

RESEARCH REPORT

A Transformational Approach for Multimodal
Web User Interfaces based on UsiXML

Adrian Stanciulescu, Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte and
Francisco Montero

Université catholique de Louvain, School of Management (IAG)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

+32 10/47{8349, 8525, 8384, 8379} - {stanciulescu, limbourg, vanderdonckt, michotte, montero}@isys.ucl.ac.be

ABSTRACT

A transformational approach for developing multimodal web user

interfaces is presented that progressively moves from a task

model and a domain model to a final user interface. This approach

consists of three steps: deriving one or many abstract user inter-

faces from a task model and a domain model, deriving one or

many concrete user interfaces from each abstract one, and produc-

ing the code of the corresponding final user interfaces. To ensure

these steps, transformations are encoded as graph transformations

performed on the involved models expressed in their graph

equivalent. For each step, a graph grammar gathers relevant graph

transformations for accomplishing the sub-steps. The final user

interface is multimodal as it involves graphical (keyboard, mouse)

and vocal interaction. The approach outlined in the paper is illus-

trated throughout a running example for a graphical interface, a

vocal interface, and two multimodal interfaces with graphical and

vocal predominances, respectively.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –

Computer-aided software engineering (CASE), Evolutionary pro-

totyping, Structured Programming, User Interfaces. H.5.2 [In-

formation Interfaces and Presentation (e.g., HCI)]: User inter-

faces – Graphical user interfaces, Interaction styles, Input devices

and strategies, Prototyping, Voice I/O.

General Terms
Design, Human Factors, Standardization.

Keywords
Model-Driven Development, Multimodal interaction, Transforma-

tional approach, User Interface eXtensible Markup Language.

1. INTRODUCTION
While the W3C has made much progress in defining the W3C

Multimodal Interaction framework [11] identifying the functional

components of multimodal User Interfaces (UIs) and laying down

the groundwork for the coordination and communication between

these components at a browser implementation level, much more

needs to be done in order to introduce a method for systematically

developing multimodal UIs based on this framework [16] in a

flexible way. Various methods have been proposed [14]:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ICMI’05, October 4–6, 2005, Trento, Italy.

Copyright ©2005 ACM 1-58113-000-0/00/0004…$5.00

1. Type A: multimodal and multi-device authoring (e.g., co-

browser authoring) [4].

2. Type B: multimodal and multi-device authoring (e.g., X+V

[19] and SALT (http://www.saltforum.org)).

3. Type C: multimodal and multi-device authoring, where the in-

terface is developed at the level of the data model (e.g.,

XForms in XHTML). The respective presentations for each

modality or device are bound to the data model and manually

authored or automatically generated from the data model [20].

While graphical [19] and vocal user interfaces for the Web [2]

have been largely deployed according to those three types, Multi-

modal Web User Interfaces (MWUIs) remain less researched, in-

vestigated, and deployed [17]. Partly because they involve yet an-

other new markup language that forces developers to (re)deploy

applications according to this language. Also because the specifi-

cations and the design options involved in the development proc-

ess turn to be unidentified, especially when it has to cope with the

selection of what modality for which part of the interaction.

Therefore, motivations for a Type C method for MWUIs include:

the need for a systematic approach for developing such interfaces

in forward engineering, to maintain high level models that have

been used in non-multimodal Type C approaches constant and

consistent for the new possibilities [13], to explore different de-

sign scenarios based on use cases [16], to support user-centered

design by anchoring the approach in task and domain models, to

deploy a wide array of MWUIs with different modalities, differ-

ent properties [5] and design options, to accommodate the ap-

proach to various contexts of use. Based on the type C method,

we consider MWUIs which are defined with:

• Four modalities are involved: M1 = (keyboard, command lan-

guage), M2 = (mouse, direct manipulation), M3 = (micro-

phone, restricted vocabulary-oriented natural language) and

M4 = (loudspeakers, unrestricted natural language), where an

interaction modality is defined as a couple (device, interaction

language) [5]. The use of modalities could be either sequential

when the modalities are used one after another or parallel

when multiple modalities are used simultaneously (e.g., multi-

ple devices used simultaneously, multiple interaction lan-

guages used simultaneously). A MWUI could be either se-

quential or parallel.

• No fusion/fission is needed: since an independent interpreta-

tion/rendering process for each modality is performed, there is

no need to conduct a fusion of tokens in input to interpret the

multimodal interaction and a fission in output.

• The multimodality type is exclusive: sequential and indepen-

dent interaction channels are operated.

• Only Assignment and Equivalence are supported CARE prop-

erties [5]. Neither Complementarity nor Redundancy are re-

quired because no MWUI language can afford them.

The remainder of this paper is structured as follows: Section 2

summarizes related work that attempt to address the same motiva-

tions as explained above for MWUIs. Section 3 outlines the trans-

formational approach that is developed here and their underling

concepts structured in four layers. Section 4 details these three

steps and illustrate them throughout a running example. Section 5

concludes the paper by reporting on the benefits of the approach

with respect to existing state of art.

2. RELATED WORK
A multitude of multimodal interactive systems has already been

developed as off-line applications (e.g., [15, 17]) or on-line appli-

cations for the Web (e.g., [11, 20, 21]). Several separate require-

ments have been identified in these works: usage of models to

produce the multimodal interface (e.g., [2, 6, 18]), description of

these models with a specification language (e.g., CTL [1], UIML

[19], XISL [10]), explicit design options for multimodal dialog

(e.g., for help, CARE properties [5]), task-based design of multi-

modal applications [4]). We are not aware of any work that com-

bines all these requirements into one single systematic approach.

Vida Software’s Natural Interaction platform (http:// www.vida-

software.com) is dedicated to interfaces that consider different

isolated modalities restricted to the markup languages, such as

WML, HTML, XHTML, and VoiceXML, but does not integrate

them into one single interface. MONA (Mobile multimOdal Next

generation Applications) [17] involves a presentation server for a

wide range of mobile devices in wireless LAN and mobile phone

networks that transforms a single MWUI specification into a

graphical or multimodal UI and adapts it dynamically for diverse

devices (e.g., mobile phones and PDAs). However, they do not

have any systematic approach for developing such applications

based on models, particularly the user’s task and a specification

language.

EMMA (Extensible Multimodal Annotation markup language -

http://www.w3.org/TR/emma/) is intended for use by systems that

provide semantic interpretations for a variety of inputs, including

but not necessarily limited to, speech, natural language text, GUI

and ink input. This markup will be used primarily as a standard

data interchange format between the components of a multimodal

system; in particular, it will normally be automatically generated

by interpretation components to represent the semantics of users'

inputs, not directly authored by developers. As such, EMMA does

not represent a specification language such as UIML [19] or XISL

[10], and does not contain any transformational approach that ini-

tiates a progressive development from different models.

Teresa [2] separately generates either a graphical UI or a vocal UI

for multiple platforms.

Our transformational approach is different of existing approaches

in that all the design knowledge that is required to conduct the

transformations is explicitly given in transformation rules. The

execution of these rules is ensured by a transformation engine that

is separate from the transformation logic, as opposed to existing

systems where it is implicit. The originality of our approach is

given also by the way in which the designer may explore many

design alternatives and produce several UIs exhibiting various

modalities (up to 4 different) without restarting the process from

the beginning.

3. OUTLINE OF THE TRANSFORMA-

TIONAL APPROACH

3.1 Reference Framework for Multi-target

UIs
The foundation of the transformational approach for MWUIs that

is presented in this paper is that all the information pertaining to

the models describing the future MWUI is specified in the same

User Interface Description Language (UIDL) throughout the de-

velopment life cycle. This UIDL is UsiXML (User Interface eX-

tensible Markup Language – http://www.usixml.org) and consists

of a UIDL characterized by the following principles:

• Expressiveness of UI: any UI is expressed depending on the

context of use thanks to a suite of models that are analyzable,

editable, and manipulable by a software agent.

• Central storage of models: each model is stored in a model re-

pository where all UI models are expressed similarly.

• Transformational approach: each model stored in the model

repository may be subject to one or many transformations sup-

porting various development steps. Each transformation is it-

self specified thanks to UsiXML [13].

Contrarily to UIML [19] and XISL [10], UsiXML [13] enables

the specification of all models and the transformations between

them until a final MWUI is obtained. UsiXML is able to specify

various UIs with the four modalities of interaction defined in Sec-

tion 1. For this purpose, UsiXML is structured according to four

basic levels of abstractions defined by the Cameleon reference

framework [3] (Fig. 1).

Figure 1. The Cameleon reference framework for multi-target UIs.

At the top level is the Task & Concepts level that describes the

various interactive tasks to be carried out by the end user and the

domain objects that are manipulated by these tasks. These objects

are considered as instances of classes representing the concepts.

An Abstract UI (AUI) provides a UI definition that is independent

of any modality of interaction (e.g., graphical interaction, vocal

interaction, etc.). An Abstract UI is populated by Abstract Con-

tainers (AC), Abstract Individual Components (AIC) and abstract

relationships. AICs represent basic system interactive functions,

which are referred to as facets (input, output, navigation, control).

In this sense, AICs are an abstraction of widgets found in graphi-

cal toolkits (like windows, buttons) and in vocal toolkits (like vo-

cal input and output widgets in the vocal interface). Two AUI re-

lationships that can be defined between AICs:

1. Dialog transition: specifies a navigation transition within a ab-

stract container or across several abstract containers.

2. Spatio-temporal relationship: characterizes the physical con-

straints between AICs as they are presented in time and space.

As an AUI does not refer to any particular modality, we do not

know yet how this abstract description will be concretized:

graphical, vocal or multimodal. This is achieved in the next level.

The Concrete UI (CUI) concretizes an AUI for a given context of

use into Concrete Interaction Objects (CIOs) so as to define lay-

out and/or interface navigation of 2D graphical widgets and/or

vocal widgets. Any CUI is composed of CIOs, which realize an

abstraction of widgets sets found in popular graphical and vocal

toolkits (e.g., Java AWT/Swing, HTML 4.0, Flash DRK6, Voice-

XML, and VoxML). A CIO is defined as an entity that users can

perceive and/or manipulate (e.g., push button, text field, check

box, vocal output, vocal input, vocal menu). The CUI abstracts a

Final UI in a definition that is independent of programming tool-

kit peculiarities.

Because UsiXML considers both graphical and vocal modalities,

CIOs are further divided into two types: graphicalCIOs and vo-

calCIOs. Each of this type is further divided into Containers and

Individual Components. Graphical containers (GC) (e.g., win-

dow, table, dialog box) contain a collection of Graphical Individ-

ual Components (GIC) (e.g., button, text component, menu),

while Vocal Containers (VC) (e.g., vocalForm, vocalMenu, vo-

calConfirmation) are composed of a collection of Vocal Individ-

ual Components (VIC) (e.g., vocalFeedback, vocalPrompt, vo-

calMenuItem, vocalInput).

The Final UI (FUI) is the operational UI, i.e. any UI running on a

particular computing platform either by interpretation (e.g.

through a Web browser) or by execution (e.g., after the compila-

tion of code in an interactive development environment).

The Context of use describes all the entities that may influence

how the user’s task is carrying out with the future UI. It takes into

account three relevant aspects, each aspect having its own associ-

ated attributes contained in a separate model: user type (e.g., ex-

perience with device and/or system, task motivation), computing

platform type (e.g., desktop, PocketPC, PDA, GSM), and physical

environment type (e.g., lighting level, stress level, noise level).

These attributes initiate transformations that are applicable de-

pending on the current context of use. In order to map different

elements belonging to the models described above, UsiXML pro-

vides the designer with a set of pre-defined relationships called

mappings. These mappings are used throughout the steps of the

transformational approach [12, 14]:

• Manipulates: maps a task onto a domain concept.

• Updates: maps an interaction object and a domain model con-

cept (specifically, an attribute).

• Triggers: maps an interaction object and a domain model con-

cept (specifically an operation).

• Is Executed In: maps a task onto an AUI or CUI element.

• Is Reified By: maps an abstract object into a concrete one

through an abstraction transformation.

3.2 Specification of Transformations

To progressively move from the uppermost level, the “Task &

Concept” level, to the bottom level, the “Final UI”, a transforma-

tional approach suggests that each development step can be

achieved through applying a series of transformations. A trans-

formation applies transformation rules on initial models so as to

produce the resulting models. To specify such transformations,

UsiXML is equipped with an underlying graph structure thanks to

which all models and transformations between them can be de-

scribed to support model transformation. Therefore, a transforma-

tion system is composed by a series of transformation rules,

which are in turn expressed in rules between graph structures

(Fig. 2).

Figure 2. Development elements of the transformational approach.

Fig. 3 illustrates how a transformation system applies to any

UsiXML specification: let G be the initial UsiXML specification,

when 1) a Left Hand Side (LHS) matches into G and 2) a Nega-

tive Application Condition (NAC) does not match into G (several

NAC may be associated to a rule), 3) the LHS is replaced by a

Right Hand Side (RHS). G is consequently transformed into G’

(the resultant UsiXML specification). All elements of G that are

not covered by the match are left unchanged. Variables may be

associated to attributes within a LHS. An expression may com-

pare this variable with a constant or with another variable.

Figure 3. Characterization of transformation in UsiXML.

The transformation approach is sustained by TransformiXML

Enviroment that allows the definition and the application of

transformation rules. This environment is sub-divided into two

components: a Java Application Programming Interface (Trans-

formiXML API) that can be used by any application to apply

transformation rules and a Graphical User Interface that serves as

a front-end application to the API (TransformiXML GUI). Attrib-

uted Graph Grammars (AGG) API (http://tfs.cs.tu-berlin.de/agg/)

performs model-to-model transformations. The basic flow of tasks

with TransformiXML GUI (Fig. 4) is the following: after choos-

ing an input file containing models to transform, the user selects

a development path by choosing a starting point and a destination

point (e.g., the viewpoint to obtain at the end of the process). Here

the starting point is the task and domain model and the destination

is the AUI model. All the steps and sub-steps of the chosen path

can be visualized in a tree. By clicking on a sub-step in the tree, a

set of transformation systems realizing the chosen sub-step are

displayed. Each transformation systems contain a set of rules that

can be visualized in the Transformation rule explorer frame.

The user may also want to edit the rules either in an XML editor

(the one of GrafiXML, for instance) or in AGG environment. The

user may apply the transformation either step by step or as a

whole. The result of the transformation is then explicitly saved in

a UsiXML file.

Figure 4. TransformiXML GUI.

The four levels of the reference framework and the mechanism

supporting the forward engineering from the “Task & Concepts”

level to the “Final UI” level allows defining the four steps of the

transformational approach:

1. The task and domain models are specified first so as to initiate

the forward engineering.

2. In order to produce one or many AUIs that are independent of

any modality, TransformiXML applies model-to-model trans-

formations (here, task & domain to AUI) to realize this step.

3. From each AUI, different CUIs can be obtained similarly

thanks to model-to-model transformations (here AUI to CUI).

Each concrete UIs can specify 2D or 3D graphical UI or mul-

timodal UI. Each can be targeted to a particular platform.

4. From each CUI, a corresponding Final UI (FUI) can be pro-

duced by automated generation of code from the models. In

order to fulfill this task, the GrafiXML editor is used for

graphical UIs, and XSL transformations are used for the vocal

and multimodal UIs. One or many MWUIs are then obtained.

XHTML code can be generated for graphical UIs, VoiceXML

code can be generated for vocal interfaces and XHTML+

Voice (X+V) for multimodal UIs. X+V represents a unified

standard for multimodal interfaces so that applications can be

written once and used in different environments, including

Web pages, telephones and handheld devices.

Figure 5. General development scenario of UI.

4. THE FOUR STEPS OF THE TRANSFOR-

MATIONAL APPROACH
To exemplify the transformational approach, a running example is

selected basically for understanding purposes: an opinion polling

system aiming at collecting opinions of users regarding a certain

subject. The scenario of this example is based on the general de-

velopment scenario described above: from the domain and task

model, an AUI is produced from which many CUIs are derived

(2D graphical UI, vocal UI and multimodal UI). In the last step,

several FUIs are derived from the CUI.

4.1 Step 1: The Task and Domain Models
The task model, the domain model and the mappings between

them are graphically described using IdealXML [16], an Interface

Development Environment for AppLications specified in

UsiXML.

The upper part of Fig. 6 depicts a CTT (Concurred Task Tree)

representation [2] of the task model envisioned for the future sys-

tem. The root task consists of participating to an opinion poll. In

order to do this, the user has to provide the system with personal

data like name, zip code, gender, age category. After that, the

user iteratively answers some questions. Answering a question is

composed of a system task showing the title of the question and

of an interactive task consisting in selecting one answer among

several proposed ones. Once the questions are answered, the ques-

tionnaire is sent back to its initiator. The bottom part of Fig. 6 il-

lustrates the domain model of our UI as produced by a software

engineer. The domain model has the appearance of a class dia-

gram and can be described as follow: a participant participates to

a questionnaire, a questionnaire is made of several questions and a

question is attached to a series of answers. IdealXML generates

automatically the UsiXML specifications for the task and domain

model edited graphically with the help of the tool.

Figure 6. Mappings between the task model and the domain model.

The dashed arrows between the two models in Fig. 6 depict the

model mappings, such as manipulates relationships between the

task and the domain model. The sub-tasks of Insert Personal

Data task is mapped onto the correspondent attributes of Partici-

pation class (name, zipCode, gender and ageCategory). Show

Question is mapped onto the attribute title of class Question. The

task Select Answer is mapped onto the attribute title of the class

Answer. Finally, the task Send Questionnaire is mapped onto

the method sendQuestionnaire of the class Questionnaire. Fig. 7

illustrates the mapping model between the task model and the

domain model. Each of the tasks is mapped on the corresponding

attribute or method of the classes contained in the domain model.

IdealXML automatically generates the UsiXML specifications of

the mapping model.

4.2 Step 2: From Task and Domain Models to

AUI Model
The second transformation step involves a transformation system

that contains rules applied in order to realize the transition from

the task and domain model to the abstract model.

Rule 1. Create an AC for task with task children (Fig 8). The

LHS contains two nodes representing two tasks, task (2) being the

decomposition of task (1). The NAC specifies that the decom-

posed task (1) is executed into an AC, while the RHS recreates

the structure of LHS adding an AC in which the decomposed task

will be executed.

Figure 7. Mappings for the opinion polling system.

The application of this rule on the task model represented in the

form of a graph G is the following: when the LHS matches into G

and the NAC does not match into G, the LHS is replaced by the

RHS, resulting G’.

 NAC LHS RHS

Figure 8. Create an AC for task with task children.

Rule 2. Create an AIC for each leaf task (Fig 9). The LHS con-

tains a node representing the leaf task (1). The NAC specifies that

the task (1) is executed into an AC, while the RHS creates an AIC

in which the task (1) will be executed. Following the same

mechanism of rule application described for Rule 1, Fig. 9 de-

scribes a rule which creates an abstract individual component

(AIC) for each leaf task found in the task model.

Each AIC can be equipped with facets describing its main pur-

pose/functionality. These facets are derived from the combination

of task model, domain model and the mappings between them.

 NAC LHS RHS

Figure 9. Create an AIC for each leaf task.

Rule 3. Create input facet for AICs executed in creation tasks

(Fig.10). AICs that executes task for which the value of the at-

tribute userAction is create and the value of task item attribute

is element, are equipped with an input facets of type create at-

tribute value (create name, create zipCode).

 NAC LHS RHS

Figure 10. Create an input facet for AICs executed in creation tasks.

Depending on the values of attributes user action and task item,

each specific type of task executed into an AIC determines the de-

sign of a corresponding rule in order to provide AIC with facet of

type select (select Gender, select ageCategory, select Answer),

output (output Question) or control (send Questionnaire). The

main objective of UsiXML is to provide a machine processable

language and then a human readable specification. Thus, the AUI

of the virtual polling system is obtained by executing in Trans-

formiXML a set of transformation rules and can be graphically

depicted within the IdealXML (Fig.11). Rule 1 and Rule 2 are il-

lustrated in Fig. 4. Fig. 12 reproduces the UsiXML specification

for the AC Answer question which contains two AIC (Output

Question and Select Answer), each one having its own corre-

sponding facet (Output Question facet and Select Answer facet).

Figure 11. AUI of virtual polling system.

<abstractContainer id="idao2" name="Answer question">
<abstractIndividualComponent id="idao11" name="Output Question">

<output id="idao17" name="Output Question" actionType="abstract" actio-
nItem=”attribute value” />

</abstractIndividualComponent>
<abstractIndividualComponent id="idao12" name="Select Answer">

<input id="idao18" name="Select Answer" actionType=”select” actio-
nitem=”attribute”/>

</abstractIndividualComponent>
</abstractContainer>

Figure 12. UsiXML specification for an AC

Rule 4. Abstract dialog derivation from task model (Fig 13).
For each couple of sister tasks mapped onto AICs, a dialog con-

trol relationship will be established. The dialog control relation-

ship has the same semantic as the temporal relationship. Follow-

ing the same logic, for each combination of AC and AIC, a spe-

cific rule is defined.

 NAC LHS RHS

Figure 13. Abstract dialog derivation from task model.

4.3 Step 3: From AUI Model to CUI Model
The third step implies a transformational system that is composed

of necessary rules for realizing the transition from AUI to CUIs.

Four CUI are taken into account:

1. Total graphical UI i.e., the modality used to interact with the

system is entirely graphical (monomodal UI).

2. Predominant graphical UI i.e., the user fulfills her task with

more graphical interaction than the vocal one (multimodal UI).

3. Predominant vocal UI i.e., the vocal modality is present in a

higher proportion then the graphical one (multimodal UI).

4. Total vocal UI i.e., the modality used to interact with the sys-

tem is entirely vocal (monomodal UI).

For each type of CUI a transformation system containing specific

rules is provided. In the following it will be emphasized the

modularity and the extensibility of transformation rules applied in

order to obtain the desired CUIs. The selection of concrete inter-

action components involves a high number of rules due to the

numerous different combinations of facet types, data types, cardi-

nalities, etc.

Rule 5. Create radioButtons and vocalMenuItems for each se-

lection value of a facet (Fig. 14, 15 and 16). The graphical part

of the rule (depicted in red) illustrates respectively the NAC, LHS

and RHS of the rule applied in order to obtain a group of radio

buttons for the total graphical UI. These radio buttons will allow

users to select the gender, age category and their answers to the

questions. The NAC specifies that a selection value (5) is reified

into a GIC. The graphical part of LHS (Figure 15) describes an

AC (1), reified by a GC (2) and containing an AIC (3) named y.

The AIC is composed of a facet (4) of type select, which, at his

turn, is composed of a selection value (5) stored in variable x.

Moreover, the AIC is reified by a GC (6) of type horizontal box

that is contained into GC (2). The graphical part of RHS (Figure

16) recreates the structure of LHS and adds a GIC of type radio

button that reifies the associated selection value (5). The GIC is

contained by GC (6), has the default content of the associated se-

lection value and is added in a group of radio buttons named after

the AIC (3). Considering the initial UsiXML representation in the

form of a graph G, the application of the above described rule is

the following: when the LHS matches into G and the NAC does

not match into G, the LHS is replaced by the RHS, resulting a

transformed graph G’. If the designer wants to obtain a multimo-

dal interaction with the system, the rule described above can be

easily extended with new components. In the following, we will

show the modularity and the extensibility of transformation rules

by describing how vocal components (depicted here in blue) are

added to the already existing graphical components, thus creating

multimodal UIs. A new rule is obtained and used to provide a

group of graphical radio buttons and the associated vocal menu

items allowing users to have a graphical output feedback as a re-

sult of a vocal input.

Figure 14. NAC of multimodal individual component rule.

To the already existent graphical NAC (Fig. 14) a VIC that reifies

the selection value (5) is added. The LHS (Figure 15) is extended

with a VC (7) of type vocalMenu that contains a VIC (8) of type

vocalInput. In extension to the already existing structure de-

scribed in Figure 16, VIC of type vocalMenuItem that is the rei-

fication of the selection value (5) is added. The defaultContent of

the vocalMenuItem contains the reified selection value. The map-

pings between nodes and between edges belonging to the three

components of the rule (NAC, LHS, RHS) are specified by at-

tached numbers. The execution of this rule follows the same

mechanism described for previous ones.

Figure 15. LHS of multimodal individual component rule.

Figure 16. RHS of multimodal individual component rule.

In order to obtain a total vocal interaction a simple mechanism

that eliminates the graphical components of the above rule can be

employed. Only the vocal components and their relationship with

the abstract components described in Figures 14, 15 and 16

should be kept.

Fig. 17 shows the UsiXML textual expression of the transforma-

tion rule described above. The graphical components are empha-

sized with a red color while the vocal components are in blue. The

mappings between different components within the NAC, LHS

and RHS parts of a rule are realized by using the ruleSpecificId

attribute value of each component as a source or target of the

mapping relationship. The ruleMapping element realizes the

mappings between the LHS and RHS and between the LHS and

NAC.

<transformationRule id="C_MM_RB" name="Creation of multimodal radio buttons">
<nac>

<selectionValue ruleSpecificId="N1"/>
<graphicalIndividualComponent ruleSpecificId="N2"/>
<vocalIndividualComponent ruleSpecificId="N3"/>
<isReifiedBy ruleSpecificId="N4">

<source sourceId="N1"/>
<target targetId="N2"/>

</isReifiedBy>
...

</nac>
<lhs>

<abstractContainer ruleSpecificId="L1">
<abstractIndividualComponent ruleSpecificId="L2" name="y">

 <facet ruleSpecificId="L3" dataType="String" actionType="select">
<selectionValue ruleSpecificId="L4" name="x"/>

</facet>
</abstractIndividualComponent>

</abstractContainer>
<graphicalContainer ruleSpecificId="L5">

<graphicalContainer ruleSpecificId="L6" xsi_type="box" type="horizontal"/>
</graphicalContainer>
<vocalContainer ruleSpecificId="L7" xsi_type="vocalMenu">

<vocalIndividualComponent ruleSpecificId="L8" xsi_type="vocalInput" current-
Value="z"/>

</vocalContainer>
..

</lhs>
<rhs>

<abstractContainer ruleSpecificId="R1">
<abstractIndividualComponent ruleSpecificId="R2" name="y">

<facet ruleSpecificId="R3" dataType="String" actionType="select">
<selectionValue ruleSpecificId="R4" name="x"/>

</facet>
</abstractIndividualComponent>

</abstractContainer>
<graphicalContainer ruleSpecificId="R5">

<graphicalContainer ruleSpecificId="R6" xsi_type="box" type="horizontal">
<graphicalIndividualComponent ruleSpecificId="R7" xsi_type="radioButton" de-
faultContent="x" groupName="y"/>

</graphicalContainer>

Figure 20. Predominant

vocal UI.

</graphicalContainer>
<vocalContainer ruleSpecificId="R8" xsi_type="vocalMenu">

<vocalIndividualComponent ruleSpecificId="R9" xsi_type="vocalInput" current-
Value="z"/>
<vocalIndividualComponent ruleSpecificId="R10" xsi_type="vocalMenuItem" de-
faultContent="x"/>

</vocalContainer>
 ..

</rhs>
<ruleMapping sourceId="L1" targetId="R1"/>
..

</transformationRule>

Figure 17. Textual expression of transformation rules.

Rule 6. Create multimodal text component (Figs. 18 and 19).
The rule is applied in order to create concrete interaction compo-

nents of type text component that will allow users to input their

zip code using the vocal modality, while the system’s feedback to

the recognized speech will be graphical. The created structure is

used for the predominant vocal UI. The obtained graphical com-

ponents (Fig.19) are represented in red (a non-editable text com-

ponent representing a label, an editable text component represent-

ing a text field and the GC that contains them) while the vocal

components are represented in blue (a vocal prompt, a vocal input

and the VC of type vocalForm containing them). If the designer

wants to obtain a rule that will allow a monomodal interaction

(graphical or vocal), only the corresponding parts of the rule

should be chosen, the abstract level and the associated mappings

remaining unchanged.

Figure 18. NAC, LHS of rule creating a multimodal text component.

Figure 19. RHS of rule creating a multimodal text component.

The structure of the CUI appearance for the predominant vocal UI

of the Virtual Polling System is illustrated in Fig. 20. The pre-

dominance of UI is given by the interaction modality used to ful-

fill the tasks. Thus, the proportion of vocal modality is higher then

the graphical one. By vocal modality, we understand modality M3

described in the introduction of this paper, while M1 and M2 are

considered graphical modalities. In Provide Personal Data sec-

tion of Fig. 20, graphical modality is assigned only to the create

name task. For the rest of the tasks (create zipCode, create gen-

der and select age) only the vocal modality is assigned to be used

in input. As a result of the speech recognition of the vocal input, a

graphical feedback is provided in

the associated GIC. In the design of

the CUI, the use of vocal modality

is emphasized by a microphone,

offering a graphical guidance to the

user. In the Quesionnaire section

the vocal modality is represented by

the use of modality M4 in order to

provide a vocal output to the user

(the system is uttering the

question). The vocal guidance

offered to the user is emphasized

here by an icon symbolizing a

loudspeaker. In order to select the

answer the vocal modality is

assigned too. Afterwards, a vocal

confirmation is provided to the

user. The Send Questionnaire task

is fulfilled by using the graphical

modality M2.

4.4 Step 4: From CUI Model to FUI Model
The last step consists of transforming each variant of CUI into

their respective FUI. The total graphical UI is obtained by using

the XHTML generator of the GrafiXML editor. The resultant

XHTML code is further interpreted by any XHTML browser, ob-

taining the FUI in the Fig. 21. The two multimodal CUIs (predo-

minant graphic and predominant vocal UIs) and the total vocal UI

are submitted to a XSL Transformation in order to obtain the

X+V, respectively the VoiceXML code. The X+V code is further

interpreted with NetFront X+V browser, one of the IBM Web-

Sphere Multimodal Browser, while the VoiceXML code is inter-

preted with IBM VoiceXML browser. The resultant multimodal

FUI of the predominant graphical and predominant vocal UI are

shown in Figs. 22 and 23. Fig. 24 is a textual representation of to-

tal vocal UI (C = Computer and U = user). The total graphic UI

can be obtained not only for the web but also for other targets,

such as Visual Basic (Fig. 25).

Figure 21. Total graphical FUI. Figure 22. Predominant graphical FUI.

5. CONCLUSION
A transformational approach for developing MWUIs has been

presented. The approach relies on a reference framework that de-

composes the UI development life cycle into four levels. The

transformational approach consequently structures the develop-

ment into four steps, each step performing a transformation from

the previous level to the next level until a final UI is reached.

 Figure 23.Predominant vocal FUI. Figure 24. Total vocal FUI.

Figure 25.Visual Basic representation of total graphic FUI.

All elements, models, and transformations between these levels

have been continuously and uniformly specified thanks to a single

UIDL: UsiXML. Therefore, this transformational approach is su-

perior to existing approaches in that all the design knowledge that

is required to conduct the transformations is explicitly given in

transformation rules. The execution of these rules is ensured by a

transformation engine that is separate from the transformation

logic, as opposed to existing systems where it is implicit. In this

way, the designer may explore many design alternatives and pro-

duce several UIs exhibiting various modalities (up to 4 different)

without restarting the process from the beginning. In addition, all

the resulting UIs are consistent by construction since the trans-

formation engine started from the same task and domain models.

For this purpose, UsiXML [13] has been extended to support the

expression of these rules and modalities. For each modality, a se-

ries of design options exist that allow the designers to change

their design according to the context of use. As future work,

UsiXML will be extended so as to support the use of other mo-

dalities, such as tactile interaction.

6. REFERENCES
[1] Aït-Ameur, Y., Breholée, B., Girard, P., Guittet, L., Jambon, F.:

Formal Verification and Validation of Interactive Systems Specifica-

tions: From Informal Specifications to Formal Validation. In: R. Jac-

quart (ed.), Proc. of 18th IFIP World Computer Congress. Kluwer

Academics Publishers, Dordrecht (2004) 61–76.

[2] Berti, S., Paternò, F.: Model-based Design of Speech Interfaces. In:

Proc. of 10th Int. Conf. on Design, Specification, and Verification of

Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003). LNCS,

Vol. 2844. Springer Verlag, Berlin (2003) 231–244.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

and Vanderdonckt, J.: June 2003, A Unifying Reference Framework

for Multi-Target User Interfaces. Interacting with Computers 15(3)

289–308.

[4] Chen, M., Luo, J., Dong, S.: Task-Oriented Synergistic Multimodal-

ity. In: Proc. of 1st Int. Conf. on Multimodal Interface ICMI'96 (Bei-

jing, October 1996).

[5] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.:

Four Easy Pieces for Assessing the Usability of Multimodal Interac-

tion: the CARE properties. In: Proc. of 5th IFIP TC 13 Int. Conf. on

Human-Computer Interaction Interact’95, 115–120.

[6] Göbel, S., Buchholz, S., Ziegert, T., Schill, A.: Device Independent

Representation of Web-based Dialogs and Contents. In: Proc. of the

IEEE Youth Forum in Computer Science and Engineering YU-

FORIC’01 (Valencia, November 2001). IEEE Computer Press.

[7] Hastie, H., Johnston, M., Ehlen, P.: Context-sensitive Help for Mul-

timodal Dialogue. In: Proc. of the 6th ACM Int. Conf. on Multimodal

Interfaces ICMI’2004. ACM Press, New York (2004) 93–98.

[8] IBM Voice Toolkit for WebSphere Studio. Int. Business Machines

(10 September 2004) http://www-306.ibm.com/software/ perva-

sive/voice_toolkit/.

[9] IBM Multimodal Browser. Int. Business Machines (10 September

2004) http://www-306.ibm.com/software/pervasive/mul timodal/.

[10] Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T.: XISL: A Lan-

guage for Describing Multimodal Interaction Scenarios. In: Proc. of

5th Int. Conf. on Multimodal Interfaces ICMI’2003 (Vancouver, 5-7

November 2003). ACM Press, New York (2003) 281–284.

[11] Larson, J.A., Raman, T.V., Raggett, D.: Multimodal Interaction

Framework, W3C Note. W3 Consortium (6 May 2003), http://www.

w3.org/TR/mmi-framework.

[12] Limbourg, Q., Vanderdonckt, J., Addressing the Mapping Problem

in User Interface Design with UsiXML. In: Ph. Palanque, P. Slavik,

M. Winckler (eds.), Proc. of TAMODIA’2004 (Prague, November 15-

16, 2004). ACM Press, New York (2004) 155–163.

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-

Jaquero, V.: UsiXML: a Language Supporting Multi-Path Develop-

ment of User Interfaces. In: Proc. of EHCI-DSVIS'2004 (Hamburg,

11-13 July 2004). Kluwer Academics, Dordrecht (2005) 207-228.

[14] Limbourg, Q.: Multi-path Development of User Interfaces. Ph.D.

thesis. Université catholique de Louvain, Louvain-la-Neuve (2004).

[15] Maes, S.: Position Statement for Multimodal Workshop. In: Proc. of

W3C Workshop on Multimodal interaction MMI’2004 (Sophia An-

tipolis, 19-20 July 2004). W3C (2004) http://www.w3.org/2004/02/

mmi-workshop/maes-oracle.pdf.

[16] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P.,

Lozano, M.D., Solving the Mapping Problem in User Interface De-

sign by Seamless Integration in IdealXML, Proc. of DSV-IS’2005,

Springer-Verlag, Berlin, 2005, to appear.

[17] Mueller, W., Schaefer, R., Bleul, S.: Interactive Multimodal User In-

terfaces for Mobile Devices. In Proc. of 37th Hawaii Int. Conf. on

System Sciences HICSS’2004 (Big Island, 5-8 January 2004). IEEE

Computer Society Press, Los Alamitos (2004).

[18] Palanque, Ph., Schyn, A., A Model-Based Approach for Engineering

Multimodal Interactive. In: Proc. of 9th IFIP TC13 Int. Conf. on Hu-

man-Computer Interaction INTERACT'2003 (Zurich, 1-5 September

2003). IOS Press, Amsterdam (2003) 543–550.

[19] Simon, R., Jank, M., Wegscheider, F.: A Generic UIML Vocabulary

for Device- and Modality Independent User Interfaces. In: Proc. of

the 13th Int. World Wide Web Conference WWW’13 (New York, 17-

22 May 2004). ACM Press, New York (2004).

[20] X+V–Authoring, Deploying and Consuming Multimodal Services.

Versatile Multimodal Solutions (2004) http://www.sys-con.com/

xml/article.cfm?id=615.
[21] Ziegert, T., Lauff, M., Heuser, L.: Device Independent Web Applica-

tions - The Author Once - Display Everywhere Approach. Proc. of

4th Int. Conf. on Web Engineering ICWE’04 (Munich, 28-30 July

2004). Lecture Notes in Computer Science, Vol. 3140. Springer-

Verlag, Berlin (2004) 244–255.

