
ABSTRACT

While a multitude of template matching strategies have been applied to printed text recogni-

tion, the variation seen in handprinted characters generally reduces the usefulness of this tech-

nique. What is suggested in this paper is the use of scalable vector templates, which can be used

to generate a template with the same scale and line width attributes as an arbitrary input charac-

ter image. The best match is the template having the smallest total distance between black pixels.

Multiple templates are used for each character, and digits only are used as a sample data set.

I. Introduction

Template matching techniques in many forms have been applied to the problem of recognizing

handprinted digits using a computer.1,2,4,8 The basic idea is that each digit has a particular shape

that can be captured in a small set of models, usually stored as raster images. An incoming

(unknown) digit, also in raster form, is compared against each template, and the one that matches

most closely is selected as belonging to the same digit class as the unknown. The system that per-

forms template matching can be ‘taught’ new forms simply by adding new templates to its set.

This is sometimes done when an incoming digit can’t be identified well enough; a human classi-

fies it, and the unknown image can be added as a new template if desired.

Once the learning phase is complete, template based recognition methods work quite well for

machine printed characters14. These are uniform in size, shape, and orientation, and pre-process-

ing methods can be devised that produce quite recognizable characters for any particular docu-

ment or set of documents that were created in the same way. On the other hand, characters printed

by a human show a large degree of variation in shape, size, orientation, and grey level intensity,

even in sets of characters printed by the same person. This variation mitigates against the use of

templates.

There have been some efforts to normalize handprinted characters, but these are only success-

ful for certain types of variation. Orientation, slant, and scale can be accounted for to some

extent3, but other aspects, such as line thickness, have not been. Thus, either an enormous number

of raster templates are needed to account for all possible variations, or standard template matching

techniques fail. There is enough difference in shape between different digits to permit human rec-

ognition at high rates of success; perhaps the templates should abstract the shape more accurately

than possible using a raster model, which depends on individual pixel to pixel correspondence and

not more global shape properties.

J. R. Parker

Laboratory for Computer Vision

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

Vector Templates and Handprinted Digit Recognition





2. Vector Templates

One possibly good idea is to represent the template digits as vectors. This is commonly done

in computer typography systems, where the fonts are stored in vector form6. This permits easy

scaling and rotation, allowing one set of characters to be used for all sizes, plus bold and italic

forms. The fonts were originally produced, painstakingly and with human assistance, so as to be

of high visual quality when scaled to large sizes and thick line widths. Although fonts are often

stored as outlines, it seems that the vector form generally has the properties needed of a good tem-

plate.

For applications in digit recognition vectors that form the skeleton of the characters will be

used rather than the outline. This yields a good abstraction of the shape, and permits the lines to

be thickened in an arbitrary way. The templates are stored as sets of four integers: the starting and

ending row and column on a standard grid. All templates have the same size: 10 by 10; this means

that all coordinates in any template have an integer value between 0 and 9 inclusive. Given a scale

and rotation, then, all templates in the collection would be modified in a consistent way.

A vector template can be produced using only a pencil, and perhaps some graph paper, and

indeed, the first set of templates were generated in just this way. An example appears in Figure 1,

which shows a template for the digit ‘2’. Figure 1a shows the vector coordinates, which were

obtained manually from a line drawing of a ‘2’ on a 10x10 grid. This is drawn as lines (Figure 1b)

using the original scale, and also using a new scale: 20x10 (Figure 1c). This particular template is,

by itself, able to match 76% of the sample ‘2’ images encountered in our data set, when the

matching method described below was used.

It is also possible to create a template from a data image, and may be desirable when starting

to process data from a new source. The first step in this process is to threshold and then thin the

input image. Thinning can be done using any competent algorithm: we have used both Holt’s vari-

ation on Zhang-Suen5,15and our own force based method12 to yield acceptable sets of skeletal

pixels. The result is a binary image in which only skeletal pixels have a value of 0; all others are 1.

Figure 2 gives an example of this, showing the original input image, the thresholded version, and

the skeleton as located by both thinning methods.

At this point the pixels are collected into sets, each representing a curve. An end pixel is found

(either a pixel connected only to 1 other or, or an arbitrary starting point if no such pixel exists)

3, 0 - 0, 3

0, 3 - 0, 6

0, 6 - 3, 9

3, 9 - 9, 0

9, 0 - 9, 9

Figure 1 - An example vector template. (a) The coordinates of the vector endpoints for

‘2’ template. (b) Vectors drawn on a 10x10 grid. (c) Vectors drawn on 20x10 grid.

(a)

(b) (c)



and the set of pixels connected to it are saved, taking care to trace only one curve. The method

described in Lam and Suen7 works very well here. Finally, a set of vectors is extracted from each

curve using a recursive splitting technique, a relatively simple and common method for vectoriz-

ing small, simple images. Briefly, the endpoints of the curve are presumed initially to be the start

and end points of a line, and the distances between all pixels in the curve and the mathematical

line are computed. If the maximum distance for this set of pixels exceeds a pre-determined thresh-

old then the curve is broken into two curves at the pixel having that maximum distance, and the

same procedure is applied again (recursively) to each of the two curve sections. Alternatively, if

the maximum distance is less than the threshold then the curve is presumed to be an approxima-

tion to a line, and the endpoint coordinates are saved as one of the vectors in the template. The

coordinates are scaled down to the standard 10x10 grid after the extent of all of the vectors has

Figure 2 - Converting a raster digit image into a vector template. (a) The
original digit image. (b) Thinned version, using Zhang-Suen. (c) Thinned
version using force-based thinning (Parker et al).

(a) (b) (c)

A: (18, 40) (27, 32)
B: (27, 32) (30, 32)
C: (31, 32) (35, 29)
D: (35, 29) (46, 29)
E: (46, 29) (49, 33)
F: (49, 33) (47, 40)
G: (47, 40) (40, 44)
H: (40, 44) (34, 43)
J: (34, 43) (31, 40)
K: (31, 40) (31, 33)

(a)

(b)

(c)

Figure 3 - Finding vectors in the thinned image. (a) The
curves encountered (2 of them). (b) Extracted vector
coordinates. (c) Vectors (linear features) marked in the
thinned image.



been determined. Figure 3 shows this vectorization process applied to the skeleton of Figure 2b,

and shows its final appearance after being scaled. The program that creates templates from images

actually emits C code for the initialization of the template data array in the matching program.

Source code is freely available (in C only).

3. Template Matching

Once all of the templates have been generated (there are multiple templates for each digit) the

system is ready to recognize digits. An incoming image is first pre-processed in any desired fash-

ion and is then thresholded. The width of the lines in the image is then estimated using horizontal

and vertical scans. A histogram containing the widths of the black portions of the image on all

slices is produced, and the mode of this histogram has been found to be a close enough approxi-

mation to the actual line width. A better approximation can be had by computing the gradient at

each pixel on the outline of the digit and finding the width of a slice though the digit in a direction

perpendicular to the outline at that point, but this rarely gives a result sufficiently better to be

worth the extra computation time. While the line width is being computed, the actual extent of the

digit image is also found so that the templates can be scaled. This is saved as the coordinates of

the upper left and the lower right pixels.

At this point the scaling factors for the templates can be computed. The templates will be

scaled in the X and the Y directions independently, and the same scale factors can be applied to all

templates. The factors include an adjustment that results in a correct scaling accounting for the

thickness of the line. Now the template vectors are drawn into an otherwise clear image the same

size as the input image, producing an initial raster template that represents the scaled skeleton.

Finally, each pixel is ‘grown’ equally on all sides to give a line width comparable to that found in

the input image. The result is a raster template with some similar properties to those found in the

input image. Figure 4 illustrates the process of generating a raster template from a vector one.

The matching process is somewhat different from that used in other template matching sys-

tems, but the goal is still to produce a measure of distance between the template and the image.

The first step is to locate those pixels that are black in both images. These have a distance between

them of zero, and are ignored in future processing. Next, each black pixel in the image has its

nearest corresponding pixel in the template located and marked. The 8-distance between these

pixels is noted, and a sum of these distances is computed. After all image pixels have been

assigned corresponding pixels in the template the total distance is an initial measure of similarity.

Efforts have been made to reduce the distance total by looking at pairs of corresponding pixels

and swapping those having a smaller distance after being swapped. This is a very time consuming

process, and does not greatly improve the distance.

Now a numeric value that can be used as a goodness of match metric has been found. It is nor-

malized to a per-pixel distance and stored as the measure for the numeral having the same class as

the template. The class having the smallest such measure over all templates is chosen as the class

of the input digit image. Figure 5 shows the overlapping pixels and a distance map for the exam-

ple begun in Figure 4.

There is a major problem with using this method to match a ‘1’, or any other object that has an

extreme ratio of height to width. The problem is that the vectors for almost any template will

match, after having been scaled to fit. For example, the sides of a ‘0’ will be brought together and

the central hole will be filled in due to the width of the two lines. When recognizing ‘1’ digits we

used one template for those cases where the image is sufficiently wide (2% of the sample) and a



combination of aspect ratio, line width VS image width, and eigenvalues of the moment matrix4

for the rest of the cases. Once the ‘1’ digits were recognized, templates were used in all of the

remaining cases.

4. Implementation and Results

The software implementing this method is written in C for both a Sun SPARC II workstation

and an IBM PC; both versions make use of the Alpha Vision System10 as a library. The time

needed for pre-processing3,9 varies depending on the kind of image acquired, but the template

scaling and drawing takes 0.019 seconds per template, which amounts to 0.55 seconds for all of

the 28 different templates. This could easily be done in parallel which would reduce the real time

needed. Pixel pairing and matching takes and average of 0.015 seconds per template, or 0.84 sec-

onds input image. The average time to recognize a digit without using parallel processing is 4.4

seconds on a Sun, and about twice as long on the PC. It should be said that no effort has been

made to optimize the time performance of the code.

Recognition rates are relatively good, although at the time of publication we have had only a

little data available to us for testing. The results are:

Data was obtained from various sources, including ICDAR CD rom15 and scanned locally

obtained documents. We are attempting to acquire more test data, and have so far managed to

Table 1: Vector Template Digit Recognition Rates

0 1 2 3 4 5 6 7 8 9

Correct 99% 94% 98% 96% 94% 92% 90% 93% 95% 92%

(a) (b) (c)

Figure 4 - Matching using a vector template. (a) Input digit image (to be matched).
(b) Scaled vector template. (c) Thickened vector template (not a good match here).



locate a little over 2500 images. There are multiple templates for each digit, but not necessarily

the same number. The current system uses:

5. Conclusions

Ultimately, this will be part of a larger system for recognizing handprinted digits in a commer-

cial environment, which naturally needs a high recognition rate. In fact, this digit classification

method was originally intended to be a part of a parallel recognizer using many diverse algo-

rithms. In that context it appears promising, as does the general idea behind it. Work on parallel-

ization is proceeding, and should be complete by the end of this year. We are also exploring the

idea of matching the vectors against the skeletal pixels in the image to be classified, although this

would mean adding a thinning procedure to the pre-processing step which would increase the exe-

cution time quite a bit.

6. Acknowledgments

This research has been supported by the National Science and Engineering Research Council

of Canada.

7. References

[1] Brown, R.M., Fay, T.H., and Walker, C.L., “Handprinted Symbol Recognition System”, Pattern

Recognition, Vol. 21 No. 2, 1988. pp 91-118.

[2] Cai, Z., “A Handwritten Numeral Recognition System Using a Multi-microprocessor”, Pattern Rec-

ognition Letters, 12, 1991. pp 503-509.

Table 2: Number of templates per digit

0 1 2 3 4 5 6 7 8 9

1 1 3 1 5 3 2 4 4 4

Figure 5 - The final stages of the template match. (a) Pixels that overlap between the template and
the image. (b) Distance map between template and image. Darker pixels are farther away.

(a) (b)



[3] Casey, R.G., “Moment Normalization of Handprinted Characters”, IBM Journal of Research and

Develpment, Sept. 1970. pp 548-557.

[4] Gader, P. et al, “Recognition of Handwritten Digits Using Template and Model Matching”, Pattern

Recognition, Vol. 24 No. 5, 1991. pp 421-431.

[5] Holt, C.M. et al, “An Improved Parallel Thinning Algorithm”, CACM Vol 30 No. 2, 1987. pp 156-

160.

[6] Knuth, D.E., “Computer Modern Typefaces”, volume E of Computers & Typesetting, Addison-Wes-

ley, Reading, MA. 1986.

[7] Lam, L. and Suen, C.Y., “Structural Classification and Relaxation Matching of Totally Uncon-

strained Handwritten Zip-Code Numbers”, Pattern Recognition, Vol. 21 No. 1. pp. 19-31, 1988.

[8] Mori, S., Yamamoto, K., and Yasuda, M., “Research on Machine Recognition of Handprinted Char-

acters”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6 No. 4, July

1984. pp 386-405.

[9] Otsu, N., “A Threshold Selection Method From Grey-level Histograms”, IEEE Transactions on Sys-

tems, Man, and Cybernetics, Vol. 9 No. 1, 1979. Pp 377-393

[10] Parker, J.R., “Practical Computer Vision Using C”, John Wiley & Sons, N.Y., 1994.

[11] Parker, J.R., “Grey Level Thresholding In Badly Illuminated Images”, IEEE- PAMI, Vol 13, No. 8,

1991.

[12] Parker, J.R. and Jennings, C., “Defining the Digital Skeleton”, SPIE Vision Geometry I, Boston,

MA., 1992.

[13] Suen, C.Y., et. al, “Computer Recognition of Unconstrained Handwritten Numerals”, Proc. IEEE,

Vol. 80 No. 7, July 1992.

[14] Srihari, S.N., “Recognition of Handwritten and Machine-printed Text for Postal Address Interpre-

tation”, Pattern recognition Letters, 14 (1993). pp 291-302.

[15] Zhang, Y.Y. and Suen, C.Y., “A Fast Parallel Algorithm for Thinning Digital Patterns”, CACM

Vol. 27 No. 3, 1984. pp 236-239.

[16] Japanese Technical Committee for Optical Character Recognition, “ETL Character Database”,

ICDAR ‘93, Tsukuba, Japan, October, 1993.


