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ABSTRACT 

The application of time series analysis to financial data continues to be an area of interest 
to day-traders, quantitative finance specialists and select investment professionals. By 
successfully combining classical time series analysis with Statistical Process Control (SPC) 
tools, the authors propose a highly capable technical analysis system which models and 
monitors market performance of a variety of financial instruments.  In addition, the paper 
develops a ‘data pooling’ technique to generalize the standard Yule-Walker equations for 
autoregressive coefficients; applies the Box-Jenkins’ methodology of model identification, 
estimation and validation to generate ARIMA models based on multiple non-sequential 
histories of stock data; and compares the accuracy of pooled-history models to that of 
conventional single-history models using graphical residual analysis techniques.  The results 
indicate that while pooled-history models are generally as adequate as the single-history 
models, the former are particularly well-suited for situations involving multiple short run-
length histories which are often observed in financial time series.  Using CUSUM control 
charts to monitor model residuals provided a valuable proof-of-concept that validated the use 
of time series analysis in conjunction with SPC tools in modeling and monitoring the 
behaviour of financial instrument. 
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1. INTRODUCTION 

The financial market is divided into four components: capital markets, commodities, 

foreign exchange and derivatives1.  Capital markets are further divided into two components:  

debt and equity financing (of which, the stock market forms the public forum).  Debt 

financing involves accepting loans from lenders and making interest payments, while equity 

financing raises funds by accepting payment from parties interested in fractional ownership 

of the company.  Buyers and sellers come together at stock exchanges where publicly listed 

companies’ stocks are traded.  The behaviour of share prices on these public exchanges has 

traditionally been modeled using random walk techniques2, although empirical analyses point 

to some serial correlation. 

Analysis techniques that seek to explain and model future values of financial instruments 

fall into two categories: fundamental and technical analysis.  Fundamental analysis looks at a 

firm’s fundamental financial information which is typically disclosed in periodic financial 

statements.  In contrast, technical analysis relies on historical stock data to generate models 

or detect patterns that help forecast the direction of stock price.  This thesis employs 

techniques described in the latter, and adds to the toolkit of the practitioner. 

                                                

1 We use the term derivates as an umbrella term for exotic instruments including but not limited to futures, 
options, contracts, etc. 

2 For a non-technical approach to the random walk model, we recommend Burton Malkiel’s very readable 
Random Walk Down Wall Street. 
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2. OBJECTIVES 

The main objective of this undergraduate thesis is to implement univariate time-series 

methodologies and Statistical Process Control (SPC) tools in jointly developing a system to 

forecast equations and monitor charts that assist in stock trading decisions.  Secondary 

objectives, which include performing literature reviews of published papers, modifying time 

series equations, and designing CUSUM control charts support and facilitate the primary 

objective stated above.  The first phase of the thesis is concerned with performing time series 

analysis within the classical Box-Jenkins framework; the second phase of the project applies 

SPC tools to generate quality control charts which enable the user to detect changes in stock 

behaviour; the system, consisting of the mathematical time-series model combined with SPC 

control techniques, is intended to be a valuable addition to the technical stock trader toolbox. 

The thesis project begins with individual case studies of published papers in the 

econometrics and financial statistics domain.  The individual literature reviews were largely 

motivated by the authors’ desire to understand and evaluate papers published in their 

respective fields of interest; needless to say, aspiring practitioners and academics alike must 

be able to comprehend concepts presented in papers to remain up-to-date with developments 

in their chosen fields.  Furthermore, the literature reviews helped refine the scope of the 

thesis given time constraints. 

The time-series analysis phase consists of three univariate models: one each for up-trends, 

horizontal trends and down trends.  The SPC phase consists of quality control charts which 

will be designed to track real-time performance and produce signals indicating a shift in 

trend.  Based on the graphical output of the charts, various investment strategies may be 
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implemented with respect to the stock in question.  The remainder of this section provides 

details into the two phases described above. 

A stock listed on both the S&P 500 and the TSX 60 was chosen:  this requirement was 

established since both exchanges have specific financial, operational and management 

requirements and guidelines that a firm must continue to meet in order to remain listed.  

Once selected, historical adjusted closing data was obtained and visually inspected for trends.  

The data was into three categories based on the prevalent trend between two desired dates; it 

is a key requirement of this thesis for each category to contain not only sufficient data points 

for each history, but for each category to contain multiple, visually analogous histories.  This 

requirement stems from the need to pool datasets to generate one model for each category. 

Using an approach similar to Box-Jenkins’, standard formulae for the autocorrelation 

(ACF) and partial autocorrelation (PACF) functions were modified to accommodate the 

‘pooled’ nature of the data sets.  Based on the pooled ACF and PACF charts, the degree of 

differencing required was inferred.  The paper then used the Yule-Walker set of linear 

equations to arrive at estimates of the autoregressive terms. 

Based on the pooled, autoregressive models, one-step ahead prices were forecasted and the 

associated residuals captured.  SPC tools (specifically CUSUM charts) were developed to 

assist in the process of monitoring residuals generated from the models, with the ultimate 

goal of detecting shifts in the mean or standard deviation of the overlying process.  These 

signals—to be detected visually on the CUSUM charts, indicating changes in the underlying 

process—are intended to prompt a buy, sell or hold investment decision. 
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3. STOCK AND DATA SELECTION 

For the purpose of this thesis, a stock that is listed on both the S&P 500 and the TSX 60 

indices was desired.  This requirement was established since both exchanges have specific 

financial, structural and management requirements and guidelines that a firm must continue 

to meet in order to be listed.  Furthermore, a stock which exhibited varying performance and 

trends was desired to allow for the development of three distinct models.  Based on visual 

inspection, three categories of adjusted close prices (uptrend, downtrend and horizontal data 

sets) were gathered for Toronto-based gold producer Yamana Gold Corp.  Below, a brief 

overview of the firm, its condensed financial statements and stock charts are provided. 

3.1. COMPANY BACKGROUND:  YAMANA GOLD CORP. 

Yamana Gold Inc. is a Toronto-based company engaged in the acquisition, exploration, 

development and operation of mineral properties; specifically, Yamana is a gold producer 

with significant gold production, gold development stage properties, exploration properties, 

and land positions in Brazil, Argentina, Chile, Mexico and Central America.  Yamana is 

cross-listed on the Toronto (TSX: YRI), New York (NYSE:AUY) and London (LSE: YAU) 

stock exchanges.  

Financials   Stock Performance 

(In millions of USD) 2008  Open  $      10.81  

Income Statement   High  $      10.88  

Total Revenue $1,054.61   Low  $      10.29  

Gross Profit $557.84   Volume 6.11M 

Operating Income $206.95   Market Capitalization 7.69B 

Net Income $434.77   52-Week High  $      19.79  

   52-Week Low  $        4.29  

Balance Sheet   Shares Outstanding 733.49M 

Total Current Assets $522.11   Price-to-Earnings (P/E) 13.33 

Total Assets $9,337.35   Stock Beta 0.95 

Total Current Liabilities $360.80   Earnings-per-share (EPS)  $        0.79  
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Total Liabilities $2,827.23     

Total Equity $6,510.12     

   Key Ratios 

Cash Flow    2008 

Net Income/Starting Line $434.77   Net profit margin 41.20% 

Cash from Operating Activities $328.68   Operating margin 19.60% 

Cash from Investing Activities ($559.72)  EBITD margin 27.90% 

Cash from Financing Activities $131.58   Return on average assets 4.50% 

Net Change in Cash ($114.76)  Return on average equity 7.00% 

Table 3-1 Key Financial, Stock Performance and Company Ratios for Yamana Corp. Adapted from Google Finance (March 15, 2009). 

The company’s stock chart was obtained from Google Finance (Figure 3-1), while the 

adjusted closing prices were downloaded to a spreadsheet using Yahoo! Finance. 

Figure 3-1 Stock Chart of Yamana Gold Inc., (TSE: YRI) 

 

3.2. THE DATA SELECTION PROCESS 

The data selection process involved visually inspecting the stock chart and identifying data 

sets for up trends, downtrends and horizontal trends, each consisting of a minimum of fifty 

data points.  This requirement will ensure statistical significance of the captured data.  In 

Figure 3-2, colour-coded boxes enclose regions of interest on Yamana Gold’s stock chart.  

The nomenclature referring to increasing, decreasing and horizontal histories consists of 

letters Ii, Dd and Hh, respectively. 
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Figure 3-2 Data sets selected for pooling, illustrated by the stock chart 

3.3. DATASETS  

The data sets used in the Box-Jenkins framework are summarized in Table 3-2 along with 

summary statistical information; run plots of each category (and associated histories) are 

given under Run Sequence Plot on page 28. 

 
Start End N x  

s  Kurtosis Skew 

IN
C

R
E

A
S

IN
G

 8-Nov-02 7-Feb-03 62 3.640 0.833 0.526 0.697 

11-Nov-05 7-Apr-06 103 8.413 1.930 -0.797 -0.187 

27-Oct-06 23-Feb-07 82 14.279 1.434 -0.371 -0.269 

21-Nov-07 20-Feb-08 62 8.646 1.623 -0.629 0.174 

20-Dec-07 14-Mar-07 58 15.824 1.801 -0.216 -0.328 

D
E

C
R

E
A

S
IN

G
 

25-May-01 14-Aug-01 77 4.967 0.808 1.241 0.726 

7-Feb-03 6-May-03 61 3.636 0.802 0.785 0.352 

13-Apr-07 17-Aug-07 87 13.592 1.691 -0.705 0.084 

27-Jun-08 27-Oct-08 83 10.652 3.101 -0.652 0.008 

F
L

U
C

T
U

A
T

IN
G

 

28-Nov-03 23-Apr-04 103 3.329 0.416 -0.339 0.472 

7-May-04 17-Sep-04 92 2.830 0.194 0.192 0.691 

8-Oct-04 11-Feb-05 87 3.562 0.185 0.302 0.799 

10-Jun-05 4-Nov-05 102 4.622 0.201 -0.390 0.434 

19-May-06 27-Oct-06 111 10.575 0.739 0.122 -0.035 

Table 3-2 Data Sets Used to Develop Untrend, Downtrend and Fluctuating Models 

The kurtosis is a measure of the peak for a distribution.  High kurtosis means more of the 

variance is due to infrequent, extreme deviation while low kurtosis means that the variance is 

due to frequent, modestly-sized deviations (Kurtosis).  Skew is a measure of the asymmetry 
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of the probability distribution: a negative skew implies the left tail is longer and the mass of 

the distribution is concentrated on the right of the figure while a positive skew implies the 

right tail is longer and the mass of the distribution is concentrated on the left of the figure 

(Skewness).  

IN
C

R
E

A
S

IN
G

 

 

D
E

C
R

E
A

S
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4. OVERVIEW OF TIME SERIES ANALYSIS AND STATISTICAL 

PROCESS CONTROL 

In this section, brief introductions to time series analysis and statistical process control are 

provided to prepare the undergraduate reader in appreciating the mathematical framework of 

this thesis.  The authors assume a university level understanding of statistics; readers 

interested in the application may skip forward to Overview of the Box-Jenkins Approach on 

page 28 without loss of continuity. 

4.1. INTRODUCTION TO TIME SERIES ANALYSIS
3 

At the most elementary level, observations taken sequentially in time constitute a time 

series; hourly yield of chemical processes, sequential measurements of volume on filling line, 

and daily closing prices of stocks are all examples of univariate (i.e., single response 

variable) time series.  Time series analysis pertains to the construction, fitting and validation 

of models which are intended to allow for the forecasting and detection of changes in the 

underlying process.   

Time series phenomena are largely driven by a stochastic engine in that future values are 

only partly determined by previously observed values.  For a stochastic process which is 

stationary, the mean and the sample mean are given by (4.1) and(4.2), respectively. 

 
[ ] ( )tE z zp z dzµ

∞

−∞
= = �  (4.1) 

                                                

3 Adapted from (Box, Jenkins, & Reinsel, 1994) 



17  
 

 1

1 N

t

t

z z
N =

= �
 (4.2) 

Where µ is process mean ��  is the sample mean 

N is the number of observations 

zt is an observation at time t 

p(z) is the probability distribution 

E[z] is the expected value 

The stochastic process variance and sample variance are yielded by (4.3) and(4.4), as 

follows: 

 
( ) ( )

2 22 ( )
z t

E z z p z dzσ µ µ
∞

−∞

� �= − = −
� � �

 (4.3) 

 

2 2

1

1
ˆ ( )

N

z t

t

z z
N

σ
=

= −�
 (4.4) 

Where �
2 
is the process variance ��2 is the sample variance 

µ is process mean ��  is the sample mean 

N is the number of observations 

zt is an observation at time t 

p(z) is the probability distribution 

E[z] is the expected value. 

4.2. DEVELOPING AN AUTOREGRESSIVE AR(P)  MODEL 

In this section, an elementary autoregressive model is developed and the AR(p) notation is 

introduced; this will later be expanded to include differencing and moving average terms.  A 

general autoregressive model consisting of p autoregressive terms is given in equation (4.5) 

 1

p

t i t i t

i

X Xξ ϕ ε−
=

= + +�
 (4.5) 

In equation(4.5), if p is limited to 1, the number of autoregressive terms is thusly restricted 

to one; this yields a first-order autoregressive model: 
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1t t t

X Xξ ϕ ε−= + +
 (4.6) 

Where � is a constant 
ϕ  (-1<ϕ <1) is the model parameter to be estimated 

t
ε

~ IID N(0,�
2
) 

The error term t
ε  is white noise, mathematically understood to be Gaussian IID (identical 

and independently distributed) with a mean (or expected value) of zero and an unknown but 

fixed variance �2.  Applying the expectation function E[.] to both sides of equation (4.6), 

yields the expected value (or mean) of the observation Xt as follows: 

 

1E[ ] E[ ] E[ ] E[ ]

0

t t tX Xξ ϕ ε

µ ξ ϕµ
−= + +

= + +  (4.7) 

Rearranging for the mean results in the following equation for µ: 

 1

ξ
µ

ϕ
=

−  (4.8) 

The variance of Xt is derived by applying the VAR[.] operator thusly: 

 

2
2 2

2
VAR[ ] E[ ]

1
t tX X

σ
µ

ϕ
= − =

−  (4.9) 

The autocovariance between observations separated by K time increments is given by 

 

2
2

2
E[ ]

1

K

K t K tB X X
σ

µ ϕ
ϕ

+= − =
−  (4.10) 
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The correlation coefficient is given by 
Kϕ ; furthermore, we can see that that the 

autocovariance function decays exponentially4.   

Suppose now that ϕ̂  an estimate of ϕ obtained from analysis of sample data from the 

process, and ˆ
t

X  is the fitted value of t
X .  Then, the residuals may be calculated as 

 
ˆe

t t t
X X= −

 (4.11) 

and are found to be approximately Gaussian IID ~(0,�2).   

Generally available Statistical Process Control charts may be employed to analyze the 

sequence of residuals being generated in real-time, almost mirroring a manufacturing 

process.  In particular, we apply CUSUM charts which generate a visual signal when the 

process parameters ξ  or σ  change, implying that the process has gone out of control; if we 

had been tracking a fluctuating time-series, a signal implies that the stock has changed 

behaviour, and based on whether the lower or upper control limit was breached, the price is 

most likely heading into sell or buy territory, respectively.  We can easily extend the AR(1) 

model developed in the section above to a second-order model, as follows: 

 
1 1 2 2t t t t

X X Xξ ϕ ϕ ε− −= + + +
 (4.12) 

                                                

4 Rewriting as 

K

K
B Gϕ=

 with G independent of K.  Note the similarity between 
lnK K

e
ϕϕ =

and 
nK

e τϕ
−

=
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4.3. DEVELOPING A MIXED AUTOREGRESSIVE,  MOVING AVERAGE MODEL 

It is sometimes useful to model the dependency observed between the error term �t.  A 

simple way to do this is through first-order moving average model, MA(1): 

 
1t t t

X µ ε θε −= + −
 (4.13) 

In this model, the correlation between xt and xt-1 is 2

1 1ρ θ θ= − +  and zero at all other lags.  

Thus, the correlative structure in xt only extends backwards one time period.  Sometimes 

combinations of autoregressive (AR) and moving average (MA) terms are useful.  A first-

order mixed model is given by equation (4.14): 

 
1 1t t t t

X Xξ ϕ ε θε− −= + + −
 (4.14) 

Simply, the underlying process variable xt is first-order autoregressive ( 1t
Xϕ − ) and first 

order moving average of the error term ( 1t t
ε θε −− ). 

The equations derived above belong to a class of time series models call the Autoregressive 

Integrated Moving Average (ARIMA) models.  ARIMA models are parameterized by p, d 

and q—the order of the autoregressive term, the number of times the time series is to be 

differenced, and the order of the moving average term.  To illustrate, an ARIMA(2,1,0) 

model differences the time series once, the resulting equation contains two autoregressive 

terms and no moving average terms.  In order to preserve the readership of this thesis to that 

of an undergraduate audience, the models developed herein do not contain moving average 

terms, and while a MA term may be cast as an infinite series of autoregressive terms, this 

exercise is beyond the scope of this paper. 
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4.4. MODIFYING THE STANDARD AR(P)  EQUATIONS TO ALLOW FOR POOLING 

The sample mean and sample autocovariance provided by Box-Jenkins needed to be 

modified in order to accommodate the ‘pooled’ nature of the datasets; below is a step by step 

development of the pooled equations from the standard equations. 

  
 Standard formulation ‘Pooled’ formulation 

Process mean [ ] ( )tE z zp z dzµ
∞

−∞
= = �

 

Sample mean 
1

1 N

t

t

z z
N =

= �
 

 

1 1

1

1
ˆ

iTH
i

nH

i n
i

i

x

T

µ
= =

=

= ��
�

 

Mean subtraction - ˆi i

n ny x µ= −
 

Process Autocovariance [ ] ( ) ( )cov ,k t t k t t kz z E z zγ µ µ+ += = − −� �� �  

Sample autocovariance ( ) ( )1

1

1 N k

k t t

t

c z z z z
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+
=

= − −�
 

( )
1 1

1
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i i

k n n kH

i n
i

i

c y y

T

−

+
= =

=
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Process autocorrelation 
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+
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2
2
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Table 4-1 Standard and Modified Equations for the AR(p) Model 

4.5. INTRODUCTION TO STATISTICAL PROCESS CONTROL (SPC) 
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When analyzing a set of data, a Shewhart control chart must be constructed to determine 

whether any large shifts (>1.5 �) have taken place.  If one may conclude from the Shewhart 

control chart that the process is in control, a CUSUM chart may then be constructed to detect 

small shifts (<1.5 � ).   

4.6. SHEWHART CONTROL CHARTS
5 

To being implementing Shewhart control charts, the following statistics need to be 

calculated for the process: 

Estimate of the population standard deviation 

 

�

2 2 4( ) ( ) ( )

R MR S

d n d n C n
σ = = =

 (4.15) 

Sample variance 

 

2

2 1

( )

( 1)

n

i

i

x x

S
n

=

−

=
−

�
 (4.16) 

Estimate of the in-control process mean 

 
�

0 xµ =
 (4.17) 

Restricting sample size to one for simplicity, the sample control chart consisting of the 

individual and moving range, henceforth referred to as the (I, MR) chart may be generated 

with the following upper and lower control limits and center lines: 

                                                

5 Adapted from (Montgomery, 2005). 
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I-Chart MR-Chart 

/ 2

/ 2

ˆ

ˆ

UCL X z

CL X

LCL X z

α

α

σ

σ

= +

=

= −
 

0.999

2

0.001

2

(2)
(2)

(2)
(2)

MR
UCL W

d

CL MR

MR
LCL W

d

=

=

=

 

If, upon consulting the Shewhart control charts, the process is deemed to be in-control, we 

may proceed with the tabular cumulative sum (CUSUM) control charts. 

4.7. TABULAR (ALGORITHMIC)  CUSUM 

The CUSUM chart plots two one-sided series:  upper one-sided values (
i

C
+ ) and lower 

one-sided value (
i

C
− ).  The upper one-sided values aggregate deviations above the process 

target mean of µ0, and are calculated as: 

 
0 1max[0, ( ) ]

i i i
C x k Cµ+ +

−= − + +
 (4.18) 

Similarly, the lower one-sided value aggregate deviations below µ0, and are calculated as: 

 
0 1max[0, ( ) ]

i i i
C k x Cµ− −

−= − − +
 (4.19) 

Where xi is the ith observation of the process 

µ0 be the mean or target value 

k is the reference value 

The above equations only pertain to the data series that are to be plotted on the CUSUM 

chart; the process of determining CUSUM control limits are discussed stepwise in the 

following: 

STEP 1 – DETERMINE THE CRITICAL SHIFT DELTA 
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The critical size of the shift � must be determined using the equation (4.20) which relates 

the shift from the in-control mean µ0 to the out of control upper and lower means µ1 and µ2 

respectively.  Again, restricting the sample size to one for simplicity: 

 

1 0 1

2 0 2

µ  = µ  + 

µ  = µ  + 

δ σ

δ σ  (4.20) 

where µ0 be the mean or target value 

µ1 be the upper shift mean 

µ2 be the lower shift mean 

�1 be the upper critical shift 

�2 be the lower critical shift 

� be the standard deviation of the process 

STEP 2- DETERMINE THE REFERENCE VALUE K 

The reference value K is half the magnitude of the shift, thus a value half way between the 

target µ0 and the upper CUSUM mean µ1, or the lower CUSUM mean µ2.  The reference 

value is a line, which if crossed, provides an early warning of a shift in the process mean.  

The upper and lower reference values K1 and K2 are calculated as follows: 

 

1 0 1
1

2 0 2
2

K
2 2

K
2 2

µ µ δ σ

µ µ δ σ

−
= =

−
= =

 (4.21) 

STEP 3 – DETERMINE THE DECISION VALUE H 

A decision variable H, which acts as a control limits, must be created to determine the state 

of the process.  The decision variable H, if exceeded either from above (by the one-sided 

upper CUSUM) or below (by the one-sided lower CUSUM), determines a shift in the process 

mean.  The upper and lower decision variables H1 and H2 are calculated as follows: 
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1 1

2 2

H h

H h

σ

σ

=

=  (4.22) 

However, to calculate H, the average run length (ARL) parameter h for both the one sided 

upper (h1) and lower (h2) must be determined.  Keeping step 3 in mind, the ARL is therefore 

determined first. 

STEP 4 – THE AVERAGE RUN LENGTH (ARL) 

The two-sided average run length is related to the one-sided upper and lower CUSUM 

average run lengths by the following equation: 

 1 1 2 2 1 1 2 2

1 1 1

( , , , , ) ( , , ) ( , , )
II I I

ARL h h a ARL h a ARL h aδ δ δ δ
= +

−  (4.23) 

One-sided CUSUM ARL’s may be calculated as: 

                       

-

2

2

-1
 ,   

2
2( - )

( , , )  2

( 1.166) ,   
2

                          

c

I

e c
if a

a
ARL h a

h if a

δ
δ

δ

δ

� +
≠�

�
= 	

�
+ =�




 (4.24) 

where 
c=2( )(h+1.166)

2
a

δ
−

 

a = actual shift from �0 to �1=�0+a� 

h = find, control limit H=h� 

� = critical size of shift 

1 1 X
H hσ=

 

STEP 5 – CALCULATE ARL IN CONTROL 

When the ARL is in control, the actual shift is zero (i.e., 0a = ).  Therefore, equation 

(4.23) simplifies into 
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1 1 2 2 1 1 2 2

1 1 1

( , , , ,0) ( , , ) ( , , )II I IARL h h ARL h a ARL h aδ δ δ δ
= +

−  (4.25) 

and the one-sided ARL in equation (4.24) may be rewritten as  

 

-

1 1 2

1

-1
( , ,0)  

2
2

                          

c

IN

e c
ARL hδ

δ

+
=

� �

 �
� �  (4.26) 

where 1 1

2 2

c=- (h +1.166)

( , , 0)IIARL h

δ

δ
 

If b is replaced with –c (since b = -c > 0), ARLI can be written as function g1 in b1: 

 
1 1 1 1 21

12

- -1 
( ) ( , ,0)

b

I

e b
g b ARL hδ

δ
= =

 (4.27) 

Re-arrange 1 1( )g b  into a non-linear equation: 

 

2

1
1 1 1 1

2

1
1 1

( ) 1 ( , ,0)
2

1 ( , ,0) 0
2

b

I

b

I

g b e b ARL h

e b ARL h

δ
δ

δ
δ

� �
= − − = 
 �

� �

� �
= − − − =
 �

� �

 (4.28) 

In equation (4.28), b may be ignored since eb 
>>b which yields: 

 
( )21

1 1 1 12
( ) 1 ( , ,0) 0b

Ig b e ARL hδ δ= − − =
 (4.29) 

Rearranging and take the natural logarithm of both sides of equation (4.29) gives: 

 
( )21

0 1 1 12
ln 1 ( , ,0)Ib ARL hδ δ� �= +� �  (4.30) 

Equation (4.30) is sufficiently in a form where Newton’s method can be applied to 

approximate, through iteration, a value for bi+1: 
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1

1

1

( )

'( )
i

i i

i

g b
b b

g b
+ = −

 (4.31) 

where the stopping rule is defined as 
-6

1 1 < 1 10
i i i

b b b+ +− ×  and 1 '( ) 1b

ig b e= −
. 

Using a suitable of bi, h1 is calculated by rearranging ( )1 1 1.166
i

b hδ= + into 

 
( )1 1 1.166

i
h b δ= −

 (4.32) 

Once h1 is obtained, decision variable H1 is arrived at using equation(4.22).  Recalculate 

the in-control decision variable for the lower one sided CUSUM (H2) using the same method 

used to determine the in-control upper one sided CUSUM (H1) using 2 2( , , 0)
II

ARL hδ .  If the 

assumption is made that the control limits for the process are symmetric, the in-control 

decision variable H2 will be mirrored over by negating the upper decision variable. 
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5. OVERVIEW OF THE BOX-JENKINS APPROACH 

The Box-Jenkins methodology is an econometric framework, named after statisticians 

George Box (b. 1933 – d. 1982) and Gwilym Jenkins (b. 1919 –) which applies 

autoregressive moving average (ARMA) models or autoregressive integrated moving 

average (ARIMA) models to time-series data to facilitate forecasting. The original model 

uses an iterative three-stage modeling approach consisting of model identification and 

selection; parameter estimation; and model validation.  

5.1. MODEL IDENTIFICATION 

In the first stage of the Box-Jenkins approach, charting techniques consisting of run 

sequence plots, autocorrelation plots and partial autocorrelation plots are used to check 

stationarity, seasonality and autoregression, amongst other characteristics of the time series.  

The model identification stage helps decide whether the time series may be modeled by 

ARIMA, and if so, what order of autoregressive and moving average terms should be chosen 

for the validation stage. 

RUN SEQUENCE PLOT 

A run sequence plot of the data is generated to determine time series stationarity i.e., 

whether the time series exhibits constant mean and scale.  A time series is non-stationary if it 

appears it appears to have no fixed level.  While time series may display some periodic 

fluctuations, most of the tools and techniques discussed in this paper apply only to stationary 

time series.  Should the data appear to be non-stationary, there exist techniques to transform 

it into a stationary time series. 
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Figure 5-1 Run Plot of all histories contained within the 'Horizontal' dataset 

There are two main types of stationary transformations.  First, the data may be differenced 

if the stochastic process has an unstable mean.  This type of transformation is used to remove 

polynomial trends that may be exhibited by the data.  Second, logarithmic, square root and 

curve-fitting transformation are covered in literature, but the differencing approach is 

recommended by Box-Jenkins.  These transformations are used if the series being examined 

has a non-constant mean and variance and it results in a straighter curve plot.  Run plots also 

help identify the presence of any unusual points or outliers, and any seasonality that may be 

exhibited by the time series. 

AUTOCORRELATION PLOT 

The autocorrelation function (ACF) measures the degree of correlation between lagged 

values of the times series.  For example, the autocorrelation coefficient at lag 1 (R1) describes 

the over autocorrelation of the data series between successive observations viz., between 

observations 1 and 2, 2 and 3, 3 and 4, and so on and so forth.  Similarly, R2 captures the 

correlation between observations 1 and 3, 2 and 4, 3 and 5 and so on and so forth. 

The autocorrelation value is bounded by the interval [-1,1] where a value close to 1 

indicates strong, positive correlation; a value close to -1 indicates strong negative correlation; 
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and a value close to 0 indicates weak or no correlation. The sample ACF at lag k is the 

autocovariance at lag k normalized by the covariance 
2

0

1

1
( )

N

t

t

C z z
N =

= −� of the time series: 

 

1

0k kr c c
−=

 (5.1) 

The k-lagged process autocovariance �k and sample autocovariance ck are: 
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( ) ( )
-

1

1

cov , - -

1
- -

k t t k t t k

N k

k t t
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z z E z z

c z z z z
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+
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= �  (5.2) 

where cov[zt,zt+k] is the covariance between zt and zt+k  

E[z] is the expected value 

µ is process mean ��  is the sample mean 

N is the number of observations 

z is the observation  

Meanwhile, the k-lagged process autocorrelation �k and the sample autocorrelation rk are: 
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�

 (5.3) 
where �

2 
is the process variance 

ck the sample autocovariance 

c0 is the variance function 

�k: the estimate of autocovariance 

�0: the process variance of a stationary process 

A chart that plots the sample autocorrelation coefficient rk against the associated lag k is 

known as an ACF plot.  ACF plots exhibit a variety of behaviour that is characterized by 

rates of decay, waveform behaviour, outlier behaviour, or seasonal behaviour.  Figure 5-2 

shows an ACF plot of the pooled decreasing dataset which exhibits very weak decay, while 
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Figure 5-3 shows an ACF plot with rapid decay.  Table 5-1 outlines various behaviours of 

ACF plots that may be encountered in industry and the associated model to be used. 

 

Figure 5-2 Autocorrelation Plot of Decreasing Dataset 

 

Figure 5-3 Double Differenced ACF Plot of Decreasing Dataset 

Shape Indicated Model 

Exponential, decaying to zero Autoregressive model - use PACF plot to identify the order. 

Alternating positive and negative, 

decaying to zero 
Autoregressive model - use PACF plot to identify the order. 

One or more spikes, 

 rest are essentially zero 
Moving average model - order identified by where plot becomes zero. 

Decay, starting after a few lags Mixed autoregressive and moving average (ARMA) model. 

All zero or close to zero Data is essentially random. 

High values at fixed intervals Include seasonal autoregressive term. 

No decay to zero Series is not stationary. 

Table 5-1 Behaviours of ACF Plots and Recommended Models 

PARTIAL AUTOCORRELATION PLOT 

The partial autocorrelation coefficient at lag k is the autocorrelation between observations 

Xt and Xt-k that is not explained by lag k = 1 through to lag k-1.  Similar to the ACF, the 
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PACF is bounded on the [-1,1] interval; the numerical interpretation of the PACF with 

respect to correlative behaviour and strength are also similar to the ACF.  Solving a system 

of equations (called the Yule-Walker equations, discussed in the following section) helps 

arrive at the PACF.  Like the ACF plot, a PACF plots the a k-lagged PAC coefficient against 

k (Figure 5-4). 

 

Figure 5-4 PACF Plot of ‘Increasing’ pooled data, second-order differenced 

5.2. MODEL ESTIMATION
6 

There are two methodologies to estimate the parameters of the AR(p) model: direct 

inversion and the Yule-Walker set of linear equations.  Since the Yule-Walker equations are 

useful in determining the PACF, the paper will focus on the same, although a brief overview 

of direct inversion method follows. 

 

 

                                                

6 Adapted from (Eshel). 
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DIRECT INVERSION 

For a generic AR (1) process 1 1t t t
x xφ ε−= + , the following over-determined system is 

formulated as: 

 ( )

2 1

3 2

1

1N N

x x

x x

x x

φ

φ

−
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 � 
 �

 � 
 �=

 � 
 �

 � 
 �
� � � �

b = A

� �
 (5.4) 

Using a least squares estimator approach, estimates can be obtained thusly 
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where i
c  is the ith autocovariance coefficient 

i
r  is the ith autocorrelation coefficient 

Generalizing for an AR (2) process 1 1 2 2t t i t
x x xφ φ ε− −= + + , a similar over-determined 

system can be formulated: 

 

3 2 1

4 3 2 1
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b = A
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 (5.6) 

which is solved using the usual least squares estimator (now in matrix notation): 

 
( )

1
T TA A A b

−

Φ =
 (5.7) 

The solution is not trivial and expanding the term (AT
A)

-1 yields: 
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 (5.8) 

Since the time series is stationary, the autocovariance is a function of the lag only: 
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 (5.9) 

The second part of the equation then becomes 
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 (5.10) 

And since the time series is stationary, rewrite as ( )1 2

TTA b c c=  

Combining equations (5.9) and (5.10) yields: 
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 (5.11) 
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Individually, the estimates are given by: 

 

1 2
1 2

1

2

2 1
2 2

1

(1 )ˆ
1

ˆ
1

r r

r

r r

r

φ

φ

−
=

−

−
=

−

 (5.12) 

This method may be extended for any p in an AR(p) model. The process becomes 

computationally tedious; instead, the Yule-Walker equations offer a better algorithm. 

YULE WALKER EQUATIONS 

Begin with a modified version of the generic AR(p) model as developed in equation (4.5):  

 
1 1 1 1 1 1...t i i p i p iX x x xφ φ φ ξ+ − − − += + + + +

 (5.13) 

For lag k = 1, multiply in i
x

 

 
( )1 - 1 1

1

( )
p

i i j i i j i i

j

x x j x x x ε+ + +
=

= +�
 (5.14) 

where i is the time indices 

j is the term indices 

Apply the expectation function E[.]  and realizing that [ ]1 0
i i

E xε + =  if the error term is 

Gaussian IID ~N(0,�): 

 
[ ] ( )1 1

1

p

i i j i i j

j

E x x E x xφ+ − +
=

� �= � ��
 (5.15) 

Divide throughout by 1N −  and knowing l l
c c− =

 due to the covariance’s symmetry: 

 
1 1

1

p

j j

j

c cφ −
=

=�
 (5.16) 

Divide throughout by C0 to arrive at the autocorrelation coefficient at lag 1 r1: 
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1 1 1

1

p

j

j

r rφ −
=

=�
 (5.17) 

If the process is replicated for lag 2, r2 is given by: 

 
2 1 2

1

p

j

j

r rφ −
=

=�
 (5.18) 

Generalizing for any desired lag k, the autocorrelation coefficient rk is given by 

 1

p

k j j k

j

r rφ −
=

=�
 (5.19) 

Lastly, the autocorrelation at the lag relating to the autoregressive order p is computed as: 

 1

p

p j j p

j

r rφ −
=

=�
 (5.20) 

Jointly, equations (5.17) through to (5.20) can be collected into the system of equations 

 

1 1 0 2 1 3 2 1 2 1

2 1 1 2 0 3 1 1 3 2

1 1 2 2 3 3 4 1 0 1

1 1 2 2 3 3 1 1 0

                              

p p p p

p p p p

p p p p p p

p p p p p p

r r r r r r

r r r r r r

r r r r r r

r r r r r r

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

− − −

− − −

− − − − −

− − − −

= + + + + +

= + + + + +

= + + + + +

= + + + + +

�

�

�

�

�

 (5.21) 

and conveniently expressed into matrix notation as7 

                                                

7 Recall that 0 1r =
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 (5.22) 

In the classic form, equation (5.22) becomes r = R� ; this is a well-posed system with R 

full-rank and symmetric, which guarantees invertibility and yields ˆ −= 1
� R r . 

USING YULE-WALKER EQUATIONS TO COMPUTE PACF 

Equation (5.22) provides an effective recursive method for computer the partial 

autocorrelation of the time series.  The process is outlined below to allow the reader to put 

the authors’ MATLAB code in computational context. 

STEP 1 – COMPUTE THE ACF UP TO P = 0.25N 

Begin by computing the autocorrelation function coefficients of a quarter of the data points. 

STEP 2 – COMPUTE 
( )iR AND 

( )ir  

Let 
( )iR and 

( )ir  denote the coefficient matrix and the right-hand side of equation (5.22) 

respectively, then while looping on 1 � i � p, compute 
( )iR and 

( )ir . 

STEP 3 – INVERT FOR � 

Compute the estimate 

� ( )( ) ( )

�

�

�

1

1( )
2

i
i i

i

φ

φ
φ

φ

−

� �

 �

 �

= = 
 �

 �

 �
� �

R r
�
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STEP 4 – RETAIN PACF 

Eject all �jφ  for 1 � j � i – 1, but retain �iφ since PACF(i) = �iφ . 

STEP 5 – PLOT PACF  

The last step calls for plotting the PACF coefficients against the lag values. 

5.3. MODEL VALIDATION 

Once the parameters have been estimated, the quality of the model must be established.  If 

the estimation is determined to be inadequate, the Box-Jenkins methodology espouses 

returning to the model identification stage to re-examine the appropriateness of the ARIMA 

model to the data series. Validating the model involves examining the residuals using charts 

and test statistics, which separately form the qualitative and quantitative bases of analysis, 

respectively, and together constitute the graphical residual analysis toolkit. 

In following the Box-Jenkins methodology, if a practitioner has developed a robust model, 

then the residuals should themselves behave like a univariate process.  Moreover, the 

residuals from a robust model will exhibit random drawings, fixed distribution, fixed location 

and fixed variance.  A powerful technique to perform residual analysis is to develop and 

examine 4-plots.  4-plots consist of a collection of exploratory graphical analysis (EDA) 

graphs which are especially suitable for the graphical residual analysis of univariate models.  

A 4-plot typically consists of a run sequence plot, a lag plot, a histogram, and a normal 

probability plot, and helps answer questions relating to the underlying assumptions of the 

univariate model.  Table 5-2 summarizes the components of the 4-plot. 
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Graph 
Axis Definitions 

Y-axis X-axis 

Run Sequence Plot Residuals Index 

Lag Plot Residuals Lagged Residuals 
Histogram Frequency Residuals 

Normal Probability Plot Ordered Residuals Normal order medians 

Table 5-2 Summary of 4-plot Components 

Below, each plot is illustrated with an example and sample analysis. 

RUN SEQUENCE PLOT 

Run sequence plots graphically summarize univariate data, and are effective in locating 

outliers and shifts in location and scale.  An ideal run sequence plot of the residuals would be 

flat and non-drifting, allowing the fixed-location assumption to hold, and a vertical spread 

roughly the same over the entire plot, allowing the fixed-variation assumption to hold.  

Figure 5-5 shows the run sequences of the ‘increasing’ data set which contains five histories 

none of which are of fixed mean.  To achieve stationarity, Box-Jenkins recommends 

differencing. Figure 5-6 shows a run sequence plot of history 2 following second-order 

differencing; it now exhibits fixed location, as desired. 

 

Figure 5-5 Run Sequence Plot of Increasing Dataset 
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Figure 5-6 Run Sequence Plot of History 2 - Double Differenced 

LAG PLOT 

Lag plots effectively determine 

the randomness of data by plotting 

the residuals against a lagged 

version of themselves.  The lag plot 

highlights any serial correlation that 

the model may not be capturing.  

Ideally, the lag plot would show 

white noise and no discernible 

trend, as Figure 5-7 shows. 
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Figure 5-7 Lag Plot of the Decreasing ARIMA(1,2,0) Residuals 

 

HISTOGRAM 

Histograms depict the underlying characteristic of the distribution of the data.  For white-

noise residuals, the histogram would be Gaussian (or bell-shaped), signified by its unimodal, 

symmetrical nature. Figure 5-8 shows a fitted histogram 
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Figure 5-8 Histogram of the Fluctuate ARIMA(2,2,0) Residuals 

NORMAL PROBABILITY PLOT 

 Probability plots (Figure 5-9) 

help assess whether a given 

dataset follows a specific 

distribution.  To test the 

normality assumption of the 

residuals, a normal probability 

plot is generated which charts 

the ordered residuals against 

normal order statistic means, or 

more simply, the data’s 

distribution against a theoretical normal distribution.  If normal, the plot will show a straight 

line; points that plot far away from the normality line therefore indicate departures from 

normality.  Lines that curl indicate kurtosis; lines that are biased to the left or to the right of 

x-axis indicate skew. 
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Figure 5-9 Normal Probability Plot of Fluctuate ARIMA(2,2,0) Residuals 
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6. APPLYING THE BOX-JENKINS METHODOLOGY 

In this section, equations that were modified to accommodate pooling were used in the 

Box-Jenkins framework; model identification, estimation and validation was conducted using 

Minitab commands and custom MATLAB code.  The model developed through use of 

pooling historical data was then used to forecast future data.  In addition, the paper compares 

the relative forecasting strengths of the pooled models to the strength of single history 

models as generated by Minitab.  The residuals calculated from the various models will be 

compared amongst each other to test the fit of the data and the implications of using multiple 

pooled histories as opposed to single histories.  

6.1. MODEL IDENTIFICATION 

The Box-Jenkins approach was initiated by generating simple run sequence plots which test 

for stationarity on the various histories. 

RUN SEQUENCE PLOTS OF POOLED DATA 

Based on the run plots of the following groups of histories (Figure 6-1) the following initial 

observations were made: 

1. The increasing and decreasing datasets do not exhibit any outliers or seasonal 

trends, however each graph clearly indicates non-stationarity, 

2. The horizontal dataset does not indicate any outlier or seasonal trends, either, yet 

the data fluctuates around a mean and may be initially regarded as a stationary. 
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Figure 6-1 Run Sequence Plots for the 'Increasing', 'Decreasing' and 'Fluctuating' Datasets 

Using the MATLAB program (Appendix A), pooled autocorrelation and partial 

autocorrelation plots for the initial raw data for each group were generated.  This step was 

key in not only establishing stationarity but also in identifying the order of the autoregressive 

term and the order of the differencing. 
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ACF AND PACF PLOTS OF RAW DATA 
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Figure 6-2 ACF and PACF Plots for Undifferenced Datasets 

From the plots in Figure 6-2, the following general observations were made: 
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1. All groups display strong positive autocorrelation; 

2. There is extremely weak decay especially with the horizontal data 

3. The datasets are not stationary and need to be appropriately differenced 

First order differencing was applied to the datasets, followed by second order differencing 

in order to impose stationarity.  The following section covers the latter. 

RUN SEQUENCE PLOTS OF SECOND ORDER DIFFERENCED DATASETS 
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Figure 6-3 Run Sequence Plot of Second Order Differenced Datasets 
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The run plots of the differenced datasets (Figure 6-3) are mean-reverting and stationary.  

The plots indicate that the differenced data is less autocorrelated than the initial raw data. 

ACF AND PACF PLOTS OF SECOND ORDER DIFFERENCED DATASETS 

The ACF and PACF plots of the datasets along with run sequence plots of the differenced 

data suggest that the differenced data are now stationary.  The autocorrelation plots of each 

group suggests an AR(1) model, yet to examine other potential models, the partial 

autocorrelation plot needs to be consulted (Figure 6-4).  The PACF plot for the increasing 

and decreasing histories concur with the results from the autocorrelation plots, both 

suggesting an AR(1) model.  The PACF for the horizontal histories, however, strongly 

suggests that an AR(2) model may be better suited.  Based on this visual inspection and 

reasoning, the following summarizes the orders of the autoregressive, differencing and 

moving average terms: 

1. The increasing dataset will be modeled by ARIMA(1,2,0) 

2. The decreasing dataset will be modeled by ARIMA(1,2,0) 

3. The fluctuate dataset will be modeled by ARIMA(2,2,0) 

 



47  
 

IN
C

R
E

A
S

IN
G

 

 

D
E

C
R

E
A

S
IN

G
 

 

F
L

U
C

T
U

A
T

IN
G

 

 

Figure 6-4 ACF and PACF Plots of Second Order Differened Datasets 
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6.2. MODEL ESTIMATION 

In order to estimate the parameters of the three different models, a custom MATLAB script 

was developed (Appendix B) to estimate the parameters using the Yule-Walker equations 

(page 35) using the multiple history (page 21).  Executing the script with the models 

specified on page 46 yields the following estimates for the parameters: 

Dataset Model Specification Model Parameters 

Increasing ARIMA(1,2,0) AR (1) -0.5823 

Decreasing ARIMA(1,2,0) AR (1) -0.5320 

Fluctuating ARIMA(2,2,0) 
AR (1) -0.5601 

AR (2) -0.3644 

Table 6-1 Parameter Estimates for 'Increasing', 'Decreasing' and 'Fluctuating' Datasets 

The parameter estimates obtained from the program are second order differenced.  

Therefore the equations were recast in terms of the original time series as follows: 

Increasing 

( )1 2 1 2 3

1 2 3

2 0.5823 2

1.4177 0.1646 0.5823

t t t t t t

t t t t

x x x x x x

x x x x

− − − − −

− − −

− + = − − +

= + −
 

Decreasing 

( )1 2 1 2 3

1 2 3

2 0.5320 2

1.468 0.064 0.5320

t t t t t t

t t t t

x x x x x x

x x x x

− − − − −

− − −

− + = − − +

= + −
 

Fluctuating 

( ) ( )1 2 1 2 3 2 3 4

1 2 3 4

2 0.5601 2 0.3644 2

1.4399 0.2442 0.1687 0.3644

t t t t t t t t t

t t t t t

x x x x x x x x x

x x x x x

− − − − − − − −

− − − −

− + = − − + − − +

= − + −
 

Table 6-2 ARIMA Equations Recast into Original Time Series 

6.3. MODEL VALIDATION 

In order to validate the parameter estimates for each of the three models, one-step ahead 

forecasts were generated using one of the existing histories from each model and the 

resulting residuals analyzed.  This stage is key in determining the models’ goodness-of-fit. 
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INCREASING MODEL RESIDUAL ANALYSIS 

The run sequence plot contained within the increasing model’s residual 4-plot (Figure 6-5) 

indicates that the residuals do not violate the constant location and scale assumption. It also 

shows that most of the residuals are within the (-1, 1) range.  The lag plot indicates the 

residuals are not serially autocorrelated, and while the histogram does not give clear 

indication of a normal distribution, the poorness of fit may be attributed to the low number of 

residuals generated.  The probability plot does show that the residuals are normally 

distributed with a P-value of 0.92 which is well above the critical value of 0.005. 
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Figure 6-5 4-Plot of the Residuals of the Increasing ARIMA Model 
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DECREASING MODEL RESIDUAL ANALYSIS 

As with the residuals of the increasing model, the 4-plot of the residuals of the decreasing 

model (Figure 6-6) indicates a good fit.  The lag plot indicates that there is no serial 

correlation while the run sequence plot is indicative of constant location and scale.  The 

probability plot indicates a P-value of 0.103, well above the critical value. 
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Figure 6-6 4-Plot of the Residuals of the Decreasing ARIMA Model 

ANALYSIS OF THE 4-PLOT FOR THE RESIDUALS OF THE FLUCTUATING MODEL 

The run plot for the horizontal model indicates that the residuals have constant location and 

scale.  The lag plot indicates that there is no autocorrelation between lag 1 and the probability 

plot shows that the residuals follow a normal distribution with a p-value of 0.279. 
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Figure 6-7 4-Plot of the Residuals of the Fluctuating ARIMA Model 

While certain models fared better than others in the residual analysis, when comparing the 

normality plots, it is concluded that all models are satisfactory fits to the pooled histories. 

6.4. COMPARING POOLED AND SINGLE HISTORY ARIMA MODELS 

Using the same Box-Jenkins methodology presented in the prior section, single-history 

ARIMA models were built in Minitab using the longest history of each group.  This was 

done in order to compare and contrast between the pooled and single-history models. Figure 

6-8 provides the histories used to generate the one-step ahead forecasts; Table 6-3 provides 

the single-history and pooled history ARIMA model parameters side by side. 
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Figure 6-8 Time series Used for One-Step Ahead Forecasts 

Dataset Type Model Specification Model Parameters 

Increasing 
Pooled ARIMA(1,2,0) AR (1) = -0.5823 

Single ARIMA(1,2,0) AR (1) = -0.4628 

Decreasing 
Pooled ARIMA(1,2,0) AR (1) = -0.5320 

Single ARIMA(1,2,0) AR (1) = -0.4926 

Fluctuating 

Pooled ARIMA(2,2,0) 
AR (1) = -0.5601 

AR (2) = -0.3644 

Single ARIMA(2,2,0) 
AR (1) = -0.5275 

AR (2) = -0.4139 

Table 6-3 Single and Pooled History Model Parameters for 'Increasing', 'Decreasing' and 'Fluctuating' Datasets 

The new datasets were forecasted using both single and pooled history models.  Residuals 

were then calculated for the various model forecasts, and probability plots were drawn to 

comparatively analyze the models’ goodness-of-fit. 

COMPARISON OF INCREASING MODELS 

The normality plots show that the single history model was able to produce a better fit for 

the slightly increasing time series whereas the pooled history model was more adequate for 

the steeply increasing time series (Figure 6-9).  It should be noted, however, that both models 

are technically acceptable at the 5% significance level. 
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Figure 6-9 Normality Plots of the Pooled & Single History Models ( Increasing) 

COMPARISON OF DECREASING MODELS 

The residual normal probability plots show that while both models perform reasonably 

well, the decreasing model using pooled histories is a slightly better fit as evidenced by 

higher P-values. 
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Figure 6-10 Normality Plots of the Pooled & Single History Models (Decreasing ) 

COMPARISON OF HORIZONTAL MODELS 

The results of the probability plot generated from the residuals show again that both the 

pooled and single history models perform relatively well , yet in this specific analysis the 
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horizontal model derived from the single history is a slightly better fit according to the P-

value (Psingle = 0.544 > Ppooled = 0.540). 
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Figure 6-11 Normality Plot of the Single and Pooled History Models (Horizontal) 

While both models are a reasonable fit to the data sets, what can be elucidated from the 

comparison is that using pooled data takes into account a much larger overall dataset and 

may be considered a better estimator.  This can be true since modeling based on a single 

history will result in having to rely on fewer data points.  In contrast, being able to pool 

segments that indicate similar trends helps expands the dataset upon which the model is 

based, thereby increasing the model’s adequacy as measured through normality plots and P-

values. 

6.5. STATISTICAL PROCESS CONTROL (SPC)  RESULTS 

The benefit of applying SPC techniques to the stock data was twofold—firstly, the charts 

indicated whether a model being used to generate day-ahead forecasts is still relevant, and 
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secondly, whether the stock is signally some type of investment action (buy, sell or hold).  

The design of CUSUM control charts for each type of trend (increasing, decreasing or 

horizontal) to monitor shifts in mean and variance helped make inferences into the stock 

movement.  The assumption that the pooled historical data and resulting models were 

sufficiently robust and an in-control was tested by generating Individuals and Moving Range 

(I-MR) charts of the residuals of each model.  

SHEWHART’S I-MR  CHARTS 

In order to design the CUSUM control chart, estimates for the process standard deviation 

need to be computed; these may be obtained from the I-MR charts (Figure 6-12). 
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Figure 6-12 I-MR Charts of the Residuals of the Models 
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The I-MR charts show that the model residuals are in control expect for the ‘decreasing’ 

model where a single point is out of control.  To remedy this situation, that single data point 

was removed8, and the I-MR chart for the ‘decreasing’ model regenerated (bottom right 

quadrant of Figure 6-12).  The updated I-MR chart shows the ‘decreasing’ model to now be 

‘in-control’; estimates of the sample standard deviation are provided in Table 6-4. 

Standard Deviation Estimates 

Increasing Model 0.356691 

Decreasing Model 0.414625 

Horizontal Model 0.440377 

Table 6-4 Estimates of the Sample Standard Deviation as Calculated by Minitab 

To design the CUSUM control charts, a MATLAB script executed (Appendix C)to test a 

range of values for the Average Run Length (ARL) and � which is the shift size to be 

detected.  Table 6-5 tabulates the results which were obtained from the MATLAB script; 

also, the resulting ‘in-control’ CUSUM charts are provided. 

                                                

8 See (Montgomery, 2005) for a detailed treatment of single out-of-control points. 
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Increasing Model Design 

H = 1.1902 
h= 3.3369 
k= 0.0892 
ARL= 25 
Delta= 0.5000 
Sigma= 0.3567 
Mean= 0 

 

 

Decreasing Model Design 

H= 1.9557 
h= 4.7167 
k= 0.1037 
ARL= 60 
Delta= 0.5000 
Sigma= 0.4146 
Mean= 0 

 

 

Fluctuating Model Design 

H= 1.5894 
h= 3.6093 
k= 0.1101 
ARL= 30 
Delta= 0.5000 
Sigma= 0.4404 
Mean= 0 

 

 

Table 6-5 CUSUM Design Parameters as Outputted by MATLAB 

CUSUM ANALYSIS 

Using the same data provided in the future historical datasets (Figure 6-8 on page 52), 

CUSUM analysis techniques were applied to the residuals of the model forecasts to 

investigate the CUSUM charts’ ability to detect changes in the stock’s behaviour.  What 

follows is a discussion of the CUSUM chart and MATLAB output following each run. 
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Figure 6-13 MATLAB Output of 'In-Control' CUSUM Chart (Slightly Increasing) 

The ‘slightly increasing’ model residuals for the slight increase data show that the process 

is ‘in-control’, and an adequate estimator for datasets that have a slight gradual increase.  The 

stock could be viewed at this point to be healthy (Figure 6-13). The steeply increasing time 

series CUSUM chart (Figure 6-14) however, indicates an ‘out-of-control’ process.  This may 

indicate that the stock is behaving erratically and is currently in a volatile situation.  It can 

also be noted as the best time to either buy or sell, depending on the strategy preferred by the 

investor. 

The model residuals for the slight decrease data show that the process is ‘in-control’ 

(Figure 6-15), and is an adequate estimator for datasets that have a gradual decrease. 
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Test failed at points: 
10 14 23 31 

Figure 6-14 MATLAB Output of 'Out-of'Control' CUSUM Chart (Steeply Increasing)  

 

 

Figure 6-15 MATLAB Output of 'In-Control' CUSUM Chart (Slighly Decreasing) 
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Figure 6-16 MATLAB Output of ‘Out-of-Control’ CUSUM Chart (Steeply Decreasing) 
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When fed a steeply decreasing time series, the CUSUM indicates an ‘out-of-control’ 

process for the residuals (Figure 6-16).  This can indicate that the stock is behaving 

erratically and is currently in a volatile situation.  The major deviations indicate that the 

model may need to be updated, or that the stock is producing uncharacteristic behaviour.  

When presented with horizontal data, the CUSUM chart indicates a process that is ‘in-

control’ Figure 6-17. 

 

Figure 6-17 MATLAT Output of an 'Out-of-Control' CUSUM Chart (Horizontal)  
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7. THESIS SUMMARY 

In this section of the thesis, a high level overview of the activities performed to arrive at the 

control charts is presented.  Also, financial interpretations of the CUSUM chart signals are 

discussed in the context of the investor’s personal risk profile.  The limitations of the 

modeling framework are briefly touched upon, and real world applications are presented.  

7.1. REVIEW OF BOX-JENKINS METHODOLOGY AND SPC 

Broadly speaking, the thesis was tackled in two phases; first, ARIMA models were 

generated for each of three ‘pools’ of financial data depicting either increasing, decreasing or 

horizontal behaviour.  Second, the model residuals were monitored on CUSUM control 

charts to detect signals that would be indicative of a change in the underlying stock trends. 

 

Figure 7-1 Graphical Overview of the Box-Jenkins Methodology 

The model generation phase was conducted in the standard Box-Jenkins methodology 

(Figure 7-1) which was used to identify, estimate and validate ARIMA models.  Run 

sequence, ACF and PACF plots were used to visually inspect the data, and second-order 
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differencing applied to impose stationarity.  Furthermore, the orders of the autoregressive 

terms were identified.  To accommodate the pooled data, the sample mean and sample 

autocovariance formulas were modified before being in a MATLAB script that exploited the 

Yule-Walker system of equations to estimate the model parameters.  The models were tested 

against single histories to validate the goodness-of-fit; this was primary achieved by 

examining the P-values of the normality plots of the model residuals.  The models were 

accepted as being satisfactory based on residual analysis contained in 4-plots. 

The control chart design and testing phase of the thesis started with the generation of the 

model residuals’ I-MR charts to test whether the process was in-control.  Once this 

requirement addressed, CUSUM control charts were developed based on two input 

parameters, namely Average Run Length (ARL) and the critical shift �.  The CUSUM 

control charts again confirmed that the residual process was in control.  To simulate a change 

in stock trend, new histories were used to back-forecast, and the CUSUM charts monitored 

for signals that would indicate a change in the underlying process. 

7.2. INTERPRETATION OF CUSUM CONTROL CHART SIGNALS 

Although the value of control charts in manufacturing and production system cannot be 

underestimated, it is important to be recognize that control chart signals do not tell the 

operator what corrective action to take—rather, control charts only bring to the operator’s 

attention a possible shift in the process.  Therefore, control chart signals provide the operator 

a reliable method to investigate changes in process, and require the operator to put the signal 

in the context of prevailing conditions. 
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Within the financial markets context of this thesis, the signals are even more dependent on 

accurate diagnosis and interpretation by the operator (typically, a day trader or institutional 

investor) because of the multitude of trading strategies one could subscribe to.  To illustrate 

this point, a few signalling scenarios, possible causes along with suitable investment 

decisions are presented in the following. 

If a control chart exhibits multiple out-of-control points either above the upper control limit 

or below the lower control limit, it may be inferred that the stock has changed behaviour i.e., 

if the residuals are currently being generated based on a ‘fluctuating’ model, and the control 

chart plots multiple points above the control limit, it may be inferred that the stock is now 

exhibiting an upward trend.  Depending on the risk-return profile of the investor, a ‘buy’ 

decision may be made (this strategy is comically called ‘herd mentality’) to capitalize on the 

market rally.  On the other hand, if the investor is following a contrarian approach, he or she 

will sell the stock (or take up a ‘short’ position) believing that the rally will be short lived—

and that prices will fall—thereby ensuring capital gains.  This scenario succinctly illustrates 

the dual-nature of a simple control chart signal. 

Investment decisions depend on the investor’s risk-return profile, and a conservative trader 

may interpret an increasing trend signal as a ‘sell’ signal assuming the stock becoming 

overvalued, a horizontal trend as a ‘hold’ signal, and a decreasing trend as a ‘buy’ signal, 

assuming the stock will be undervalued.  The conservative strategy is polar to that of an 

aggressive trader.  An aggressive trader will interpret an increasing trend signal as a buy 

signal, assuming the stock is undervalued, a horizontal trend as a hold signal, and a 

decreasing trend signal as a sell signal, assuming the stock is overvalued. 
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7.3. MODEL LIMITATIONS 

A risk inherent to all modeling techniques is the simplification of real-world phenomena 

into less complex model behaviour; instead, it is more prudent to address the shortcoming of 

the model in light of its computational or conceptual ease.  There are two model limitations 

that were encountered which the authors would like to address in greater detail. 

While conducting a review of the literature, the authors came across more sophisticated 

mathematical models which were even more suitable for financial application—for example, 

the GARCH family of models, with its heteroskedasticity modeling capability, would make 

for a more accurate model since homoskedasticity behaviour is rarely seen in the financial 

markets.  On the contrary, time-variant variance, which is perhaps a defining hallmark of any 

stock index, is poorly modeled by standard ARIMA models due to the homoskedasticity 

assumption.  However, the mathematical complexities of the GARCH model put it out of the 

reach of this undergraduate thesis. 

A second constraint was the limited data set which was available for back-forecasting.  It 

must be noted that using histories which were used to build the model to test its accuracy is 

almost a self-fulfilling fallacy:  the predictive power of a model would ideally be tested 

against completely new histories that played no part in model building and estimation.  

Because the stock history for Yamana Gold Corp. was comparatively short-lived, it forced 

the use of histories that had earlier been used (either in part or in full) to estimate the 

parameters of the model.  The authors point out that using a longer-lived index such as the 

New York Stock Exchange or the Dow Jones Industrial Average would help address this 

limitation, and would be a central consideration for any future work. 
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7.4. REAL WORLD APPLICATIONS 

This data modeling and financial control chart system is intend to be practical from a 

practitioner’s point-of-view, who has been defined as an active day-trader or an institutional 

investor with a technical trading mandate.  In the section below, one possible configuration 

of this system is presented, and how it adds value to the investment decision process. 

 

Figure 7-2 Workstation Configuration of Modeling and Monitoring System 

In the figure above, the modeling and monitoring software would run on node 3; here the 

operator performs modeling activities and may either continuously monitor the control charts 

or setup an algorithmic to enable automated trades based predefined conditions. 
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8. LITERATURE REVIEW 

In addition to studying Box-Jenkins’ Time Series Analysis: Forecasting and Control, three 

published papers were reviewed, one each by the authors of this paper.  Here, reviews of the 

three published papers are presented in case-study format along with examples of the 

mathematical models described within each. 

8.1. ESTIMATING STOCK MARKET VOLATILITY USING ASYMMETRIC GARCH 

MODELS 

Dima Alberg, Haim Shalita and Rami Yosef 

Reviewed by 

Imran Mohammed 

EXECUTIVE SUMMARY 

This paper takes an empirical analysis approach to forecasting the mean and variance of 

the Tel Aviv Stock Exchange (TASE) using various GARCH models. GARCH models allow 

users to model time series’ serial volatility dependence, in contrast to ARIMA models which 

assume homoskedasticity i.e., constant variance.  The paper is relevant to the thesis in that it 

develops and applies univariate time series models to financial data and provides a published, 

acceptable methodology on how to compare two forecasting models.   Their findings suggest 

that the EGARCH model is the most accurate ARCH model, as applied to two Tel Aviv 

Stock Exchange indices. 

INTRODUCTION 

Volatility clustering, the leverage effect and excess kurtosis are empirically observed in 

financial market data, and accurately capturing market volatility with these complications is 

pertinent to many in the wealth, risk and investment management roles.  Following Engle’s 
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(1982) breakthrough work on the Auto-Regressive Conditional Heteroskedasticity (ARCH) 

model which addressed volatility clustering, the generalized ARCH (GARCH) model 

proposed by Bolleslev (1986) superseded the Exponentially Weighted Moving Average 

(EWMA) model that was being used at the time.  Nelson’s (1991) nonlinear, exponential 

extension of the GARCH model (EGARCH), Glosten et. al’s GJR-GARCH (1993) and Ding 

et. al’s Asymmetric Power ARCH (APARCH) loosen the symmetric restrictions on the 

ARCH/GARCH models by capturing negative biases in stock price movement due to 

volatility movements i.e., the leverage effect.  Although heteroskedasticity explains some of 

the fat-tail behaviour, GARCH models often fail to fully capture the fat tails observed in 

asset return series, and therefore, to compensate for this limitation, fat-tailed distributions 

such as Student's t-distribution have been applied to GARCH modeling. Engle’s original 

Gaussian implementation has now been extended to use the Student’s t-distribution which 

better captures the leptokurtosis seen in financial data. 

The paper investigates forecasting performance of GARCH, EGARCH, GJR-GARCH and 

APARCH models, each with three different underlying distributions: Gaussian, the Student’s 

t-distribution and the non-central Student’s t-distribution, using data from the TA100 and 

TA25 indices.    Goodness-of-fit of the models were measured against test statistics while 

forecasting performance was measured against MSE, MedSE, MAE, AMAPE and TIC  
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Table 8-1 Quantitative Forecasting Performance Measures 

DATA AND COMPUTATION 

3058 observations from the TA25 index and 1911 observations from the TA100 index 

were obtained; both are daily time series data.  A price-to-return transformation was applied 

to the data to produce a stationary time series.  Anticipating higher trading volumes on the 

first (Sunday) and last (Thursday) day of trading week, two regressions were used to isolate 

said ‘calendar effects’.  As suspected, the regressed sample descriptive statistics indicate 

skewness, excess kurtosis and Jarque-Bera statistics that are consistent with non-normally 

distributed returns.  The estimation and forecasting were performed using G@RCH 2.0: an 

open-source toolkit based on the Ox mathematical programming language. Parameter 

estimation was accomplished computationally by relying on maximum likelihood estimators. 

MODEL SPECIFICATION 

Conditional, time-variant volatility is captured in Engle’s basic ARCH model by means of 

a quadratic function of the lagged values of the ‘shocks’ or ‘surprises’.  The core model is: 

"�
� # $% � � $&'�
(&)&�* ""when '
� # �
��
�  such that �
 is +� distributed.  If an 

autoregressive moving average (ARMA) model can be applied to the error variance, then 

we’ve arrived at Bolleslev’s (1986) broader GARCH model which parameterizes the above 

into two variables p (order of the variance term) and q (order of the error term) as follows: 

�
� # , � � $&'�
(&)&�* � � -.��
(./.�*   
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where $&, -. and , are parameters to be estimated. 

While more flexible than ARCH, GARCH is limited by its symmetry in that it cannot 

fully capture the leverage effect.  To remedy the notion of larger negative returns associated 

with strong volatility movements than positive returns, asymmetric ARCH models introduce 

additional parameters that address the financial leverage.  The APARCH model is expressed: 

�
0 # , � � $&12'
(&2 
 3&'
(&40)&�* � � -.�0
(./.�*   

where 5 6 7 and 
� 8 9: 8 �.  If we fix 9*= 0, then a positive surprise (;* 6 74 has just 

as large an impact on �*� as would a negative surprise '* 8 74.  However, if the data 

supports a non-zero value for 3& (specifically, 3& 8 74, we are lead to believe in the presence 

of leverage. 

ASSESSING VOLATILITY MODELS 

The output of the G@RCH 2.0 software suite points to the adoption of an autoregressive 

AR(1) model for the time series mean and to GARCH, EGARCH, GJR-GARCH and 

APARCH models – all of specification (1,1).  Twenty-lag Box-Pierce test statistics, which 

test whether any of a group of autocorrelations of a time series are different from zero, were 

computed for each model for each index.  In addition, the Pearson goodness-of-fit for 50 

cells, the Log-Likelihood value and the Akaike Information Criteria (AIC) were calculated in 

order to determine forecasting validity.  These values suggest that the EGARCH, APARCH 

and GJR models better estimate the data than the GARCH model.  Furthermore, the models 

with non-normal underlying distributions bested their Gaussian cousins.  Evidence of this 

may be seen in higher Log-Likelihood and AIC values for the non-normal (Student t-
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distribution) varieties of the models.  This is not unexpected since earlier sample statistics 

pointed at data non-normality that could only be captured with asymmetric models. 

 

Figure 8-1 Forecasting Analysis for the TA25 Index: Density Comparison (Dima et. al) 

FORECASTING 

Again, using the G@RCH suite, 30 one-step-forward forecasts were made for each index 

using the totality of the data set as the rolling window for both the mean and the variance.  

Using MSE, MedSE, MAE, AMAPE and TIC performance measures, it was determined that 

the EGARCH model with underlying Student t-distribution consistently outperformed the 

GARCH, GJR-GARCH and APARCH models. 

WORKING EXAMPLE 

In this section of the case study, the reviewer presents a full example of the GARCH 

methodology using the MATLAB GARCH Toolbox. The sample period is from January 2, 

1990, to December 31, 2001, yielding a total of 3028 daily equity index observations from 

the NASDAQ Composite index (Figure 8-2 presents the closing price run sequence; Figure 

8-3 presents the same data now stationary after a price-to-return transformation). 
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Figure 8-2 Run Sequence Plot of NASDAQ Composit Index: Closing Price 
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Figure 8-3 Run Sequence Plot of NASDAQ Composite Index: Price-to-Return 

In the pre-estimation analysis, the autocorrelation and partial autocorrelation functions of 

the index returns are examined (Figure 8-4 and Figure 8-5) since they provide guidance on 

the correlation characteristics of the returns.  Based on the plots generated in MATLAB, 

there does not seem to be a need for a correlation structure in the conditional mean. 

 

Figure 8-4 Autocorrelation Function Plot for NASDAQ Returns 

 

Figure 8-5 Partial Autocorrelation Plot for NASDAQ Returns 
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Similarly, any correlation between the squared returns is investigated using an ACF plot of 

the squared returns to determine the characteristics of the variance process (Figure 8-6). 

 

Figure 8-6 Autocorrelation Plot of the Squared Returns 

    

    

H pValue Stat CriticalValue 

1.0000 0 605.6572 18.3070 

1.0000 0 616.8817 24.9958 

1.0000 0 682.4249 31.4104 

Table 8-2 ARCH test MATLAB Output 

(Pre-Estimation Analysis) 

Although the returns themselves are not largely correlated, the variance does appear to 

exhibit some correlation; furthermore, the ACF plot does not decay rapidly, raising the 

possibility that the variance process is not stationary.  In the next step, Engle’s own ARCH 

test is performed using built-in MATLAB commands to investigate homoskedasticity by 

testing the null hypothesis that a time series is a random sequence of Gaussian disturbances 

(i.e., no ARCH effects exist). The test (Table 8-2) indicates significant heteroskedastic 

effects.  

In the parameter estimation phase, the garchfit command is used to estimate model 

parameters.  Assuming the default GARCH model outlined below 
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MATLAB provides an output estimating the model parameters when the returns array is 

applied as an argument to the garchfit command (Table 8-3). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   Diagnostic Information  
 
Number of variables: 4 
 
Functions  
 Objective:                         garchllfn 
 Gradient:                          finite-differencing 
 Hessian:                           finite-differencing (or Quasi-Newton) 
 Nonlinear constraints:             armanlc 
 Gradient of nonlinear constraints: finite-differencing 
 
Constraints 
 Number of nonlinear inequality constraints: 0 
 Number of nonlinear equality constraints:   0 
  
 Number of linear inequality constraints:    1 
 Number of linear equality constraints:      0 
 Number of lower bound constraints:          4 
 Number of upper bound constraints:          4 
 
Algorithm selected 
   medium-scale 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 End diagnostic information  
 

 

Max Line search Directional 

First-

order    

Iter F-count f(x) constraint steplength derivative optimality Procedure 

0 5 -8776.15 -2.41E-05     

1 25 -8777.34 -2.41E-05 3.05E-05 -1.45E+04 5.90E+04  

2 31 -8925.44 -1.21E-05 0.5 1.57E+03 3.45E+07  

3 38 -8943.77 -3.86E-05 0.25 336 1.00E+06  

4 44 -9042.69 -2.12E-05 0.5 53.5 9.04E+06  

5 52 -9044.65 -2.00E-05 0.125 170 1.14E+07  

6 61 -9080.3 -1.87E-05 0.0625 90.6 2.41E+06  

7 67 -9130.62 -9.35E-06 0.5 -52.3 1.69E+06  

8 74 -9138.98 -7.01E-06 0.25 39.9 7.30E+06  

9 82 -9144.52 -7.41E-06 0.125 3.83 1.30E+06  

10 87 -9145.77 1.11E-16 1 53.7 2.01E+07  
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11 93 -9163.22 0 0.5 90.9 7.42E+06  

12 102 -9163.44 -3.42E-06 0.0625 58.1 7.58E+06  

13 109 -9169.96 -2.78E-06 0.25 59.7 2.81E+06  

14 117 -9169.97 -3.06E-06 0.125 11.1 2.26E+06  

15 126 -9170.22 -3.40E-06 0.0625 2.26 9.57E+03  

16 132 -9173.3 -2.12E-06 0.5 -0.819 1.06E+06  

17 137 -9173.39 -1.97E-06 1 0.154 5.82E+05  

18 142 -9173.43 -2.02E-06 1 0.002 4.53E+04  

19 147 -9173.43 -2.02E-06 1 -1.31E-05 4.73E+03  

20 166 -9173.43 -2.02E-06 -6.10E-05 -3.34E-05 4.72E+03 

Hessian 

modified 

twice 

21 185 -9173.43 -2.02E-06 -6.10E-05 -9.40E-06 4.73E+03 

Hessian 

modified 

twice 

 
Optimization terminated: magnitude of search direction less than 

2*options.TolX 
 and maximum constraint violation is less than options.TolCon. 
No active inequalities. 
  
  Mean: ARMAX(0,0,0); Variance: GARCH(1,1) 
  
  Conditional Probability Distribution: Gaussian 
  Number of Model Parameters Estimated: 4 

 

Parameter Value Standard Error T-Statistic 

C 0.000858 0.000183 4.6757 

K 2.22E-06 3.34E-07 6.6526 

GARCH(1) 0.87598 0.008925 98.1544 

ARCH(1) 0.1157 0.0084721 13.6567 

 
Log Likelihood Value: 9173.43 

Table 8-3 MATLAB Output for GARCH Fitting to NASDAQ Returns 
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In the final stage, namely, the post-estimation phase, the relationship between the residuals 

derived from the fitted model, the corresponding conditional standard deviations, and the 

observed returns is graphically analyzed (Figure 8-7). 

 

Figure 8-7 Innovations, Standard Deviations and Observed Returns of the Model 

 

Figure 8-8 Plot of Standardized Residuals 

 

Figure 8-9 Autocorrelation Plot of Squared Standardized Residuals 

The innovations show heteroskedasticity, although plotting the standardized innovations 

shows homoskedasticity. 
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Figure 8-8); furthermore, the ACF plot of the squared standardized residuals indicates no 

significant correlation (Figure 8-9).  It appears that the default model adequately explains the 

heteroskedasticity in the returns.  Again, the ARCH test statistic is applied using the 

MATLAB command archtest, but now to the standardized residuals of the fitted model at 

the 10th, 15th and 20th lags.  The resulting MATLAB output indicates acceptance of the null 

hypotheses (Table 8-4). 

H pValue Stat CriticalValue 

0 0.5672 8.6340 18.3070 

0 0.7480 11.0642 24.9958 

0 0.6436 17.1447 31.4104 

Table 8-4 ARCH Test MATLAB (Post-Estimation Analysis) 

CONCLUSION 

Given the skewed, leptokurtotic, heteroskedastic and leveraged characteristics of the data 

set, the researchers found the EGARCH skewed Student t-distribution a natural candidate for 

forecasting the mean and variances of the TASE stock indices.  The results not only establish 

the superiority of the standard GARCH models, but also give prominence to the flexibility 

and power of the asymmetric GARCH varieties of in forecasting the leverage effect. 
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8.2. PREDICTING CORPORATE FINANCIAL DISTRESS: A TIME-SERIES CUSUM 

METHODOLOGY 

EXECUTIVE SUMMARY 

This paper develops a stationary financial distress model for American Stock Exchange’s 

(AMEX) and the New York Stock Exchange’s (NYSE) manufacturing and retailing firms 

based on a Cumulative Sum (CUSUM) time-series methodology. This review examines the 

motivation behind a time-series CUSUM methodology and provides a general example to 

demonstrate the benefits of a general CUSUM model. 

MOTIVATION FOR TIME SERIES CUSUM MODEL 

A CUSUM time-series model allows the practitioner to distinguish between changes in the 

financial variables of a firm stemming from serial correlation and those stemming from a 

permanent shift in the mean structure of the variables due to financial distress.  The paper 

develops a model based on the statistical methodology of CUSUM time series for a 

representative sample of manufacturing and retailing firms. A screening process was used to 

select firms 117 healthy and 72 failed firms from the AMEX and NYSE. Screening factors 

include the nature of financial distress (i.e., removing firms that filed for Chapter 11 

protection for nonfinancial reason) and whether firms exhibited anomalous data.  The second 

step called for verification of the economic relationships (i.e., selection of explanatory 

variables such as change in total assets, change in inventory over sales, etc) and data 

stationarity. The Vector Auto-Regression (VAR) model was used to capture the vectorized 

evolution and interdependencies between multiple time series. Each variable in the 

autoregression model is treated symmetrically by including, for each variable, an equation 

explaining its evolution based on its own lags and the lags of all other variables in the model.  
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The CUSUM model is then incorporated into a time series methodology to strengthen 

predictions. 

STATISTICAL PROCESS CONTROL 

Statistical process control (SPC) is the process of monitoring the shifts in the mean to determine 

whether the process is in control or out of control.  The process is out of control if a shift in the 

process mean occurs, else it is in control.  The implementation of statistical process control (SPC) is 

divided into two phases, the retrospective stage (phase I) and the prospective stage (phase II).  The 

retrospective stage (phase I) is where the process is likely to be experiencing large shifts (>1.5�) in 

the parameters.  The Shewhart control charts are useful in the diagnostic aspect of bringing a process 

into statistical control.  The prospective stage (phase II) is where the process tends to experience 

small shifts (<1.5 �) in the parameters.  The Shewhart control charts are relatively insensitive to small 

process shifts, which makes them less useful in prospective stage (Phase II).  Two alternatives to the 

Shewhart control chart for the prospective phase (Phase II) are the Cumulative Sum (CUSUM) 

control charts and the Exponentially Weighted Moving Average (EWMA) control charts.  The 

CUSUM monitoring process will be further discussed throughout the course of this paper. 
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COMPARING SHEWHART’S AND CUSUM CONTROL CHARTS 

The data below demonstrates a small shift in the process mean of 1�.  The first 20 

observations are N~ (10, 1) where as the final 10 observations are N~ (11, 1).  Both a 

Shewhart control chart and CUSUM chart are analyzed below. 

Sample xi xi - 10 Ci Sample xi xi - 10 Ci 

1 9.45 -0.55 -0.55 16 9.37 -0.63 -0.37

2 7.99 -2.01 -2.56 17 10.62 0.62 0.25 

3 9.29 -0.71 -3.27 18 10.31 0.31 0.56 

4 11.66 1.66 -1.61 19 8.52 -1.48 -0.92

5 12.16 2.16 0.55 20 10.84 0.84 -0.08

6 10.18 0.18 0.73 21 10.9 0.9 0.82 

7 8.04 -1.96 -1.23 22 9.33 -0.67 0.15 

8 11.46 1.46 0.23 23 12.29 2.29 2.44 

9 9.2 -0.8 -0.57 24 11.5 1.5 3.94 

10 10.34 0.34 -0.23 25 10.6 0.6 4.54 

11 9.03 -0.97 -1.2 26 11.08 1.08 5.62 

12 11.47 1.47 0.27 27 10.38 0.38 6 

13 10.51 0.51 0.78 28 11.62 1.62 7.62 

14 9.4 -0.6 0.18 29 11.31 1.31 8.93 

15 10.08 0.08 0.26 30 10.52 0.52 9.45 
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The Shewhart control charts, which are based on the traditional process signals provided by the 

Western Electric Handbook (Appendix A), fail to detect the small shift in the process mean. In the 
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Shewhart chart none of the data points are plotted outside the control limits, thus we lack any strong 

evidence that the process mean has drifted upwards.  However, there is an indication of a shift in the 

process mean for the last 10 points, because all but one of the points plots above the center line. 
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In the CUSUM chart, the one sided upper CUSUM is plotted in an increasing trend, surpassing the 

monitoring limits, thus providing strong evidence that the process mean has shifted upwards. 

When analyzing a set of data, a Shewhart control chart must be constructed to determine whether 

any large shifts (>1.5 �) are present.  If the Shewhart control chart conclude that the process is in 

control, a CUSUM chart must be constructed to determine whether the Shewhart chart has overseen 

any small shifts (<1.5 � ).   

SHEWHART CONTROL CHARTS 

Sample size is restricted to one (n=1) for illustration and simplicity’s sake in the following 

equations. 
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CUSUM CONTROL CHARTS 

There are two ways to monitor the CUSUM process mean: The V-Mask CUSUM and the 

Tabular CUSUM.  The Tabular CUSUM can be graphically represented two ways; the two 

sided CUSUM chart and the one sided CUSUM chart.  The two sided CUSUM chart 

represents the cumulative sum through a line chart with one horizontal line.  The horizontal 

line is free to traverse over and under the mean value.  The one sided CUSUM chart 

represents the cumulative sum through a line chart with two horizontal lines.  Each line is 

bounded by the mean value.  The One sided upper CUSUM iteratively calculate all 

deviations above the mean, where as the one sided lower CUSUM iteratively calculates all 

deviations below the mean.  A CUSUM chart has three potential trend developments: 

1. Horizontal (Neutral Drift): The process mean remains at the target value µ0. 

2. Upwards (Positive Drift): The process mean shifts upwards to some value µ0> µ1 

3. Downwards (Negative Drift): The process mean shift downwards to some µ1> µ0. 

THE V-MASK CUSUM 
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 The V-mask is applied to successive values of the CUSUM statistic as soon as it is plotted 

with both arms extending backwards to the origin. 

 

Place the V-mask on the cumulative sum control chart with the point O on the last value of 

Ci and the line OP parallel to the horizontal axis.  If all the previous cumulative sums lie with 

the two arms of the V-mask, the process is in control.  However, if any of the cumulative 

sums lie outside the arms of the mask, the process is considered to be out of control 

THE TABULAR (ALGORITHMIC) CUSUM – EXAMPLE A 

Presented below is an application of the tabular CUSUM technique; for a full treatment of 

the tabular algorithmic CUSUM, please see Tabular (Algorithmic) CUSUM on page 23. The 

data below demonstrates a shift in the process mean from µ0 to µ1 = 56.25 and from µ0 to µ2 = 55.62, 

where µ0 is the in-control estimate of the process mean.  When the process is in control we want to 

have the ARL=500.  

Cylinder Diameter CylinderDiameter 

1 55.69 11 56.74 

2 56.08 12 56.23 

3 56.19 13 55.86 

4 55.5 14 56.23 

5 56.36 15 55.64 

6 56.9 16 57.3 

7 55.69 17 56.38 
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8 56.6 18 55.15 

9 55.66 19 55.89 

10 55.79 20 55.71 

X = 56.08 

^

σ = 0.6194 

The process mean is determined 

_____
^

2

MR
 = 56.08

d (2)
µ =  

Shewhart Chart 

The data provided is of sample size one (n=1) thus a Shewhart (I, MR) process control chart must 

be generate to indicate if the process is out of control, a large shift (>1.5�) is present in the process 

mean and standard deviation.   

The I-Chart is provided to monitor the process mean 

^

/2

^

/2

LCL = -Z 56.08 3.09(0.6194) 54.166

CL = 56.08

UCL = +Z 56.08 3.09(0.6194) 57.994

X

X

X

α

α

σ

σ

∗ = − =

=

∗ = + =

 

The MR-Chart is provided to monitor the process variance 

_____

0.001

2

_____

_____

0.999

2

MR
LCL = W (2)=56.08*0.000019595=0.0010989

d (2)

CL = MR 0.7

MR
UCL = W (2)=56.08*0.051397646=2.88238

d (2)

∗

=

∗

 

Observing the data provided, each data point is between the LCL and UCL, thus indicating the 

process is absent of large shift (>1.5�) in the process mean and standard deviation.  However, since 

the Shewhart chart is insensitive to small shift (<1.5�) in the process mean and standard deviation a 

CUSUM chart must be generated. 
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CUSUM CHART 

Step 1 – Determine the critical shift � 

The critical size of the shift � can be determined by defining a shift of 1� above and below the in 

control process mean µ0 to the out of control upper mean µ1 and lower mean µ2. 

1 0 1 1µ  = 56.25 = µ +  = 56.08+ (0.6194)δ σ δ  

1  = 0.274459δ  

And 

2 0 2 2µ  = 55.62 = µ + = 56.08 + (0.6194)δ σ δ  

2 = 0.74265δ  

 

Step 2- Determine the Reference Value K 

The reference value K is a value that is half the magnitude of the shift, thus a value half way 

between the target µ0 and the upper CUSUM mean µ1 or the lower CUSUM mean µ2.  The reference 

value is a line, which if surpassed, determines early warnings of a shift in the process mean. 

The Upper Reference Value K1 

 
1 0 1

1

(0.274459)(0.6194)
K 0.08499

2 2 2

µ µ δ σ−
= = = =   

The Lower Reference Value K2 

 
2 0 2

2

(0.74265)(0.6194)
K 0.22999

2 2 2

µ µ δ σ−
= = = =   

Step 3 – The Average Run Length (ARL) 
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The two sided Average Run length is denoted by its relation to the one sided upper and lower 

CUSUM average run length. 

1 1 2 2

1 1 1

( , ,0) ( , ,0)
II I I

ARL ARL h ARL hδ δ
= +  

The one-sided ARL must be twice the value of a two-sided ARL.  

1 1

2 2

( , ,0) = 2( )=1000

( , ,0) = 2( )=1000

I II

I II

ARL h ARL

ARL h ARL

δ

δ
 

Thus obeying the relational equation 

1 1 1

500 1000 1000
= +  

Step 4 – Calculate ARL in control 

Step 4.A:  When the ARL is in control, the actual shift is zero (a=0) 

1 1 2 2 1 1 2 2

1 2 1 2

1 1 1

( , , , ,0) ( , ,0) ( , ,0)

1 1 1

(0.274459, ,0.74265, ,0) (0.274459, ,0) (0.74265, ,0)

II I I

II I I

ARL h h ARL h ARL h

ARL h h ARL h ARL h

δ δ δ δ
= +

= +  

-c

1 1 2

1

-c

1 2

e +c-1
ARL ( ,h ,0) = 

2
2

e +c-1
ARL (0.274459,h ,0) = 

0.274459
2

2

                          

IN

IN

δ
δ� �

 �
� �

� �

 �
� �

 

 

Where: 

1 1c=- (h +1.166)δ  

1 1

0.274459
c=2 0- (h +1.166) = -0.274459(h +1.166)

2

� �

 �
� �

 

                       

Step 4.B:  Replace b with –c (b= -c> 0)  
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b b

1 1 I 1 1 2 2

11

b b

1 1 I 1 2 2

e -b-1 e -b-1 
g (b ) =ARL ( ,h ,0)

2
22

e -b-1 e -b-1 
g (b ) =ARL (0.274459,h ,0)

(0.274459)0.274459
2

22

δ
δδ

= =
� �

 �
� �

= =
� �

 �
� �

 

Step 4.C:  Re-arrange the equation into a non-linear equation 

2

1
1 1 1

2

1
1 1 1

2

1

( ) 1 ( ,h ,0)
2

( ) 1 ( ,h ,0) 0
2

0.274459
( ) 1 1000 0

2

b

I

b

I

b

g b e b ARL

g b e b ARL

g b e b

δ
δ

δ
δ

� �
= − − = 
 �

� �

� �
= − − − =
 �

� �

� �
= − − − =
 �

� �

 

Step 4.D:  Since e
b 
>>b, we can ignore b in the non-linear equation 

2

1
1 1 1

2

1

( ) 1 ( ,h ,0) 0
2

(0.274459)
( ) 1 1000 0

2

b

I

b

g b e ARL

g b e

δ
δ

� �
= − − =
 �

� �

� �
= − − =
 �

� �  

Step 4.E:  Solve for b0 in the non linear equation 

0

0

2

1
1 1 1

2

1
1 1

2

1
0 1 1

2

0

( ) 1 ( ,h ,0)
2

1 ( ,h ,0)
2

ln 1 ( ,h ,0)
2

(0.274459)
ln 1 1000 = 3.65

2

b

I

b

I

I

g b e ARL

e ARL

b ARL

b

δ
δ

δ
δ

δ
δ

� �
= = + 
 �

� �

� �
= + 
 �

� �

� �� �
= +� �
 �

� �� �

� �� �
= +� �
 �

� �� �

 

Step 4.F:  Apply Newton’s Method to approximate a bi 

1
1

1

( )

'( )
i

i i

i

g b
b b

g b
+ = −             
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1 0
1 0

1 0

g (b )
b  = b  -  = 3.65 - 3.6537.6641 = 3.7469 

g '(b )
 

Step 4.G:  Once bi is obtained, solve for h1    

( )1 1

1

1

1.166

3.7469
1.166 1.166 12.4859 12.5

0.274459

i

i

b h

b
h

δ

δ

= +

= − = − = ≈
 

 

Step 4.H:  Once h1 is obtained, solve for Decision Variable H1 

1 1 12.5(0.6194) 7.7425
X

H hσ= = =  

Step 4.I 

Recalculate the in-control lower Decision Variable (H2) using the same method denoted above.  If 

the assumption is made that the control limits for the process is symmetric, the in control lower 

decision variable H2, will be the negative of the upper decision variables (H2 = -7.7425) 

The Counter Variable N 

The counter variable N is a value which determines the number of periods passed since the process 

mean was last in control.  The counter variable determines the exact location by counting the previous 

consecutive period of data points plotted above or below the target value in between the decision 

variable.  This allows for greater analysis of the process by locating the assignable causes for the shift 

in the process mean. 

1. N+: Record the consecutive one-sided upper CUSUM data point plotted in between 

the target value and the upper decision variable i.e., 0 N Hµ +< <  

2. N- : Record the consecutive one-sided lower CUSUM data point plotted in between 

the target value and the lower decision variable i.e., 0 N Hµ −< <  
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CUSUM  EXAMPLE -  B 

The data below demonstrates a small shift in the process mean of 1�.  The Tabular CUSUM 

monitoring process is provided with
1

2
K = and H=5. The first 20 observations are N~ (10, 1) where 

as the final 10 observation are N~ (11, 1). 

Sample Data xi - 10.5 Ci+ N+ 9.5 - xi Ci- N- Sample Data xi - 10.5 Ci+ N+9.5 - xi Ci- N-

1 9.45 -1.05 0 0 0.05 0.05 1 16 9.37 -1.13 0 0 0.13 0.13 1 

2 7.99 -2.51 0 0 1.51 1.56 2 17 10.62 0.12 0.12 1 -1.12 0 0 

3 9.29 -1.21 0 0 0.21 1.77 3 18 10.31 -0.19 0 0 -0.81 0 0 

4 11.66 1.16 1.16 1 -2.16 0 0 19 8.52 -1.98 0 0 0.98 0.98 1 

5 12.16 1.66 2.82 2 -2.66 0 0 20 10.84 0.34 0.34 1 -1.34 0 0 

6 10.18 -0.32 2.5 3 -0.68 0 0 21 10.9 0.4 0.74 2 -1.4 0 0 

7 8.04 -2.46 0.04 4 1.46 1.46 1 22 9.33 -1.17 0 0 0.17 0.17 1 

8 11.46 0.96 1 5 -1.96 0 0 23 12.29 1.79 1.79 1 -2.79 0 0 

9 9.2 -1.3 0 0 0.3 0.3 1 24 11.5 1 2.79 2 -2 0 0 

10 10.34 -0.16 0 0 -0.84 0 0 25 10.6 0.1 2.89 3 -1.1 0 0 

11 9.03 -1.47 0 0 0.47 0.47 1 26 11.08 0.58 3.47 4 -1.58 0 0 

12 11.47 0.97 0.97 1 -1.97 0 0 27 10.38 -0.12 3.35 5 -0.88 0 0 

13 10.51 0.01 0.98 2 -1.01 0 0 28 11.62 1.12 4.47 6 -2.12 0 0 

14 9.4 -1.1 0 0 0.1 0.1 1 29 11.31 0.81 5.28 7 -1.81 0 0 

15 10.08 -0.42 0 0 -0.58 0 0 30 10.52 0.02 5.3 8 -1.02 0 0 

���������	�����
�

���

���

���

����

����

������

�
�
�
�
��
�	
�
�
��
�
�

�

, -+�

- -+��

�'�'%��"�������(	&� 

 

The chart concludes: 

1. The process mean has shifted upwards at period 29 since the one-sided upper 

CUSUM exceeds the decision variable H i.e., +

29C 5.28 H= >  
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2. The process was last in control at period 22, since 7 consecutive one-sided upper 

CUSUM data point were plotted in between the target value and the upper decision 

variable.  A shift occurred between period 22 and 23 i.e., 

+29 (period) - 7 (N ) = 22 (period)   

Reinitialize the CUSUM chart 

Once the monitoring process concludes that a shift in the process mean has occurred, the operator is 

required to take corrective action on the assignable causes and reinitialise the monitoring process. The 

CUSUM chart can be reinitialized by: 

1. Setting the cumulative sums to zero i.e., +

iC 0
i

C
−= =  

2. Setting the cumulative sums to an estimate of the new process mean. 

a.  If 
+

iC H>
, then 

^

0
iC

k
N

µ µ
+

+
= + +

  

b. If -

iC >H , then 

^

0
iC

k
N

µ µ
−

−
= − −

 

3. The Fast Initial Response (FIR) or Headstart: setting the cumulative sums half way 

between the process mean and the decision variable H i.e. 

+ -

0 0C = C  = (50% Headstart)
2

H
 is equal to the reference value K. 

CUSUM  EXAMPLE -  C 

The data below demonstrates the benefits of First Initial Response (FIR) or head start.  The 10 

samples are in control with N~ (100, �) and K=3, H=12 

Period i xi xi-103 C+
i N

+ 97 - xi C
-
i N

- 

1 102 -1 5 1 -5 1 1 

2 97 -6 0 0 0 1 2 

3 104 1 1 1 -7 0 0 

4 93 -6 0 0 4 4 1 

5 100 -3 0 0 -3 1 2 
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6 105 2 2 1 -8 0 0 

7 96 -7 0 0 1 1 1 

8 98 -5 0 0 -1 0 0 

9 105 2 2 1 -8 0 0 

10 99 -4 0 0 -2 0 0 

The calculations for the first cumulative sum period is provided 

 

+ -

0 0C  = C =  = 6
2

H

 

+ +

1 1 1 0

- -

1 1 0

C  = max [0, x  - (x  + 1) + C ] = max [0, 102-103+6 ] = 5

C = max [0, 97 - x  + C ] = max [0, 97-102+6] = 1  

Throughout each period, the process mean remains in control.  Now, suppose the process has been 

out of control at process start-up, with mean 105 

Period i xi xi-103 C+
i N

+ 97 - xi C
-
i N

- 

1 107 4 10 1 -10 0 0 

2 102 -1 9 2 -5 0 0 

3 109 6 15 3 -12 0 0 

4 98 -5 10 4 -1 0 0 

5 105 2 12 5 -8 0 0 

6 110 7 19 6 -13 0 0 

7 101 -2 17 7 -4 0 0 

8 103 0 17 8 -6 0 0 

9 110 7 24 9 -13 0 0 

10 104 1 25 10 -7 0 0 

• With FIR (Headstart) 

 

+ -

0 0

+

3

C  = C = 6

C  exceed the limit H=12.

��
�
��The process mean is out of control at period 3 

• Without FIR (Headstart) 

 

+ -

0 0

+

6

C  = C = 0

C  exceed the limit H=12.

��
�
��The process mean is out of control at period 6. 

CONCLUSIONS 

The paper’s application of the Statistical Process Control (SPC) indicates the limitations 

of the Shewhart’s and Cumulative Sum’s (CUSUM) control charts.  SPC incorporate these 
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limitations into its framework; monitoring firstly for large shifts then secondly for smaller 

shifts in the process.  The CUSUM charts initially do not have control limits and thus have to 

be constructed to strictly monitor the strength and health of the corporations listed on the 

NYSE and AMEX.  Shewhart and CUSUM control charts provide clear signals of trend 

reversals in the process, which require the operator to investigate for assignable causes. 
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8.3. A GARCH FORECASTING MODEL TO PREDICT DAY-AHEAD ELECTRICITY 

PRICES 

Reinaldo C. Garcia, Javier Contreras, Marco van Akkeren, and João Batista 

C.Garcia. 

Reviewed by 

Mohammed Siyam Ibrahim 

EXECUTIVE SUMMARY 

This paper develops a model to predict next-day electricity prices based on the GARCH 

methodology. These models provide strong foundation for individuals seeking to broaden 

their understanding of applied econometrics. An in-depth analysis of this paper is relevant in 

understanding the GARCH methodology since it provides a detailed explanation of the 

method itself and uses empirical results from the electricity markets of Spain and California. 

MOTIVATIONS FOR USING GARCH 

Many models have been employed to forecast time-series data, prominently ARIMA 

(Autoregressive Integrated Moving Average) yet ARIMA assumptions limit the mean of the 

error term �t to zero and a constant variance �2.  Formally, these limitations are E(�t)=0 and 

E(�t
2
)= �

2.  The basic version of the least squares model assumes that the expected value of 

all error terms, when squared, is identical at any given point. This notion, called 

homoskedasticity (or homogeneity) of variance, is relaxed by ARCH/GARCH models. Data 

in which the variance is time-variant i.e., in which the error terms may reasonably be 

expected to be larger for some points or ranges of the data than for others, are said to exhibit 

heteroskedasticity. 

In the presence of heteroskedasticity, the regression coefficients for an ordinary least 

squares regression may still be unbiased, but the standard errors and confidence intervals 
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estimated by conventional procedures will be too narrow, giving a false sense of precision. 

The ARCH family of models treats heteroskedasticity as a characteristic of the data that is to 

be modeled. The error term is now assumed to be serially correlated and may be modeled by 

an autoregressive (AR) process. Thus, a GARCH process can measure the implied volatility 

of a time series due to price spikes.  As a result, not only are the deficiencies of least squares 

address, but a prediction is computed for the variance of each error term. This prediction 

turns out often to be of interest, particularly in financial applications. 

The modeling approach taken in the paper subscribes to the Box-Jenkins’ idea on 

parsimony which leads to the fewest model parameters being selected (as supported by the 

data) to estimate an ARMA process with GARCH error components. 

MODEL DEVELOPMENT 

The ARMA model consists of an autoregressive (AR) and a moving average (MA) 

component. The model is therefore parameterized into ARMA(p,q), where p and q represent 

the orders of the autoregressive and moving average components, respectively. 

 

Where Xt = the dependent (response) variable 

c = a constant 

�t = represents the error term 

p = represents the autoregressive parameter or lag 

q = represents the moving average term 

Using the Box-Jenkins’ parsimony approach, lower orders of p and q are preferred so that 

the data may be modeled using the fewest parameters.  The GARCH(p,q) model is used 

specifically to model the error variance once data is identified as heteroskedastic.  Formally, 

the GARCH(p,q) model is: 
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or, more concisely: 

 

In the equation presented above, �0, �, 	 are to be estimated using Maximum Likelihood 

Estimation (MLE), �t
2 is the logarithmic squared error of the returns and �t-i

2 is the variance 

from the previous forecast (initialized with the long run variance). In the equations given in 

the paper, the error term for the GARCH model is re-cast as: 

 

where �t represents the error term that will be used in conjunction with the specified 

ARMA model.  Model selection based on significant lag values was deduced using EViews 

software and autocorrelation plots iteratively, with GARCH(1,3) being selected as the initial 

model. The historical data that was used in the model was also made stationary using 

logarithmic transformation.  Log transformation is useful for data where the residuals get 

larger given larger values of the dependent variable.  The effects of logarithmic 

transformation include variance stabilization, increasing slopes in x in relation to another 

variable becoming linearized and positively skewed distributions of x becoming normalized.  

Therefore, this technique was applied to ensure that the data can be fitted to a normal 

distribution as required by autoregressive models. 
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MODEL VALIDATION AND APPLICATION 

To validate the model, several statistical tests were performed on the residuals. 

Autocorrelation and partial autocorrelation plots were used to measure the quality of the 

fitted data.  The Ljung-Box portmanteau test, which checks the overall randomness of the 

data, was used to validate the model at a 10% significance level.  The model was then 

applied to forecast the volatility and prices of the Californian and Spanish electricity markets. 

When analyzing the following results produced in the paper, the average prediction error 

was computed for each day of the last week of the respective month.  Then, the Mean Week 

Error, that averages the seven daily errors of the week, was calculated as follows: 

 

Where <= is the actual hourly price <
�  is the forecasted hourly price. 

One can see that the Mean Week Error produced by a GARCH(1,3) model is far less 

compared to that of an ARIMA model which assumes the variance of the error to be 

constant.  Only when there are periods of low volatility such as February and May does the 

ARIMA model slightly outperform the GARCH model.  The results of the actual and 

forecasted electricity prices using the GARCH methodology are provided in Figure 8-10. 
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Figure 8-10 Forecasting Results from GARCH(1,3) Model (Garcia et. al.) 

As noted in the graph, although the model could not accurately forecast the price spikes, 

the forecast following the spikes are appropriately adjusted by the GARCH model and are 

reasonable fits to the actual data.  

 

Figure 8-11 Real vs. Forecast Price in the Spanish Electricity Market (Garcia et. al.) 
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A  GARCH(1,  1)  EXAMPLE 

This example uses historical data from the TSX 60 starting from Jan 3, 2000 to March 26, 

2009, and applies standard model identification, estimation and validation stages to fit a 

GARCH(1,1) model. 

MODEL IDENTIFICATION 

First, a plot of the return of the adjusted closing prices is generated, and the presence of 

volatility clustering noted (Figure 8-12).  An autocorrelation plot of the squared returns of the 

data is generated to determine if there is any correlation between lagged values (Figure 8-13). 

 

Figure 8-12 Run Sequence Plot of TSX Returns 
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Figure 8-13 ACF Plot of Squared Returns 

.  As the graph indicates there seems to be some correlation between values, and the slow 

decay indicates that the data is close to being non-stationary.  It is also possible to apply 

qualitative tests to determine for correlation between the returns using the Ljung-Box-Pierce 

Q-test and the ARCH test proposed by Engle.  For the purposes of this example, a 

GARCH(1,1) is developed which identifies an autoregressive order of one for simplicity.  

Most stocks and index volatility models fall within this category. 

Returns
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MODEL ESTIMATION 

Using the return data and Excel’s Solver add-in a GARCH (1, 1) model of the data was 

fitting using Maximum Likelihood Estimation (MLE) in order to determine the required 

parameters. The model for forecasting the conditional variance is specified below: 

 

�>� # , � $?>(*� � -�>(*�  

Where ,�$� - are parameters to be estimated using MLE for the long run variance, 

lagged return and the lagged variance of the return.  ?>(*�  The logarithmic squared return of the lagged value �>(*�  The conditional variance of the previous forecast 

 

Since Excel’s solver add-is being used to estimate the parameters, certain manual 

calculations are required: 

Log of Returns 

@
 # AB ?
?
(* 

Squared Returns 

@
� # CAB ?
?
(*D
�
 

GARCH �
� # , � $?
(*� � -�
(*�  

M.L.E 

AB �
EFG�� H

(%IJ KLMNLM! 

 

Using Microsoft Excel’s Solver Add-in, optimal solution to the parameters of the data was 

generated by maximizing the total M.L.E while adjusting the parameters used in the GARCH 
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equation.   The initial estimate for the variance is computed by calculating the unconditional 

variance of the log of the returns.  Excel arrives at the following estimates for the parameters: 

� � � 

0.117323249 0.876223774 0 

These are reasonable estimates based on the approximation algorithm used in Excel to 

maximize the total M.L.E 

MODEL VALIDATION 

In order to determine the sufficiency of the model, residual analysis was performed to 

check whether the reisuals are are Independently and Identically Distributed (I.I.D). 

 

Figure 8-14 Conditional Standard Deviation of the Residuals 

The residuals were calculated by the log of the returns divided by the conditional standard 

deviation (sigma).  Formally, this is O
 # PQR SL
SLTUV

� ��
W .  The residuals and the returns were 

plotted (Figure 8-15), and it was noted that there does not appear to be much volatility clustering 

for the residuals.  Therefore, the correlation between the standardized residuals calculated as  

O
 # PQR SL
SLTUV

� ��
�W   may be analyzed using the ACF plot (Figure 8-16). 

 

Conditional Standard Deviation
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Figure 8-15 Residuals and Returns:  Run Sequence Plot 
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Figure 8-16 ACF Plot of the Standardized Residuals 

Analysis of the ACF plot of the standardized residuals and the ACF plot of the square 

returns highlight some dissimilarity.  It appears that the GARCH (1, 1) model sufficiently 

explains the heteroskedasticity in the actual returns. 
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CONCLUSIONS 

The paper’s application of the ARIMA and GARCH models showed that when markets 

were volatile, the GARCH model produced more accurate forecasts due to its ability to 

model conditional variance which was a salient feature of the electricity prices.  Thus a 

GARCH model can be used to forecast prices with lower average prediction errors when 

modeling data subject to high volatility (heteroskedasticity) as opposed to other 

autoregressive models that assume constant variance (homoskedasticity).  
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9. HISTORY OF THE TSX 

9.1. THE PIONEERS OF TRADING
9 

Historian Fernand Braudel suggests that in Cairo in the 11th century, Muslim and Jewish 

merchants had already set up every form of trade association and had knowledge of many 

methods of credit and payment, disproving the belief that these were originally invented later 

by Italians. In 12th century France the courratiers de change were concerned with managing 

and regulating the debts of agricultural communities on behalf of the banks. Because these 

men also traded with debts, they could be called the first brokers. A common misbelief is that 

in late 13th century Bruges commodity traders gathered inside the house of a man called 

“Van der Beurze”, and in 1309 they became the "Brugse Beurse", institutionalizing what had 

been, until then, an informal meeting, but actually, the family Van der Beurze had a building 

in Antwerp where those gatherings occurred; the Van der Beurze had Antwerp, as most of 

the merchants of that period, as their primary place for trading. The idea quickly spread 

around Flanders and neighbouring counties and "Beurzen" soon opened in Ghent and 

Amsterdam. 

In the middle of the 13th century, Venetian bankers began to trade in government 

securities. In 1351 the Venetian government outlawed spreading rumours intended to lower 

the price of government funds. Bankers in Pisa, Verona, Genoa and Florence also began 

                                                

9 Excerpted from (Stock Market). 
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trading in government securities during the 14th century. This was only possible because 

these were independent city states not ruled by a duke but a council of influential citizens. 

The Dutch later started joint stock companies, which let shareholders invest in business 

ventures and get a share of their profits or losses. In 1602, the Dutch East India Company 

issued the first shares on the Amsterdam Stock Exchange. It was the first company to issue 

stocks and bonds. 

The Amsterdam Stock Exchange (or Amsterdam Beurs) is also said to have been the first 

stock exchange to introduce continuous trade in the early 17th century. The Dutch pioneered 

short selling, option trading, debt-equity swaps, merchant banking, unit trusts and other 

speculative instruments, much as we know them.   

There are now stock markets in virtually every developed and most developing economies, 

with the world's biggest markets being in the United States, Canada, China (Hong Kong), 

India, UK, Germany, France and Japan. 

9.2. THE HISTORY OF THE DOW JONES
10 

Dow Jones & Co. was founded in 1882 by Charles Dow, Edward Jones and Charles 

Bergstresser. Despite popular belief, the first averages were not published in the Wall Street 

Journal but in its precursor called the Customer's Afternoon Letter. The first averages didn't 

even include any industrial stocks. The focus was on the top twelve growth stocks of the 

                                                

10 Excerpted from (How Now, Dow? What Moves The DJIA?) 
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time, mainly transportation companies. This means that the first Dow Jones Index included 

nine railroad stocks, a steamship line and a communications company. This average 

eventually evolved into the Transportation Average.  Dow felt that these twelve stocks 

provided a good indication of the economic health of the country. It wasn't until May 26, 

1896, that Dow determined that two separate indices would better represent that health of the 

country.  Dow created a 12 stock industrial index (Dow Jones Utilities Average (DJUA)), 

and a 20 stock rail index (The Dow Jones Transportation Average (DJTA)).  By 1928 the 

industrial index includes 30 stocks, the number at which it stands today.  In 1929 a utility 

index was added.  In 1984, the year that marked the one hundredth anniversary of Dow’s first 

publication, the Market technicians association presented a Gorham-silver bowl to Dow 

Jones & Co.  According to the MTA, the award recognized “the lasting contribution that 

Charles Dow made to the field of investment analysis.  

Over the years, companies in the index have been changed to ensure the index stays current 

in its measure of the U.S. economy. In fact, of the initial companies included, only General 

Electric remains as part of the modern-day average.  Today, the DJIA is a benchmark that 

tracks American stocks that are considered to be the leaders of the economy and are on the 

NASDAQ and NYSE.  
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9.3. THE HISTORY AND EVOLUTION OF THE TORONTO STOCK EXCHANGE
11 

The Toronto Stock Exchange was born on October 25th, 1861 when a group of twenty-four 

men gathered at Masonic Hall to pass a resolution.  At the time memberships were five 

dollars, granting access to the 18 securities listed at the time.  Trading hours were limited to 

half hour periods daily consequently amounting two to three transactions per day.  In 1878 

the TSX became formally incorporated by an Act of the Ontario Legislature; and resided 

headquarters at 24 King Street East in Toronto.  In 1901, the TSX moved to 20 King Street 

East introducing continuous auction trading.  In 1913, the TSX built and moved into its own 

building on Bay Street introducing  new technologies such as the first print-out-ticker which 

carried a series of trading prices and bid-ask offering quotations.  On July 28th, 1914, the 

TSX along with the New York Stock Exchange (NYSE) ceased operations for three months 

due to financial panics relating to the declaration of World War I.  The Armistice of 1918 

marked the beginning of the first inflationary period in the economy, however, quickly 

followed by the first economic recession period in 1919 characterized by sharp declines in 

commodity prices.  The TSX returned to economic equilibrium until 1933 when a worldwide 

depression inflicted financial hardship on Canadians.  In 1934, the TSX merged with key 

competitors, the Standard Stock & Mining Exchange.  In 1936 the TSX became North 

America’s third largest exchange.  In 1937, the TSX moved to a new facility at 234 Bay 

Street.  In 1958, the TSX board of governors required listed companies to file statements 

                                                

11 Credit (TSX Group). 
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disclosing any changes in the company’s affairs which might affect the price of its shares.  In 

1960, Lieutenant General of Ontario, Howard D. Graham became the first appointed 

President of the TSX.  In 1977, the TSX was the first to launch Computer Assisted Trading 

Systems (CATS) as well as the for composite index the TSE300 Composite Index.  In 1980, 

the TSX accounted 80% of all equity trading in Canada.  In 1983, the TSX moved to its 

current location in the Exchange Towers at 130 King Street West.  In 1987, the second 

Composite Index was introduced, the Toronto 35 Index.  On October 19th, 1987 stock 

markets around the world suffered a major correction.  The TSE 300 Composite Index 

dropped more than 400 points in very active trading.  In 1996 the TSX became the first 

exchange in North America to introduce decimal trading and in 1997 became the largest 

exchange in North America to choose an afterhours electronic environment. In 1999, the 

TSX became Canada’s sole exchange for trading of senior equities.  The natural exchange 

assumed responsibility for the trading of derivatives and the Vancouver and Alberta stock 

exchange merged to form Canadian Venture Exchange (CDNX) handling trading in junior 

equities.  The Canadian Dealing Network, Winnipeg Stock Exchange and equities potion of 

the Montreal Exchange later merged with CDNX.  The TSX received Royal Assent from 

Lieutenant Governor of Ontario to convert the exchange into a for-profit organization.  In 

2000, the TSX opened an office in Montreal.  In 2001, the TSX completes the acquisition of 

Canadian Ventures Exchange (CDNX) renamed TSX Venture Exchange migrating its list to 

the TSX trading platform.  S&P/CDNX Index was launched on December 10, 2001.  The 

index was renamed S&P/TSX Venture Composite Index in May 2002.  Later in 2002, 

Standard & Poor’s agreed to take over management of the TSE 300 Composite Index 

renaming it the S&P/TSX Composite Index.  On April 8, 2002, The Toronto Stock Exchange 
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Inc, re-branded its organization and adopted the acronym TSX, TSX Venture Exchange and 

TSX Market.  In 2003, the TSX Group Inc declared its first quarterly dividend as a public 

company, rising slowly ever since.  In August 2003 the TSX Market launches Specialty Price 

Crosses, enabling participating organizations to have great flexibility in reporting trades.  In 

2004 the TSX Group acquires NGX Canada Inc., an electronic exchange that trades and 

clears natural gas and electricity contracts as well as the U.S. dollar order book for trading in 

selected stocks, also launching the TSX Market On Close, a facility to stabilize orders and 

pricing at the end of the trading day, also Multiple Give-Up a feature whereby TSX and TSX 

Ventures Exchange investors have greater choice in clearing & settlement decisions.  In 

2005, the TSX sent a delegation to China to attract international listings.  S&P announced 

Canada’s first independent, multi-dealer priced fixed income index, the S&P/TSX Canadian 

Bond Index. The TSX Venture announced the TSX Venture 50, the first ever ranking of 

Canada’s top emerging public companies to increase awareness of the top performing 

companies on TSX Ventures Income trust added to the S&P/TSX Composite.  In 2006, TSX 

Group signed an agreement with Standard & Poor’s to secure exclusive use of S&P/TSX 

equity indices in connection with options and futures. 

9.4. HISTORY OF STANDARD & POOR’S
12 

The first S&P index to be introduced in 1923 was the S&P 90 index which was published 

daily as well as the S&P423 which was published weekly.  In 1957, S&P introduced the 

                                                

12 Adapted from (S&P 500). 
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S&P500 Index the real-time calculation of which was made possible due to advancements in 

technology. The S&P 500 is used widely as an indicator of the broader market including both 

growth and value stocks from both the NASDAQ and NYSE.  The S&P 500 is a stock 

market index containing the stocks of 500 large American corporations.  However, the index 

does include a handful of foreign, yet formerly American companies that are now 

incorporated outside of the United States, which were allowed to remain in the S&P 500.  A 

requirement to be on the S&P 500 the company must have liquidity.  The Fortune 500 

attempts to list the 500 largest public companies in the United States by gross revenue, 

regardless of where their stocks trade or their liquidity.  The S&P index forms part of the 

broader S&P 1500 and S&P Global 1200 stock market indices. It is often quoted using the 

symbol SPX or INX and may be prefixed with a caret or a dollar sign. 

 

9.5. WHAT IS THE S&P/TSX 6013 

The S&P/TSX 60 is designed to represent leading companies in leading sectors; the 

S&P/TSX 60 covers approximately 73% of Canada’s equity market capitalization.  The 

S&P/TSX 60 is maintained by the S&P Canadian Index Committee, which comprises a team 

of seven, including four members from Standard and Poor’s and three members from the 

Toronto Stock Exchange (TSX).  The committee follows a set of published guidelines for 

maintaining the index. 

                                                

13 Adapted from (Standard & Poor's). 
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Entry criteria include the following considerations: 

4. Eligibility: A company must be a constituent of the S&P/TSX Composite 

5. Listing: Only stocks listed on the Toronto Stock Exchange are considered 

6. Domicile: Only Canadian Incorporated companies are eligible. 

7. Market Capitalization: Only the 60 largest companies, as measured by market cap. 

8. Liquidity: Only stock that are actively and regularly traded are considered 

Fundamentals: The company must have an track record of both revenues and 

earnings 

9. Sector Representation: The index Committee strives to maintain a balance with all 

ten sectors (Energy, Materials, Industrials, Consumer Discretionary, Consumer 

Staples, Health Care, Financials, Information Technology, Telecommunications 

Services and Utilities) 

Grounds for delisting include: 

10. Violations: A violation of one of the requirements for continued inclusion-

Mergers/Acquisitions: Companies involved in M&A’s or significant restructuring  
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10. FINANCIAL MARKETS AND MARKET INDICATORS 

 

Figure 10-1 A Graphical Representation of the Financial Markets 

10.1. INDICATORS OF INFLATION AND INTEREST RATES
14 

The market is driven by two main forces; the inflation rate and interest rate.  These two 

rates are inversely related.  An increase in the interest rates inversely affects inflation rates.  

Interest rates provide insight on borrowing money (debt financing).  A rise in interest rate 

will cause debt financing to become more costly, a decrease interest rates generally makes 

debt financing less expensive.  A rise in inflation rate involves the erosion of purchasing 

                                                

14 Adapted from (Interest Rate Forecasting: Economic Indicators) and (Garner). 
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power, meaning the currency is worth less; this is not encouraging for the equity investor, 

however if inflation rates decrease, equity appears to be more affordable. 

THE PRICE OF GOLD  

The price of gold is a leading economic indicator.  Rising inflation will cause investors to 

transfer investments out of financial assets and into gold.  As a result, an increase in the price 

of gold might precede an increase in inflation rates and a decrease in interest rates.  However, 

the price of gold will fluctuate in response to supply and demand and also foreign economic 

and political factors. 

PRIME RATE 

The prime interest rate is a leading indicator, which represents the interest rate that banking 

institutions require their most liquid, credit-worthy corporations to pay.  Rising prime rates 

indicate a decrease in inflation rates. 

GROSS DOMESTIC PRODUCT 

The gross domestic product (GDP) is the most important economic indicator.  The GDP 

represents the total output of goods and services produced by labour and property located in 

the country.  A larger-than-expected quarterly increase is considered inflationary, causing 

concern the Fed might need to intervene and raise interest rates in order to slow growth.  

EMPLOYMENT SITUATION:  PAYROLL EMPLOYMENT 

The payroll employment is the most significant indicator of current economic trends each 

month, along with the unemployment rate.  A higher-than-expected monthly increase is 

considered inflationary, and can cause interest rates to rise. 
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EMPLOYMENT SITUATION:  UNEMPLOYMENT RATE 

The unemployment rate is a lagging indicator.  A lower-than-expected unemployment rate 

or declining trend is considered inflationary, and can cause interest rates to rise. 

CONSUMER CREDIT 

Consumer credit data tracks debt levels for auto financing and commercial banking credit. 

Consumer credit report is generally considered to have little impact on interest rates, 

conversely little impact on inflation rates.  

HOUSING STARTS 

Housing starts are a leading economic indicator. A higher-than-expected increase in 

housing starts triggers economic growth and is considered inflationary, causing interest rates 

to rise. 
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12. APPENDIX 

Appendix A – ACF and PACF Plots Script 

function arplots(f,lag, difference) 

  

% Read excel data and precalculations 

data = xlsread(f); 

c0=0; 

k=lag; 

[maxrow,history]=size(data); 

  

% Transform data for calculations 

for i = 1:history 

    for n= 1:maxrow 

        if (isnan(data(n,i))) 

           eval(strcat('y',num2str(i),'=','(h',num2str(i),');')); 

           break 

        elseif (n==maxrow) 

            

eval((strcat('h',num2str(i),'(',num2str(n),',','1',')','=',num2str(data(n,i)),';'))

); 

            eval(strcat('y',num2str(i),'=','(h',num2str(i),');')); 

        else 

            

eval((strcat('h',num2str(i),'(',num2str(n),',','1',')','=',num2str(data(n,i)),';'))

); 

        end 

    end 

end 

  

% Difference data 

for i= 1:history 

    for j= 1:difference 

        eval(strcat('y',num2str(i),'=','diff(y',num2str(i),');')); 

    end 

end 

  

% Calculate mean 

mn_string=''; 

for i= 1:history 

    mn_string = strtrim(strcat(mn_string,'y',num2str(i), ';')); 

end 

mcum = eval(strcat('[',mn_string,']')); 

themean = mean(mcum); 

  

% Subtract mean 

for i= 1:history 

    eval(strcat('y',num2str(i), '=', 'y',num2str(i), '-themean;')); 

end 

T=0; 

for i= 1:history 

    [yrow,ycol] = eval(strcat('size(y',num2str(i), ')')); 

    T = T + yrow; 

end 

  

% Calculate ACF 

csum = 0; 

for i = 1:history 

    [yrow,ycol] = eval(strcat('size(y',num2str(i), ')')); 
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    isum = 0; 

    for n = 1:yrow 

        isum = isum + 

(eval(strcat('y',num2str(i),'(',num2str(n),',',num2str(1),')')))^2; 

    end 

    csum = csum + isum; 

end 

c0=csum/T; 

for l = 1:k 

    j=1; 

    accm = 0; 

    for i = 1:history 

        [thisrow,thiscol]=size(eval(strcat('y',num2str(i)))); 

        for n= 1:thisrow-l 

            accm(j,1)= 

eval(strcat('y',num2str(i),'(',num2str(n),',',num2str(1),')*y',num2str(i),'(',num2s

tr(n+l),',',num2str(1),')')); 

            j=j+1; 

        end 

    end 

    r(l,1)=(sum(accm)/T)/c0; 

end 

  

% Calculate PACF 

pacf=0; 

for m=1:k 

    p=eye(m); 

    for i= 1:m 

        for j= 1:m-i 

            p(i,j+i)=r(j,1); 

        end 

        for j= 1:m-i 

            p(j+i,i)=r(j,1); 

        end 

    end 

     

    rpacf(m,1)=r(m,1); 

    phipacf=inv(p)*rpacf; 

    [m,n] = size(phipacf); 

    pacf(m,1)=phipacf(m,1); 

end 

  

% Display results and plots 

r 

pacf 

subplot(2,1,1); bar(r) 

title 'Autocorrelation Function' 

xlabel 'Lags' 

ylabel 'Autocorrelation' 

ylim([-1 1]) 

subplot(2,1,2); bar(pacf) 

title 'Partial Autocorrelation Function' 

xlabel 'Lags' 

ylabel 'Partial Autocorrelation' 

ylim([-1 1]) 

 

 

 



117  
 

Appendix B - Yule-Walker Script 

function armodel(f,param, difference) 

  

% Read excel data and precalculations 

data = xlsread(f); 

c0=0; 

k=param; 

[maxrow,history]=size(data); 

  

% Transform data for calculations 

for i = 1:history 

    for n= 1:maxrow 

        if (isnan(data(n,i))) 

           eval(strcat('y',num2str(i),'=','(h',num2str(i),');')); 

           break 

        elseif (n==maxrow) 

            

eval((strcat('h',num2str(i),'(',num2str(n),',','1',')','=',num2str(data(n,i)),';'))

); 

            eval(strcat('y',num2str(i),'=','(h',num2str(i),');')); 

        else 

            

eval((strcat('h',num2str(i),'(',num2str(n),',','1',')','=',num2str(data(n,i)),';'))

); 

        end 

    end 

end 

  

% Difference data 

for i= 1:history 

    for j= 1:difference 

        eval(strcat('y',num2str(i),'=','diff(y',num2str(i),');')); 

    end 

end 

  

% Calculate mean 

mn_string=''; 

for i= 1:history 

    mn_string = strtrim(strcat(mn_string,'y',num2str(i), ';')); 

end 

mcum = eval(strcat('[',mn_string,']')); 

themean = mean(mcum); 

  

% Subtract mean 

for i= 1:history 

    eval(strcat('y',num2str(i), '=', 'y',num2str(i), '-themean;')); 

end 

  

% Calculate total sample size 

T=0; 

for i= 1:history 

    [yrow,ycol] = eval(strcat('size(y',num2str(i), ')')); 

    T = T + yrow; 

end 

  

% Calculate Autocorrelation 

csum = 0; 

for i = 1:history 

    [yrow,ycol] = eval(strcat('size(y',num2str(i), ')')); 

    isum = 0; 

    for n = 1:yrow 
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        isum = isum + 

(eval(strcat('y',num2str(i),'(',num2str(n),',',num2str(1),')')))^2; 

    end 

    csum = csum + isum; 

end 

c0=csum/T; 

for l = 1:k 

    j=1; 

    accm = 0; 

    for i = 1:history 

        [thisrow,thiscol]=size(eval(strcat('y',num2str(i)))); 

        for n= 1:thisrow-l 

            accm(j,1)= 

eval(strcat('y',num2str(i),'(',num2str(n),',',num2str(1),')*y',num2str(i),'(',num2s

tr(n+l),',',num2str(1),')')); 

            j=j+1; 

        end 

    end 

    r(l,1)=(sum(accm)/T)/c0; 

end 

  

% Yule-Walker method for estimating parameters 

p=eye(k); 

for i= 1:k 

    for j= 1:k-i 

        p(i,j+i)=r(j,1); 

    end 

    for j= 1:k-i 

        p(j+i,i)=r(j,1); 

    end 

end 

[rrow,rcol] = size(r); 

phi = inv(p)*r; 

phi 
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Appendix C - CUSUM Design Parameters Script 

function cusum(f, arl, delta, mean, sigma) 

  

% Read excel data and precalculations 

residuals = xlsread(f); 

k=delta*sigma/2; 

hi=residuals-mean-k; 

lo=mean-k-residuals; 

shi(1,1)=0; 

slo(1,1)=0; 

[m,n] = size(residuals); 

  

% Calculate CUSUM 

for i=2:m 

    shi(i,1)=max(0,shi(i-1,1)+hi(i,1)); 

    slo(i,1)=max(0,slo(i-1,1)+lo(i,1)); 

end 

slo=-1*slo; 

  

% Newton's Method for calculating control limits 

b0=log(1+(2*arl*(delta^2)/2)); 

for i=1:100 

    g=exp(b0)-b0-1-((delta^2)/2)*(2*arl); 

    gprime=exp(b0)-1; 

    b1=b0-(g/gprime); 

    if (abs(b1-b0)/b1 < 10^-6) 

        break; 

    elseif i==100 

        error( 'B did not converge' ); 

    end 

    b0=b1; 

end 

b1; 

h=(b1/delta)-1.166; 

H=h*sigma; 

ubound(1:m,1)=H; 

lbound(1:m,1)=-1*H; 

  

% Plot CUSUM chart 

hold on 

plot(slo,'-ko','LineWidth',1,'MarkerSize',4, 

'MarkerEdgeColor','k','MarkerFaceColor','g') 

plot(shi,'-ko','LineWidth',1,'MarkerSize',4, 

'MarkerEdgeColor','k','MarkerFaceColor','g') 

failed=''; 

  

% Identify points past critical bounds 

for i=1:m 

    if shi(i,1) >= H 

        plot(i,shi(i,1),'-ko','LineWidth',1,'MarkerSize',4, 

'MarkerEdgeColor','k','MarkerFaceColor','r') 

        failed = [failed ,' ', num2str(i)]; 

        text(i,shi(i,1),num2str(i)) 

    end 

    if slo(i,1) <= -1*H 

        plot(i,slo(i,1),'-ko','LineWidth',1,'MarkerSize',4, 

'MarkerEdgeColor','k','MarkerFaceColor','r') 

        failed = [failed ,' ', num2str(i)]; 

        text(i,slo(i,1),num2str(i)) 

    end 

end 
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% Display final results 

failed = strtrim(failed); 

plot(ubound) 

plot(lbound) 

text(m,H,strcat('UCL=',num2str(H))) 

text(m,-1*H,strcat('LCL=',num2str(-1*H))) 

title 'CUSUM Chart' 

xlabel 'Sample' 

ylabel 'Cumulative Sum' 

hold off 

plotedit on 

results{1,1}='H'; 

results{1,2}=H; 

results{2,1}='h'; 

results{2,2}=h; 

results{3,1}='k'; 

results{3,2}=k; 

results{4,1}='ARL'; 

results{4,2}=arl; 

results{5,1}='Delta'; 

results{5,2}=delta; 

results{6,1}='Sigma'; 

results{6,2}=sigma; 

results{7,1}='Mean'; 

results{7,2}=mean; 

disp(results) 

if (failed) 

    disp('Test failed at points:') 

    disp(failed) 

else 

    disp('Process is in control') 

end 

 


