node in SB to a
node in UB).

NCD(SB, UB) = {p ∈ N(m) | p c→ q ∈ E(m) ∧ p ∈ SB ∧ q ∈ UB}, where p c→ q de-

notes a control dependence from node p to node q.

Let NDD be the set of nodes belonging to SB on which nodes belonging to UB are
data dependent (i.e., there exists a data dependence edge from a node in SB to a node
in UB) due to a variable other than the variable of the slicing criterion.

NDD(SB, UB, v) = {p ∈ N(m) | p u

d→ q ∈ E(m) ∧ u ≠ v ∧ p ∈ SB ∧ q ∈ UB}, where p
u

d→ q denotes a data dependence from node p to node q due to variable u and v is the

variable of the slicing criterion.

Control indispensable nodes ICD are the nodes of the slices that result using (p, u,
B) as slicing criteria, where p ∈ NCD(SB, UB) and u belongs to the used variables of
node p.

ICD(SB, UB) = {q ∈ N(m) | q ∈ SB(p, u, B) ∧ p ∈ NCD(SB, UB) ∧ u ∈ Use(p)}

Data indispensable nodes IDD are the nodes of the slices that result using (p, u, B)
as slicing criteria, where p ∈ NDD(SB, UB, v) and u belongs to the defined variables of
node p.

IDD(SB, UB, v) = {q ∈ N(m) | q ∈ SB(p, u, B) ∧ p ∈ NDD(SB, UB, v) ∧ u ∈ Def(p)}

Eventually, the indispensable nodes IB is the set resulting from the union of ICD
and IDD sets (IB = ICD ∪ IDD). Indispensable nodes will be duplicated in both the origi-
nal and the extracted method after slice extraction, while the set of nodes that can be
actually removed from the original method is {SB \ IB} and the set of nodes that ac-
tually remain in the original method is {UB ∪ IB}.

The parameters of the extracted method are the variables of the original method
for which a data dependence exists from the set of remaining nodes UB to the set of
slice nodes SB. Formally, P(SB, UB) = {u ∈ V(m) | p u

d→ q ∈ E(m) ∧ p ∈ UB ∧ q ∈

SB}, where V(m) is the set of variables which are declared within the body of method
m (including the parameters of method m).

5.3.4 Rules regarding behavior preservation and usefulness of the extracted

functionality

The slices resulting from the algorithms of Section 5.3.3 are examined against a set of
rules that exclude from being suggested as refactoring opportunities cases of slices
whose extraction could possibly cause a change in program behavior. The rules are
preventive in the sense that they prescribe conditions that should not hold in order to
obtain extractable slices which preserve program behavior. Moreover, there is a cate-
gory of rules which are used to reject some extreme cases of slices that lead to ex-
tracted methods with limited usefulness in terms of functionality.

94

5.3.4.1 Duplication of statements affecting the state of an object

In object-oriented code the invocation of a method can change the state of the object
being referenced. This change in object state may in turn affect the execution of the
code that follows in a method. Obviously, the duplication of such method invocations
in both the remaining and the extracted method is not preserving the behavior of the
program, since a duplicated statement is executed twice (i.e., once in the remaining
method and once in the extracted method). To support this argument, two slice extrac-
tion examples based on the code of Figure 5.6 will be demonstrated. Both examples
concern the extraction of code from method statement() using the same slicing
criterion (10, frequentRenterPoints) but different block-based regions. The set
of boundary blocks for statement 10 is Blocks(10) = {B1, B2, B3, B4} (the layout of
blocks is shown in Figure 5.6), and as a result, four block-based slices can be derived
from this slicing criterion. Figure 5.10 shows the remaining and the extracted method
when block-based slice SB(10, frequentRenterPoints, B2) is used.

1 public String statement() {

2 double totalAmount = 0;

3 int frequentRenterPoints = 0;

4 Enumeration rentals = _rentals.elements();

5 String result = "Rental Record for " + getName() + "\n";

 frequentRenterPoints = getFrequentRenterPoints(

frequentRenterPoints, rentals);

6 while(rentals.hasMoreElements()) {

7 Rental each = (Rental) rentals.nextElement();

8 double thisAmount = each.getCharge();

12 result += "\t" + each.getMovie().getTitle() + "\t"

 + String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;

 }

14 result += "Amount owed is "

 + String.valueOf(totalAmount) + "\n";

15 result += "You earned " + String.valueOf(frequentRenterPoints)

 + " frequent renter points";

16 return result;

 }

 private int getFrequentRenterPoints(int frequentRenterPoints,

Enumeration rentals) {

6 while(rentals.hasMoreElements()) {

7 Rental each = (Rental) rentals.nextElement();

9 if(each.getMovie().getPriceCode() == Movie.NEW_RELEASE

&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;

 else

11 frequentRenterPoints++;

 }

 return frequentRenterPoints;

 }
Figure 5.10: Extraction of block-based slice SB(10, frequentRenterPoints, B2).

As it can be observed from Figure 5.10, after the execution of the extracted me-

thod getFrequentRenterPoints() the Enumeration rentals will not have any
more elements to provide, since the while loop inside the extracted method has al-
ready iterated over all the elements of the enumeration. As a result, the while loop
that follows inside method statement() will not be executed, since the invocation
of method hasMoreElements() will return false. Obviously, in this case the beha-
vior of the program is not preserved after slice extraction. The reason causing the
change of behavior is that the invocation of method nextElement() in statement 7
affects the internal state of object reference rentals and at the same time statement

95

7 is duplicated in both the remaining and the extracted method. An alternative slice
extraction using block-based slice SB(10, frequentRenterPoints, B1) is shown in
Figure 5.11.

1 public String statement() {

 int frequentRenterPoints = getFrequentRenterPoints();

2 double totalAmount = 0;

4 Enumeration rentals = _rentals.elements();

5 String result = "Rental Record for " + getName() + "\n";

6 while(rentals.hasMoreElements()) {

7 Rental each = (Rental) rentals.nextElement();

8 double thisAmount = each.getCharge();

12 result += "\t" + each.getMovie().getTitle() + "\t"

 + String.valueOf(thisAmount) + "\n";

13 totalAmount += thisAmount;

 }

14 result += "Amount owed is "

 + String.valueOf(totalAmount) + "\n";

15 result += "You earned " + String.valueOf(frequentRenterPoints)

 + " frequent renter points";

16 return result;

 }

 private int getFrequentRenterPoints() {

3 int frequentRenterPoints = 0;

4 Enumeration rentals = _rentals.elements();

6 while(rentals.hasMoreElements()) {

7 Rental each = (Rental) rentals.nextElement();

9 if(each.getMovie().getPriceCode() == Movie.NEW_RELEASE

&& each.getDaysRented() > 1)

10 frequentRenterPoints += 2;

 else

11 frequentRenterPoints++;

 }

 return frequentRenterPoints;

 }
Figure 5.11: Extraction of block-based slice SB(10, frequentRenterPoints, B1).

As it can be observed from Figure 5.11, the slice extraction based on basic block

B1, where slicing covers the whole source method, preserves the behavior of the pro-
gram in contrast with the slice extraction based on basic block B2. The reason causing
the preservation of behavior is that apart from statement 7, the declaration of object
reference rentals (statement 4) is also duplicated in both the remaining and the ex-
tracted method. As a result, the while loops in the remaining and the extracted me-
thod iterate over two different Enumeration references derived from the same Vec-
tor object (field _rentals).

Rule 1: The duplicated statements (i.e., the statements corresponding to the set of
indispensable nodes IB) should not contain composite field variables (i.e., composite
variables whose first part is an object reference existing in the original method and
last part is a field modified through this specific object reference) in their sets of de-
fined variables. From this rule are excluded the local object references whose declara-
tion statement is also included to the duplicated statements.

5.3.4.2 Duplication of statements containing a class instance creation

In the same manner that a statement causing a change in the state of an object can be
duplicated, a statement creating an object may also be duplicated. Let us assume that a
statement initializing or assigning reference r with a class instantiation (i.e., r = new
Type()) is duplicated in both the original and the extracted method. Then each refer-
ence r (one being in scope within the original method and the other within the ex-

96

tracted method) will be referring to a different object in memory. As a result, the exis-
tence of non-duplicated statements affecting the state of the reference existing in the
original method or the extracted method would cause an inconsistency of state be-
tween the two references. Such an inconsistency could in turn affect statements de-
pending on reference r, causing a change in the behavior of the program.

Rule 2: A duplicated statement (i.e., a statement belonging to the set of indispens-
able nodes IB) initializing or assigning object reference r with a class instantiation,
should not have a data dependence due to variable r that ends to a statement of the
removable nodes {SB \ IB}.

5.3.4.3 Preservation of existing anti-dependences

Another case that may cause change in behavior is the existence of an anti-
dependence between a statement that remains in the original method and a statement
belonging to the slice statements that will be removed from the original method. An
anti-dependence exists from statement p to statement q (or statement q anti-depends
on p) due to variable x, when there is a control flow path starting from statement p
that uses the value of x and ending to statement q that modifies the value of x (regard-
less of any intermediate statements that may use the value of variable x). Just like data
flow dependences, anti-dependences can be either loop carried (i.e., carried by a spe-
cific loop) or loop independent. Figure 5.12 shows an example of code containing a
loop carried anti-dependence which is carried by the while loop in statement 7.

1 public String statement() {

2 double totalAmount = 0;

3 int frequentRenterPoints = 0;

4 double thisAmount = 0;

5 Enumeration rentals = _rentals.elements();

6 String result = "Rental Record for " + getName() + "\n";

7 while(rentals.hasMoreElements()) {

8 Rental each = (Rental) rentals.nextElement();

9 thisAmount = each.getCharge();

10 if(each.getMovie().getPriceCode() == Movie.NEW_RELEASE

&& each.getDaysRented() > 1)

11 frequentRenterPoints += 2;

 else

12 frequentRenterPoints++;

13 result += "\t" + each.getMovie().getTitle() + "\t"

 + String.valueOf(thisAmount) + "\n";

14 totalAmount += thisAmount;

 }

15 result += "Amount owed is "

 + String.valueOf(totalAmount) + "\n";

16 result += "You earned " + String.valueOf(frequentRenterPoints)

 + " frequent renter points";

17 return result;

 } loop-carried anti-dependence
Figure 5.12: Code example containing a loop carried anti-dependence.

As it can be observed, the value of variable thisAmount is used at statement 14

and in the next iteration of the while loop its value is modified at statement 9. Let us
consider that slicing criterion (9, thisAmount) is used for the code of Figure 5.12.
The set of boundary blocks for statement 9 is Blocks(9) = {B1, B2, B3} (the layout of
blocks is shown in Figure 5.6), and as a result, three block-based slices can be derived
from this slicing criterion. The slice corresponding to the block-based region of block
B1 (region R(B1) contains all the statements of the original method) is SB(9, thisA-
mount, B1) = {4, 5, 7, 8, 9} and is extracted as shown in Figure 5.13.

97

1 public String statement() {

 double thisAmount = getThisAmount();

2 double totalAmount = 0;

3 int frequentRenterPoints = 0;

5 Enumeration rentals = _rentals.elements();

6 String result = "Rental Record for " + getName() + "\n";

7 while(rentals.hasMoreElements()) {

8 Rental each = (Rental) rentals.nextElement();

10 if(each.getMovie().getPriceCode() == Movie.NEW_RELEASE

&& each.getDaysRented() > 1)

11 frequentRenterPoints += 2;

 else

12 frequentRenterPoints++;

13 result += "\t" + each.getMovie().getTitle() + "\t"

 + String.valueOf(thisAmount) + "\n";

14 totalAmount += thisAmount;

 }

15 result += "Amount owed is "

 + String.valueOf(totalAmount) + "\n";

16 result += "You earned " + String.valueOf(frequentRenterPoints)

 + " frequent renter points";

17 return result;

 }

 private double getThisAmount() {

4 double thisAmount = 0;

5 Enumeration rentals = _rentals.elements();

7 while (rentals.hasMoreElements()) {

8 Rental each = (Rental) rentals.nextElement();

9 thisAmount = each.getCharge();

 }

 return thisAmount;

 }
Figure 5.13: Extraction of slice SB(9, thisAmount, B1) causing change in behavior.

As it can be observed from Figure 5.13, the behavior of the program is not pre-

served after the extraction of block-based slice SB(9, thisAmount, B1), since the ex-
tracted method returns the amount of charge corresponding to the last element of Vec-
tor _rentals. As a result, the value of variable thisAmount, which is used in
statements 13 and 14 in the original method, is correct only in the last iteration of the
while loop inside the original method. Obviously, the final values of variables re-
sult and totalAmount are affected due to the incorrect value of variable thisA-
mount at each iteration. The reason causing this change in behavior is that the anti-
dependence that initially existed in the original method is lost after slice extraction,
since the statement from which it started remains in the original method while the
statement to which it ended is moved to the extracted method.

Rule 3: There should not exist an anti-dependence within the block-based region
R(B) of slice SB starting from a statement of the remaining nodes {UB ∪ IB} and end-
ing to a statement of the removable nodes {SB \ IB}. Formally, the rule is expressed as:

{p → q ∈ AB(R(B)) | p ∈ {UB ∪ IB} ∧ q ∈ {SB \ IB}} = ∅ and
AB(R(B)) = {p a→ q | p, q ∈ R(B)} ∪ {p)(la→ q | l, p, q ∈ R(B)}, where

p a→ q denotes a loop-independent anti-dependence edge from node p to node q, and

p)(la→ q denotes a loop-carried anti-dependence edge from node p to node q which

is carried by loop l.

98

5.3.4.4 Rules regarding the usefulness of the extracted code in terms of functionality

The goal of the rules defined in this section is to prevent some extreme cases of slices
from being suggested as refactoring opportunities. These rules are related with the
extent of the slice compared to the number of seed statements and the size of the orig-
inal method, the degree of code duplication and the variable which is returned by the
original method.

a. The number of statements in the union of slice statements USB should be greater
than the number of seed statements used in slicing criteria. In the case where the
number of statements in USB is equal to the number of seed statements used in
slicing criteria (this is actually the minimum number of statements that can be ex-
tracted), the extracted code would be algorithmically trivial, since no additional
statements are required for the computation of a given variable (or by the state-
ments affecting the state of a given object). This means that a slice should consist
of two statements at minimum, assuming that a single seed statement is used.

b. The number of statements in the union of slice statements USB should not be equal
to the number of statements in the original method. In such a case the extracted
method would be exactly the same as the original method.

c. The statements which are duplicated in both the original and the extracted method
should not contain all the seed statements used in slicing criteria. If all the seed
statements used in slicing criteria were duplicated, then the computation of a giv-
en variable (or the statements affecting the state of a given object) would exist in
both the original and the extracted method making the extraction redundant.

d. The variable which is returned by the original method should be excluded from
slice extraction. If the computation of a given variable (or the statements affecting
the state of a given object) that is returned by the original method was extracted,
then the extracted method would essentially have the functionality and purpose of
the original method.

5.3.5 Handling of try/catch blocks, branching and throw statements

Try/catch blocks are used in Java as a means to handle exceptions caused at runtime.
The try block contains code that could throw an exception, while the catch clauses
contain code that is directly executed when an exception is thrown in the body of the
try block. Each catch clause is responsible for a specific exception type. The pro-
posed approach considers try blocks as ordinary blocks of code in the construction
of the control flow and program dependence graphs. This means that the try block
itself is not represented as a node in the graphs, but the statements included in its body
are control dependent on the parent of the try block in the abstract syntax tree. The
statements contained in the catch clauses are also not included in the graphs. In the
process of slice extraction the statements of the slice are examined whether they have
a try block as immediate parent in the abstract syntax tree. If at least one of the slice
statements contains a method invocation that could throw an exception or directly
throws an exception, then the parent try block (along with the corresponding catch
clauses) is copied to the extracted method and all the slice statements having this spe-
cific try block as immediate parent in the abstract syntax tree are placed inside the
body of the try block. A try block is removed from the original method if all the
statements inside its body are moved to the extracted method or the statements that
remain inside its body do not throw any exceptions (in this case the remaining state-
ments are moved to the parent of the try block in the abstract syntax tree).

99

Unstructured control flow is achieved in Java by three kinds of branching state-
ments. The break statement terminates the innermost loop and transfers the control
flow to the statement following the innermost loop. The continue statement skips
the current iteration of the innermost loop and transfers the control flow to the evalua-
tion expression that controls the innermost loop. Finally, the return statement exits
from the current method and transfers the control flow to the point where the method
was invoked. In general, the problem caused by branching statements is that they can-
not be included in slices, thus affecting slice precision. The reason behind the non-
inclusion of branching statements in slices is that branching statements do not form
control or data dependences with other statements in the program dependence graph
of a method. Kumar and Horwitz [59] proposed the augmented program dependence
graph (APDG) as a means to handle properly the branching statements. However, in
order to construct the APDG is required to represent the branching statements as
pseudo-predicates in the control flow graph. A pseudo-predicate node has two out-
going edges where the one (labeled as true) goes to the target of the jump and the oth-
er one (labeled as false) goes to the statement that would follow the branching state-
ment if no branching occurred. Obviously, the handling of branching statements as
pseudo-predicates affects the way that block-based regions are formed in the proposed
approach, since block-partitioning depends on branching nodes (i.e., nodes having
two or more outgoing flow edges) as explained in Section 5.3.2. Consequently, it is
not possible to adopt the solution of APDG in this approach. Alternatively, the pro-
posed approach applies a post-processing procedure after the original slice is ob-
tained. For each break and continue statement, it examines whether the innermost
loop is included in the slice. In such a case, the statements belonging to the slice of
the branching statement (and expanding within the block-based region of the original
slice) are included in the original slice. Furthermore, if the innermost loop contains
statements inside its body that will eventually remain in the original method (i.e.,
statements belonging to set {UB ∪ IB}), then the statements belonging to the slice of
the branching statement are also added to indispensable statements (i.e., set IB). This
process cannot be applied to return statements, since the operation of a return
statement is directly associated with the method that it belongs to, and thus a return
statement cannot be copied to another method. As a result, if a return statement has
a direct or indirect incoming control dependence from a statement belonging to a giv-
en slice, then this slice is rejected from being suggested as a refactoring opportunity.

Throw statements are special statements which are used for creating and throwing
exception objects. Exception types are divided into checked exceptions which must be
explicitly handled by a catch block or propagated up the call stack of methods
(java.lang.Exception subclasses), and unchecked exceptions which do not have this
requirement (java.lang.RuntimeException subclasses). Similarly to branching state-
ments, throw statements do not form control or data dependences with other state-
ments in the program dependence graph of a method and thus should be also handled
in a special manner. The proposed approach applies a post-processing procedure after
the original slice is obtained. If a throw statement is control dependent on a statement
of the original slice, then the statements belonging to the slice of the throw statement
(and expanding within the block-based region of the original slice) are included in the
original slice. Furthermore, if a throw statement is control dependent on a statement
that will eventually remain in the original method (i.e., statements belonging to set
{UB ∪ IB}), then the statements belonging to the slice of the throw statement are also
added to indispensable statements (i.e., set IB).

100

5.4 JDeodorant Eclipse plug-in

The proposed method has been implemented as an Eclipse plug-in [49] that identifies
Extract Method refactoring opportunities on Java projects, highlights the code frag-
ments suggested to be extracted (by indicating with green color the statements that
will be moved to the extracted method and with red color the statements that will be
duplicated in both the original and the extracted method) and automatically applies on
source code the refactorings which are eventually approved by the user. In order to
control the number and the quality of the identified refactoring opportunities being
reported, JDeodorant offers a preference page where the user can define various
threshold values regarding the following properties:

• The minimum size (in number of statements) that a method should consist of
in order to be examined for potential refactoring opportunities.

• The minimum number of statements that a slice should consist of in order to
be reported as a refactoring opportunity.

• The maximum number of duplicated statements (between the original and the
extracted method) that the extraction of a slice may introduce in order to be
reported as a refactoring opportunity.

• The maximum ratio of duplicated to extracted statements (ranging over the in-
terval [0, 1]) that should apply for a slice extraction refactoring in order to be
reported.

In order to support the user in assessing the cohesion of a given method (i.e., the
degree of interdependence among the statements required for the computation of the
variables declared inside a method), JDeodorant offers a flexible calculator for slice-
based cohesion metrics [115]. The calculator automatically computes the backward
slices for all the local variables whose scope is the block corresponding to the method
body, constructs the slice profile [114] of the examined method and highlights the
statements which are common to all computed slices, as shown in Figure 5.14. The
user has the ability to exclude from the slice profile of the examined method any vari-
ables which cannot be considered as output variables (i.e., variables playing an auxil-
iary role in the computation of other variables and whose computation is not intended
to be extracted in a separate method) in order to improve the accuracy of the calcu-
lated slice-based cohesion metrics. Figure 5.14 shows the slice profile and the calcu-
lated slice-based cohesion metrics, namely overlap, tightness and coverage for the
method of Figure 5.6. As it can be observed, variable rentals has been excluded
from the slice profile, since it plays an auxiliary role in the computation of the rest
variables.

Finally, JDeodorant sorts the identified refactoring opportunities according to their
effectiveness as measured by the duplication ratio (i.e., the ratio of the number of
statements that will be duplicated after the extraction of a slice to the number of
statements which are going to be extracted). First, the identified slice extraction op-
portunities are grouped according to the variable or object reference that they concern
(i.e., a slice that can be extracted using more than one block-based regions is consid-
ered as a single refactoring opportunity) in order to present relevant refactoring oppor-
tunities in a consecutive way. The resulting groups are sorted according to the average
duplication ratio of the refactoring opportunities belonging to each group in ascending
order. In the case where two groups have an average duplication ratio equal to zero

101

(i.e., none of the slice extraction opportunities belonging to the groups causes duplica-
tion of statements), the groups are sorted according to the maximum number of state-
ments that can be extracted by the refactoring opportunities belonging to each group
in descending order. The reasoning behind this sorting mechanism is that the extrac-
tion of slices causing significant duplication should be less preferred, since such slices
are generally cohesive with the method from which they are extracted.

Figure 5.14: JDeodorant calculator for slice-based cohesion metrics.

5.5 Evaluation

The evaluation of the proposed method consists of three parts, namely an independent
assessment of the identified refactoring opportunities regarding their soundness and
usefulness, an investigation of the impact of the suggested refactorings on slice-based
cohesion metrics and finally an investigation of the impact of the suggested refactor-
ings on the external behavior of the program.

The criteria for selecting an appropriate project for the evaluation of the proposed
method are the following:

a. The source code of the project should be publicly available, since JDeodorant
performs source code analysis in order to identify refactoring opportunities.
Furthermore, source code availability will make possible the reproduction of
the experimental results.

b. The project should be large enough in order to present a sufficient number of
refactoring opportunities.

102

c. The project should exhibit high test coverage to make feasible the examination
of behavior preservation after the application of the identified refactoring op-
portunities.

The project which has been selected is JFreechart. It is a rather mature open-
source chart library which has been constantly evolving since 2002. Version 1.0.0
consists of 771 classes and 95K lines of source code (as measured by sloccount),
while its average test coverage is 63.7% (as measured by EclEmma code coverage
tool).

5.5.1 Independent assessment

To consider an approach identifying refactoring opportunities successful, it must be
able to suggest refactorings which are conceptually sound and useful apart from pre-
serving program behavior and having a positive impact on certain quality metrics. The
conceptual soundness and usefulness of the refactoring opportunities can only be as-
sessed by human expertise. To this end, an independent expert was asked to express
his opinion on the refactoring opportunities that were identified in package
org.jfree.chart of JFreeChart project. The independent designer had significant experi-
ence in software design (he has been working for more than 13 years as a telecommu-
nications software designer) and deep knowledge of object-oriented design principles.
More specifically, the independent designer had to answer the following questions for
each identified refactoring opportunity:

a. Does the code fragment suggested to be extracted as a separate method have a dis-
tinct and independent functionality compared to the rest of the original method? If
yes, describe its functionality by providing the name of the extracted method. If
no, provide the reason for which the refactoring suggestion is not acceptable.

b. Does the application of the suggested refactoring solve an existing design flaw
(e.g. by decomposing a complex method, removing a code fragment that is dupli-
cated among several methods, or extracting a code fragment suffering from Fea-
ture Envy)?

Package org.jfree.chart (excluding its sub-packages) consists of 18 classes, 301
methods with body and 4564 lines of source code. It is actually the core package of
JFreechart library, since it is responsible for generating all supported chart types. In
order to obtain meaningful refactoring suggestions the methods having less than 10
statements and the refactoring opportunities corresponding to slices with less than 4
statements have been excluded from the report by activating the appropriate property
thresholds. The activated threshold, which is related with the size of the methods be-
ing examined for the identification of refactoring opportunities, reduced the number
of analyzed methods from 301 to 51, from which only 39 presented at least one refac-
toring opportunity. The results of the evaluation are summarized in Table 5.1.

Table 5.1: Independent assessment of the identified refactoring opportunities.

package

number of refactoring opportunities

identified
having distinct

functionality

removing du-

plicated code

decomposing a

complex method

constituting

a feature

envy case

org.jfree.chart 64 57 15 11 1

103

As it can be observed from Table 5.1, the independent designer supported that 57
out of 64 (89%) identified refactoring opportunities correspond to code fragments
having a distinct functionality compared to the rest of the original method. The inde-
pendent designer disapproved 7 out of 64 (11%) identified refactoring opportunities
for the following reasons:

• The code fragment suggested to be extracted did not have an obvious func-
tionality and thus the extracted method would not have a clear purpose. (2/7)

• The code fragment suggested to be extracted had a trivial functionality and
thus the extracted method would be useless. (1/7)

• The code fragment suggested to be extracted covered a large portion of the
original method and thus the remaining functionality in the original method
would be very limited after its extraction. (2/7)

• The code fragment suggested to be extracted shared several statements with
other slices in the original method and thus its extraction would cause signifi-
cant code duplication between the remaining and the extracted method. (2/7)

Furthermore, the independent designer reported that 27 out of 64 (42%) identified
refactoring opportunities actually resolved (or in some cases helped to resolve) an ex-
isting design flaw. More specifically, 15 refactoring opportunities were utilized to re-
move three groups of duplicated code. The largest group of duplicated code consists
of 11 cases that were extracted into a single method. Finally, 11 refactoring opportu-
nities were utilized to decompose complex methods and one refactoring opportunity
resulted in an extracted method suffering from Feature Envy that should be further
moved to the envied class.

5.5.2 Impact on slice-based cohesion metrics

The empirical study of Meyers and Binkley [72] has shown that slice-based metrics
can be used to quantify the deterioration that accompanies software evolution and
measure the progress of a reengineering effort. To provide an estimate of the im-
provement in terms of cohesion introduced by the decomposition of methods, the
slice-based cohesion of the original method (before slice extraction), the remaining
method (after slice extraction) and the extracted method have been measured for the
refactoring opportunities that the independent designer has agreed on.

Ott and Thuss [115] were the first that formally defined a set of quantitative met-
rics in order to estimate the level of cohesion in a module. The defined cohesion met-
rics were based on slice profiles [114] which constitute a convenient representation
for revealing slice patterns within a module. Let VM be the set of variables used by
module M and VO be a subset of VM containing only the output variables of M. As
output variables are considered the variable which is returned by M, the global vari-
ables which are modified by M and the parameters which are passed by reference and
are modified by M. Finally, let SLi be the slice obtained for variable vi ∈ VO and SLint
be the intersection of SLi over all vi ∈ VO. The tightness, overlap and coverage of
module M are defined as:

() ()Mlength

SL
MTightness

int= , () ∑
=

=
OV

i iO SL

SL

V
MOverlap

1

int1
,

() ∑
=

=
OV

i

i

O Mlength

SL

V
MCoverage

1)(

1

104

Tightness expresses the ratio of the number of statements which are common to
all slices over the module length, while overlap expresses the average ratio of the
number of statements which are common to all slices to the size of each slice. The
higher the tightness and overlap of a module is, the more cohesive the module is. Ob-
viously, in modules with high tightness or overlap the number of duplicated state-
ments between the remaining and the extracted method will be large after the extrac-
tion of a slice. On the other hand, coverage expresses the average slice size over the
module length and thus is not directly associated with the degree of common state-
ments among the slices. However, a high value of coverage, which can be achieved
when the slices extend over a large portion of the module, indirectly indicates the ex-
istence of several common statements among the slices.

In the Java programming language only a single variable can be returned by a
given method, since the parameters are passed by value and thus their initial value is
not possible to change during the execution of the method. Obviously, using a single
variable (i.e., the returned variable) in the slice profile of a method would result in
artificially high values of slice-based cohesion metrics which would not sufficiently
reveal the actual cohesion of the method. To overcome this problem, only the vari-
ables whose scope is the block corresponding to the body of the method under exami-
nation have been considered as output variables, since these variables could be poten-
tially returned at the end of the method. Furthermore, the considered output variables
which are simply accessed and not modified within the body of the method are ex-
cluded from the slice profile.

Table 5.2 shows the average improvement of slice-based cohesion metrics intro-
duced from the application of the Extract Method refactorings which have been ap-
proved by the independent expert. More specifically, the values of the second column
have been estimated by calculating the average difference of the corresponding metric
between the remaining method (i.e., the original method after the application of the
refactoring) and the original method. The third column indicates the average metric
values for the extracted methods which have been created after the application of the
refactorings. Finally, the values of the fourth column have been estimated by calculat-
ing the average difference of the corresponding metric between the average metric
value for the extracted and the remaining method (i.e., the changed/created methods
after the application of the refactoring) and the original method (i.e., the method exist-
ing before the application of the refactoring).

Table 5.2: Average improvement of slice-based cohesion metrics.

 remaining - original extracted
(extracted + remaining)/2 -

original

Overlap +0.287 0.891 +0.303
Tightness +0.190 0.827 +0.319
Coverage -0.015 0.917 +0.113

As it can be observed from the second and fourth columns of Table 5.2, the im-

provement of slice-based cohesion metrics can be considered significant by taking
into account that their values range over the [0, 1] interval. A slight deterioration is
observed in the average difference of coverage between the remaining and the original
method, which, however, is so minor, that coverage can be considered unchanged.
Finally, as it can be observed from the third column of Table 5.2, the slice-based co-
hesion metrics for the extracted methods exhibit significantly high average values in-

105

dicating that the corresponding complete computation and object state slices consti-
tute strongly cohesive code fragments.

5.5.3 Impact on program behavior

To assess the impact of the identified refactoring opportunities on program behavior
the corresponding refactoring transformations have been applied on source code and
the JUnit tests of the project under examination have been run in order to find out
whether the applied refactorings caused test errors. From the 39 methods presenting at
least one refactoring opportunity in package org.jfree.chart of JFreeChart project, 21
of them were actually associated with unit tests having an average test code coverage
equal to 87% (as measured by EclEmma code coverage tool). The average test code
coverage percentage can be considered sufficiently high in order to assess the preser-
vation of program behavior after the application of the refactorings.

In total, 41 refactoring opportunities were identified for the 21 methods being
tested in package org.jfree.chart of JFreeChart project. After the application of each
refactoring all unit tests of the project were executed in order to examine whether the
applied refactoring caused test errors. All of the applied refactorings passed the tests
successfully without causing any test failure. Therefore, it can be concluded with a
relative certainty that the defined behavior preservation rules have successfully ex-
cluded refactoring opportunities that could possibly cause a change in program behav-
ior.

106

Chapter 6

6 Employing Eclipse JDT Core and LTK in JDeodorant

This chapter concerns the insights gained from working with Eclipse Java Develop-
ment Tools (JDT), while developing JDeodorant plug-in [49]. Hopefully, the gained
insight might prove to be useful for researchers and developers willing to develop
their own application using Eclipse JDT.

Eclipse JDT [33] contributes a set of plug-ins adding the capabilities of a full-
featured Java IDE to the Eclipse platform. The JDT plug-ins are categorized into:

• JDT APT which adds annotation processing support to Java 5 projects in Ec-
lipse.

• JDT Core which defines the non-UI infrastructure.
• JDT Debug which implements Java debugging support and works with any

JDPA-compliant target Java VM.
• JDT Text which provides the Java editor.
• JDT UI which implements Java-specific workbench contributions, such as the

Package Explorer, the Type Hierarchy View, the Java Outline View, and vari-
ous Wizards for creating Java elements.

JDeodorant plug-in mainly employs APIs belonging to JDT Core. In general, the
infrastructure offered by JDT Core includes:

• An incremental Java builder.
• A Java Model that provides API for navigating the Java element tree. The Java

element tree defines a Java centric view of a project.
• Code assist and code select support.
• An indexed based search infrastructure that is used for searching, code assist,

type hierarchy computation, and refactoring.

6.1 Representation of Java elements in JDT Core

Eclipse JDT uses two levels in order to represent Java elements. The first representa-
tion level is referred to as Java Model and can be considered as a high-level represen-
tation of a Java Project. The Java Model represents a Java Project in a tree structure.
An example of a Java Model instance visualized in the Package Explorer view is
shown in Figure 6.1.

107

Figure 6.1: An example of a Java Model instance.

The nodes of the Java Model tree represent the following Java elements:

• IJavaProject: It is the root node of the Java Model and represents a Java
Project. It contains IPackageFragmentRoots as child nodes.

• IPackageFragmentRoot: It represents a source or a class folder of a project, a
.zip or a .jar file. An IPackageFragmentRoot can hold source or binary files.

• IPackageFragment: It represents a single package. It contains ICompilationU-
nits or IClassFiles, depending on the type of the IPackageFragmentRoot (i.e.,
source or binary, respectively). It should be noted that sub-packages are not
placed as children of their parent package in the tree structure, but rather as
children of the same IPackageFragmentRoot that their parent package belongs
to. In other words an IPackageFragment does not have other IPackageFrag-
ments as children.

• ICompilationUnit: It represents a Java source file. An ICompilationUnit con-
tains the set of top-level type declarations (IType) which are declared within
its body.

• IType: It represents a type declaration. An IType contains the fields (IField),
the methods (IMethod) and nested types (IType) which are declared within its
body.

• IMethod: It represents the signature of a declared method (i.e., method name,
return type, parameter types and names, and thrown exception types).

• IField: It represents a declared field (i.e., field type and name).
• IClassFile: It represents a Java bytecode file.

The Java Model is a lightweight structure, since it does not contain the bodies of

methods in the tree structure (i.e., the highest detail level of the provided information
is method signatures and fields). As a result, it requires a relatively small amount of
memory and it can be re-created very fast in case of changes.

In order to obtain full access to Java source code down to statement level, JDT
Core provides the Abstract Syntax Tree (AST) API [32]. The abstract syntax tree (in
the form of a CompilationUnit AST node) for a given ICompilationUnit can be ob-
tained as shown in the code of Figure 6.2.

108

void parseAST(ICompilationUnit unit) {
ASTParser parser = ASTParser.newParser(AST.JLS3);
parser.setKind(ASTParser.K_COMPILATION_UNIT);
parser.setSource(unit);
parser.setResolveBindings(true);
CompilationUnit cu = (CompilationUnit)parser.createAST(null);

}
Figure 6.2: Abstract syntax tree creation for a given ICompilationUnit.

With statement ASTParser.newParser(AST.JLS3), the parser is advised to

parse the code following the Java Language Specification, Third Edition which in-
cludes the new syntax introduced in Java 5. The resulting CompilationUnit is the root
node of the AST. All node types in the AST are subclasses of the ASTNode type and
are grouped in inheritance hierarchies marked by the following abstract superclasses:

• BodyDeclaration superclass represents body declarations that may appear
within the body of classes or interfaces. Some concrete subclasses of Body-

Declaration are the TypeDeclaration, MethodDeclaration, FieldDeclaration,
Initializer (i.e., static initialization block), EnumDeclaration and Annotation-

TypeDeclaration.
• Type superclass represents all kinds of types and has as concrete subclasses the

PrimitiveType (i.e., byte, short, char, int, long, float, double, boolean and void
types), SimpleType, ArrayType, QualifiedType, ParameterizedType (i.e., types
with generics) and WildcardType.

• Statement superclass represents all kinds of statements that may exist within
the body of a method. The statements can be divided to statements with body
containing other statements such as the Block, DoStatement, EnhancedForS-

tatement, ForStatement, IfStatement, LabeledStatement, SwitchStatement, Syn-

chronizedStatement, TryStatement and WhileStatement and statements without
body such as the ExpressionStatement, ConstructorInvocation, SuperCon-

structorInvocation, EmptyStatement, ThrowStatement, VariableDeclarationS-

tatement, ReturnStatement, AssertStatement, BreakStatement, ContinueState-

ment and SwitchCase.
• Expression superclass represents all kinds of expressions that may exist within

statements. Some subclasses of Expression are Name, MethodInvocation,
FieldAccess, ArrayCreation, ArrayAccess, Assignment, InstanceofExpression,
ClassInstanceCreation, SuperMethodInvocation, SuperFieldAccess, InfixEx-

pression, PostfixExpression, PrefixExpression, ThisExpression, and Conditio-

nalExpression.

The statement parser.setResolveBindings(true) requests that the compi-
ler should provide binding information for the AST nodes it creates. Bindings are es-
sential in program analysis, since they provide extended resolved information (de-
rived from the compiler) for the named entities of a program. The most widely used
bindings are the ones that refer to variables (IVariableBinding interface), types (ITy-

peBinding interface) and methods (IMethodBinding interface). The information that
they provide is also given in the form of bindings. It is very important to mention that
bindings are available only on code without syntax errors.

An IVariableBinding provides information about the type of the corresponding va-
riable, whether the variable corresponds to a field, parameter, or local variable. Fur-
thermore, if the variable corresponds to a parameter or local variable it provides in-

109

formation about the method containing the scope in which this variable is declared,
and if the variable corresponds to a field it provides information about the class or in-
terface that declares this field.

An ITypeBinding provides information about the fields, methods and types which
are declared in the corresponding type, the superclass, implemented interfaces and
modifiers of the corresponding type, the package in which the corresponding type is
declared, etc.

An IMethodBinding provides information about the signature of the corresponding
method (i.e., return type, parameter types and thrown exception types), the class or
interface that declares the corresponding method, etc.

An example that illustrates the importance of bindings is the case where two vari-
able names (i.e., two different SimpleName AST nodes) are examined whether they
refer to the same variable. Obviously, the comparison of the AST nodes using method
equals() of class ASTNode will return false, since method equals() returns true
only if the AST node that invokes it and the AST node that is passed as argument ac-
tually refer to the same node (it should be noted that method equals() returns false
when the compared AST nodes belong to abstract syntax trees resulting from different
parsers, regardless of whether the compared nodes actually correspond to the same
element in the code). The comparison of the names corresponding to the SimpleName
AST nodes is not safe, since different variables having the same name may exist not
only in different methods but also in the same method (within different scopes). The
safest way to determine whether the two SimpleName AST nodes refer to the same
variable is to examine whether their IVariableBindings are equal. The IVariableBind-

ings can be resolved by invoking method resolveBinding() on each SimpleName
AST node.

Another advantage of bindings is that they can be compared for equality (by using
method isEqualTo()) even if the AST nodes from which they are resolved belong
to different abstract syntax trees (e.g. ASTs resulting from different ICompilationU-

nits, or even from the same ICompilationUnit through different ASTParsers). An ex-
ample that illustrates the importance of this feature is the case where a method invoca-
tion occurs to a compilation unit other than the one that the invoked method is de-
clared. Obviously in this case, the MethodInvocation AST node and the corresponding
MethodDeclaration AST node belong to different abstract syntax trees. The safest
way to determine whether the MethodInvocation AST node corresponds to this specif-
ic MethodDeclaration AST node is to examine whether their IMethodBindings are
equal using method isEqualTo() which compares the keys corresponding to the
bindings. The binding key is a unique string representation of a binding that has the
same value regardless of the abstract syntax tree from which the binding is resolved.
The IMethodBindings can be resolved by invoking method resolveBinding() on
each AST node.

However, the important help provided by bindings comes with the cost of expen-
sive computation and significantly increased memory consumption. The increased
memory requirements are caused by the fact that bindings are fully connected with
each other [2]. This means that a binding holds references to a number of other bind-
ings which in turn hold references to a number of other bindings and so on. As a re-
sult, a single binding may recursively hold references to hundreds of bindings. Conse-
quently, AST nodes with binding information should not be kept permanently in
memory.

110

6.2 Representation of Java elements in JDeodorant

JDeodorant is an application that heavily depends on AST. At a first level, it requires
AST in order to perform program analysis on the source code of a Java project and
identify potential refactoring opportunities. At a second level, it requires AST in order
to apply the refactorings selected by the user on the source code of the examined Java
project. As a result, AST information may be reused in several occasions for a differ-
ent purpose. It becomes obvious that the architecture of JDeodorant should support
the reuse of AST information without storing it permanently in memory.

This is achieved by providing an intermediate representation of the required Java
elements and a mechanism that enables the recovery of AST nodes without storing
them permanently in memory. Figure 6.3 shows the UML Class diagram of the inter-
mediate representation involving high-level Java elements, such as the ones
represented by the Java Model of JDT Core.

Figure 6.3: Representation of high-level Java elements.

Figure 6.4 shows the UML Class diagram of the intermediate representation in-

volving Java elements that exist within the body of a method/constructor. As it can be
observed from Figure 6.4, the statements within the body of a method are represented
by means of the Composite design pattern [39]. Class CompositeStatementObject
represents statements with body which may include other statements within their
body, while class StatementObject represents leaf statements without body. Some
composite statements, such as decision-making statements (if-then, if-then-else,
switch) and loop statements (for, while, do-while) are associated with expressions
which are used to control the program flow.

Figure 6.4: Representation of Java elements existing within the body of a me-

thod/constructor.

111

Figure 6.5 shows the UML Class diagram of the intermediate representation in-
volving low-level Java elements, such as expressions required for program analysis.
As it can be observed from Figure 6.5, a statement is associated with six kinds of ex-
pressions, namely method invocations, field accesses, super method invocations, local
variable declarations, local variable accesses and creations of class instances and ar-
rays. These kinds of expressions sufficiently support the program analysis require-
ments of the methodologies implemented in JDeodorant.

Figure 6.5: Representation of low-level Java elements.

Each class in the intermediate representation of Java elements corresponds to a

specific type of AST node. Table 6.1 contains a mapping between the classes used for
the intermediate representation of Java elements and the ASTNodes used in JDT Core.

Table 6.1: Mapping between classes in intermediate representation and AST nodes in

JDT Core.
Java element in intermediate representation AST node in JDT Core

ClassObject TypeDeclaration
MethodObject, ConstructorObject MethodDeclaration
FieldObject VariableDeclarationFragment
ParameterObject SingleVariableDeclaration
AbstractStatement Statement
AbstractExpression Expression
LocalVariableDeclarationObject VariableDeclaration
MethodInvocationObject MethodInvocation
SuperMethodInvocationObject SuperMethodInvocation
FieldInstructionObject SimpleName
LocalVariableInstructionName SimpleName
ClassInstanceCreationObject ClassInstanceCreation
ArrayCreationObject ArrayCreation

The classes used for the intermediate representation of Java elements, shown in
the first column of Table 6.1, do not hold a direct reference to the corresponding AST
node, shown in the second column of Table 6.1. Instead, they are associated with class
ASTInformation, shown in Figure 6.6, which holds lightweight information for a giv-
en AST node, such as the ITypeRoot (i.e., ICompilationUnit or IClassFile) that it be-
longs to, its start position in the abstract syntax tree and its length. The first time that

112

an AST node is parsed and the corresponding object of the intermediate representation
is created, an instance of ASTInformation is also created whose attributes are initia-
lized with the aforementioned ASTNode properties (i.e., ITypeRoot, start position and
length). The next time that this ASTNode is requested, the intermediate representation
object invokes method recoverASTNode() through its reference to the already
created instance of ASTInformation, retrieves the appropriate ASTNode object and
casts it to the corresponding ASTNode type (as shown in Table 6.1). Method recove-
rASTNode() retrieves the ASTNode by invoking static method NodeFind-

er.perform() which takes three arguments, namely the CompilationUnit where the
ASTNode belongs to, the start position of the ASTNode and the length of the AST-

Node. The CompilationUnit can be regenerated through the ASTParser by setting as
source the ITypeRoot attribute of the ASTInformation object.

Figure 6.6: Class ASTInformation holding the properties required for the recovery of

an ASTNode.

However, a continuous regeneration of CompilationUnits through ASTParser
could raise significant performance issues. To face this problem, JDeodorant provides
a CompilationUnit cache mechanism that takes into advantage the fact that when pro-
gram analysis or refactoring is performed on a specific module, the requested AST
nodes tend to belong to the same CompilationUnit. In order to avoid the consecutive
regeneration of the same CompilationUnit, the cache mechanism holds a queue of
CompilationUnits permanently in memory. If the requested AST node belongs to a
CompilationUnit that is already inside the queue, then there is no need to regenerate
the CompilationUnit through ASTParser. If the queue is full and the requested AST
node does not belong to a CompilationUnit that is already present in the queue, then
the oldest CompilationUnit is removed from the head of the queue and the new Com-

pilationUnit is placed in the tail of the queue. The size of the queue depends on the
specific requirements of the applied program analysis technique. JDeodorant uses a
queue size ranging from 10 to 20 in order to support the requirements of the imple-
mented methodologies. The benefits of the employed cache mechanism in memory
consumption are very important, if we consider that a Java project may consist of
hundreds or even thousands CompilationUnits.

6.3 Change notification for Java elements

In the case where the designer performs a suggested refactoring or makes manual
changes on source code, the abstract syntax trees on which a change occurs undergo

113

modifications in their structure. Since the Java elements of the intermediate represen-
tation are indirectly associated with AST nodes through their reference to ASTInfor-

mation, the elements belonging to CompilationUnits on which a change occurred
should be updated in order to reflect the modified AST structure.

Eclipse JDT Core provides the IElementChangedListener interface as a means to
receive notifications of changes to Java elements maintained by the Java Model (a
listener can be registered to JDT Core through static method Java-

Core.addElementChangedListener()). By implementing method element-
Changed(ElementChangedEvent event) of this interface a client can be notified
of changes to the structure or contents of the Java Model tree through the Element-

ChangedEvent parameter. Each ElementChangedEvent object is associated with an
IJavaElementDelta object describing the changes that occurred to the involved ele-
ments. It should be emphasized that an IJavaElementDelta object should be treated in
a recursive manner, since it represents the changes in a tree structure (similar to the
Java Model structure) which is usually rooted at the IJavaModel level. A typical im-
plementation of the IElementChangedListener interface that can be used in order to
retrieve the CompilationUnits that have been changed, added or removed is shown in
the code of Figure 6.7.

class ElementChangedListener implements IElementChangedListener {

public void elementChanged(ElementChangedEvent event) {
 IJavaElementDelta javaElementDelta = event.getDelta();
 processDelta(javaElementDelta);

}
private void processDelta(IJavaElementDelta delta) {

 IJavaElement javaElement = delta.getElement();
 switch(javaElement.getElementType()) {
 case IJavaElement.JAVA_MODEL:
 case IJavaElement.JAVA_PROJECT:
 case IJavaElement.PACKAGE_FRAGMENT_ROOT:
 case IJavaElement.PACKAGE_FRAGMENT:

IJavaElementDelta[] affectedChildren =
delta.getAffectedChildren();

for(IJavaElementDelta affectedChild : affectedChildren)
 processDelta(affectedChild);

break;
 case IJavaElement.COMPILATION_UNIT:

ICompilationUnit cu = (ICompilationUnit)javaElement;
if(delta.getKind() == IJavaElementDelta.ADDED) {

 //compilationUnit has been added to the model
}
else if(delta.getKind() == IJavaElementDelta.REMOVED) {

 //compilationUnit has been removed from the model
}
else if(delta.getKind() == IJavaElementDelta.CHANGED) {

 if((delta.getFlags() &
IJavaElementDelta.F_FINE_GRAINED) != 0)

 //compilationUnit has been subject to structural changes
}

 }
}

}

Figure 6.7: Implementation of the IElementChangedListener interface that can be
used to retrieve the CompilationUnits that have been changed, added or removed.

114

As it can be observed from Figure 6.7, method processDelta() is recursive. In
the case where the IJavaElementDelta parameter corresponds to a Java element which
is the Java Model, a Java Project, a Package Fragment Root, or a Package Fragment,
method processDelta() is invoked for each affected child of the given Java ele-
ment. In the case where the IJavaElementDelta parameter corresponds to a Compila-

tionUnit, the delta kind (i.e., ADDED, REMOVED and CHANGED) indicates if the
given CompilationUnit has been added, removed, or changed, respectively. It should
be noted that a structural change to the members of a CompilationUnit exists only
when the delta flag F_FINE_GRAINED is enabled.

Before each execution of a new refactoring opportunity identification procedure
on a given Java project that has been already analyzed, the changed CompilationUnits
are reparsed and the Java elements of the intermediate representation (i.e., ClassOb-

jects) corresponding to the changed CompilationUnits are replaced with the newly
generated ones. The added CompilationUnits are parsed for the first time and the re-
sulting Java elements of the intermediate representation (i.e., ClassObjects) are added
to the already existing ones. Finally, the Java elements of the intermediate representa-
tion (i.e., ClassObjects) corresponding to the removed CompilationUnits are removed
from the already existing ones. In this way it is avoided to reparse a Java project that
has been already analyzed in its entirety.

6.4 Collecting AST nodes of the same type

In many of the refactoring opportunity identification techniques implemented in
JDeodorant, there was a need to collect all the AST nodes that exist within a given
statement having a specific type of interest (e.g. the collection of all IfStatements
within the body of a method). This problem requires a solution that takes advantage of
a common algorithm that recursively traverses the AST structure starting from a given
node and at the same time is able to collect the visited AST nodes having a specific
type of interest. A part of the solution adopted by JDeodorant is shown in the code of
Figure 6.8.

public class StatementCollector {

private StatementInstanceChecker instanceChecker;

public List<Statement> getIfStatements(Statement statement) {
 instanceChecker = new InstanceOfIfStatement();
 return getStatements(statement);

}

private List<Statement> getStatements(Statement statement) {

 List<Statement> statementList = new ArrayList<Statement>();
 if(statement instanceof Block) {

Block block = (Block)statement;
List<Statement> blockStatements = block.statements();
for(Statement blockStatement : blockStatements)

 statementList.addAll(getStatements(blockStatement));
}

 else if(statement instanceof IfStatement) {
IfStatement ifStatement = (IfStatement)statement;
Statement thenStatement = ifStatement.getThenStatement();
statementList.addAll(getStatements(thenStatement));
if(ifStatement.getElseStatement() != null) {
 Statement elseStatement = ifStatement.getElseStatement();

115

 statementList.addAll(getStatements(elseStatement));
}
if(instanceChecker.instanceOf(ifStatement))

 statementList.add(ifStatement);
 }
 else if(statement instanceof ForStatement) {

ForStatement forStatement = (ForStatement)statement;
statementList.addAll(getStatements(forStatement.getBody()));
if(instanceChecker.instanceOf(forStatement))
 statementList.add(forStatement);

 }
 else if(statement instanceof WhileStatement) {

WhileStatement whileStatement = (WhileStatement)statement;
Block whileBody = whileStatement.getBody();
statementList.addAll(getStatements(whileBody));
if(instanceChecker.instanceOf(whileStatement))
 statementList.add(whileStatement);

 }
 //handling of all other types of statements in a similar manner
}

}

public interface StatementInstanceChecker {

public boolean instanceOf(Statement statement);
}

public class InstanceOfIfStatement implements

StatementInstanceChecker {
public boolean instanceOf(Statement statement) {

 if(statement instanceof IfStatement)
return true;

 return false;
}

}
Figure 6.8: Collection of IfStatement nodes existing within a given statement.

As it can be observed from Figure 6.8, method getStatements() in class Sta-

tementCollector invokes recursively itself in the branches of the if/else if structure
corresponding to statements having a body, by passing as argument the statement cor-
responding to their body. In this way it is ensured that the AST structure will be com-
pletely traversed until the level of leaf statements not having a body. Furthermore,
method instanceOf() is invoked through reference instanceChecker at the end
of each branch, in order to check whether the statement in the given branch corres-
ponds to the AST node type of interest that should be collected. The aforementioned
check is achieved by means of polymorphism. The type of reference instance-
Checker corresponds to interface StatementInstanceChecker which declares
abstract method instanceOf(Statement statement). The classes implementing
this interface, such as class InstanceOfIfStatement, implement method in-
stanceOf() by examining whether the statement of the parameter is an instance of
the AST node type of interest (e.g., in the case of class InstanceOfIfStatement,
it is examined whether the statement of the parameter is an instance of the IfStatement
AST node type). In order to employ this mechanism and collect the AST nodes hav-
ing a specific type, reference instanceChecker should be initialized with the ap-
propriate StatementInstanceChecker subclass and next method getState-
ments() should be invoked, as exactly happens in the body of method getIfS-

116

tatements() where reference instanceChecker is initialized with a class in-
stance creation of InstanceOfIfStatement subclass. Obviously, this infrastruc-
ture can be extended to support additional AST node types by adding appropriate
StatementInstanceChecker subclasses, without modifying method getState-
ments() that performs the traversing of AST structures.

A similar infrastructure provides a mechanism for the collection of expressions
having a specific type of interest. The major difference lies in the implementation of
the AST structure traversing algorithm which extends the recursion depth until the
level of leaf expressions (i.e., expressions not consisting of other expressions).

An alternative solution to this problem can be achieved by extending abstract class
ASTVisitor of JDT Core API. Class ASTVisitor provides an abstract syntax tree tra-
versal infrastructure based on the Visitor design pattern [39]. It contains a visit(T
node) method for each concrete ASTNode type which returns a boolean value. If it
returns a true value, the given node’s child nodes will be visited next; however, if it
returns a false value, the given node’s child nodes will not be visited. By default, all
visit(T node) methods simply return a true value. In the code of Figure 6.9, class
IfStatementVisitor extends abstract class ASTVisitor and overrides method
visit(IfStatement node) in order to collect all visited IfStatements into a list.
The concrete visitor can be applied to an ASTNode reference by invoking method ac-
cept() through the ASTNode reference and passing as argument a class instance cre-
ation of the concrete visitor.

public class IfStatementVisitor extends ASTVisitor {

private List<IfStatement> ifStatements =
new ArrayList<IfStatement>();

public boolean visit(IfStatement node) {

ifStatements.add(node);
return super.visit(node);

}

public List<IfStatement> getIfStatements() {
return ifStatements;

}
}
//get all if statements within a method declaration
private List<IfStatement> getIfStatements(MethodDeclaration method) {

IfStatementVisitor ifStatementVisitor = new IfStatementVisitor();
method.accept(ifStatementVisitor);
return ifStatementVisitor.getIfStatements();

}
Figure 6.9: Collection of IfStatement nodes by extending abstract class ASTVisitor.

An important problem regarding the efficiency of ASTVisitor infrastructure is that

by default it performs a complete traversal of the abstract syntax tree, regardless of
the code level of the element being sought. For example, there is no need to visit all
the expressions of an abstract syntax tree if a specific statement type is being looked
for. In order to overcome this problem in the efficiency of the traversal, a set of ap-
propriate visit() methods should be overridden in order to return a false value. For
example, in the case of IfStatements the visit() methods corresponding to state-
ments not having a body should be overridden to return a false value.

117

6.5 Finding the subclasses of a given class

In order to perform accurate static analysis of method calls, a polymorphic method
call (i.e., an invocation of an abstract method) should be examined by analyzing the
concrete methods implementing the invoked abstract method. This can be achieved by
finding the subclasses extending (or implementing) the class (or interface) in which
the abstract method is declared and then by searching within the subclasses for me-
thods having the same signature with the abstract method.

Eclipse JDT Core provides a powerful index-based search infrastructure that can
be used for various purposes, such as searching for references of a given type, method
or field, finding the declaration of a given type, method or field, and finding the sub-
classes of a given class or interface. The code of Figure 6.10 employs the JDT Core
search API in order to collect the subclass types of a given abstract class or interface
type.

private Set<IType> getSubTypes(IType superType) {

LinkedHashSet<IType> subTypes = new LinkedHashSet<IType>();
try {

 SearchPattern searchPattern =
SearchPattern.createPattern(superType,
IJavaSearchConstants.IMPLEMENTORS);

 SearchEngine searchEngine = new SearchEngine();
 IJavaSearchScope scope =

SearchEngine.createHierarchyScope(superType);
 SearchRequestor requestor = new TypeSearchRequestor(subTypes);

searchEngine.search(searchPattern,
new SearchParticipant[]
{SearchEngine.getDefaultSearchParticipant()},
scope, requestor, null);

} catch (JavaModelException e) {
 e.printStackTrace();

} catch (CoreException e) {
 e.printStackTrace();

}
return subTypes;

}

public class TypeSearchRequestor extends SearchRequestor {

private Set<IType> subTypes;

public TypeSearchRequestor(Set<IType> subTypes) {
 this.subTypes = subTypes;

}

public void acceptSearchMatch(SearchMatch match)
throws CoreException {

 Object element = match.getElement();
 if (element instanceof IType) {

subTypes.add((IType)element);
 }

}
}

Figure 6.10: Collection of the subclass types for a given abstract type.

118

As it can be observed from Figure 6.10, the invocation of method search()
through reference searchEngine inside the body of method getSubTypes() re-
quires three basic arguments to be provided as input in order to operate.

The first argument concerns the search pattern. A search pattern can be created
through two static methods named createPattern() which are provided by class
SearchPattern.

1. The first static method, namely createPattern(IJavaElement ele-
ment, int limitTo), creates a search pattern from a Java element (parame-
ter element) and parameter limitTo which determines the nature of the ex-
pected matches and can take one of the following values:
• IJavaSearchConstants.DECLARATIONS: will search for declarations

matching with the corresponding Java element. In case the Java element is
a method, declarations of matching methods in subtypes will also be
found.

• IJavaSearchConstants.REFERENCES: will search for references to
the given element.

• IJavaSearchConstants.ALL_OCCURRENCES: will search for either
declarations or references as specified above.

• IJavaSearchConstants.IMPLEMENTORS: will search for types extend-
ing or implementing the abstract class or interface corresponding to the Ja-
va element.

2. The second static method, namely createPattern(String stringPat-
tern, int searchFor, int limitTo, int matchRule), creates a search
pattern from a string pattern which may contain '*' or '?' wildcards. The para-
meter searchFor determines the nature of the searched elements and can
take one of the following values:
• IJavaSearchConstants.CLASS: looks only for classes.
• IJavaSearchConstants.INTERFACE: looks only for interfaces.
• IJavaSearchConstants.TYPE: looks for both classes and interfaces.
• IJavaSearchConstants.FIELD: looks for fields.
• IJavaSearchConstants.METHOD: looks for methods.
• IJavaSearchConstants.CONSTRUCTOR: looks for constructors.
• IJavaSearchConstants.PACKAGE: looks for packages.

Finally, the parameter matchRule determines the matching rule of the search
and can take one of the following values:
• SearchPattern.R_EXACT_MATCH: the search pattern matches exactly

the search result.
• SearchPattern.R_PATTERN_MATCH: the search pattern contains one or

more wildcards ('*' or '?').
• SearchPattern.R_PREFIX_MATCH: the search pattern is a prefix of the

search result.
• SearchPattern.R_REGEXP_MATCH: the search pattern contains a regu-

lar expression.
• SearchPattern.R_CASE_SENSITIVE: the search pattern matches the

search result only if cases are the same.

119

In the code of Figure 6.10, static method createPattern(IJavaElement
element, int limitTo) is used in order to create a search pattern for types extend-
ing or implementing the abstract class or interface corresponding to parameter su-
perType.

The second argument that should be provided to method search() concerns the
scope of the search. Setting of scope is very important, since it allows to restrict the
search within certain Java elements instead of using the entire workspace as search
space. A search scope can be created through two static methods which are provided
by class SearchPattern. The first static method, namely createJavaSearch-
Scope(IJavaElement[] elements), creates a search scope limited to the Java
elements specified by parameter elements. The second static method, namely
createHierarchyScope(IType type), creates a search scope limited to the hie-
rarchy of the type specified by parameter type. In the code of Figure 6.10, the second
static method is used in order to create a search scope limited to the hierarchy of pa-
rameter superType.

Finally, the last argument that should be provided to method search() concerns
the search requestor. The search requestor is responsible for collecting the results
from a search engine query. To create a search requestor, one should extend abstract
class SearchRequestor and provide implementation for abstract method accept-
SearchMatch(SearchMatch match) which is called after each search match. In
the code of Figure 6.10, class TypeSearchRequestor extends abstract class Sear-
chRequestor and in method acceptSearchMatch() checks whether the search
match corresponds to an IType element and stores the identified subclass type into set
subTypes.

6.6 Implementing refactoring transformations on Java source code

JDT Core provides two approaches in order to perform changes on abstract syntax
trees. The first approach allows the direct modification of ASTNodes, while the
second approach makes use of the ASTRewrite API which allows to record the change
modifications intended to be performed on a given abstract syntax tree without affect-
ing its original structure. The second approach is more suitable for the cases where the
change modifications should be previewed without necessarily being applied on AST.
In the case of JDeodorant, it is very common that an abstract syntax tree (i.e., Compi-

lationUnit) presents more than one identified refactoring opportunities. As a result,
the user should be able to inspect the change modifications corresponding to each re-
factoring in a consecutive manner without actually applying the refactorings on
source code. In order to achieve this feature, the original AST should remain intact
after the preview of the change modifications imposed by each refactoring. Conse-
quently, JDeodorant adopts the approach based on ASTRewrite API to perform the
required change modifications.

An instance of ASTRewrite for a specific AST can be obtained by invoking static
method create(AST ast) which is provided by class ASTRewrite. This method re-
quires as parameter an instance of AST type which can be obtained from any ASTNode
by invoking method getAST(). An AST instance serves as the common owner of the
ASTNodes belonging to a given abstract syntax tree, and as the factory for creating
new ASTNodes owned by that instance. Class ASTRewrite provides four basic me-
thods in order to record change modifications:

120

• set(ASTNode node, StructuralPropertyDescriptor property,
Object value, TextEditGroup editGroup) which sets the given proper-
ty of the given node with the given value.

• getListRewrite(ASTNode node, ChildListPropertyDescriptor
property) which creates and returns a list rewriter (ListRewrite) for describ-
ing modifications to the given list property of the given node.

• replace(ASTNode node, ASTNode replacement, TextEditGroup
editGroup) which replaces the given node with the given replacement node.

• remove(ASTNode node, TextEditGroup editGroup) which removes
the given node from its parent node.

As it can be observed, the first two methods can be used to modify the structural
properties of the node parameter and require a StructuralPropertyDescriptor as pa-
rameter, while the last two methods affect the node parameter itself. The structural
properties of ASTNodes are grouped into three different kinds, namely properties
holding values which are not ASTNodes (i.e., primitive types such as int and boolean
or simple types such as strings and operators), properties which contain a single child
ASTNode, and properties which contain a list of child ASTNodes. Accordingly, ab-
stract class StructuralPropertyDescriptor has three concrete subclasses, namely Sim-

plePropertyDescriptor, ChildPropertyDescriptor and ChildListPropertyDescriptor,
which serve as property descriptors for the aforementioned kinds of properties, re-
spectively. The code of Figure 6.11 creates a new MethodDeclaration by assigning a
name, a return type, an access modifier, parameters and a method body to it and final-
ly adds the new MethodDeclaration to an already existing TypeDeclaration. All mod-
ifications are performed through ASTRewrite and ListRewrite operations.

AST ast = typeDeclaration.getAST();
ASTRewrite rewriter = ASTRewrite.create(ast);
MethodDeclaration newMethod = ast.newMethodDeclaration();

SimpleName methodName = ast.newSimpleName(...);
rewriter.set(newMethod, MethodDeclaration.NAME_PROPERTY,

methodName, null);

PrimitiveType returnType = ast.newPrimitiveType(PrimitiveType.VOID);
rewriter.set(newMethod, MethodDeclaration.RETURN_TYPE2_PROPERTY,

returnType, null);

ListRewrite modifierRewrite = rewriter.getListRewrite(newMethod,

MethodDeclaration.MODIFIERS2_PROPERTY);
Modifier accessModifier =

ast.newModifier(Modifier.ModifierKeyword.PRIVATE_KEYWORD);
modifierRewrite.insertLast(accessModifier, null);

ListRewrite parameterRewrite = rewriter.getListRewrite(newMethod,

MethodDeclaration.PARAMETERS_PROPERTY);
SingleVariableDeclaration parameter =

ast.newSingleVariableDeclaration();
SimpleName parameterName = ast.newSimpleName(...);
rewriter.set(parameter, SingleVariableDeclaration.NAME_PROPERTY,

parameterName, null);
Type parameterType = ast.newSimpleType(ast.newSimpleName(...));
rewriter.set(parameter, SingleVariableDeclaration.TYPE_PROPERTY,

parameterType, null);
parameterRewrite.insertLast(parameter, null);

121

Block methodBody = ast.newBlock();
ListRewrite methodBodyRewrite = rewriter.getListRewrite(methodBody,

Block.STATEMENTS_PROPERTY);
...
rewriter.set(newMethod, MethodDeclaration.BODY_PROPERTY,

methodBody, null);

ListRewrite bodyDeclarationRewrite =

rewriter.getListRewrite(typeDeclaration,
TypeDeclaration.BODY_DECLARATIONS_PROPERTY);

bodyDeclarationRewrite.insertLast(newMethod, null);

try {

TextEdit edit = rewriter.rewriteAST();
} catch (JavaModelException e) {

e.printStackTrace();
}

Figure 6.11: Creation of a new MethodDeclaration AST node.

The final try block in Figure 6.11, invokes method rewriteAST() in order to
convert all modifications recorded by the rewriter into a TextEdit object
representing the corresponding text edits to the source of the ICompilationUnit from
which the AST was created from. The resulting TextEdit can be applied to the IDo-

cument (corresponding to the ICompilationUnit) in order to actually transfer the
changes on source code. This is achieved by invoking method apply(IDocument
document) of class TextEdit which returns an UndoEdit object that can be used to
revert the source code in its original status. Class UndoEdit is a subclass of TextEdit
that encapsulates the reverse changes of an applied TextEdit.

Instead of manually applying the TextEdits resulting from the description of mod-
ifications through ASTRewrites, Eclipse provides the Refactoring Language Toolkit
(LTK) infrastructure that allows the integration of a refactoring transformation with
the refactoring history (i.e., undo and redo operations in Eclipse workbench) and the
utilization of refactoring wizards enabling the automatic preview of the change mod-
ifications imposed by a refactoring as well as the determination of parameters re-
quired for the application of a refactoring through user input pages.

The first step in order to employ the refactoring infrastructure provided by Eclipse
is to extend the abstract superclass Refactoring which declares four abstract methods
that should be implemented by its subclasses. These abstract methods are the follow-
ing:

• checkInitialConditions(IProgressMonitor pm): checks some initial
conditions that should be valid before the application of the refactoring and re-
turns a RefactoringStatus object representing the outcome of condition check-
ing. The latter object maintains a list of status entries (RefactoringStatusEntry
objects) which describe particular problems detected during condition check-
ing. Each status entry may have a different severity level. Severity levels are
ordered as OK < INFO < WARNING < ERROR < FATAL. The severity of
RefactoringStatus is the maximum of the severities of its status entries. This
method can also be used to compute some initial values for refactoring-related
parameters that should be presented to the user.

• checkFinalConditions(IProgressMonitor pm): checks any remaining
conditions that should be valid after the user has provided all input necessary

122

to perform the refactoring and returns a RefactoringStatus object. It is always
called after the execution of method checkInitialConditions(). This
method is not intended for validating the user input. Instead, the user input
should be validated directly on the input page of the refactoring wizard.

• getName(): returns the name of the refactoring.
• createChange(IProgressMonitor pm): creates a Change object that per-

forms the actual workspace transformation.

Abstract class Change has several subclasses representing various types of
changes that may occur in the Eclipse workbench. In the case of refactorings on Java
source code the most suitable type of Change is CompilationUnitChange which is a
special TextFileChange that operates on an ICompilationUnit in the workspace. In
order to create an operational CompilationUnitChange object, the TextEdit resulting
from a single ASTRewrite or the MultiTextEdit resulting from the aggregation of mul-
tiple TextEdits resulting from different ASTRewrites should be set to the Compilatio-

nUnitChange through method setEdit(TextEdit edit). Additionally, all sub-
types of TextChange (such as CompilationUnitChange) allow to define TextEdit-

Groups through method addTextEditGroup(TextEditGroup group) in order to
present parts of the change modifications as different preview groups. This allows to
preview the changes in a CompilationUnit as multiple groups of text modifications
and not as a single text modification covering the entire CompilationUnit. Figure 6.12
shows a case of Extract Method refactoring where the change modifications occurring
within the body of the original method are captured by a different preview group
compared to the group of change modifications that create the extracted method. Ob-
viously, in this way the user can more easily discriminate the change modifications
imposed by complex refactoring transformations.

Figure 6.12: Representation of TextEditChangeGroups in a CompilationUnitChange.

The code of Figure 6.13 contains a typical implementation of method create-
Change() for a single CompilationUnitChange that can be easily extended for refac-
torings affecting more than one CompilationUnits. The final part of this implementa-
tion creates a CompositeChange object which facilitates the composition of multiple
Changes into a single one. The created CompositeChange object should override me-
thod getDescriptor() to return an instance of RefactoringChangeDescriptor
which in turn encapsulates a RefactoringDescriptor instance. A refactoring descriptor
contains refactoring-specific data which allows the framework to completely recon-
struct a particular refactoring instance and execute it on an arbitrary workspace. In
other words, a refactoring descriptor enables the execution of a redo operation for a
refactoring which has been undone in the refactoring history of the Eclipse work-
bench.

123

public Change createChange(IProgressMonitor pm) throws CoreException,
OperationCanceledException {

try {
 pm.beginTask("Creating change...", 1);

TextEdit edit = rewriter.rewriteAST();
MultiTextEdit root = new MultiTextEdit();
root.addChild(edit);
//
ICompilationUnit iCompilationUnit =

(ICompilationUnit)compilationUnit.getJavaElement();
CompilationUnitChange compilationUnitChange =

new CompilationUnitChange("", iCompilationUnit);
//
TextEditGroup group = new TextEditGroup("Create new method",

new TextEdit[] {edit});
compilationUnitChange.addTextEditGroup(group);
compilationUnitChange.setEdit(root);

CompositeChange change = new CompositeChange(getName(),

new Change[] {compilationUnitChange}) {

public ChangeDescriptor getDescriptor() {

return new RefactoringChangeDescriptor(...);
}

};
return change;

} catch (JavaModelException e) {
e.printStackTrace();

} finally {
 pm.done();

}
}

Figure 6.13: Implementation of abstract method createChange() for a single
CompilationUnitChange.

Eclipse LTK offers the ability to collect user input required for the application of

the refactoring and preview the change modifications imposed by the refactoring
through a special wizard for refactorings which can be utilized by extending abstract
class RefactoringWizard. The subclass extending RefactoringWizard will automatical-
ly provide a change preview page where change modifications can be previewed be-
fore the application of the refactoring. Additional user input pages can be added to the
refactoring wizard by implementing abstract method addUserInputPages() and
invoking method addPage(IWizardPage page) in order to add subclasses of ab-
stract class UserInputWizardPage as user input pages. Figure 6.14 shows an example
of user input page in the Replace Type Code with State/Strategy refactoring wizard.
This user input page provides a set of default names for the classes of the
State/Strategy design pattern that will be introduced by the refactoring, based on the
names of the variable holding the current state and the named constants representing
all possible states. The user has the ability to rename the default names, while at the
same time the user input is validated against a set of preconditions. An example of a
precondition being examined is that the input values should not have the same name
with already existing types in the given Java project. The refactoring wizard allows
the user to preview or apply the refactoring (by pressing the Preview or OK button,
respectively) only if all preconditions are satisfied.

124

Figure 6.14: An example of user input page in the Replace Type Code with

State/Strategy refactoring wizard.

125

Chapter 7

7 Conclusions and Future Work

This work presented methods and techniques providing a concrete solution for three
major design problems in object-oriented systems, namely Feature Envy [36] which
constitutes a sign of violating the design principle indicating that behavior (i.e., me-
thods) and related data (i.e., attributes) should be grouped together in the same class,
State or Type Checking [36, 54, 26] bad smell which constitutes a direct violation of
the Open/Closed principle stating that software entities (classes, modules, functions,
etc.) should be open for extension, but closed for modification, and Long Method [36]
bad smell which constitutes a violation of the principle indicating that methods should
be as small, simple and cohesive as possible.

The major contribution of this work is that it faces the problem of improving the
design quality of an object-oriented system by identifying refactoring opportunities
which resolve bad smells existing in source code. In this way, it is possible to provide
solutions that not only detect given bad smells, but can also resolve them by appropri-
ate refactorings. Furthermore, this refactoring-oriented approach allows to examine
whether the resulting refactoring solutions are feasible and behavior-preserving and
assess their impact on certain aspects of design quality.

7.1 Discussion of evaluation results

Regarding Feature Envy bad smell, a method that identifies Move Method [36] refac-
toring opportunities as a means to resolve Feature Envy problems existing within an
object-oriented system has been developed. The qualitative analysis of the refactoring
suggestions extracted for an open-source project revealed that they can be useful in
assisting the designer to improve design quality. The study of coupling and cohesion
evolution when successively applying the refactoring solutions extracted for two
open-source projects has shown that the refactorings suggested by the proposed me-
thod have a positive impact on both coupling and cohesion. The assessment by an in-
dependent designer of the refactoring suggestions extracted for a system that he de-
veloped indicated that the proposed method is capable of producing conceptually
sound suggestions. Finally, CPU time measurements have shown that the efficiency
of the approach depends primarily on the number of the extracted refactoring sugges-
tions and secondly on the size of the system under study.

Regarding State Checking bad smell, a technique that identifies Replace Type

Code with State/Strategy and Replace Conditional with Polymorphism [36] refactor-
ing opportunities as a means to resolve state-check and RTTI problems, respectively,
has been developed. The comparison of the refactoring opportunities identified by an
independent expert on three open-source projects with the results of the proposed
technique has shown a moderate precision and relatively high recall. The small num-
ber of false negatives encourages the use of the proposed technique as a semi-

126

automatic approach, where the designer eventually decides whether a suggested refac-
toring should be applied or not. A second experiment investigated by means of binary
logistic regression the correlation between three quantitative factors and the decision
of the expert. The results indicate that the designer agrees in introducing polymor-
phism when an inheritance hierarchy is extensively utilized by adding several poly-
morphic methods, when a large number of statements are moved from the conditional
structures to the concrete State subclasses and when the number of concrete State
subclasses (representing all possible states that an object may obtain for a given prop-
erty) being created is relatively small. Finally, performance analysis has shown that
the efficiency of the proposed technique in terms of computation time depends on the
total number of conditional structures found in the system under examination.

Regarding Long Method bad smell, a method that identifies Extract Method [36]
refactoring opportunities as a means to resolve Long Method problems existing within
an object-oriented system has been developed. The evaluation has shown that the pro-
posed method is able to capture slices of code implementing a distinct and independ-
ent functionality compared to the rest of the original method and thus lead to extracted
methods with useful functionality. At the same time, the identified refactoring oppor-
tunities can help significantly to resolve existing design flaws by decomposing com-
plex methods, removing duplicated code among several methods and extracting code
fragments suffering from Feature Envy. Furthermore, the identified refactoring oppor-
tunities have a positive impact on the cohesion of the decomposed methods and lead
to highly cohesive extracted methods. Finally, the defined behavior preservation rules
can successfully exclude refactoring opportunities that could possibly cause a change
in program behavior.

7.2 General Conclusions

A general conclusion drawn from this work is that each design problem has its own
specific structural diversities and should be handled in a distinct manner. As a result,
it is rather difficult and almost impossible to develop a generic method that takes into
account all structural aspects of design problems in a way that is able to efficiently
produce high quality solutions for any type of problem.

Another important conclusion is that an approach aiming at improving the design
quality of an existing system should encompass human judgement in order to take in-
to account conceptual issues which cannot be inferred from purely structure-based
analysis. As a result, a semi-automatic approach that produces a list of ranked solu-
tions (based on structural characteristics of the program under examination) which are
eventually approved or disapproved by the designer of the program seems to be the
most suitable approach for improving the design quality of system.

7.3 Future Research

The developed methods (i.e., methods aiming at identifying refactoring opportunities)
can be combined along with methods aiming at detecting refactoring activities that
occurred in past versions of a software system [111, 112, 113] in order to perform
empirical studies investigating the refactoring habits of developers and maintainers. In
this way, it will be possible to answer some important research questions, such as:

127

• The refactoring activities which are actually performed by developers and
maintainers target at removing existing design problems or serve for other
purposes?

• Is there a systematic effort to remove design problems through refactorings
(i.e., targeted preventive maintenance) during maintenance or do refactoring
activities have a sporadic nature?

• Is it observed an increased maintainability to parts of a program which have
been refactored due to the existence of a design problem?

Another interesting research perspective is the investigation and development of a
method that models dependencies among different types of refactoring opportunities.
In this way, it will be possible to determine a sequence refactoring applications which
ensures that no conflicts will exist among different types of refactorings (i.e., the ap-
plication of a given refactoring does not hinder or make infeasible the application of
another).

128

Bibliography

[1] A. Abadi, R. Ettinger, and Y. A. Feldman, "Re-Approaching the Refactoring

Rubicon," 2nd ACM Workshop on Refactoring Tools (WRT'08), 2008.

[2] M. Aeschlimann, D. Bäumer, and J. Lanneluc, "Java Tool Smithing - Extending
the Eclipse Java Development Tools," eclipseCON, 2005.

[3] V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison-Wesley, 1986.

[4] A. Ananda Rao, and K. Narendar Reddy, "Detecting Bad Smells in Object Ori-
ented Design Using Design Change Propagation Probability Matrix," Interna-

tional MultiConference of Engineers and Computer Scientists 2008 Vol I
(IMECS'08), pp. 1001-1007, 2008.

[5] E. Arisholm, and D. I.K. Sjøberg, "Evaluating the Effect of a Delegated versus
Centralized Control Style on the Maintainability of Object-Oriented Software,"
IEEE Transactions on Software Engineering, vol. 30, no. 8, pp. 521-534, 2004.

[6] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, "Software Complexity
and Maintenance Costs," Communications of the ACM, vol. 36, no. 11, pp. 81-
94, November 1993.

[7] J. Bansiya, and C. G. Davis, "A Hierarchical Model for Object-Oriented Design
Quality Assessment," IEEE Transactions on Software Engineering, vol. 28, no.
1, pp. 4-17, January 2002.

[8] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation of Object-Oriented
Design Metrics as Quality Indicators," IEEE Transactions on Software Engi-

neering, vol. 22, no. 10, pp. 751-761, October 1996.

[9] J.-F. Bergeretti, and B.A. Carré, "Information-flow and data-flow analysis of
while-programs," ACM Transactions on Programming Languages and Systems,
vol. 7, no. 1, pp. 37-61, 1985.

[10] D. Binkley, and K. B. Gallagher, "Program Slicing," Advances in Computers,
vol.43, 1996.

[11] A. B. Binkley, and S. R. Schach, "Validation of the Coupling Dependency Met-
ric as a Predictor of Run-Time Failures and Maintenance Measures," 20th Inter-

national Conference on Software Engineering (ICSE'98), pp. 452-455, 1998.

[12] L. C. Briand, J. W. Daly, and J. Wüst, "A Unified Framework for Cohesion
Measurement in Object-Oriented Systems," Empirical Software Engineering,
vol. 3, no. 1, pp. 65-117, 1998.

[13] L. C. Briand, J. W. Daly, and J. K. Wüst, "A Unified Framework for Coupling
Measurement in Object-Oriented Systems," IEEE Transactions on Software En-

gineering, vol. 25, no. 1, January/February 1999, pp. 91-121.

129

[14] L. C. Briand, J. Wüst, S.V. Ikonomovski, and H. Lounis, "Investigating Quality
Factors in Object-Oriented Designs: an Industrial Case Study," 21st Interna-

tional Conference on Software Engineering (ICSE'99), pp. 345-354, 1999.

[15] L. C. Briand, J. Wüst, and H. Lounis, "Using Coupling Measurement for Impact
Analysis in Object-Oriented Systems," International Conference on Software

Maintenance (ICSM'99), pp. 475-482, 1999.

[16] L. C. Briand, and J. Wüst, "Modeling Development Effort in Object-Oriented
Systems Using Design Properties," IEEE Transactions on Software Engineer-

ing, vol. 27, no. 11, pp. 963-986, November 2001.

[17] F. Brito e Abreu, "The MOOD Metrics Set," 9th European Conference on Ob-

ject-Oriented Programming (ECOOP'95), Workshop on Metrics, 1995.

[18] F. Brito e Abreu, and W. Melo, "Evaluating the Impact of Object-Oriented De-
sign on Software Quality," 3rd International Software Metrics Symposium
(METRICS'96), pp.90-99, 1996.

[19] W. J. Brown, R. C. Malveau, H.W. McCormick III, and T. J. Mowbray, AntiPat-

terns: Refactoring Software, Architectures, and Projects in Crisis, John Wiley &
Sons, 1998.

[20] M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman, and G. Saint-Denis, "De-
sign Properties and Object-Oriented Software Changeability," 4th European

Conference on Software Maintenance (CSMR'2000), pp. 45-54, 2000.

[21] S. R. Chidamber, and C.F. Kemerer, "A Metrics Suite for Object Oriented De-
sign," IEEE Transactions on Software Engineering, vol. 20, no. 6, June 1994,
pp. 476-493.

[22] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, "Managerial Use of Metrics
for Object-Oriented Software: An Exploratory Analysis," IEEE Transactions on

Software Engineering, vol. 24, no. 8, pp. 629-639, August 1998.

[23] A. Cimitile, A. De Lucia, and M. Munro, "A Specification Driven Slicing Proc-
ess for Identifying Reusable Functions," Software Maintenance: Research and

Practice, vol. 8, pp. 145-178, 1996.

[24] M. Day, R. Gruber, B. Liskov, and A. C. Myers, "Subtypes vs. Where Clauses:
Constraining Parametric Polymorphism," 10th Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA'95),
pp. 156-168, 1995.

[25] A. De Lucia, M. Harman, R. Hierons, and J. Krinke, "Unions of Slices are not
Slices," 7th European Conference on Software Maintenance and Reengineering
(CSMR'03), pp. 363-367, 2003.

[26] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengineering Pat-

terns, Morgan Kaufman, 2003.

[27] S. Demeyer, "Refactor Conditionals into Polymorphism: What’s the Perform-
ance Cost of Introducing Virtual Calls?," 21st IEEE International Conference

on Software Maintenance (ICSM'05), pp. 627-630, 2005.

[28] S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger, R. Marinescu, T.
Mens, B. Du Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger, H. Gall and
M. El-Ramly, "The LAN-simulation: A Refactoring Teaching Example," 8th In-

130

ternational Workshop on Principles of Software Evolution (IWPSE'05), pp. 123-
134, 2005.

[29] K. Dhambri, H. Sahraoui, and P. Poulin, "Visual Detection of Design Anoma-
lies," 12th European Conference on Software Maintenance and Reengineering
(CSMR'08), pp. 279-283, 2008.

[30] B. Du Bois, "A Study of Quality Improvements by Refactoring," Ph.D. disserta-
tion, University of Antwerp, 2006.

[31] B. Du Bois, S. Demeyer, and J. Verelst, "Refactoring - Improving Coupling and
Cohesion of Existing Code," 11th Working Conference on Reverse Engineering
(WCRE'04), pp. 144-151, 2004.

[32] Eclipse Corner Article: Abstract Syntax Tree, Available at:
http://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html

[33] Eclipse Java development tools (JDT) Overview, Available at:
http://www.eclipse.org/jdt/overview.php

[34] R. Ettinger, "Refactoring via Program Slicing and Sliding," Ph.D. dissertation,
University of Oxford, United Kingdom, 2007.

[35] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The Program Dependence Graph
and Its Use in Optimization," ACM Transactions on Programming Languages

and Systems, vol. 9, no. 3, pp. 319-349, July 1987.

[36] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improv-

ing the Design of Existing Code, Addison Wesley, Boston, MA, 1999.

[37] A. Frazer, "Reverse engineering - Hype, Hope or Here?," in Software Reuse and

Reverse Engineering in Practice, P. A. V. Hall, Ed. Chapman & Hall, 1992, pp.
209-243.

[38] K. B. Gallagher, and J. R. Lyle, "Using Program Slicing in Software Mainte-
nance," IEEE Transactions on Software Engineering, vol. 17, no. 8, pp. 751-
761, August 1991.

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley, 1995.

[40] C. Ghezzi, M. Jazayeri and D. Mandrioli, Fundamentals of Software Engineer-

ing, Second Edition, Prentice Hall, Upper Saddle River, NJ, 2003.

[41] G. K. Gill, and C. F. Kemerer, "Cyclomatic Complexity Density and Software
Maintenance Productivity," IEEE Transactions on Software Engineering, vol.
17, no. 12, pp. 1284-1288, December 1991.

[42] M. Harman, and R. M. Hierons, "An Overview of Program Slicing," Software

Focus, vol. 2, no. 3, pp. 85-92, 2001.

[43] M. Harman, D. Binkley, and S. Danicic, "Amorphous Program Slicing," Journal

of Systems and Software, vol. 68, no. 1, pp. 45-64, 2003.

[44] M. Harman, D. Binkley, R. Singh, and R. M. Hierons, "Amorphous Procedure
Extraction," 4th IEEE International Workshop on Source Code Analysis and

Manipulation (SCAM'04), pp. 85-94, 2004.

131

[45] M. Harman, and L. Tratt, "Pareto Optimal Search Based Refactoring at the De-
sign Level," 9th Annual Genetic and Evolutionary Computation Conference

(GECCO'07), pp. 1106-1113, 2007.

[46] M. Hitz and B. Montazeri, "Measuring Coupling and Cohesion in Object-
Oriented Systems," International Symposium on Applied Corporate Computing
(ISACC'95), 1995.

[47] C. S. Horstmann, Object-Oriented Design and Patterns, Second Edition, Wiley,
2006.

[48] S. Horwitz, T. W. Reps, and D. Binkley, "Interprocedural Slicing Using De-
pendence Graphs," ACM Transactions on Programming Languages and Sys-

tems, vol. 12, no. 1, pp. 26-60, 1990.

[49] JDeodorant website, http://www.jdeodorant.com

[50] T. Jiang, M. Harman, Y. Hassoun, "Analysis of Procedure Splitability," 15th

Working Conference on Reverse Engineering (WCRE'08), pp. 247-256, 2008.

[51] B.-K. Kang, and J. M. Bieman, "Using design abstractions to visualize, quantify,
and restructure software," The Journal of Systems and Software, vol. 42, pp.
175-187, 1998.

[52] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, "Automated Support
for Program Refactoring using Invariants," 17th IEEE International Conference

on Software Maintenance (ICSM'01), pp. 736-743, 2001.

[53] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A Quantitative Evaluation of
Maintainability Enhancement by Refactoring," 18th IEEE International Confer-

ence on Software Maintenance (ICSM'02), pp. 576-585, 2002.

[54] J. Kerievsky, Refactoring to Patterns, Addison Wesley, 2004.

[55] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, "A Bayesian Ap-
proach for the Detection of Code and Design Smells," 9th International Confer-

ence on Quality Software (QSIC'09), pp. 305-314, 2009.

[56] R. Komondoor, and S. Horwitz, "Effective, Automatic Procedure Extraction,"
11th IEEE International Workshop on Program Comprehension (IWPC'03),
2003.

[57] B. Korel, and J. Laski, "Dynamic program slicing," Information Processing Let-

ters, vol. 29, no. 3, pp. 155-163, 1988.

[58] T. Kosar, M. Mernik, V. Žumer, "JART: Grammar-Based Approach to Refac-
toring," 28th Annual International Computer Software and Applications Confer-

ence (COMPSAC'04), pp. 502-507, 2004.

[59] S. Kumar, and S. Horwitz, "Better Slicing of Programs with Jumps and
Switches," 5th International Conference on Fundamental Approaches to Soft-

ware Engineering (FASE'02), pp. 96- 112, 2002.

[60] A. Lakhotia, and J.-C. Deprez, "Restructuring Programs by Tucking Statements
into Functions," Information and Software Technology, vol. 40, no. 11-12, pp.
677-690, 1998.

132

[61] W. Landi, B. G. Ryder, and S. Zhang, "Interprocedural Modification Side Effect
Analysis with Pointer Aliasing," ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI'93), pp. 56-67, 1993.

[62] F. Lanubile, and G. Visaggio, "Extracting Reusable Functions by Flow Graph-
Based Program Slicing," IEEE Transactions on Software Engineering, vol. 23,
no. 4, pp. 246-259, April 1997.

[63] L. Larsen, and M. J. Harrold, "Slicing object-oriented software," International

Conference on Software Engineering (ICSE'96), pp. 495-505, 1996.

[64] W. Li, and S. Henry, "Object-Oriented Metrics that Predict Maintainability,"
Journal of Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[65] D. Liang, and M. J. Harrold, "Slicing Objects Using System Dependence
Graphs," 14th IEEE International Conference on Software Maintenance
(ICSM'98), pp. 358-367, 1998.

[66] B. P. Lientz, and E. B. Swanson, Software maintenance management: A Study of

the Maintenance of Computer Application Software in 487 Data Processing Or-

ganizations, Addison-Wesley, Boston, MA, USA, 1980.

[67] O. Maqbool, and H.A. Babri, "Hierarchical Clustering for Software Architecture
Recovery," IEEE Transactions on Software Engineering, vol. 33, no. 11, pp.
759-780, November 2007.

[68] J. Martin, and C. L. McClure, Software Maintenance: The Problems and its So-

lutions, Prentice Hall, 1983.

[69] R. C. Martin, Agile Software Development: Principles, Patterns and Practices,
Prentice Hall, 2003.

[70] K. Maruyama, "Automated Method-Extraction Refactoring by Using Block-
Based Slicing," Symposium on Software Reusability (SSR'01), pp.31-40, 2001.

[71] T. Mens, and T. Tourwé, "A Survey of Software Refactoring," IEEE Transac-

tions on Software Engineering, vol. 30, no. 2, pp. 126-139, February 2004.

[72] T. M. Meyers and D. Binkley, "An Empirical Study of Slice-Based Cohesion
and Coupling Metrics," ACM Transactions on Software Engineering and Meth-

odology, vol. 17, no. 1, December 2007.

[73] B. S. Mitchell, and S. Mancoridis, "On the Automatic Modularization of Soft-
ware Systems Using the Bunch Tool," IEEE Transactions on Software Engi-

neering, vol. 32, no. 3, pp. 193-208, March 2006.

[74] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, "DECOR: A
Method for the Specification and Detection of Code and Design Smells," IEEE

Transactions on Software Engineering, vol. 36, no. 1, pp. 20-36, Jan./Feb. 2010.

[75] G. C. Murphy, M. Kersten, and L. Findlater, "How Are Java Software Develop-
ers Using the Eclipse IDE?," IEEE Software, vol. 23, no. 4, pp. 76-83, July
2006.

[76] E. Murphy-Hill, C. Parnin, and A. P. Black, "How We Refactor, and How We
Know It," 31st International Conference on Software Engineering (ICSE'09),
2009.

133

[77] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, "Work Experience versus
Refactoring to Design Patterns: A Controlled Experiment," 14th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE'06), pp.
12-22, 2006.

[78] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, "Do Maintainers Utilize
Deployed Design Patterns Effectively?," 29th International Conference on

Software Engineering (ICSE'07), pp. 168-177, 2007.

[79] J. T. Nosek, and P. Palvia, "Software Maintenance Management: Changes in the
Last Decade," Journal of Software Maintenance: Research and Practice, vol. 2,
no. 3, pp. 157-174, 1990.

[80] M. Ó Cinnéide, and P. Nixon, "A Methodology for the Automated Introduction
of Design Patterns," 15th IEEE International Conference on Software Mainte-

nance (ICSM'99), pp. 463-472, 1999.

[81] M. Ó Cinnéide, "Automated Application of Design Patterns: A Refactoring Ap-
proach," Ph.D. dissertation, University of Dublin, Trinity College, 2000.

[82] M. O’Keeffe, and M. Ó Cinnéide, "Search-based software maintenance," 10th

European Conference on Software Maintenance and Reengineering (CSMR'06),
pp. 249-260, 2006.

[83] M. O’Keeffe, and M. Ó Cinnéide, "Getting the Most from Search-Based Refac-
toring," 9th Annual Genetic and Evolutionary Computation Conference
(GECCO'07), pp. 1114-1120, 2007.

[84] M. O’Keeffe, and M. Ó Cinnéide, "Search-based refactoring for software main-
tenance," The Journal of Systems and Software, vol. 81, no. 4, pp. 502-516,
April 2008.

[85] F. Ohata, and K. Inoue, "JAAT: Java Alias Analysis Tool for Program Mainte-
nance Activities," 9th IEEE International Symposium on Object and Compo-

nent-Oriented Real-Time Distributed Computing (ISORC'06), pp. 232-244,
2006.

[86] W. F. Opdyke, "Refactoring Object-Oriented Frameworks," Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 1992.

[87] D. L. Parnas, "Software aging," 16th International Conference on Software En-

gineering (ICSE'94), pp. 279-287, 1994.

[88] C. Parnin, C. Görg, and O. Nnadi, "A Catalogue of Lightweight Visualizations
to Support Code Smell Inspection," 4th ACM symposium on Software visualiza-

tion (SOFTVIZ'08), pp. 77-86, 2008.

[89] T. M. Pigoski, Practical Software Maintenance: Best Practices for Managing

Your Software Investment, Wiley, New York, 1996.

[90] M. Polo, M. Piattini, and F. Ruiz, "A Methodology for Software Maintenance,"
in Advances in Software Maintenance Management: Technologies and Solu-

tions, Idea Group Publishing, Idea Group Inc., 2003, pp. 228-254.

[91] L. Prechelt, B. Unger, W.F. Tichy, P. Brössler, and L.G. Votta, "A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions,"
IEEE Transactions on Software Engineering, vol. 27, no. 12, pp. 1134-1144,
2001.

134

[92] R. S. Pressman, Software Engineering: A Practitioner’s Approach, Third edi-
tion, McGraw-Hill, 1993.

[93] I. Refanidis, and A. Alexiadis, "SelfPlanner: An Intelligent Web-based Calendar
Application," 17th International Conference on Automated Planning and

Scheduling Systems (ICAPS'07), 2007.

[94] A. J. Riel, Object-oriented design heuristics, Addison-Wesley, 1996.

[95] M. Salehie, S. Li, and L. Tahvildari, "A Metric-Based Heuristic Framework to
Detect Object-Oriented Design Flaws," 14th IEEE International Conference on

Program Comprehension (ICPC'06), pp. 159-168, 2006.

[96] S. R. Schach, Software engineering, Richard D. Irwin/Aksen Associates, IL,
USA, 1990.

[97] R. Seacord, D. Plakosh, and G. Lewis, Modernizing Legacy Systems: Software

Technologies, Engineering Processes, and Business Practices, SEI Series in
Software Engineering, Addison-Wesley, 2003.

[98] O. Seng, J. Stammel, and D. Burkhart, "Search-Based Determination of Refac-
torings for Improving the Class Structure of Object-Oriented Systems," 8th An-

nual Conference on Genetic and Evolutionary Computation (GECCO'06), pp.
1909-1916, 2006.

[99] F. Simon, F. Steinbrückner, and C. Lewerentz, "Metrics Based Refactoring," 5th

European Conference on Software Maintenance and Reengineering (CSMR'01),
pp. 30-38, 2001.

[100] L. Tahvildari, and K. Kontogiannis, "A Metric-Based Approach to Enhance De-
sign Quality through Meta-pattern Transformations," 7th European Conference

on Software Maintenance and Reengineering (CSMR'03), pp. 183-192, 2003.

[101] F. Tip, "A Survey of Program Slicing Techniques," Journal of Programming

Languages, vol. 3, no. 3, pp. 121-189, 1995.

[102] P. Tonella, "Using a Concept Lattice of Decomposition Slices for Program Un-
derstanding and Impact Analysis," IEEE Transactions on Software Engineering,
vol. 29, no. 6, pp. 495-509, June 2003.

[103] T. Tourwé, and T. Mens, "Identifying Refactoring Opportunities Using Logic
Meta Programming," 7th European Conference on Software Maintenance and

Reengineering (CSMR'03), pp. 91-100, 2003.

[104] A. Trifu, and R. Marinescu, "Diagnosing Design Problems in Object Oriented
Systems," 12th Working Conference on Reverse Engineering (WCRE'05),
pp.155-164, 2005.

[105] A. Trifu, and U. Reupke, "Towards Automated Restructuring of Object Oriented
Systems," 11th European Conference on Software Maintenance and Reengi-

neering (CSMR'07), pp.39-48, 2007.

[106] E. Van Emden, and L. Moonen, "Java Quality Assurance by Detecting Code
Smells," 9th Working Conference on Reverse Engineering (WCRE'02), pp. 97-
106, 2002.

[107] H. Van Vliet, Software Engineering: Principles and Practice, Second Edition,
Wiley, 2000.

135

[108] M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering,
vol. 10, no. 4, pp. 352-357, 1984.

[109] P. Wendorff, "Assessment of Design Patterns during Software Reengineering:
Lessons Learned from a Large Commercial Project," 5th European Conference

on Software Maintenance and Reengineering (CSMR'01), pp. 77-84, 2001.

[110] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, 2000.

[111] Z. Xing, and E. Stroulia, "Analyzing the evolutionary history of the logical de-
sign of object-oriented software," IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 850-868, October 2005.

[112] Z. Xing, and E. Stroulia, "UMLDiff: An algorithm for object-oriented design
differencing," 20th International Conference on Automated Software Engineer-

ing (ASE'05), pp. 54-65, 2005.

[113] Z. Xing, and E. Stroulia, "Refactoring detection based on UMLDiff change-
facts queries," 13th Working Conference on Reverse Engineering (WCRE'06),
pp. 263-274, 2006.

[114] L. M. Ott, and J. J. Thuss, "The Relationship between Slices and Module Cohe-
sion," 11th International Conference on Software Engineering (ICSE'89), pp.
198-204, 1989.

[115] L. M. Ott, and J. J. Thuss, "Slice-based metrics for estimating cohesion," First

International Software Metrics Symposium (METRICS'93), pp. 71-81, 1993.

136

Appendix A

The following auxiliary functions examine whether a given method is an accessor or
delegate method. The description of the functions assumes that such methods are writ-
ten in a certain way, following the most common conventions.

(Field or null) isGetter(Method m) ≡

size of m.parameters = 0 ∧ size of m.methodBody.statements = 1 ∧
∃ ReturnStatement r ∈ m.methodBody.statements where
r.returnedExpression is VariableAccess v ∧ v.declaration is Field f ∧
f.type = m.returnType
return f

(Field or null) isSetter(Method m) ≡

size of m.parameters = 1 ∧ size of m.methodBody.statements = 1 ∧
∃ AssignmentStatement a ∈ m.methodBody.statements where
(a.assignment.leftHandSide is VariableAccess v1 ∧ v1.declaration is Field f) ∧
(a.assignment.rightHandSide is VariableAccess v2 ∧
v2.declaration = m.parameters[0]) ∧ f.type = m.parameters[0].type
return f

(Type or null) elementTypeOfCollection(VariableDeclaration d) ≡

if d.type is CollectionType cType ∧ cType.type ∈ {Collection, List, Ab-
stractCollection, AbstractList, ArrayList, LinkedList, Vector,
Set, AbstractSet, HashSet, LinkedHashSet, SortedSet, TreeSet}
return cType.elementType
else if d.type is MapType mType ∧ mType.type ∈ {Map, AbstractMap, Hash-
Map, Hashtable, SortedMap, TreeMap, IdentityHashMap, WeakHashMap}
return mType.valueType

* the element type is inferred by the generic type(s) of the field type, or by the type of
the parameter of the collection setter methods corresponding to the field

(Field or null) isCollectionGetter(Method m) ≡

(size of m.parameters = 0 ∧ size of m.methodBody.statements = 1 ∧
∃ ReturnStatement r ∈ m.methodBody.statements where
r.returnedExpression is MethodInvocation methodInv ∧
methodInv.invokeExpression is VariableAccess v ∧
v.declaration is Field f ∧ elementTypeOfCollection(f) ≠ null ∧
methodInv.name ∈ {iterator, toArray, listIterator,
elements, keySet, entrySet, values}
return f) ∨
(size of m.parameters = 1 ∧ size of m.methodBody.statements = 1 ∧
∃ ReturnStatement r ∈ m.methodBody.statements where

137

r.returnedExpression is MethodInvocation methodInv ∧
methodInv.invokeExpression is VariableAccess v ∧ v.declaration is Field f ∧
elementType = elementTypeOfCollection(f) ≠ null ∧
methodInv.name ∈ {get, elementAt} ∧ elementType = m.returnType ∧
positionOfArgument(methodInv, m.parameters[0]) ≠ -1
return f)

(Field or null) isCollectionSetter(Method m) ≡

size of m.parameters = 1 ∧ size of m.methodBody.statements = 1 ∧
∃ MethodInvocationStatement s ∈ m.methodBody.statements where
s.methodInvocation.invokeExpression is VariableAccess v ∧
v.declaration is Field f ∧ elementTypeOfCollection(f) ≠ null ∧
s.methodInvocation.name ∈ {add, remove, addAll, removeAll,
retainAll, addElement, removeElement, put} ∧
positionOfArgument(s.methodInvocation, m.parameters[0]) ≠ -1
return f

int positionOfArgument(MethodInvocation inv, Parameter param) ≡

for i = 1 to size of inv.arguments
if inv.arguments[i] is VariableAccess arg ∧ arg.declaration = param

return i
return -1

(Method or null) isDelegate(Method m) ≡
(size of m.methodBody.statements = 1 ∧
∃ MethodInvocationStatement s ∈ m.methodBody.statements where
s.methodInvocation.declaringClass.type ∈ program.classTypes ∧
((s.methodInvocation.invokeExpression is VariableAccess v ∧ v.declaration ∈
{m.ownerClass.fields ∪ m.parameters ∪ inheritedFields(m.ownerClass)}) ∨
(s.methodInvocation.invokeExpression is MethodInvocation methodInv2 ∧
Field f = isGetter(methodInv2.methodDeclaration) ≠ null ∧
f ∈ {m.ownerClass.fields ∪ inheritedFields(m.ownerClass)}) ∨
s.methodInvocation.invokeExpression = null)
return s.methodInvocation.declaringMethod) ∨

(size of m.methodBody.statements = 1 ∧
∃ ReturnStatement r ∈ m.methodBody.statements where
r.returnedExpression is MethodInvocation methodInv ∧
methodInv.declaringClass.type ∈ program.classTypes ∧
methodInv.declaringMethod.returnType = m.returnType ∧
((methodInv.invokeExpression is VariableAccess v ∧ v.declaration ∈
{m.ownerClass.fields ∪ m.parameters ∪ inheritedFields(m.ownerClass)}) ∨
(methodInv.invokeExpression is MethodInvocation methodInv2 ∧
Field f = isGetter(methodInv2.methodDeclaration) ≠ null ∧
f ∈ {m.ownerClass.fields ∪ inheritedFields(m.ownerClass)}) ∨
methodInv.invokeExpression = null)
return methodInv.declaringMethod)

138

(Method or null) finalNonDelegateMethod(Method m) ≡
nonDelegateMethod = m
while(delegatedMethod = isDelegate(nonDelegateMethod) ≠ null)

nonDelegateMethod = delegatedMethod
finalNonDelegateMethod(nonDelegateMethod)

if nonDelegateMethod = m.declaringMethod
return null

else
return nonDelegateMethod

Appendix B

boolean modifiesDataStructureInTargetClass(Method m, Class t) ≡

for i = 1 to size of m.parameters
parameter = m.parameters[i]
F = one-to-manyAssociationRelationships(t, parameter.type)
if F ≠ ∅

for j = 1 to size of m.methodBody.methodInvocations
methodInv = m.methodBody.methodInvocations[j]
if methodInv.declaringClass = t ∧
pos = positionOfArgument(methodInv, parameter) ≠ -1

methodDecl = methodInv.declaringMethod
methodDeclParam = methodDecl.parameters[pos]
for k = 1 to size of F

Field f = F[k]
if modifiesDataStructure(methodDecl, f, methodDeclParam)

return true

(set of Field) one-to-manyAssociationRelationships(Class fromClass, Type toType) ≡

return f ∈ fromClass.fields
where (f.type is ArrayType aType ∧ aType.type = toType) ∨
elementTypeOfCollection(f) = toType

boolean modifiesDataStructure(Method m, Field f, Parameter param) ≡

if f.type is ArrayType aType return
∃ assignment ∈ m.methodBody.assignments
where assignment.leftHandSide is arrayAccess of VariableAccess v1 ∧
v1.declaration = f ∧ aType.type = param.type ∧
assignment.rightHandSide is VariableAcess v2 ∧ v2.declaration = param

else if elementType = elementTypeOfCollection(f) ≠ null return
∃ methodInv ∈ m.methodBody.methodInvocations
where methodInv.invokeExpression is VariableAccess v1 ∧ v1.declaration = f ∧
methodInv.name ∈ {add, remove, addElement, removeElement,
set, setElementAt, insertElementAt, put} ∧
positionOfArgument(methodInv, param) ≠ -1 ∧ elementType = param.type

* arrayAccess of variable array is expression array[indexExpression]

