Functions as Values

week date Monday Tuesday Thursday

1 Jan. 9 Introduction Haskell Start-Up Haskell Start-Up

2 Jan 16 Haskell Start-Up Recursion Lists and Tuples
(assn 1 due)

3 Jan 23 More About Lists Proofs /0

4 Jan 30 Algebraic Types Quiz 1 Algebraic Types
(assn 2 due)

5 Feb 6 Generalization Functions As Values Type Classes & Checking

6 Feb 13 Lazy Programming Haskell overflow Haskell overflow

7 Feb 27 Haskell review Quiz 2 Prolog...

8 Mar 6 (assn 3 due)

9 Mar 13 (assn 4 due)

10 Mar 20 Quiz 3

11 Mar 27 (assn 5 due)

12 Apr3 Prolog overflow Prolog overflow
(assn 6 due)

CISC 260, winter 2006, Haskell: Functions as Values

What’s This Topic About?

Different ways of creating functions
or
Expressions whose values are functions

Frequent motivation: avoid having to define trivial helper functions

Techniques:
+ function composition

» partial application of functions & operators

* lambda notation
* currying & uncurrying

Required Reading: Chapter 10 (skip section 10.9)

CISC 260, winter 2006, Haskell: Functions as Values

Function Composition

Operator "." composes two functions

means apply in sequence

Operator "Sections"

incrList :: [Int] -> [Int]
incrlList nums = map addl nums
where
addl x = x+1

Example: find second element in list
second :: [a] -> a Used a very simple helper function. There's a quicker way.

second = head . tail
Recall: (+) is the function that adds two numbers together.

Operator Section: (1+) is the function that adds 1 to a
number

CISC 260, winter 2006, Haskell: Functions as Values 3 CISC 260, winter 2006, Haskell: Functions as Values 4

Operator Sections (2)

-- new, simpler definition
incrlList nums = map (1+) nums

To create unary function from binary operator — can supply either

first or second operator
Makes no difference with "+", does with other operators

Example:
(/10) : function that divides its parameter by 10
(10/) : function that divides 10 by its parameter

map (10 /) [2.0,5.0] = [5.0,2.0]

map (/ 10) [2.0,5.0] [0.2,0.5]

CISC 260, winter 2006, Haskell: Functions as Values

More Examples
filter (/=0) [1,0,-2,5,0] [1,-2,5]

map (++"!!!") ["hello","world"]
["hello!!!", "world!!!"]

map ((*3).(+2)) [1,2,3] [9,12,15]

map (mod™ 10) [43, 57, 92] [3,7,2]

CISC 260, winter 2006, Haskell: Functions as Values

Partial Function Application

Consider this definition:
f :: Int -> Int -> Int
fxy= (3*x) + (2*y)

What's the meaning of (£ 2)?

Equivalent to g, where:
gy =6+ (2*y)

map (£ 2) [1,2,3] = [8,10,12]

CISC 260, winter 2006, Haskell: Functions as Values

Example

Recall Prelude function zip:
zip :: [a] -> [b] -> [(a,b)]

concat
(map (zip [1..20])
["Mary" , llhad" , llall , lllittle" , lllamb"])

[(1,'M"),(2,'a"),(3,'c"),(4,'y"),(1,'h"),
(2,'a"),(3,'d4"),(1,'a"),(1,'1"),(2,'L"),
(3,'t"),(4,'t"),(5,'1"),(6,'e"),(1,'1"),
(2,'a"),(3,'m"),(4,'b")]

CISC 260, winter 2006, Haskell: Functions as Values

Another Example
Recall Prelude function drop:

drop :: Int -> [a] -> [a]
Example: drop 2 "abed" = "cd"

map (drop 3) ["Mickey", "Mouse","Club"]

["key" , "Se" , "b"]

CISC 260, winter 2006, Haskell: Functions as Values 9

Order Of Parameters

What if you wanted to fix the second parameter of drop?
Example: successive tails of a list
tails :: [a] -> [[al]
tails lis = map helper [0.. (length lis)]
where
helper n = drop n 1lis

tails "abc" = ["abcn , "be" , nen , n u]

Can't use partial function application directly to replace helper.
Two options:

map ('drop 1lis) [0..(length 1lis)]

map ((flip drop) 1lis) [0..(length 1lis)]

CISC 260, winter 2006, Haskell: Functions as Values 10

Lambda Notation

Sometimes operator sections & partial function application isn't
enough to eliminate trivial helper function

Example:

squarelist :: [Int] -> [Int]

squarelist lis = map square lis
where

square n = n*n

Lambda notation lets us define small anonymous functions
squarelist lis = map (\n->n*n) lis

(\n->n*n) means:
"A function that takes one parameter and multiplies it by itself"

CISC 260, winter 2006, Haskell: Functions as Values 11

Lambda Notation With Multiple Parameters

\x y -> sgrt (x*x + y*y)
means:

A function that takes 2 sides of a right triangle and returns the
hypotenuse

Two equivalent ways to give this a name:
hypotl = \x y -> sqgrt (x*x + y*y)
hypot2 x y = sqrt (x*x + y*y)

CISC 260, winter 2006, Haskell: Functions as Values 12

Another Example

Problem: Given three numbers a, b and ¢, create a function to
evaluate the quadratic ax?+bx+c

Solution:
quad a b ¢ = \x-> a*x*x + b*x + c

Equivalent Solution:
quad a b ¢ x = a*x*x + b*x + c

Using quad to evaluate x?>+2x+3 for x =2

(quad 123)2
or:
quad 1232

These two expressions mean the same thing!
Function application associates to the left

CISC 260, winter 2006, Haskell: Functions as Values

Digression: Who Was Haskell?

Haskell Brooks Curry
(1900-1982)
Well-known mathematical logician

Haskell language named after him.
Also concept of "curried functions"

CISC 260, winter 2006, Haskell: Functions as Values

Curried Functions

Most functions we've looked at this term have been "curried".

Simple example of a curried function:

f :: Int -> Int -> Int
fxy= (3*x) + (2*y)

» f takes its parameters one at a time.

+ £ xproduces a function with one parameter.
 (f x) y produces a numerical value.

* Parenthesis not necessary: can write £ x y

* We usually think of f as having two parameters.

CISC 260, winter 2006, Haskell: Functions as Values

Uncurried Functions

An uncurried function combines all its parameters into a tuple.
(Technically, just one parameter)
Uncurried:
f (x,y) = (3*x) + (2*y)
Curried:
fxy= (3*x) + (2*y)

CISC 260, winter 2006, Haskell: Functions as Values

curry & uncurry functions

higher-order functions to move between curried & uncurried
functions of two parameters
uncurry (a->b->c) -> ((a,b)->c)

Given:
f xy = (3*x) + (2*y)
g = uncurry f
g (1,2) = 3*1 + 2*2 =7
curry does the opposite:

curry :: ((a,b)->c) -> (a->b->c)
(curry g) is equivalent to £

CISC 260, winter 2006, Haskell: Functions as Values

Example

Problem: a list of tuples, want to add them all together
Example: [(113) ’ (217) ’ (312)] -> [41915]

sumList lis = map (uncurry (+)) lis

CISC 260, winter 2006, Haskell: Functions as Values

