
tively.2 Let X ≡ σ{X
t
: 0 ≤ t ≤ T

_
} denote the information set generated by

the state variable vector over the model’s horizon. Recall that for Cox
processes, given X, the default event variables 1

(τA ≤ t)
and 1

(τB ≤ t)
are 

independent.
For subsequent usage, we need to recall some facts. The default prob-

ability for firm A over the time period [0, T] is given by:

(1)

The joint default probability for firm A and firm B is given by:

(2)

These observations are used below.

The problem

This section discusses the problem associated with estimating default cor-
relations using historical data. First, let us be precise. When we talk about
the correlation between the defaults of firms A and B we usually mean
the following: standing at time zero, fix a future time period T, say one
year ahead. This interval [0, T] is the time horizon over which we are in-
terested in measuring default correlations. Formally, we want the corre-
lation of the joint default events 1

(τA ≤ T)
and 1

(τB ≤ T)
over this horizon,

denoted Corr(1
(τA ≤ T)

, 1
(τB ≤ T)

).
Given historical data on firm defaults, it is well known that the sample

correlation coefficient provides a poor estimate. Consider why. To calcu-
late this sample correlation, we need to partition the past time horizon into
one-year intervals and observe the realisations of these indicator default
variables. From these realisations, the sample correlation coefficient is cal-
culated. But, for all non-defaulting firms, these realisations are uniformly
zero, and thus the sample default correlation is also zero. This correlation
statistic is not very informative. It is the fact that this is a zero/one event
that precludes the direct estimation using historical data.

Consequently, to obtain an estimate, one needs to: use a credit risk
model; estimate the parameters of such a model; and then use the model
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T
o price basket default swaps and collateralised default obligations
(CDOs), estimating firm default correlations is essential. Different de-
fault correlations can dramatically change the relevant valuations

(Lehman Brothers, 2004). Because default is a zero/one event, it is well
known that sample default correlations are uninformative. Consequently,
to estimate these default correlations, one must use a model. The most dis-
cussed approach for estimating these default correlations is to use a struc-
tural model1 in conjunction with a copula function (see Bluhm, Overbeck
& Wagner, 2003). The parameters of the copula function are often esti-
mated using stock price correlations instead of asset price correlations,
which are unobservable.

Unfortunately, this approach inherits the well-known problem associ-
ated with structural models in matching short maturity credit spreads, plus
the problems associated with assuming an arbitrary copula function to cap-
ture the correlation structure (see Yu, 2003). Alternatively, a reduced-form
model can be utilised. By assuming a particular hazard rate process, im-
plying that default follows a jump or point process, reduced-form models
better match short maturity credit spreads. The purpose of this article is to
discuss default correlation estimation for reduced-form models and to il-
lustrate how easy it is to obtain these estimates using standard hazard rate
estimation procedures. We illustrate this approach using the Jarrow & Chava
(2002) default model.

An outline of this article is as follows. The next section introduces the
notation necessary to discuss the issues. We then review the fundamental
problem associated with default correlation estimation using historical data.
The hazard rate estimation procedure is then discussed and the correla-
tion estimates presented. The final section concludes.

Notation

This section sets up the notation for a reduced-form credit risk model. We
are given a finite time horizon [0, T

_
] and a filtered probability space (Ω,

F, (F
t
)T

_

t = 0
, P) where F = F

T
_ and P is the statistical probability (as con-

trasted with the risk-neutral or martingale probability often used for valu-
ation). For the purposes of this article, we need only concern ourselves
with the statistical probability P.

Let us consider two risky firms A and B with default times τ
A

and τ
B
,

respectively. The default times are random variables on this filtered prob-
ability space. Let the relevant state variables in the economy be repre-
sented by the vector X

t
. This vector represents the micro (balance-sheet

data) and macroeconomic variables that determine the likelihood of firms
A and B defaulting. We assume that X

t
is measurable with respect to the

given filtration. The point processes associated with the event of default
are denoted by the indicator variables N

A
(t) = 1

(τA ≤ t) and N
B
(t) = 1

(τB ≤ t)
,

which become unity in the event of default. We assume that these point
processes follow a Cox process with intensities λ

A
(t) and λ

B
(t), respec-
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Estimating default correlations
using a reduced-form model
Robert Jarrow and Donald van Deventer show how to estimate default event correlations

using a reduced-form model with historical default data. Default event correlations between

two firms can be calculated from time-series observations of the firms’ default probabilities

using a simple formula. The firms’ default probabilities can be estimated with a standard

hazard rate model, and the procedure is illustrated using market default data. Default event

correlations are key inputs to the pricing of collateralised default correlations

1 In structured approaches default is modelled as an asset valuation process hitting a

predetermined barrier. Reduced-form models employ a hazard rate model for the

determination of the default event. For a review of these different approaches, see Jarrow

& Protter (2004)
2 See Lando (1998) for more details



and the estimates to obtain the implied default correlations. A frequently
used approach in this regard is the structural model for credit risk, in con-
junction with assuming a particular copula function. The parameters of the
copula function are obtained using stock price correlation data (see Bluhm,
Overbeck & Wagner, 2003). Unfortunately, this approach to default corre-
lation estimation inherits the well-known problem associated with the uni-
variate structural model not being able to match short maturity credit
spreads, plus problems associated with specifying an ad hoc copula func-
tion (see Yu, 2003). Alternatively, a reduced-form model can be utilised.
By assuming a particular hazard rate process, implying that default follows
a jump or point process, reduced-form models better match short maturi-
ty credit spreads. The following section discusses the correlation estima-
tion procedure using a reduced-form model.

Hazard rate estimation

This section briefly reviews hazard rate estimation (a standard reference
is Kiefer, 1988).We use time-series observations of a collection of firms’
market and balance sheet data, represented by the vector X

t
. Also ob-

served is the default status of each firm, and if it defaults, the date of
default.

The time series starts at some date t
0
, is observed monthly, and terminates

at some ending date T
0
. At termination, for each firm, it has either defaulted,

remains in the database or has left the database earlier due to a merger/ac-
quisition. For the last two possibilities (healthy or merged), we say that the
firm is censored at the ending or merger date. For firm A, we denote this cen-
soring time as T

A
. Next, we define the random time Y

A
= min{τ

A
, T

A
}, which

corresponds to the last date we observe the firm in the time period [t
0
, T

0
].

Define the discrete time conditioned (on the state variables) hazard rate
process as p

A
(t) = λ

A
(t)∆, where ∆ = 1/12, corresponding to a monthly ob-

servation period. We assume that p
A
(t) follows the logistic model:

(3)

where α is a constant, and β is a vector of constants, to be estimated.
Now, for each firm standing at time Y

A
, we are interested in the point

process N
A
(t) = 1

(τA ≤ t)
evaluated at time Y

A
, that is, N

A
(Y

A
) = {1 if Y

A
= τ

A
,

0 if Y
A

= T
A
}. For estimation, we will use a maximum-likelihood proce-

dure. To obtain the likelihood function L(·), note first that:

But:

Thus, the log-likelihood function can be rewritten as:
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Private firm model Public firm model

Intercept –6.4215 –9.4398

5,603.5273 1,362.0116

< 0.0001 < 0.0001

NITA –1.6408 –0.1680

297.0374 2.1674

< 0.0001 0.1410

TLTA 2.2816 2.5447

375.3822 457.6793

< 0.0001 < 0.0001

EXRET –1.6406

282.4544

< 0.0001

RSIZ –0.1667

55.5170

< 0.0001

Sigma 0.6803

155.9063

< 0.0001

Model fit ℵ2 899.53 2,282.22

< 0.0001 < 0.0001

Number of bankruptcies 1,090 1,066

Firm-year obs 147,698 146,102

Number of firms 17,460 17,460

Note: from Jarrow & Chava (2002). Parameter estimates are given in the

first row of each cell, followed by ℵ2 and P-values in the second and third

row respectively. The ℵ2 and P-values for the likelihood ratio test for the

model are reported in the model fit column. The hazard model is estimat-

ed for 1962–1999 data with yearly observation intervals

A. Hazard rate estimation using 1962–1999
data for the NYSE, Amex and Nasdaq
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(6)

and:

(7)

where:

Cov(·, ·) corresponds to the covariance and Std(·) corresponds to the stan-
dard deviation. The proof is in the appendix.

Expression (7) states that the correlation of two firms’ default events
over the time period [0, T] is equal to the correlation of the two firms’ con-
ditional default probabilities over the period [0, T], after an adjustment.
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Using the independence across firms, we get the joint log-likelihood
function as3:

Given this likelihood function, one can use a standard statistical package
such as SAS to do the maximum likelihood estimation.

Jarrow & Chava (2002) estimate the preceding model over the time pe-
riod 1962–1999 for all NYSE-Amex-Nasdaq listed companies. The state vari-
ables used in the estimation were net income to total assets (NITA), total
liabilities to total assets (TLTA), monthly return on the firm less the value-
weighted CRSP NYSE/Amex return (EXRET), logarithm of firm equity value
divided by the total NYSE and Amex market value (RSIZ), and the firm’s
equity volatility (SIGMA). The estimates for the parameters (α, β) are con-
tained in table A. Using the parameter estimates in table A, in conjunction
with expression (3), one can obtain time-series estimates of the default
probabilities for firm A.

To illustrate this, we select two financial firms, Citigroup and Fleet-
Boston Financial. The calculations were obtained using an extension of
the Jarrow & Chava (2002) model. Figure 1 (top) shows the one-month
and five-year default probabilities for Citigroup from 1990 to the present.4

One can clearly see the adverse effects of the recessions in 1990–1991,
1994–1995 and 1999-2003 on the default probabilities of Citigroup across
the maturity spectrum of defaults. The second financial institution consid-
ered is Boston-based FleetBoston Financial, which has recently announced
a merger with Bank of America. Not surprisingly, a similar graph for Fleet-
Boston Financial (middle of figure 1) shows the same cyclicality in the one-
month and five-year default probabilities.

The high correlation between Citigroup’s and FleetBoston’s default
probabilities can be made clearer by graphing the default probabilities (one
month horizon) of both institutions on the same graph (bottom of figure
1). This graph shows a high degree of correlation between the default
probabilities of the two companies, with the exception of a brief period
in 1999–2000 when FleetBoston suffered earlier from the impact of retail
and small business defaults during the 1999–2003 credit events.

The next section shows how to obtain the default event correlation from
these joint time series of default probabilities.

Default correlation estimation

This section shows how to estimate joint default probabilities and default
correlations in a reduced-form model. The estimates are based on ex-
pressions (1) and (2), in conjunction with a standard approximation to an
integral and the exponential function. It is important to emphasise that the
correlations obtained depend crucially on the assumed form of the hazard
rate process in expression (3). Different specifications will provide differ-
ent implied correlations.

Let p
A
(t), p

B
(t) correspond to the maximum likelihood estimates at time

t of the probability of default on firm A and B, respectively, using month-
ly observation intervals (∆ = 1/12). As noted before, the intensity process
for firm A can be estimated as:

(4)

This hazard rate intensity can be thought of as the annualised default prob-
ability of firm A. It can be shown that over any relevant time interval [0,

T]:

(5)

Then, we obtain for T small (say less than a year)5:
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1. Citigroup (top)/FleetBoston (middle)/
joint graph (bottom)

3 This uses the identity N
A
(Y

A
) = ΣYA

t = t0
[N

A
(t) – N

A
(t – 1)]

4 These charts were obtained via the courtesy of the Kamakura Corporation
5 The t* in expression (5) should really be indexed by the firm in question, that is, t*

A
. We

need this condition so that t*
A

is approximately equal to t*
B

for a distinct firm B

Default probability (DP) profile for Citigroup

Model DP (%) 1-day chg 1-mo chg 3-mo chg 6-mo chg 1-yr chg

JC 0.18 +0.01 +0.10 +0.09 0.00 –0.55

MS 0.79 +0.01 +0.05 +0.04 –0.04 –0.25

P-JM 0.74 0.00 +0.01 +0.01 –0.01 –0.07

Default probability (DP) profile for FleetBoston

Model DP (%) 1-day chg 1-mo chg 3-mo chg 6-mo chg 1-yr chg

JC 0.03 0.00 0.00 0.00 –0.22 –1.15

MS 0.50 0.00 0.00 –0.01 –0.16 –0.31

P-JM 0.69 0.00 0.00 0.00 –0.03 –0.09

Default probability (DP) profile for Citigroup/FleetBoston

Model DP (%) 1-day chg 1-mo chg 3-mo chg 6-mo chg 1-yr chg

JC 0.18 +0.01 +0.10 +0.09 0.00 –0.55

MS 0.79 +0.01 +0.05 +0.04 –0.04 –0.25

P-JM 0.74 0.00 +0.01 +0.01 –0.01 –0.07
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When T = 1, expression (7) gives us the correlation in the yearly default
events of firms A and B.

It is easy to calculate an estimate of this quantity, if we observe time-
series observations of the annualised conditional default probabilities λ

A
(t)

and λ
B
(t). To calculate the default correlation in expression (7), one needs

to calculate the correlation of these annualised conditional default prob-
abilities and the adjustment term (the right-hand side). These are com-
putable using the sample moments of the hazard rate estimates λ

A
(t) and

λ
B
(t). Moment estimators of these quantities make the implicit assump-

tion that the annualised conditional default probability’s means, variances
and correlations are time stationary.6 This is a reasonable assumption, al-
though any well-specified alternative non-time stationary structure can
also be estimated.

Using the hazard rate estimation discussed in the preceding section, we
compute the relevant quantities:
■■ Correlation of annualised default probabilities of Citigroup and Fleet-
Boston: 0.8239280.
■■ Standard deviation of annualised default probabilities, Citigroup:
0.00469470.
■■ Standard deviation of annualised default probabilities, FleetBoston:
0.00565789.
■■ Average of annualised default probabilities, Citigroup: 0.00310565.
■■ Average of annualised default probabilities, FleetBoston: 0.00439433.

Note that the correlation in the annualised default probabilities is very
close to the observed correlation of the credit spreads on bonds of the two
companies. From the 0.8239280 correlation in the annualised default prob-
abilities themselves, we can use expressions (7) and (8) to calculate the
correlation in the events of default, taking care to adjust for the fact that
we are using correlations, averages and standard deviations. The formula
for the adjustment term is:

yielding a correlation in default events of (0.8239280)(0.007217) = 0.005946.
We see that the adjustment to the default probabilities’ correlation is

substantial, lowering the number significantly. This makes sense, because
even given the correlation of the default probabilities due to common
macroeconomic conditions, the event of default occurs due to firm-spe-
cific – idiosyncratic – events. The likelihood that these firm-specific events
occur simultaneously (within the same year) is quite low.

In a similar manner, we can apply equations (7) and (8) to a broader
range of data to better understand its implications for practical application.

Θ =
( )

− ( ){ }
0 00469470 0 00565789

0 00310565 0 00310565 0 004394
2

. .

. . . 333 0 00439433
2− ( ){ }.
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Correlations in default probabilities Auto industry Airline industry Financial services industry

General Volks- British Delta Japan Sing. Bar- Citi- Deutsche JP

Ford Motors Toyota wagen AMR Airways Airlines Airlines Airlines clays group Bank Morgan

F GM 7203 VOW AMR BAY DAL 9205 S55 BARC C XPTH JPM

Avg. KDP 0.019 0.016 0.003 0.011 0.047 0.023 0.038 0.012 0.002 0.004 0.003 0.011 0.009

Avg. KDP

Industry Name Symbol KDP std. dev. 0.013 0.011 0.003 0.008 0.060 0.022 0.036 0.011 0.003 0.006 0.005 0.010 0.011

Auto Ford F 0.019 0.013 1.000 0.583 0.694 0.229 0.665 0.677 0.523 0.506 0.554 0.478 0.641 0.456 0.789

industry General Motors GM 0.016 0.011 0.583 1.000 0.547 0.626 0.547 0.488 0.414 0.375 0.568 0.434 0.446 0.476 0.443

Toyota 7203 0.003 0.003 0.694 0.547 1.000 0.388 0.805 0.802 0.707 0.690 0.792 0.647 0.816 0.649 0.711

Volkswagen VOW 0.011 0.008 0.229 0.626 0.388 1.000 0.436 0.380 0.392 0.685 0.749 0.547 0.277 0.521 0.019

Airline AMR AMR 0.047 0.060 0.665 0.547 0.805 0.436 1.000 0.860 0.791 0.752 0.721 0.823 0.890 0.767 0.769

industry British Airways BAY 0.023 0.022 0.677 0.488 0.802 0.380 0.860 1.000 0.699 0.706 0.782 0.674 0.812 0.681 0.787

Delta Airlines DAL 0.038 0.036 0.523 0.414 0.707 0.392 0.791 0.699 1.000 0.530 0.702 0.732 0.830 0.609 0.713

Japan Airlines 9205 0.012 0.011 0.506 0.375 0.690 0.685 0.752 0.706 0.530 1.000 0.726 0.671 0.614 0.709 0.467

Sing. Airlines S55 0.002 0.003 0.554 0.568 0.792 0.749 0.721 0.782 0.702 0.726 1.000 0.649 0.619 0.586 0.523

Financial Barclays BARC 0.004 0.006 0.478 0.434 0.647 0.547 0.823 0.674 0.732 0.671 0.649 1.000 0.810 0.807 0.551

services Citigroup C 0.003 0.005 0.641 0.446 0.816 0.277 0.890 0.812 0.830 0.614 0.619 0.810 1.000 0.750 0.811

Deutsche Bank XPTH 0.011 0.010 0.456 0.476 0.649 0.521 0.767 0.681 0.609 0.709 0.586 0.807 0.750 1.000 0.591

JP Morgan JPM 0.009 0.011 0.789 0.443 0.711 0.019 0.769 0.787 0.713 0.467 0.523 0.551 0.811 0.591 1.000

Correlations in events of default Auto industry Airline industry Financial services industry

General Volks- British Delta Japan Sing. Bar- Citi- Deutsche JP

Ford Motors Toyota wagen AMR Airways Airlines Airlines Airlines clays group Bank Morgan

Periodicity of the data in years: 1 F GM 7203 VOW AMR BAY DAL 9205 S55 BARC C XPTH JPM

Avg. KDP 0.019 0.016 0.003 0.011 0.047 0.023 0.038 0.012 0.002 0.004 0.003 0.011 0.009

Avg. KDP

Industry Name Symbol KDP std. dev. 0.013 0.011 0.003 0.008 0.060 0.022 0.036 0.011 0.003 0.006 0.005 0.010 0.011

Auto Ford F 0.019 0.013 1.000 0.005 0.004 0.002 0.018 0.010 0.010 0.005 0.003 0.004 0.005 0.004 0.009

industry General Motors GM 0.016 0.011 0.005 1.000 0.003 0.004 0.014 0.006 0.007 0.003 0.003 0.004 0.003 0.004 0.004

Toyota 7203 0.003 0.003 0.004 0.003 1.000 0.001 0.012 0.006 0.007 0.004 0.002 0.003 0.004 0.003 0.004

Volkswagen VOW 0.011 0.008 0.002 0.004 0.001 1.000 0.009 0.004 0.005 0.005 0.003 0.004 0.002 0.004 0.000

Airline AMR AMR 0.047 0.060 0.018 0.014 0.012 0.009 1.000 0.036 0.042 0.022 0.011 0.022 0.021 0.022 0.025

industry British Airways BAY 0.023 0.022 0.010 0.006 0.006 0.004 0.036 1.000 0.020 0.011 0.006 0.009 0.010 0.010 0.013

Delta Airlines DAL 0.038 0.036 0.010 0.007 0.007 0.005 0.042 0.020 1.000 0.010 0.007 0.013 0.013 0.011 0.015

Japan Airlines 9205 0.012 0.011 0.005 0.003 0.004 0.005 0.022 0.011 0.010 1.000 0.004 0.006 0.005 0.007 0.005

Sing. Airlines S55 0.002 0.003 0.003 0.003 0.002 0.003 0.011 0.006 0.007 0.004 1.000 0.003 0.003 0.003 0.003

Financial Barclays BARC 0.004 0.006 0.004 0.004 0.003 0.004 0.022 0.009 0.013 0.006 0.003 1.000 0.006 0.008 0.006

services Citigroup C 0.003 0.005 0.005 0.003 0.004 0.002 0.021 0.010 0.013 0.005 0.003 0.006 1.000 0.006 0.008

Deutsche Bank XPTH 0.011 0.010 0.004 0.004 0.003 0.004 0.022 0.010 0.011 0.007 0.003 0.008 0.006 1.000 0.007

JP Morgan JPM 0.009 0.011 0.009 0.004 0.004 0.000 0.025 0.013 0.015 0.005 0.003 0.006 0.008 0.007 1.000

B. Default event correlations

6 For example, if λ
A
(t) = a

A
+ b

A
log X

t
and d log X

t
= µdt + σdW

t
where dWt is a Brownian

motion, then E
t – 1

(λ
A
(t)) = a

A
+ bµ, Var

t – 1
(λ

A
(t)) = b2

A
σ2 and Corr(λ

A
(t), λ

B
(t)) = b

A
b

B
σ2

satisfy the time stationarity condition



Conclusion

This paper shows how to estimate default correlations using reduced-form
models. Given these estimates, it is an easy exercise to utilise the para-
meter estimates to value credit derivatives on baskets and CDOs. Standard
procedures apply in this regard. ■
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Table B shows the average annualised default probabilities and their stan-
dard deviations for 14 firms in three industries –automobiles, airlines and
financial services. The five-year monthly correlations in the annualised de-
fault probabilities for Ford, General Motors, Toyota and Volkswagen range
from 0.229 to 0.694. Within the airline industry, the five-year monthly cor-
relations in the annualised default probabilities are higher, with a range
from 0.530 to 0.860 for five major airlines – American Airlines (AMR), British
Airways, Delta, Japan Airlines and Singapore Airlines. The correlations in
the monthly annualised default probabilities are similarly high for four
major international services firms, ranging from 0.551 to 0.811. The firms
included in table B are Barclays, Citigroup, Deutsche Bank and JP Mor-
gan. This high correlation among the historical annualised default proba-
bilities is due to the dependence of the default probabilities on common
macroeconomic factors that have both a direct impact on the default prob-
abilities and an indirect impact on the other model inputs such as stock
prices and financial accounting ratios.

We can transform the correlations in the annualised default probabili-
ties to correlations in the events of yearly default in a manner similar to
the Citigroup/FleetBoston example. These results are also shown in table
B.7 As in the Citigroup/FleetBoston example, the correlation in the yearly
default events is much lower than the correlations in the annualised de-
fault probabilities themselves. One can see that theta equals approximately
0.01 if both firms have annualised default probabilities of 0.01 and stan-
dard deviations of the annualised default probabilities that are approxi-
mately equal in magnitude to the annualised default probabilities
themselves, a common occurrence. In the automobile industry, for exam-
ple, the pair-wise correlations in the events of yearly default are all below
1%. In the airline industry, some of the correlations in the yearly default
events range up to 4%. For the financial services industry, the correlations
in the events of yearly default are also less than 1%.

To readers used to viewing default correlations for copula usage, these
correlations may appear low. Note that there is no reason why the corre-
lations in the event of default derived in this manner should be of the same
magnitude as correlations used in copula calculations. This is because a
copula assumes a particular form for the joint distribution function of the
yearly default events, and this assumed distribution function may be dif-
ferent from that implied by the reduced-form model expression (2). For ex-
ample, if one assumes a normal distribution function for the copula, then:

where z
A

≡ Φ–1(Pr{τ
A

≤ 1}), z
B

≡ Φ–1(Pr{τ
B

≤ 1}), Φ(·) is the univariate
standard normal distribution function, ρ is the correlation of z

A
and z

B
,

and Φ(z
A
, z

B
, ρ) is the standard bivariate normal distribution function.8 If

the normal copula does not equal expression (2), the correlations will
not be equal.

Pr , ,τ τ ρA B A Bz z≤( ) ∩ ≤( ){ } = ( )1 1 Φ
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Cutting edge  l Credit risk

[t, t + T] is the horizon over which the default probabilities are calcu-

lated, for example, T = 1 corresponds to one year. The intensity

process is measured on a per year basis, so that λ
A
(t*) is approxi-

mately the probability of default over the next year. λ
A
(t*)T is approxi-

mately the probability of default over the next T units of a year (for

example, T = 1/2 implies a half a year).

� Covariances.

by iterated expectation

by conditional independence

by the facts above

Using the mean value theorem, there exists a t*
A

∈ [t, t + T] such that

∫ t + T
t

λ
A
(s)ds = λ

A
(t*

A
)T. Assuming that T is small, so that t*

A
≈ t*

B
≡ t*, we

have

Using a Taylor series approximation for small λ
A
(t*) and λ

B
(t*), up to

the first order in these default intensities, gives

Hence

� Variances.

Next, we calculate the variance of each process. Note that

by iterated expectation

Using the mean value theorem, there exists a t* ∈ [t, t + T] such that

Next, for small λ
A
(X

t*
), we do a Taylor series expansion up to the first

order in the default intensity

� Correlations.

Simplifying by eliminating redundant Ts gives

� Joint default probabilities

next, using the facts derived previously
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