Using Smarty templating for MVC

About

This document explains how to install and use SMARTY templates in the construction of PHP
web applications that use an MVC design pattern.

What is SMARTY
SMARTY is a PHP application that enables the separation of the View (the interface) from the
Controller (the PHP scripts that actually ‘run’ / are the application).

Downloading and installing SMARTY il
The SMARTY web site contains download distributions of ZIP files that helloworld.php

you can use for installation. These require some work creating — g?:gms
directories and placing files in the correct location - rather than do this {7 templates
you can download a customised distribution that will work on Wl templates_c

. testinstall.php
studentnet.kingston.ac.uk _
Figure 1

Unless doing something more complex, you should really only need to add two files

at a time - a template (.tpl) file into the templates directory (the View), and a corresponding
PHP file in the root of this directroy (the Controller). This file must have the same name as the
template file but have a .php extension.

For information

You don’t need to know this to use SMARTY, but the directory and files in standard
installation are used as follows - the cache and templates_c directories are used to store
temporary versions of the web pages as they are generated by SMARTY. The configs directory
contains settings for SMARTY, where more advanced users of SMARTY set how long the
cached versions are stored to increase the efficiency of their web site. Libs and plugins contain
the actual executable parts of SMARTY. The only directory to add content to is templates,
which stores .tpl files containing HTML and special SMARTY markup.

Task 1 Creating your SMARTY structure

Download lab11.zip from barryavery.com and extract the contents. You should end up with a
folder called lab11 with several directories and files inside (figure 1)

Use an SFTP client to copy the entire lab11 directory over to your WWW directory (it’s
important to keep exactly the same directory structure as in Figure 1).

SMARTY will create temporary

VeI‘Sl ons Of th e Web Slte ln th e Et];spelastgsef:"t.he new attributes For the directory ?tl:;ﬁastzlsefi'she new attributes for the directory
. _ OWner permissions Owner permissions
temp{ates_c ar.ld cache directory - to S i e —
do this you will have to change the — i
permissions of these folders so that s dbas e Mread Fwite [Mexeate
Write access is enabled. To do this in i Public pemissions
] -) . [VIread [write [V]Execute o e
Filezilla right mouse click on the G
. Numeric value: 777
temp Ia tes— c fOlder and Cho ose FI le zz;i;grfi‘lj:: ::v;.a ST Y:: ::ri ::eu :n x at any position to keep the permission the
i 1 1 [“]Recurse inta subdirectories original files have.
Permissions (your FTP client may have Becseit : Ens s TR
different way of doing this). Change
the Write permission to be enabled for

Figure 2

Group and Public by ticking the boxes (figure 2). Repeat this for the cache directory.

Task 2 Testing your SMARTY installation
A small smarty program has been included to test the install - T —
run the testinstall.php file in a browser using the URL jrrstior dy oy e NP

. . Testing compile directory...

http://studentnet.kingston.ac.uk/~kxxxxxxx/lab11/testinstallLph nome/xu12452/wwe/ Labi1/tenplates c is OK.
Testing plugins directory...

l) /home/kul2492/www/labll/libs/plugins is OK.
Testing cache directory...
/home/kul2492/www/labll/cache is OK.

; ; indi ; Testi figs directory...
It should produce a series of lines indicating that all the home 12492 e/ 1ab11/eontigs is OK.
SMARTY files and directories are in the right places and have S e

Testing plugin files...

the correct permission (figure 3). If you get alternative e
. . . Tests complete.
messages, check your locations and permissions.

Next try the supplied helloworld.php file which prints “Hello World!!” using the URL Figure 3
http://studentnet.kingston.ac.uk/~kxxxxxxx/lab11/helloworld.php

If the words don’t appear, recheck the locations and permissions again.

How SMARTY works

SMARTY uses the MVC design pattern. For each displayed XHTML view, SMARTY requires a
corresponding controller page. In this setup, controller pages (.php) files, are placed in the
root folder. The code for helloworld.php (the controller file in the root folder) has a
corresponding helloworld.tpl file in the templates folder.

In the MVC pattern (figure 4), the Model contains data structures (typically designed in a
class/object based style) that model real world objects used in the system - these could be
things like person, student, invoice, shopping cart. These would be files containing PHP and
SQL connectivity to database relations, but no

XHTML.
Using Smarty MVC in PHP

The View contains XHTML and a minimal
amount of PHP to get the values that are
required for the page to be displayed. These

can be thought of as XHTML templates that PHP Classes Minimal PHP

sal HTML tewmplates
can be reused. There would be no SQL or No HTML No SQL
database connectivity PHP here.
The Controller is the main file (or series of
files) that use Model or View files to do the
required work. These files contain PHP code 5
with no SQL or XHTML. it L

Figure 4

Code for the helloworld.php controller

<?php
//Place controller code here

// These lines initialise the smarty View object

// Don't change these unless the files are in different directories
require('libs/Smarty.class.php');

$smarty = new Smarty();

$smarty->setTemplateDir('templates');

10 | $smarty->setCompileDir('templates c');

11 | $smarty->setCacheDir('cache');

12 | $smarty->setConfigDir('configs');

13
14 | //These are the lines to change

15 | //Add one assign line for each named piece of data with the data
16 | $smarty->assign('hello', 'Hello World!!');

17
18 | //This line should be changed to match the template filename in /templates
19 | $smarty->display('helloworld.tpl');

20 | ?>

(NN WIN|—

{le]

The code for helloworld.php demonstrates a basic SMARTY Controller file. Lines 7 - 12 are
only changed when the default directories are in different locations. They create a Smarty
object (line 8), which is then populated with the directory locations and set up values for all
the SMARTY files using various set functions (line 9-12). Remember that for almost all cases
these lines don’t need to be changed.

Lines 16 and 19 are the important ones that are changed. For every value that we wish to use
in the HTML template, we create a unique name for it and give it a value using the assign
function - line 16 demonstrates creating a named value “hello” and gives it the value “Hello
World!!”. This line would be repeated many times with pairs of names and values (it is bad
design to perform calculations on a View page, so all this work must take place on this page).

Every piece of data that may vary in the XHTML template page must be named and given a
value here - note that names in the assign function do not require a $ in front.

Line 19 (which is always the penultimate line) indicates the name of the View file which is
then displayed - these are in the templates folder and it is good practice to use the same
names for Controller files as for View files (so the controller helloworld.php has a
corresponding helloworld.tpl view in the template folder).

Code for helloworld.tpl view

<html>

<head>
<title>Smarty</title>
</head>

<body>
<p>{$hello}</p>
</body>

NN WIN|E

Smarty views are simple text values containing XHTML, which have a .tpl file extension.
Values passed in from the controller file are inserted into the template by using a {$name}
syntax (line 6) by SMARTY. Note the use of the $ symbol here before the use of names given a
value in the controller file.

Task 3 Trying out the Controller and View files

Activity: Changing a piece of data in the Controller

Change line 16 in helloworld.php so that there is a different value printed - change the assign
statement so the value of hello is “Another hello” and try it out (remember to FTP the file and
to refresh the page).

Activity: Adding a new data value to the Controller and the View

Change line 3 in helloworld.tpl so that the text between the title tags is {$title}, then add a new
line (atline 17) to helloworld.php to assign the text “This is my smarty title” to this name (i.e.
$smarty->assign(‘title’, "...

Activity: Check to see if your page reflects this change in a browser window.

Constructing a larger example

The following pages explain the steps required to get a larger example working - one which
uses a database table, a PHP class and a form / response page to show results. As the example
builds up, it will show the various Model, View and Controller parts.

This example will present a form that requests an empno - the details for this employee will
then be retrieved from a database table and printed out on a response page.

Enter an empno: |53 Details for an Emp
Press to show details | find Employees name is MARCH and they are a ADMIN
MARCH earns 938

Response page showing details on

Form to find an employee using their empno the requested emp

empno ename job mgr hiredate sal comm deptno
405 MARCH ADMIN 938 13/06/1997 18000 NULL 2
The Model will consist of an Emp and 535 BYRNE SALES 734 15/08/1997 26000 300 3
EmpDB class that will handle 657 BELL SALES 734 26/03/2000 22500 500 3
processing the Emp database table, 602 BIRD MANAGER 875 31/10/1997 39750 NULL 2
Views will handle the form and 690 AHMAD SALES 734 05/12/1997 22500 1400 3
. 734 COX MANAGER 875 11/06/2002 38500 NULL 3

response page and the Controller will
818 POLLARD MANAGER 875 36660 34500 NULL 1
oversee the whole process. 824 REES ANALYST 602 05/03/2000 40000 NULL 2
875 PARKER PRESIDENT NULL 09/07/2002 60000 NULL 1
880 TURNER SALES 734 04/06/2001 25000 0 3
912 HAYES ADMIN 824 04/06/2001 21000 NULL 2
936 CASSY ADMIN 734 37460 19500 NULL 3
938 GIBSON ANALYST 602 05/12/1997 40000 NULL 2
970 BLACK ADMIN 818 21/1/1997 23000 NULL 1

Emp database table

Task 4 Creating the database tables used in this project

Download the second zip (lab 11 - more files.zip), which contains various files. Extract the
contents and look for the create EMP DEPT GRADE sql.txt file. This file contains various SQL
statements, which create EMP, DEPT and GRADE tables, and populate them with data. Open
the file in a text editor of your choice, copy ALL the SQL and then use phpMyAdmin to run the
SQL (paste the SQL lines into the SQL tab and press GO)

You should end up with three tables - the EMP table (above) and a DEPT and GRADE table

deptno dname loc grade losal hisal
1 ACCOUNTING LONDON 1 17000 21939
R

2 RESEARCH YORK 7, Ea P

3 SALES BIRMINGHAM
4 OPERATIONS LEEDS 3 24000 29999
4 30000 49999
5 50000 99999

Constructing a Model
A class is used to model the Employee information - open class.Emp.php in a text editor to
examine its contents (figure 5).

k?php
class Emp {
protected $empno;
protected $ename;
protected $job;
protected $mgr;
protected $hiredate;
protected $sal;
S protected $comm;
10 protected $deptno;

function __construct(Snew_empno="", Snew_ename="", Snew_job="", $new_mgr="", Snew_hiredate="", Snew_sal="", $new_comm="", $new_deptno=""){
$this->empno=Snew_empno;
$this->ename=$new_ename;
$this->job=$new_job;
$this->hiredate=$new_hiredate;
$this->sal=$new_sal;
$this->comm=Snew_comm;
19 $this->deptno=3$new_deptno;
20 3}
function get_empno(){
return S$this->empno;

}

function get_ename(){
return Sthis->ename;

}
function get_job(){

return Sthis->job;

}

In this example, there is a one-to-one correlation between the Emp class and Figure 5
the Emp database table (in other words every column in the EMP database

table has a corresponding attribute and get/set pair in the EMP class). Note that this is not
necessarily true in all designs (for example the class may have functions to generate
calculated fields that are not stored or the values in a class may come from more than one
table).

Task 5 Creating the model

We will need to create a folder for the models used in this example

Create a folder called model and place the class.Emp.php file in j zzf‘:f .
here. All the models used in this example will be placed in this ‘ henoaond_php

folder (it is good practice to place all the class files in a single - 'r:’:del

place). =

Controller and View files to demonstrate the use of the Emp class
has been included. Place empTest1.php in the root and place

empTestl.tpl in the templates folder.

Testing the Emp class

View empTest1.php file in a folder to see it working - it

|| templates
|| templates_c
testinstall.php

|| plugins '
"

Details for an Emp

creates a single Emp object, fills it with data and then uses a

template to display the employees name.

empTestl.php

Line 4 indicates that this file will use the
Emp class - line 5 creates an Emp Object
called $newEmp and uses the Emp
constructor to fill it with values.

Line 19 creates a new SMARTY name

(ename) and gives it a value using the
get_ename() method in the $SnewEmp

object

Line 22 indicates the name of the
template that will be used - here it is
empTestl.tpl

empTestl.tpl

Employees name is Homer

<?php

//Place controller code here
require ('model/class.Emp.php');
SnewEmp = new Emp(123, "Homer","Manager", 456,"02/02/98",34000,0,2);

// These lines initialise the smarty View object

// Don't change these unless the files are in different directories
require('libs/Smarty.class.php');

Ssmarty = new Smarty();

Ssmarty->setTemplateDir(' templates');
Ssmarty->setCompileDir('templates_c');
$smarty->setCacheDir(’cache');

Ssmarty->setConfigDir(‘configs');

//These are the lines to change
//Add one assign line for each named piece of data with the data
$smarty->assign(’ename’, SnewEmp->get_ename());

//This line should be changed to match the template filename in /templates

7>

<html>
<head>
<title>Display an Emp</title>

Line 7 is the only line that demonstrates SMARTY here -

the name created in empTest1.php using the assign .
statement (ename - line 19) is printed between two :

</head>
<body>
<h1l>Details for an Emp</hl>

paragraph tags (remember that names in the template ~~~~~~~~~

files must have a $ in front of them).

</body>
</html>

Task 6 Showing more Emp details

Edit empTestl.php (and empTest1.tpl) to show more of Homers details - his empno and job.

To do this add extra $smarty->assign... lines to empTest1.php creating two new names. Give
these values using the get_empno() and get_job() methods. Next - edit empTest1.tpl to show
these i.e. something like <p>($ename} is number {$empno} in his job which is {$job}<p>

A shortcut

Creating new (temporary) names in the controller for each piece of data (attributes in the
object) can be cumbersome - an alternative approach is indicated in empTest2.php and
empTest2.tpl

Rather than pass individual pieces of data 17 | //These are the lines to change

. 18 | //Add one assign line for each named piece of data with the data
into the template, SMARTY allows the whole 19 |Ssmarty->assign(’passedEmp’ , $newEmp);

object to be passed through (line 19 - the

whole $newEmp object is passed in as the named passedEmp object)

The template can then use the F:tm:

£ | <head>
methods inside the object to 3 | <titlesDisplay an Emp</titles

. 4 14 </head>
get at the values (line 7 and -
i 6 | <hl>Details for an Emp</hl-

8) Note how the ObJECt 7 | <p>Employees name is {SpassedEmp->get_ename()} and they are a {$passedEmp->get_job(D}</p>
$newEmp is called § | <p>{$passedEmp->get_ename()} earns {SpassedEmp->get_sal()}</p>

9 13| </body>

$passedEMP in the template. 1 nets
You can use the same name if
you wish.

Task 7 Passing the object into the View

Try running these files and then alter your versions so they work the same way (you will
delete lines from your version of empTest1.php and change it so that the object is passed
through - then add method calls to empTest1.tpl).

Connecting the emp object to the emp table
There are alternative approaches to wiring a class to a database - in this instance a new class
class.EmpDB.php will be used, which inherits methods and attributes from class.Emp.php.

1 ‘<?php

: |

3 | include_once "model/class.Emp.php";

4 ‘

5 (2 class EmpDB extends Emp {

 ¢]

7 function __construct(Sempno){

8 //Create connection to database server

9 $link = mysql_connect('localhost:8889', ‘root', 'root')

10 or die('Could not connect: ' . mysql_error());

11 //Select the employee database

12 mysql_select_db('employee’) or die('Could not select database');

13

14 // Construct and Perform the SQL query

15 Squery = 'select * from emp where empno='.Sempno;

16 $result = mysql_query(Squery) or die('Query failed: ' . mysql_error());
LT

18 mysql_close(S1link);

19
20 //Convert the result to an associative array
21 $result=mysql_fetch_array($result);
2 //Either we have only one result which matches the empno, or nothing
23 6 if (Sresult['empno’]){
24 //Fill up Emp with the values by using the emp parent constructor
25 parent::__construct(Sresult['empno'], Sresult['ename'], $result['job'],$result['email’],
26 Sresult['job'], Sresult['mgr'], $result['hiredate'],Sresult['sal'],
27 Sresult['comm’],Sresult['deptno']);
o4 b 0 A
29 else
30 & {
31 //We didnt get any so fill up with nothing
32 parent::__construct();

33

34 ¢)
3503 }

3605 }
37 |7

Line 3 and 4 indicate that this will use the Emp class. When an object of this class is created,
an empno is passed into the constructor function (line 7 - $empno). Lines 8-20 look like the
standard mysql connectivity routines - the SQL statement uses $empno to get a single row
back ($empno is appended onto the end of the SQL on line 15). To get this working on
studentnet, line 9 must be edited to include your specific database server, username and
password, with line 12 being changed to your databasename.

$result is an associative array containing either the one row (record) that matches the empno,
or an empty null result. Line 23 tests to see if $result[*empno’] is true (i.e. there is a returned
result) - if so the parent constructor (i.e. the Emp constructor) is used to populate the object
with data (lines 25-27). If no row has been returned then the object is created empty (line 32).

empTest3.php uses this class to
get the details for the employee
with empno 405.

Line 4 indicates the class we will
be using (note the use of
class.EmpDB.php rather than
class.Emp.php). Line 5 creates an
EmpDB object using the details
retrieved from the emp table, for
employee number 405.

The rest of the code is the same
(including the View file).

<?php

//Place controller code here
require ('model/class.EmpDB.php');
SnewEmp = new EmpDB(405);

// These lines initialise the smarty View object

// Don't change these unless the files are in different directories
require(’'libs/Smarty.class.php');

Ssmarty = new Smarty();

Ssmarty->setTemplateDir('templates');
$smarty->setCompileDir('templates_c');
Ssmarty->setCacheDir(‘cache’);

Ssmarty->setConfigDir(’configs‘);

//These are the lines to change
//Add one assign line for each named piece of data with the data

7>

Task 8 Using the EmpDB class

To get this working, you need to place three files in different locations:

* class.EmpDB.php must be placed in the model folder
* empTest3.php must be placed in the root
* empTest3.tpl must be placed in the template folder.

Assuming that you have successfully constructed the EMP, DEPT and GRADE tables (on page
4) - you now need to edit lines 9 and 12 of class.EmpDB.php with your mysql server name,
username, password and database name.

You should now be able to bring up empTest3.php in a browser window to see person 405s

details.

Now edit line 5 to retrieve details on a different person - try 734 or 818 in the constructor

function.

Creating the form controller 9 <2pho

2 |//Place controller code here

As we are using SMARTY, we will -
need two files to use a form to get
an employer number from the

// These lines initialise the smarty View object
/7 Don't change these unless the files are in different directories

WA W

. 7 require('libs/Smarty.class.php');
user - a controller findanemp.php § |ssmarty = new Smarty();
. 3 9 Ssmarty->setTemplateDir(' templates');
and a v1ewﬁndanemp. tpl 10 | Ssmarty->setCompileDir(‘templates_c');
11 Ssmarty->setCacheDir('cache’);
The controller file has very little ks
i 1 it —1 14 | //These are the lines to change
IEX(tiI:a funCtll?lFlahllty 1n lth]L;fitban 15 //Add one assign line for each named piece of data with the data
Indicator which view shou e 16
. 17 |//This line should be changed to match the template filename in /templates
used (llne 18) 18 | Ssmarty->display('findanemp.tpl');
19 7>
29
Task 9 Create the findanemp.php controller

Copy one of your controller files and name it findanemp.php. Edit the contents so that it
matches the controller code above (you will probably need to remove a few lines and then
edit line 18). This file needs to be placed in the root folder.

Creating the findanemp.tpl view g
The view for the form has little/no s R

. . . 5 (2| <body>
Smarty - all lt Contalns 1Sa form and 5] <form name="findanemp" action="responseEmp.php" method="POST">

input text entry to get the employee Z08| P>Enter an eipno

8 |<p>Press to show details <input type="submit" name="find" value="find" /></p>

number. i
11 | </html>
Task 10 Create the findanemp.tpl view

Create the findanemp.tpl view using the markup above. This file will need to be placed in the
templates folder.

Load findanemp.php in a browser window to ensure that it is Enter an empno: |
working (remember that you will need to FTP both the '
controller and the view files). Press to show details | find

Creating the response controller — responseEmp.php
The response file needs to find the empno entered in the form, get the details from the emp
table that match this employee, and then pass these details (in the form of an object) to the

appropriate view.

Line 4 uses the _POST array
to get the employee number -
line 6 uses this value to create
anew EmpDB object
containing the details of this
person.

This object is then passed into
the responseEmp.tpl view
(line 20 and line 23).

DN WN

. b et e b
BN =S W~

[

b
o N o

[

| Ssmarty = new
| $smarty->setTemplateDir(’ templates');
| $smarty->setCompileDir('templates_c');

<?php

| //Place controller code here

| SempNo=$_POST["empNo"];

require ('model/class.EmpDB.php');

| SnewEmp = new EmpDB(SempNo);

| /7 These lines initialise the smarty View object
| /7 Don't change these unless the files are in different directories

require('libs/Smarty.class.php');
Smarty();

$smarty->setCacheDir('cache');
$smarty->setConfigDir('configs’);

| //These are the lines to change

//Add one assign line for each named piece of data with the data

7>

Task 11

Create the responseEmp.php controller

Copy empTest3.php to a new file called responseEmp.php and alter it look like the code
above. This will need to be in the root folder.

Creating the response view — responseEmp.tpl

The response view is

. . 1 html>

almost identical to : |:h§:d>
. 3 | <title-Display an Emp</title>

versions that were 40 </heads

<body>
<hl>Details for an Emp</hl>

previously created - the
passedEmp object has get
methods which are used N o
to print out the various ad
issues in the correct

places in the template.

Task 12 Create the responseEmp.tpl view

Copy one of your existing views to a new file called responseEmp.tpl and alter it look like the
code above (only minimal changes will probably be required) - this will need to be in the
templates folder.

Try out the form with various user details and see if they are correctly retrieved and
displayed

A complete version of all the files used in this project are available from the web site (lab11
final.zip). Remember that to get this working you will still need to edit the database settings in
the class.EmpDB.php file.

Summary

[t can be difficult to see the justification for using the MVC design pattern - the common
criticism is that it requires a lot of extra code and files. This may be true for very small
projects, but once a project becomes larger to any extent, it becomes much quicker to create
pages because of the reusability and maintainability offered by the clear subdivision of the
parts.

Further Activities

Any employees that earn 40000 or more are to be classified as “executive” - otherwise they
are known as “employees”.

This is an example of a calculated field (and should not be stored in the database table) - all
the work should be done in the Emp Class.

Change the Emp class so that it includes a method (function) called get_classification that
returns the string “executive” or “employee” depending on their salary (use an if statement).
Then change the rest of the code so that the classification is displayed in the template.

You should find that this change is easy to implement (a small change to the emp class and the
response template).

10

