
CISC 260, winter 2006, Haskell: Functions as Values 1

Functions as Values

Prolog overflow

(assn 6 due)

Prolog overflowApr 312

(assn 5 due)Mar 2711

Quiz 3Mar 2010

(assn 4 due)Mar 139

(assn 3 due)Mar 68

Prolog...Quiz 2Haskell reviewFeb 277

Haskell overflowHaskell overflowLazy Programming Feb 136

Type Classes & CheckingFunctions As ValuesGeneralizationFeb 65

Algebraic Types

(assn 2 due)

Quiz 1Algebraic TypesJan 304

I/OProofsMore About ListsJan 233

Lists and Tuples

(assn 1 due)

RecursionHaskell Start-UpJan 162

Haskell Start-UpHaskell Start-UpIntroductionJan. 91

ThursdayTuesdayMondaydateweek

CISC 260, winter 2006, Haskell: Functions as Values 2

Different ways of creating functions

or

Expressions whose values are functions

Frequent motivation: avoid having to define trivial helper functions

What’s This Topic About?

Required Reading: Chapter 10 (skip section 10.9)

Techniques:

� function composition

� partial application of functions & operators

� lambda notation

� currying & uncurrying

CISC 260, winter 2006, Haskell: Functions as Values 3

Operator "." composes two functions

means apply in sequence

Function Composition

Example: find second element in list

second :: [a] -> a

second = head . tail

CISC 260, winter 2006, Haskell: Functions as Values 4

incrList :: [Int] -> [Int]

incrList nums = map add1 nums

where

add1 x = x+1

Operator "Sections"

Used a very simple helper function. There's a quicker way.

Recall: (+) is the function that adds two numbers together.

Operator Section: (1+) is the function that adds 1 to a 

number



CISC 260, winter 2006, Haskell: Functions as Values 5

-- new, simpler definition

incrList nums = map (1+) nums

Operator Sections (2)

To create unary function from binary operator – can supply either 

first or second operator

Makes no difference with "+", does with other operators

Example:
(/10): function that divides its parameter by 10

(10/): function that divides 10 by its parameter

map (10 /) [2.0,5.0] =

map (/ 10) [2.0,5.0] =

[5.0,2.0]

[0.2,0.5]

CISC 260, winter 2006, Haskell: Functions as Values 6

filter (/=0) [1,0,-2,5,0] 

More Examples

[1,-2,5]

map (++"!!!") ["hello","world"] 

["hello!!!","world!!!"]

map ((*3).(+2)) [1,2,3] [9,12,15]

map (`mod` 10) [43, 57, 92] [3,7,2]

CISC 260, winter 2006, Haskell: Functions as Values 7

Consider this definition:
f :: Int -> Int -> Int

f x y = (3*x) + (2*y)

Partial Function Application

What's the meaning of (f 2)?

Equivalent to g, where:

g y = 6 + (2*y)

map (f 2) [1,2,3] = [8,10,12]

CISC 260, winter 2006, Haskell: Functions as Values 8

Recall Prelude function zip:
zip :: [a] -> [b] -> [(a,b)]

Example

concat

(map (zip [1..20]) 

["Mary","had","a","little","lamb"])

[(1,'M'),(2,'a'),(3,'r'),(4,'y'),(1,'h'),

(2,'a'),(3,'d'),(1,'a'),(1,'l'),(2,'i'),

(3,'t'),(4,'t'),(5,'l'),(6,'e'),(1,'l'),

(2,'a'),(3,'m'),(4,'b')]



CISC 260, winter 2006, Haskell: Functions as Values 9

Recall Prelude function drop:

drop :: Int -> [a] -> [a]

Example: drop 2 "abcd" = "cd"

Another Example

map (drop 3) ["Mickey","Mouse","Club"]

["key","se","b"]

CISC 260, winter 2006, Haskell: Functions as Values 10

What if you wanted to fix the second parameter of drop?

Example: successive tails of a list
tails :: [a] -> [[a]]

tails lis = map helper [0..(length lis)]

where

helper n = drop n lis

Order Of Parameters

Can't use partial function application directly to replace helper.
Two options:

map (`drop` lis) [0..(length lis)]

map ((flip drop) lis) [0..(length lis)]

tails "abc" = ["abc","bc","c",""] 

CISC 260, winter 2006, Haskell: Functions as Values 11

Sometimes operator sections & partial function application isn't

enough to eliminate trivial helper function

Example:
squareList :: [Int] -> [Int]

squareList lis = map square lis

where

square n = n*n

Lambda Notation

Lambda notation lets us define small anonymous functions
squareList lis = map (\n->n*n) lis

(\n->n*n) means:

"A function that takes one parameter and multiplies it by itself"

CISC 260, winter 2006, Haskell: Functions as Values 12

\x y -> sqrt (x*x + y*y)

means:

A function that takes 2 sides of a right triangle and returns the 

hypotenuse

Lambda Notation With Multiple Parameters 

Two equivalent ways to give this a name:
hypot1 = \x y -> sqrt (x*x + y*y)

hypot2 x y = sqrt (x*x + y*y)



CISC 260, winter 2006, Haskell: Functions as Values 13

Problem: Given three numbers a, b and c, create a function to 

evaluate the quadratic ax2+bx+c

Another Example

Solution:
quad a b c = \x-> a*x*x + b*x + c

Equivalent Solution:
quad a b c x = a*x*x + b*x + c

Using quad to evaluate x2+2x+3 for x = 2

(quad 1 2 3) 2

or:

quad 1 2 3 2

These two expressions mean the same thing!

Function application associates to the left

CISC 260, winter 2006, Haskell: Functions as Values 14

Haskell Brooks Curry

(1900-1982)

Well-known mathematical logician

Digression: Who Was Haskell?

Haskell language named after him.

Also concept of "curried functions"

CISC 260, winter 2006, Haskell: Functions as Values 15

Most functions we've looked at this term have been "curried".

Simple example of a curried function:

f :: Int -> Int -> Int

f x y = (3*x) + (2*y)

� f takes its parameters one at a time.

� f x produces a function with one parameter.

� (f x) y produces a numerical value.

� Parenthesis not necessary: can write f x y

� We usually think of f as having two parameters.

Curried Functions

CISC 260, winter 2006, Haskell: Functions as Values 16

An uncurried function combines all its parameters into a tuple.

(Technically, just one parameter)

Uncurried:
f (x,y) = (3*x) + (2*y)

Curried:
f x y = (3*x) + (2*y)

Uncurried Functions



CISC 260, winter 2006, Haskell: Functions as Values 17

higher-order functions to move between curried & uncurried 

functions of two parameters
uncurry :: (a->b->c) -> ((a,b)->c)

curry & uncurry functions

Given:
f x y = (3*x) + (2*y)

g = uncurry f

g (1,2) = 3*1 + 2*2 = 7

curry does the opposite:
curry :: ((a,b)->c) -> (a->b->c)

(curry g) is equivalent to f

CISC 260, winter 2006, Haskell: Functions as Values 18

Problem: a list of tuples, want to add them all together
Example: [(1,3),(2,7),(3,2)] -> [4,9,5]

Example

sumList lis = map (uncurry (+)) lis


