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The present article addresses the psychometric issue 
of differential item functioning (DIF). An item is said 
to function differently (i.e., to be a DIF item) when sub-
jects from different groups but with the same ability level 
have, nevertheless, different probabilities of answering 
the item correctly. DIF items can lead to biased measure-
ment of ability because the measurement is affected by 
so-called nuisance factors (Ackerman, 1992). The pres-
ence of DIF jeopardizes the ideal of a correct measure-
ment procedure.

Detection methods have been developed to identify 
DIF items, so that these items can be removed from a test. 
Early on, detection methods were suggested by Angoff 
and Ford (1973), Cardall and Coffman (1964), Cleary and 
Hilton (1968), Lord (1976), and Scheuneman (1979). Al-
though of historical interest, these methods are not much 
used anymore. In this article, we focus on the methods that 
have gained considerable interest in recent decades. They 
are referred to here as the traditional methods.

Early reviews of DIF detection methods were pub-
lished by Berk (1982), Ironson and Subkoviak (1979), 
Rudner, Getson, and Knight (1980), and Shepard, Ca-
milli, and Averill (1981). More recent overviews have 

been proposed by Camilli and Shepard (1994), Clauser 
and Mazor (1998), Millsap and Everson (1993), Oster-
lind and Everson (2009), and Penfield and Camilli (2007). 
The distinction between methods based on item response 
theory (IRT) and those not based on IRT plays a major 
role in their classification. A second important distinction 
is that between uniform and nonuniform DIF. In our over-
view, single versus multiple focal groups will also play a 
role, as well as whether or not a purification procedure 
is followed. The framework is described in “A General 
Framework for DIF Analysis,” below, and the methods are 
explained in “Detection Methods,” below. Our overview 
and the associated R package will be restricted to methods 
for dichotomous items.

Commonly, each method comes with its own software 
tool, and there is no common software available that can 
be used for several methods or for a comparison of de-
tection results. Some examples are the DICHODIF soft-
ware (Rogers, Swaminathan, & Hambleton, 1993), which 
focuses on the Mantel–Haenszel (MH; Mantel & Haen-
szel, 1959) method; the IRTDIF program (Kim & Cohen, 
1992); the IRTLRDIF (Thissen, 2001) and DFITPU (Raju, 
1995) programs, which calculate DIF statistics based on 
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to these classes of methods as IRT methods and non-IRT 
methods, respectively. Some authors use the terms para-
metric and nonparametric instead.

For dichotomously scored items, the usual IRT models 
are the logistic models with one, two, or three parameters. 
We further denote them by 1PL, 2PL, and 3PL models, 
respectively. The 3PL model can be written as
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where Yij is the binary response of subject i to item j; qi 
is the ability of subject i; and aj, bj, and cj are, respec-
tively, the discrimination, difficulty, and pseudoguessing 
parameters of item j. The 2PL model can be obtained from 
Equation 1 by fixing cj to 0; the 1PL model comes from 
additionally fixing aj to 1.

Type of DIF effect. The next concept to be introduced 
is concerned with the type of DIF effect. By DIF effect, 
one usually means the difference (between subjects from 
different groups but with the same ability level) in the 
probabilities of answering the tested item correctly, once 
these probabilities are transformed by using the model 
link function. If this difference between the transformed 
probabilities is independent of the common ability value, 
then the DIF effect is said to be uniform. On the other 
hand, if the difference in success probabilities (or their 
link function transform) is not constant across the ability 
levels but depends on it, then one refers to a nonuniform 
or crossing DIF effect. In the IRT approach, the choice of 
a particular model influences the type of DIF effect that 
is assumed (Hanson, 1998). Consider, for instance, the 
1PL model obtained from Equation 1 by fixing aj to 1 and 
cj to 0. The link function of this model being the logistic 
(or logit) transformation, the logit of probability (Equa-
tion 1) is given by

 logit Pr(Yijg 5 1 | qi, bjg) 5 qi 2 bjg, (2)

where subscript g refers to the group membership, with 
g 5 R for the reference group and g 5 F for the focal group. 
Thus, for 2 subjects i and i* from two different groups but 
having the same ability level (i.e., qi 5 qi* 5 q), the dif-
ference in logits of probabilities is equal to bjR 2 bjF and 
does not depend on the ability level. Therefore, the 1PL 
model can be used to detect uniform DIF. Also the 2PL 
and 3PL models can be used for that purpose, and they are 
also appropriate models for the detection of nonuniform 
DIF because they contain discrimination parameters (2PL 
and 3PL) and pseudoguessing parameters (3PL). Crossing 
DIF refers to the crossing of 2PL or 3PL item characteris-
tic curves of the same item in focal and reference groups 
(see, e.g., Narayanan & Swaminathan, 1996). Nonuniform 
is more general and is not linked to an IRT approach.

Item purification. An important practical issue when 
investigating DIF is that the presence of one or several 
DIF items may influence the results of tests for DIF in 
other items. Thus, some items that are not functioning dif-

IRT models; and the simultaneous test bias (SIBTEST) 
program (Li & Stout, 1994) for the method of the same 
name. An exception is the DIFAS program (Penfield, 
2005), which compares the methods of Mantel–Haenszel 
and Breslow–Day, as well as some methods for polyto-
mous items. In this article, we present a new package for 
the software R (R Development Core Team, 2008), called 
difR (version 2.2), which can perform several traditional 
DIF detection procedures for dichotomous items. The 
commands of the package have a structure similar to those 
for all DIF detection methods, and the user can choose 
between several IRT-based or non-IRT-based methods. 
Some specific tuning parameters related to specific meth-
ods are also available. The basic working of the package 
is described in “An R Package for DIF,” below, and is il-
lustrated in “Example,” below, by detecting DIF items in 
a data set of verbal aggression information.

A General Framework for DIF Analysis
The framework for describing the DIF detection meth-

ods to select from consists of four dimensions: the number 
of focal groups, the so-called methodological approach 
(IRT-based or non-IRT-based), the type of the DIF effect 
(uniform or nonuniform), and whether or not item purifi-
cation is used.

Number of focal groups. The usual setting consists of 
comparing the responses of a reference group with those of 
a focal group. It can happen in practice that more than one 
focal group is considered. This occurs, for instance, when 
the performance of students from several types of schools 
is to be compared with that of students from a reference 
type of school. In other cases, none of the groups is a ref-
erence group, but one is still interested in a comparison. 
The common approach is to perform pairwise compari-
sons between each focal group and the reference group—
or between all groups, if there is not a reference group. 
However, multiple testing has several disadvantages. First, 
it requires controlling for significance level, by means of 
a Bonferroni correction (Miller, 1981), for instance. Sec-
ond, the power to detect DIF items is usually lower than 
the power of a single test comparing all groups simultane-
ously (see, e.g., Penfield, 2001). A few methods, such as 
the generalized MH approach and the generalized Lord’s 
test, have been specifically developed to deal with multiple 
groups. They are extensions of the usual approaches for 
one focal group to the case of more than one focal group. 
Very recently, Bayesian statistical approaches were devel-
oped by Soares, Gonçalves, and Gamerman (2009), which 
are promising but are not discussed here, because they are 
based on newly formulated IRT models. 

Methodological approach. There are two method-
ological approaches for the DIF detection methods: those 
relying on an IRT model, and those not relying on IRT. For 
the former, the estimation of an IRT model is required, 
and a statistical testing procedure is followed, based on 
the asymptotic properties of statistics derived from the es-
timation results. For the latter, the detection of DIF items 
is usually based on statistical methods for categorical data, 
with the total test score as a matching criterion. We refer 
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to a common metric. For non-IRT-based methods, the DIF 
items are discarded from the calculation of the total test 
scores and related DIF measures. Note that there is no 
guarantee that the iterative process will end with two suc-
cessive identical sets of items, which is the stopping rule 
of the algorithm. To overcome this drawback, one usually 
sets a maximal number of iterations, and the process is 
stopped when this number is reached.

The alternative for item purification is a procedure that 
stops at Step 2 in the purification process. It is a one-step 
or simultaneous procedure (the detection is simultaneous 
for all items), and it has, therefore, the drawback that the 
assumption of no DIF for the other items may distort the 
result, but it always ends in a nonambiguous result.

Detection Methods
Table 1 lists the traditional methods, according to the 

number of groups, the methodological approach, and 
the type of DIF. Each of these methods can be used with 
or without purification. A general presentation of these 
methods follows, and their names, as displayed in Table 1, 
are given in italics.

Non-IRT methods for uniform DIF. Most traditional 
methods belong to the class of non-IRT methods and are 
designed to detect uniform DIF. The MH, standardization, 
and SIBTEST procedures are based on statistics for con-
tingency tables. Logistic regression can be seen as a bridg-
ing method between IRT and non-IRT methods, as noticed 
by Camilli and Shepard (1994).

The MH method (Mantel & Haenszel, 1959) is very 
popular in the DIF framework (Holland & Thayer, 1988). 
It aims at testing whether there is an association between 
group membership and item response, conditionally upon 
the total test score (or sum score). More precisely, let J be 
the number of items of the test. Let Tj be the number of 
examinees (from both groups) with sum score j (where j is 

ferently can wrongly be identified as DIF items, which 
indicates an unwanted increase of the Type I error of the 
method. This is especially the case if some DIF items are 
included in the set of a priori non-DIF items. Such a pri-
ori non-DIF items are usually called anchor or DIF-free 
items. For non-IRT methods, this implies that the total test 
scores, which are used as proxies for ability levels, are 
influenced by the inclusion of DIF items. For IRT meth-
ods, the DIF items have an unwanted effect on the scaling 
of the item parameters used to obtain a metric (see “IRT 
Methods,” below).

To overcome this potential confounding problem, sev-
eral authors (Candell & Drasgow, 1988; Clauser, Mazor, 
& Hambleton, 1993; Fidalgo, Mellenbergh, & Muñiz, 
2000; Holland & Thayer, 1988; Lautenschlager & Park, 
1988; Wang & Su, 2004; Wang & Yeh, 2003) have sug-
gested an iterative elimination of the DIF items, which is 
now commonly called item purification. Its principle can 
be sketched by using the following stepwise process.

1. Test all items one by one, assuming they are not 
DIF items.

2. Define a set of DIF items on the basis of the results 
of Step 1.

3. If the set of DIF items is empty after the first itera-
tion, or if this set is identical to the one obtained 
in the previous iteration, then go to Step 6. Other-
wise, go to Step 4.

4. Test all items one by one, omitting the items from 
the set obtained in Step 2, except when the DIF 
item in question is being tested.

5. Define a set of DIF items on the basis of the results 
of Step 4 and go to Step 3.

6. Stop.

To execute Step 4 for IRT-based methods, DIF items 
are discarded during the rescaling of the item parameters 

Table 1 

Traditional Methods for Detecting Differential Item Functioning (DIF)

Number of Groups

Framework  DIF Effect  2  .2

Non-IRT Uniform Mantel–Haenszel* Pairwise comparisons

Standardization* Generalized Mantel–Haenszel*

SIBTEST

Logistic regression*

Non-IRT Nonuniform Logistic regression* Pairwise comparisons

Breslow–Day*

NU.MH

NU.SIBTEST

IRT Uniform LRT* Pairwise comparisons

Lord* Generalized Lord*

Raju*

IRT Nonuniform LRT* Pairwise comparisons

Lord* Generalized Lord*

Raju*

Note—NU.MH, modified Mantel–Haenszel for nonuniform DIF; NU.SIBTEST, modi-
fied SIBTEST for nonuniform DIF; LRT, likelihood ratio test. *Currently implemented 
in difR package (Version 2.2).



850    MAGIS, BÉLAND, TUERLINCKX, AND DE BOECK

monly used variance is Philips and Holland’s proposal. 
The log odds ratio λMH is commonly used for the DIF ef-
fect size of the item. More precisely, Holland and Thayer 
(1985) proposed computing ∆MH 5 22.35λMH and clas-
sifying the effect size as negligible if |∆MH| # 1, moderate 
if 1 , |∆MH| # 1.5, and large if |∆MH| . 1.5. This is often 
referred to as the ETS Delta scale (Holland & Thayer, 
1988).

A second method is standardization (Dorans & Kulick, 
1986), which relies on an approach similar to the MH 
method. In the standardization method, the proportions 
of a correct response in each group and for each value of 
the total test score are compared. The standardized p dif-
ference (ST-p-DIF) is the resulting test statistic, and it can 
be seen as a weighted average of the differences of success 
rates (at each level of the test score) between focal and ref-
erence groups. Using the previous notations, the ST-p-DIF 
statistic takes the following form:
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where PFj 5 Cj /nFj and PR j 5 Cj /nR j are the proportions 
of successes among the focal group and the reference 
group, respectively, and ωj is a weighting system. Usually 
ωj is chosen as the proportion of subjects from the focal 
group with a total test score j, but several alternatives exist 
(Dorans & Kulick, 1986). The ST-p-DIF statistic can take 
values from 21 to 11. Values close to zero indicate that 
the item does not function differently.

Although a formula for the standard deviation of the 
ST-p-DIF statistic has been proposed (Dorans & Holland, 
1993), the null hypothesis distribution has not yet been 
derived. The usual classification rule consists, therefore, 
in fixing a threshold thr, such that the item is classified 
as DIF if the ST-p-DIF statistic is larger than thr. Com-
mon choices for thr are .05 or .10. In addition, Dorans, 
Schmitt, and Bleistein (1992) proposed the absolute value 
of the ST-p-DIF statistic as a basis to interpret the size of 
DIF: negligible DIF if |ST-p-DIF| # .05, moderate DIF 
if .05 , |ST-p-DIF| # .10, and large DIF if |ST-p-DIF| . 
.10. Because the contingency table structure is similar to 
that for the MH method, it is not surprising that Dorans 
(1989) has shown some important similarities between the 
two methods. Finally, note that Dorans and Holland also 
proposed an adapted formulation of the standardization 
test for the case of multiple-choice items and a correction 
for guessing.

The SIBTEST method can be seen as a generalization 
of the standardization technique (Shealy & Stout, 1993). 
The corresponding SIBTEST statistic has several struc-
tural advantages with respect to the ST-p-DIF. Among oth-
ers, it can test for DIF of a set of items, rather than testing 
each item separately, and a statistic with an asymptotic 
standard normal distribution is available to test the null 
hypothesis of no DIF.

To explain the SIBTEST, let us start from the assump-
tion that the reference group and the focal group have 

taken between zero and J ). Then, for any tested item, the 
Tj examinees are cross-classified into a 2 3 2 contingency 
table with group membership and type of response (cor-
rect or incorrect) as entries. Let Aj, Bj, Cj, and Dj be the 
four cell counts of this table, in which Aj and Bj refer to the 
numbers of correct and incorrect responses, respectively, 
to the tested item in the reference group. The quantities Cj 

and Dj refer to the corresponding numbers of correct and 
incorrect responses, respectively, in the focal group. Let 
nR j and nFj be the number of responses among examinees 
in the reference group and the focal group, respectively, 
with sum score j (so nR j 5 Aj 1 Bj, and nFj 5 Cj 1 Dj), 
and define m1 j and m0 j as the number of correct and incor-
rect responses, respectively, among examinees with sum 
score j (so m1 j 5 Aj 1 Cj, and m0 j 5 Bj 1 Dj). With this 
notation, the MH statistic can be written as
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where the sums over index j are restricted to sum scores 
that are actually observed in the data set, and where E(Aj) 
and Var(Aj) are given by

 

E
R

( )A
n m

Tj

j j

j

= 1

 
and

 

Var
R F

( )
( )

.A
n n m m

T T
j

j j j j

j j

=
−
1 0

2 1
 

(4)

Under the null hypothesis of no conditional associa-
tion between item response and group membership, which 
corresponds to the hypothesis of no DIF, the MH statis-
tic follows asymptotically a chi-square distribution with 
one degree of freedom. An item is therefore classified as 
DIF if the MH statistic value is larger than a critical value 
based on the asymptotic null distribution, which is the chi-
square distribution. The correction 20.5 in Equation 3 is a 
continuity correction factor to improve the approximation 
of the chi-square distribution, which is especially needed 
for small frequencies.

An alternative statistic associated with the same method, 
which can also be used as a basis for an effect-size mea-
sure, is the common odds ratio across all j values, αMH 
(Mantel & Haenszel, 1959), given by
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(5)

The logarithm of this estimate, λMH 5 log(αMH), is 
asymptotically normally distributed (see, e.g., Agresti, 
1990). Values around zero indicate that the item is non-
DIF. Several forms for the variance of λMH were proposed 
(Breslow & Liang, 1982; Hauck, 1979; Philips & Hol-
land, 1987; Robins, Breslow, & Greenland, 1986). Ac-
cording to Penfield and Camilli (2007), the most com-
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tween Nagelkerke’s R2 coefficients (Nagelkerke, 1991) of 
the two nested logistic models. For instance, the full model, 
with parameters {β0, β1, β2, β3}, and the reduced model, 
with parameters {β0, β1}, are to be compared when uni-
form and nonuniform DIF are considered simultaneously. 
Zumbo and Thomas proposed the following interpretation: 
negligible DIF if ∆R2 # .13, moderate DIF if .13 , ∆R2 # 
.26, and large DIF if ∆R2 . .26. Jodoin and Gierl (2001) 
have proposed a less conservative scale with cutoff scores 
of .035 and .07, instead of .13 and .26, respectively.

For multiple groups, any of the aforementioned meth-
ods (MH, standardization, SIBTEST, logistic regression) 
can be used for pairwise comparisons between each focal 
group and the reference group, or just between all groups 
(“Pairwise comparisons” in Table 1). Among the non-IRT 
methods, the MH method has been generalized to a simul-
taneous test for multiple groups (Penfield, 2001; Somes, 
1986), indicated as the “generalized Mantel–Haenszel” 
method in Table 1, as suggested by Penfield (2001). The 
logistic regression method can also be generalized using 
multiple group indicators in the regression equation. This 
has been suggested by Millsap and Everson (1993), but it 
has not yet been included in a published empirical study 
of DIF.

Non-IRT methods for nonuniform DIF. As explained 
above, the logistic regression approach can also be used as 
a method for detecting a nonuniform DIF, but it is not the 
only approach. Several alternatives exist. The Breslow–Day 
(BD) test (Breslow & Day, 1980) determines whether the 
association between item response and group membership 
is homogeneous across the range of total test scores. If it 
is not, then a nonuniform DIF is present (Penfield, 2003). 
With the same notations as for the MH method, the BD 
statistic can be written as
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In Equation 10, the expected value of Aj is the positive 
root of a quadratic equation and equals the positive value 
among the two following roots:
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where ˆα is an estimate of the common odds ratio—for 
instance, as given by Equation 5—and
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The variance of Aj is given by
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equal average ability levels. The SIBTEST statistic takes 
the following form:

 

B U
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where β̂U is given by
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where Fj is the proportion of subjects from the focal 
group with total test score j, and 

–
YR j and 

–
YF j are the av-

erage scores of the subjects with total score j, from the 
reference and the focal group, respectively, on the set of 
tested items. To see the similarity with the standardization 
test, note that the numerator of this statistic is the same 
as for the latter, except for the fact that, now, an item set 
is considered. The term ˆs(β̂U) is the estimated standard 
error of β̂U, and its formula can be found in Shealy and 
Stout (1993, p. 169, Equation 19). Under the null hypoth-
esis—that is, that the set of tested items does not function 
differently—the statistic B follows an asymptotic standard 
normal distribution.

Recall, however, that Equation 7 holds only when the 
two groups of examinees have the same average ability 
level. In practice, this is an unrealistic assumption. There-
fore, Shealy and Stout (1993) suggested a regression-
based correction for the average ability difference. This 
correction mainly consists of obtaining regression-based 
estimates 

–
Y *

R j and 
–
Y *

F j, F *
j, and ˆs(β̂U)*. These corrected 

values are plugged into Equations 7 and 8 instead of the 
corresponding uncorrected quantities. For further details, 
see Shealy and Stout.

In addition to its use for significance testing, the β̂U 
statistic gives an indication of the DIF effect size. Roussos 
and Stout (1996) developed the following classification, 
which is derived from the ETS Delta scale for the MH 
procedure: negligible DIF if | β̂U | # .059, moderate DIF if 
.059 # | β̂U | # .088, and large DIF if | β̂U | . .088.

Finally, following the logistic regression approach 
(Swaminathan & Rogers, 1990), a logistic model is fitted 
for the probability of answering the tested item correctly, 
based on the total test score, group membership, and the 
interaction between these two. A uniform DIF effect can 
be detected by testing the main effect of group, and a non-
uniform DIF effect can be detected by testing the interac-
tion. Formally, the full logistic regression model has the 
following form:

 logit (πi) 5 β0 1 β1 Si 1 β2 Gi 1 β3 (SG)i, (9)

where πi is the probability of person i endorsing the item, Si 
is the total test score, Gi is the group membership (focal or 
reference), and (SG)i is the interaction of Si and Gi. Model 
parameters {β0, β1, β2, β3} are estimated and tested through 
the usual statistical test procedures (e.g., Wald test, likeli-
hood ratio test, etc.). The null hypothesis of no DIF is re-
jected on the basis of β3 for nonuniform DIF and on the basis 
of β2 for uniform DIF. Zumbo and Thomas (1997) proposed 
∆R2 as an effect-size measure, defined as the difference be-
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the asymptotic normality of the maximum likelihood es-
timates of the item parameters. The degrees of freedom 
correspond to the number of estimated parameters in the 
model. Note that, under the 1PL model, the statistic in 
Equation 14 has the simple form

 

Q
b b

j

j j

j j

=
−( )
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R F

R F

2

2 2ˆ ˆ
,
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where ˆsj R and ˆsj F are the estimated standard errors of 
item difficulty in the reference group and focal group, 
respectively.

Kim, Cohen, and Park (1995) extended Lord’s test to 
more than one focal group in a procedure called the gener-
alized Lord test. The Qj statistic from Equation 14 is then 
generalized to the following form:

 Qj 5 (Cvj)′(C SjC ′)21(Cvj), (16)

where vj is obtained by concatenating the vectors of the 
estimated item parameters in the reference group and 
in the focal groups, and where Sj is the corresponding 
block diagonal matrix where each diagonal block is the 
variance–covariance matrix of item parameters in each 
respective group of subjects. The C matrix is a design 
matrix indicating the item parameters one is interested in 
for a comparison between the groups (for further details, 
see Kim et al., 1995). This generalized Lord statistic also 
has an asymptotic chi-square distribution with as many 
degrees of freedom as the rank of the design matrix C. It 
is important to recall that all parameter estimates in the 
vector vj must have a common metric for all groups before 
the Qj statistic is computed.

The third method is the Raju method (Raju, 1988, 
1990), and, in this method, the (signed) area between the 
item characteristic curves for the focal group and the ref-
erence group is computed. The corresponding Z statistic 
is based on the null hypothesis that the true area is zero. 
A common metric is required prior to the test. Any item 
response model can be considered with Raju’s (1988) ap-
proach. However, an important restriction is that, for each 
item, the pseudoguessing parameters for both groups of 
subjects are constrained to be equal.

With the 1PL model, the area between the characteristic 
curves (in the reference group and in the focal group) of 
an item is simply given by the difference in item difficulty 
estimates (Raju, 1988), so that the Z statistic is simply 
given as follows:
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The square of this Z statistic is identical to Lord’s statistic, 
as shown in Equation 15. For 2PL and 3PL models, the 
formula for Z is much more complex and can be found in 
Raju (1990).

An R Package for DIF
We have developed an R package for nine of the afore-

mentioned methods so they can be used simultaneously 

(for further details, see Aguerri, Galibert, Attorresi, & 
Marañón, 2009). The BD statistic has an asymptotic chi-
square distribution with as many degrees of freedom as 
the number of total test scores that are taken into account 
in the sum in Equation 10.

Second, several authors have proposed adapting a 
method for detecting uniform DIF for the case of non-
uniform DIF. Modified versions of MH (Mazor, Clauser, 
& Hambleton, 1994) and SIBTEST (Li & Stout, 1996) 
are available (see also Finch & French, 2007; Narayanan 
& Swaminathan, 1996). They are indicated in Table 1 as 
NU.MH and NU.SIBTEST, respectively, with NU refer-
ring to nonuniform DIF.

For multiple groups and nonuniform DIF, and apart 
from the recent Bayesian approaches mentioned earlier, 
there seem to be no methods described in the literature. 
One possible approach is to extend the generalized MH 
method to the context of a nonuniform DIF, similar to 
the way Mazor et al. (1994) did for the MH technique 
for uniform DIF. Alternatively, the logistic regression 
method can be used for more than one focal group, as 
is mentioned in “Non-IRT methods for uniform DIF,” 
above.

IRT methods. IRT methods can be used to detect both 
uniform DIF and nonuniform DIF effects. The 1PL can be 
used only to detect a uniform DIF, and the 2PL and 3PL 
are suitable for the identification of uniform and nonuni-
form DIF. There are three main types of IRT methods.

The first is the LRT (likelihood ratio test) method (This-
sen, Steinberg, & Wainer, 1988). It consists of fitting two 
IRT models: a compact model with item parameters being 
identical for both groups of subjects and an augmented 
model with item parameters that are allowed to vary be-
tween the groups of examinees. The significance of these 
additional parameters is tested by means of the usual like-
lihood ratio test. Although conceptually close to the logis-
tic regression method, this LRT technique is built upon 
the fitting of an item response model. According to the se-
lected IRT model, only the item difficulties (1PL model), 
or also discriminations (2PL model), and pseudoguessing 
parameters (3PL model) can vary between the groups.

The second approach is called Lord’s chi-square test 
(Lord, 1980) and is based upon the null hypothesis of 
equal item parameters in both groups of subjects and a 
statistic with a chi-square distribution under the null hy-
pothesis. Any type of item response model can be fitted, 
but the item parameters must be scaled with a common 
metric prior to statistical testing. This issue is discussed 
by Candell and Drasgow (1988) and Lautenschlager and 
Park (1988), among others. The Qj statistic used for this 
method has the following form:

 Qj 5 (vjR 2 vjF)′(SjR 2 Sj F)21(vjR 2 vjF), (14)

where vjR 5 (ajR, bjR, cjR) and vj F 5 (aj F, bj F, cj F) 
are the vectors of item discrimination, difficulty, and 
pseudoguessing estimates of item j in the reference group 
and focal group, respectively, and SjR and Sj F are the cor-
responding variance–covariance matrices. The Qj statistic 
has an asymptotic chi-square distribution and relies on 
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in R by entering the require(difR) command into the 
R console.

R commands for DIF detection. Basically, all func-
tions for detecting DIF items have the same structure. 
All of the commands start with “dif,” followed by the 
acronym for the specified method. Table 2 lists the nine 
available methods in the difR package. The first column 
shows the name of the R command to be called for the 
requested method, which is displayed in the second col-
umn. The third column indicates the names of the required 
arguments for data input. These arguments are discussed 
in the next section.

Data input. The user must always provide three pieces 
of information: (1) the data set, (2) the group membership 
of the respondents, and (3) the focal group label(s). The 
data set has the usual structure: one row per subject, one 
column per item, with 1, 0 entries only. In the current ver-
sion of the package, complete response patterns must be 
provided because several methods will fail to provide a re-
sult if at least one response pattern is incomplete. The data 
set can also contain the names of the items to be included 
as column names. The data set is always passed through 
the R commands by means of the data argument, either as 
a matrix or as a data frame.

The group membership of the respondents can be pro-
vided as a separate vector or as a column of the data set 
itself. In the latter case, the user has to specify which col-
umn of the data set corresponds to the group member-
ship. The group argument is used for that. The name of 
the group membership vector can also be specified as a 
column name.

The components of the group membership vector can 
be either numeric strings or character strings, and one is 
required for specifying the components that refer to the 
focal group(s). This is achieved by using the focal.name 
arguments if two groups of respondents are considered or 
the focal.names arguments in the multiple groups setting.

If one is interested in the Lord or Raju methods for 
DIF detection, it is possible to provide the item param-
eter estimates directly. This is particularly useful if an-
other software tool, such as BILOG (Mislevy & Bock, 
1984; Mislevy & Stocking, 1989), is used for item param-
eter estimation. If the parameter estimates are not given, 
the user has to specify the model that must be fitted to 
the data. The package has an internal function (namely, 

and their results can be compared. The package is called 
difR and is briefly described below. The interested reader 
can find more details in the difR manual, which can be 
obtained by request to the first or second author of the 
present article.

Installation and software. Working with difR re-
quires the installation of the software R and two work-
ing packages: ltm (Rizopoulos, 2006) and lme4 (Bates & 
Maechler, 2009). Version 2.8.0 of R or a more recent ver-
sion is required. The latest edition of R can be downloaded 
from the R Project Web site: www.r-project.org.

The ltm package is required for fitting logistic item 
response models and provides item parameter estimates 
and standard errors. The usual 1PL, 2PL, and 3PL item 
response models can be fitted with this package. The mar-
ginal maximum likelihood approach is used for the esti-
mation, with a default of 40 iterations for the expectation 
maximization (EM) algorithm and 15 quadrature points 
for the Gauss–Hermite approximation of the required in-
tegrals. The R commands of ltm can be used in difR for 
the Lord and Raju IRT methods.

The lme4 package permits fitting the 1PL model as 
a generalized linear mixed model, using its lmer func-
tion, with fixed item and random person effects, with 
and without an interaction between the tested item and 
group membership (for more information, see De Boeck 
& Wilson, 2004). Such a model is particularly useful for 
the LRT method, and it is the only one currently available 
for that method. It can also be used for the Lord and Raju 
approaches when the 1PL model is considered. For binary 
data, lme4 makes use of the Laplace approximation of the 
required integrals. With the current version of lme4 (ver-
sion 0.999375-32, as of October 20, 2009), it is impos-
sible to fit the 2PL and 3PL models as mixed models. On 
the other hand, lmer can deal with missing data, whereas 
ltm cannot.

Both packages can be installed directly from the R Proj-
ect Web site. When used for model fitting in difR, the item 
parameter estimates will be extracted from their output 
and integrated into the DIF detection methods. The difR 
package itself and its users’ manual can be downloaded 
for free from ppw.kuleuven.be/okp/software/difR. The 
package can be installed locally from the “Packages” 
menu of the R console: Select “Install package(s) from 
local zip files . . . .” Finally, the package has to be loaded 

Table 2 

Main R Commands and Related Arguments for Data Input

R Command  Method  Arguments

difBD Breslow–Day Data, group, focal.name

difGenLord Generalized Lord Data, group, focal.names, model, c, engine, irtParam, nrFocal, same.scale

difGMH Generalized Mantel–Haenszel Data, group, focal.names

difLogistic Logistic regression Data, group, focal.name

difLord Lord’s chi-square test Data, group, focal.name, model, c, engine, irtParam, same.scale

difLRT Likelihood ratio test Data, group, focal.name

difMH Mantel–Haenszel Data, group, focal.name

difRaju Raju’s area Data, group, focal.name, model, c, engine, irtParam, same.scale

difStd  Standardization  Data, group, focal.name
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ment. The default value of engine was set because ltm is 
faster than lme4 for fitting the 1PL model. However, the 
engine argument is not used for the LRT method, because 
ltm cannot incorporate an interaction between the tested 
item and group membership (with ltm, the item param-
eters are estimated separately in each group of subjects). 
Thus, engine is an option only for the Lord, generalized 
Lord, and Raju methods, whereas, for the LRT method, 
lme4 is the only option. Moreover, since the 2PL and 3PL 
models cannot be fitted with lme4, the engine argument is 
actually only useful when the 1PL is considered.

Specific input arguments. Several commands have 
specific parameters that are intrinsic to the methods. 
Table 3 displays the full list of specific parameters, pro-
viding the names, the precise effects, and the method for 
which they are designed.

First, the statistical detection threshold must be supplied 
in the form of an alpha argument. For the standardization 
method, the threshold is not an alpha level, and it must be 
fully specified through the thr argument. An item will be 
detected as DIF if the absolute value of the correspond-
ing ST-p-DIF statistic is larger than thr. The default value 
is .10, but any other value can be considered.

For the MH method, an optional argument is available 
for obtaining a more continuous distribution and, hence, 
to better approach the asymptotic normality of that sta-
tistic (Holland & Thayer, 1988). The correction of 20.5 
is desirable if some of the expected frequencies are very 
small—especially when they are lower than five (Agresti, 
1990). In the DIF framework, this correction is commonly 
adopted. The correct argument is a logical argument and 
takes the value TRUE by default, in line with the current 
practice.

The last two specific arguments are related to item puri-
fication. The purify argument determines whether purifi-
cation has to be performed. This argument is of the logical 
type and is FALSE by default, so that item purification is 
performed only when the argument is used and is given 
the value TRUE. The second related argument is nrIter, and 
it specifies the maximum number of iterations in the puri-
fication process. It may happen that the purification needs 
a large number of iterations. Because it can lead to an end-
less loop and would thus fail to stop, it is useful to set a 
maximum number of iterations (by default, nrIter 5 10). 
A warning is given if convergence is not reached after 
nrIter iterations.

Output. There are three kinds of output: (1) the out-
put that is returned by each of the R commands; (2) the 

 itemParEst) that can fit the selected model to each group, 
using the commands of the ltm or lme4 packages, accord-
ing to the user’s choice (see below). If preestimated item 
parameters are used, the computation time may be con-
siderably shorter.

For Lord and Raju methods, the user can provide the es-
timates of item parameters directly, instead of the full data 
matrix. These estimates can be passed to the R commands 
through the irtParam argument, in the format of a matrix 
with one row per item and one column per parameter es-
timate with standard errors and, possibly, covariances be-
tween the parameters. The proper format of this irtParam 
matrix is rather technical, and the interested reader can 
find more detailed information in the help file of the item-
ParEst function or in the difR documentation.

In addition, the same.scale logical argument is used to 
specify whether the item parameters of the irtParam ma-
trix are already placed on a common metric. If they are 
not, the item parameters of the focal groups are rescaled 
to the metric of the reference group by equal means an-
choring through the itemRescale command (see Cook 
& Eignor, 1991, and the R help file of itemRescale for 
further information). The rescaling is such that the mean 
difficulty is the same in both groups. Other anchoring 
methods may be considered, but, currently, only the equal 
means anchoring approach is implemented in the difR 
package. Updated versions of the packages will incorpo-
rate alternative anchoring methods.

In order to specify the model to be estimated, one 
makes use of the model, c, and, possibly, engine argu-
ments. The model argument must be one of the following 
three: “1PL,” “2PL,” or “3PL.” The c argument is optional 
and is used to constrain the pseudoguessing parameters, 
as required by the Raju method, but it can also be applied 
to other IRT methods. If c is a single numeric value, all 
pseudoguessing parameters (for all groups and all items) 
are equal to this value. Otherwise, c must be a vector of 
the same length as the number of items, and each entry 
corresponds to the common value of the pseudoguessing 
parameters for the considered item in the reference and 
focal groups. If c is left unspecified, the pseudoguessing 
parameters are estimated separately for each item and 
each group of subjects.

Finally, the engine argument indicates which package 
will be used for model fitting. The default value is “ltm,” 
which refers to the marginal maximum likelihood esti-
mate of the model, but one can also request the Laplace 
approximation with the value “lme4” for the engine argu-

Table 3 

Specific Arguments of the Main R Commands

R Argument  Description  Methods

alpha Numeric: the significance level (default is 0.05) All methods but Std

thr Numeric: the threshold (or cut-score) for standardized P-DIF statistic (default is 0.10) Std

correct Logical: Should the continuity correction be used? (default is TRUE) MH

purify Logical: Should the method be used iteratively to purify the set of anchor items? (default is FALSE) All methods

nrIter Numeric: the maximal number of iterations for the purification process (default is 10) All methods

Note—MH, Mantel–Haenszel; Std, standardization; DIF, differential item functioning.
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convergence element indicates whether the process con-
verged. Finally, difPur yields a matrix with one row per 
iteration and one column per item, with zeros and ones 
for the items detected as being non-DIF and DIF, respec-
tively. This matrix lists the different detection steps of the 
purification, and it can be used to determine whether the 
process shows a loop.

For IRT methods (Lord, Raju, and generalized Lord), 
the output list also provides the model element, which 
corresponds to the selected item response model, 
and the c argument with the value of the constrained 
pseudoguessing parameters (if provided). The item pa-
rameter estimates are returned in the same format as that 
of the irtParam argument for the data input. The matrix 
of initial parameter estimates, being either estimated 
first by the program or provided by the user, is returned 
through the itemParInit element. If item purification is 
chosen, the itemParFinal element returns the final pa-
rameter estimates.

The second kind of output is a user-friendly summary 
of the DIF detection results, possibly of several methods, 
in a single output printout. This output is provided if the 
dicho Dif command is used. Only methods designed for 
one focal group can be considered, but both IRT and 
non-IRT methods can be called in this command. The ar-
guments for data input are identical to those previously 
mentioned (data, group, focal.name, model, c, engine, 
irtParam, same.scale). In addition, one has to specify, 
through the model argument, a vector of acronyms for 
the requested method: “MH” for the Mantel–Haenszel 
method, “Std” for standardization, “Logistic” for logistic 
regression, “BD” for the Breslow–Day method, “Lord” 
for Lord’s chi-square test, “Raju” for Raju’s area method, 

output that is displayed into the R console, which is a 
user-friendly version of the same output in a single output 
print; and (3) a visual representation of the DIF detection 
results.

First, each R command for DIF detection returns its 
own output to be specified through output arguments. The 
full output varies from method to method, but most of the 
output elements are common to all methods. Table 4 dis-
plays the elements that can be requested for the output list, 
and it also indicates the methods for which the elements 
can be requested.

The values of the DIF statistics at the last step of the 
purification process, if any, are always returned as the 
first element of the list. Because the names depend on the 
method, the first element of Table 4 is listed as “Unspeci-
fied.” If available from the literature, it is also indicated 
for each method what the cutoff values are for the inter-
pretation of a statistic, with regard to negligible, moder-
ate, or large DIFs. Other common elements of the output 
are the significance level (except for standardization), the 
corresponding threshold value of the statistic for flagging 
an item as DIF, the items, the set of items that are detected 
as functioning differently (if any), and the names of the 
items (if provided as column names of the data matrix). 
These are provided by the alpha, thr, DIFitems, and names 
elements of the output, respectively. For the MH method, 
the choice of whether or not to apply the continuity cor-
rection is also returned (with the correct argument), and 
the number of degrees of freedom, if applicable, is pro-
vided by means of the df argument.

If the purification process is requested, several addi-
tional elements are provided. The nrPur argument gives 
the number of iterations effectively run, and the logical 

Table 4 

Output Arguments of the Main R Commands

Output Argument  Signification and Value  Methods

Unspecified Vector of DIF statistic values All methods

alphaMH The values of the log-odds ratios αMH MH

deltaR2 ∆R2 differences between R2 coefficients Logistic

alpha Significance level All methods but Std

thr Threshold for DIF item detection All methods

df Degrees of freedom of generalized Lord statistic GenLord

DIFitems The column indicators of the items detected as DIF (if any), or “no DIF item detected” All methods

correct Logical: Was the continuity correction applied? MH

purification Logical: Was item purification applied? All methods

nrPur Number of iterations in item purification All methods

difPur Matrix of successive classification of the items All methods

convergence Logical: Did purification converge? All methods

model The fitted item response model Lord, Raju, GenLord

c Values of constrained pseudoguessing parameters or NULL Lord, Raju, GenLord

engine The engine package for fitting the IRT model Lord, Raju, GenLord

itemParInit Initial item parameter estimates Lord, Raju, GenLord

itemParFinal Final parameter estimates (after purification) Lord, Raju, GenLord

estPar Logical: Were item parameters estimated or provided? Lord, Raju, GenLord

focal.names Names of the focal groups GMH

names Names of the items All methods

Note—Std, standardization; MH, Mantel–Haenszel; GMH, generalized Mantel–Haenszel; GenLord, generalized Lord.
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the IRTLRDIF software (Thissen, 2001), since the latter 
makes use of models (2PL, 3PL, GRM) other than those 
used for the current implementation of the LRT. Instead, 
the LRT difR results were compared with those obtained 
from Multilog (Thissen, Chen, & Bock, 2003), and almost 
identical results were obtained. For some items, the differ-
ence between the LRT statistics was small (#0.1), and this 
was due to differences in the number of decimal values 
between Multilog and difR.

In sum, the preliminary checks of the difR package 
indicate that the current implementation of the DIF de-
tection methods provides accurate and reliable results, al-
though further investigation seems desirable. A full com-
parison will not be possible because, as mentioned earlier, 
for some of the methods, there is no standard software to 
compare.

Example
We illustrate the difR package by analyzing a data set 

about self-report verbal aggression. This data set stems 
from a study described in De Boeck and Wilson (2004), 
Smits, De Boeck, and Vansteelandt (2004), and Van-
steelandt (2000), with 316 respondents (243 women and 
73 men) and 24 items. The respondents were freshman 
students in psychology at the K.U. Leuven (Belgium). All 
items describe a frustrating situation, together with a pos-
sible verbal aggression response. The data are binary. The 
verbal aggression data set is included in both the difR 
package and the lme4 package and is used in the following 
to illustrate the commands.

The data set is called “verbal” and consists of 26 col-
umns. The first 24 columns refer to the items, the 25th 
column (labeled “Anger”) corresponds to the trait anger 
score (Spielberger, 1988) of each subject, and the 26th 
column (labeled “Gender”) contains the group member-
ship, with 0 and 1 entries for female and male respon-
dents, respectively.

First, we have to load the verbal data set, using the 
data(verbal) R code, and exclude the anger variable 
from the data set, because it is not used here:

verbal <- verbal[colnames(verbal)!="Anger"]

We specify the data argument as the verbal full matrix 
and the group argument as gender, which is actually the 
label of the column with the group membership vector. 
Furthermore, the focal group will correspond to the male 
respondents, for which gender equals one.

The data are analyzed with the MH method as an il-
lustration of uniform DIF detection. Other methods can 
be used similarly, with an appropriate selection of the op-
tions. We set a significance level of .05, and we consider 
the usual continuity correction. These two are default op-
tions, so they do not need to be specified. Furthermore, we 
request an item purification with no more than 20 itera-
tions. The corresponding R code is given below:

difMH(Data=verbal, group="Gender",

focal.name=1, purify=TRUE, nrIter=20)

The output is displayed in Figures 1 and 2, exactly as it 
appears in the R console.

and “LRT” for the likelihood ratio test method. Also, all 
specific options can be made through the arguments with 
the same name; for instance, the significance level can be 
fixed by using the alpha argument.

The output of the dichoDif command is twofold. First, 
it lists all specific options chosen. Second, it shows a ma-
trix with one row per item and one column per selected 
method. Each column displays the final classification of 
the items with the values “DIF” and “NoDIF.” This matrix 
permits an easy comparison of the methods in terms of the 
classification of items as DIF or no-DIF.

The third kind of output is a plot of the DIF statistic 
values for visual inspection of DIF. The plot command is 
simply called with the R code plot(result), where result 
must be specified by referring to one of the DIF detection 
methods. The items are displayed on the x-axis, and the 
DIF statistic values are displayed on the y-axis; the detec-
tion threshold is represented by a horizontal line. Figure 2 
shows the visual output for the example to be described 
next. Several graphical options (such as the color and the 
type of symbol for item localization) are available. See 
the help files of the corresponding methods for further 
information.

difR and other software. One may wonder how well 
the results of dif R would correspond with the results of 
other, mostly single-method programs. Therefore, we have 
checked the correspondence between the results returned 
by the dif R commands and those returned by some other 
software.

For some nonparametric methods (standardization, lo-
gistic regression, generalized MH), we did not find any 
specific DIF software. However, the fitting of the logistic 
regression models was compared with that of SAS PROC 
LOGISTIC, and both packages returned identical results. 
Similarly, the values of the generalized  MH statistics were 
compared with those of SAS PROC FREQ (CMH option), 
and, again, identical results were returned. Moreover, the 
MH difR output was compared with that of the DIFAS 
program (Penfield, 2001), and the results were identical. 
Because the Breslow–Day method currently implemented 
in difR is slightly different from that proposed in DIFAS, 
the latter software was not used for comparisons. Instead, 
SAS PROC FREQ was used, since it also returns the 
Breslow–Day statistics, and again, identical results were 
obtained.

For the parametric methods, the problem is twofold: 
The item parameters must be estimated adequately, and 
the methods must be correctly implemented. The difR 
package relies on the application of estimation routines 
from the ltm and lme4 packages, and empirical compari-
sons between these packages and other programs indicate 
that item parameter estimates are accurate. Moreover, 
the current implementation of the Lord’s and generalized 
Lord’s tests gives similar results to those published in Kim 
et al. (1995). Also, the results of the Raju method were 
similar to those from Raju’s 1990 article. Note, however, 
that some differences in DIF statistics occurred, but these 
were minor and can be attributed to rounding in the pub-
lished parameter estimates that we used to start from. Fi-
nally, no comparison was made for the LRT method using 
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were always identified as DIF items; 14 other items were 
never detected as DIF throughout the purification process. 
The successive classifications of the remaining six items 
are displayed in Table 5. Note that Step 0 corresponds to 
the initial classification of the items, before item purifica-
tion starts. One can clearly see the slight changes in the 
successive iterations, until Steps 5 and 6 have identical 
results, so that the purification process is stopped.

The first sentence of the output reports that the MH 
method is used, that the continuity correction was made, 
and that an item purification was performed. Next, it is 
reported that the purification process reached conver-
gence after six iterations. The matrix of successive clas-
sifications (not shown in Figure 1) indicates that 18 items 
are always classified identically across the six iterations. 
S2WantShout, S2DoCurse, S2DoScold, and  S3DoCurse 

Figure 1. First part of the output of the difMH command with the verbal aggression data set.
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flagged as DIF and 5 coming from the item purification 
shown in Table 5. They can also be found in the summary 
table as items with at least one asterisk, and they are listed 
at the end of the output.

The last part of the output (Figure 2) shows the effect 
sizes, beginning with the three size-interpretation cate-
gories. Next follows a table with three columns: the MH 
common odds ratio estimates (the “alphaMH” column), 
the effect sizes ∆MH (“deltaMH”), and the ETS Delta scale 
classification. The classification cutoff values are given at 
the bottom of Figure 2. Several items exhibit moderate 
or large DIF effects, but all items flagged as DIF (and 
listed in the end of Figure 1 and in Table 5) have a large 
DIF effect. This indicates that all items flagged as DIF on 
the basis of the significance test can be considered to be 
largely affected by DIF.

The results in Figure 1 can also be displayed graphi-
cally using the following R code:

res.MH<- difMH(Data=verbal, 

group="Gender", focal.name=1, 

purify=TRUE, nrIter=20) plot(res.MH)

The first part of the code simply saves the MH results into 
the so-called res.MH variable, which is then plotted follow-
ing the plot() command. The output is given in Figure 3. 

The rest of the output shows the MH chi-square statistic 
values obtained in the last step of the purification pro-
cess, when DIF items are discarded from the computation 
of sum scores. The corresponding p values are also dis-
played, and the significance levels are indicated with one 
or more asterisks. Nine items (out of 24) are eventually 
detected as functioning differently, 4 items being always 

Table 5 

Successive Classifications of Items From the  

Verbal Aggression Data Set During Item Purification

Step  S2WantCurse  S3WantScold  S1DoScold  S3DoScold  S4DoCurse  S4DoScold

0 NoDIF NoDIF NoDIF DIF NoDIF NoDIF
1 NoDIF NoDIF DIF NoDIF NoDIF NoDIF
2 DIF NoDIF DIF DIF DIF NoDIF
3 NoDIF NoDIF DIF DIF NoDIF DIF
4 NoDIF NoDIF DIF DIF DIF DIF
5 NoDIF DIF DIF DIF DIF DIF
6 NoDIF DIF DIF DIF DIF DIF

Note—Only items whose DIF or non-DIF status changes over the iterative steps are displayed.

Figure 2. Second part of the output of the difMH command 

with the verbal aggression data set.
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Figure 3. Mantel–Haenszel statistics and detection threshold 

with the verbal aggression data set.
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The use of the generic dichoDif command is also 
illustrated here. Five methods are being compared: MH, 
standardization, logistic regression, Lord’s test, and 
Raju’s method. The first two methods focus on uniform 
DIF. For the last two methods, the 1PL model is fitted. 
The significance level is .05, and the standardization 
threshold is fixed to .075 (as an average value between 
.05 and .10, the two thresholds suggested in the litera-
ture). Item purification is requested with a maximum of 
20 iterations. The R command for these options is given 
below:

Items are represented by integers referring to their rank 
in the output list of Figure 1 (1 for the S1wantCurse item, 
etc.). Items 6, 8, 14, 16, 17, 19, 20, 22, and 23 are detected 
as DIF items. Note that Item 22, labeled “S4DoCurse,” 
is borderline. Most of these items are of the “do” type, 
meaning that they refer to a self-report of actual verbal ag-
gression, rather than “wanting” to be verbally aggressive. 
The obtained positive effect size values mean that men are 
more inclined than women to actually curse and scold in 
response to frustrating situations, independent of their de-
gree of inclination to verbal aggression.

Figure 4. Output of the dichoDif command with the verbal aggression data set.
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sider merging options to improve the adequacy of the null 
distribution (Agresti, 1990). Because total scores are not 
used for the IRT approaches reported here, the problem 
does not occur for these methods.

Second, the impact of missing data on the practical 
working of the package has not yet been investigated. For 
parametric methods, the models can be estimated with 
missing data (assuming they are missing at random), with 
an impact on the reliability of the estimation results, so 
that the effect is taken into account. For nonparametric 
methods, persons with missing data can be omitted from 
the analysis, or, alternatively, an imputation strategy may 
be adopted. However, this would require further study, 
and, for the time being, the recommendation is to consider 
only full response patterns.
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