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that is, the matrix (RL, j)+ can be obtained from the matrix RL, 
simply by exchanging its ith column with its mth one, then the 

forgetting algorithm can be summarized as follows: 

For j = 1, . . .  , n 

obtain (It;,,)’ from RL,J 

obtain P,  and q, from (R;,,)’ 

obtain d, 

compute ( R > - ~ , , ) +  

compute the unknown vectors Wm-l,J 

expand Wm-’, , with zero elements until FVZ-’, , is obtained. 

- T  

- T  

IV. SIMULATION RESULTS 

Simulations consist of three phases. In the first phase, a 3-pattern 

(6 x6)-DTCNN ( r  = 1) has been synthesized. In the learning phase, 

an additional pattern has been stored, whereas in the forgetting phase 

one of the three original patterns has been deleted. In Fig. l(a) and 

(b), bipolar images corresponding to the first two phases have been 

reported. In these figures, noisy images are reported on the left, 

whereas the desired outputs on the right coincide with the pattems 

stored in the cellular associative memory. In Fig. l(c), a forgotten 

pattern (the second one) is inserted among the proposed inputs. It 

can be noted that the corresponding output is not an asymptotically 

stable equilibrium point. 

V. CONCLUSION 

In this letter, a new synthesis procedure for associative memories 

using DTCNN with learning and forgetting capabilities has been 

presented. These capabilities are provided preserving the cellular 

architecture and without affecting the existing equilibria. 
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Semi-Implicit Differential-Algebraic 

Equations Constitute a Normal Form 

Gunther ReiBig 

399 

Abstract- Continuously differentiable functions, the total derivative, 
or a partial derivative of which is of constant rank, play a part in many 
engineering problems. One usually exploits this property of constancy of 
rank by applying the Rank Theorem. However, in case only a partial 
derivative is of constant rank, which is the natural situation for fundons 
involved in Differential-Algebraic Eqnations (DAE’s), this theorem does 
not apply immediately. In this letter, we generalize known results to the 
latter case. More precisely, we give a parameterized version of the Rank 
Theorem and results on functional dependence and present a normal form 
for a class of nonlinear equations. Although these results are general in 
nature, the fundamental conclusion with respect to DAE’s is that here 
the normal form exactly corresponds to semi-implicit DAE’s. We also 
generalize results from the solution theory of DAE’s in case differential 
geometric techniques fail to apply. Such DAE’s occur, for example, in 
the analysis of certain circuits. 

I. INTRODUCTION 

Consider the equation‘ 

where U C R” is open, f: U 4 R” E C’, and assume that 

r a n k D f ( z )  = const. as long as z E U. Assume further that 

f(z0) = 0 for some IO E U and let Q:Rm --$ R” be a 

projector onto some algebraic complement of im Df(z0). Then, by 

virtue of the Rank Theorem [l], Q o f is functionally dependent on 

(idlRm - Q )  o f on some neighborhood of IO [2, Problem 4.4.c]. 

From that, it immediately follows that for I in some neighborhood 

of 20, (1) has exactly the same solutions as 

In particular, if f(x) = (fl(z), ..., f m ( 2 ) )  and r a n k D f ( z 0 )  = r ,  

this means that ( I )  has exactly the same solutions as 

in some neighborhood of IO, where K :  (1, ... , m} --$ (1, ... , m} 

is a suitable bijection. 

We now ask for generalizations of these results to parameter 

dependent equations, i.e., equations of form 

(3) 

where P Rk and U R” are open, (PO, X O )  E P x U, 
f : P  x U --$ IR” E C‘, and rankDpf(p ,  x )  = const. as long 

as (p, z) E P x U. 
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Clearly, for any p E P,  the Rank Theorem applies to f(p, .) and 

one obtains 

'1 f(p, '1 '$(pi '1 = Dzf(p0, zO)ldomS"(p, .) (4) 

where, for each p ,  the mappings @ ( p ,  .), and * ( p ,  .) are diffeo- 

morphisms defined on suitable neighborhoods of f(p, 20) and 0, 

respectively [3]. 

There are two difficulties with this approach. 

1) It is not at all clear whether @ and 9 can be chosen in such a 
way that they are defined on neighborhoods of (PO, f(po, 20)) 

and (PO, 0), respectively. 

2) If @ and 9 are defined on open sets, the Rank Theorem does not 
provide any information on continuity or differentiability prop- 

erties of these mappings with respect to their first argument, 

i.e., with respect to the parameter. 

In this note, we give a Corollary to the Rank Theorem in [ 13, which 

states that the mappings @ and * in (4) can be chosen to be defined 

on open sets and also provides information, on differentiability of 

these functions with respect to their first argument. 

We then consider, in complete analogy to the parameter inde- 

pendent case, the relation between constancy of rank of a partial 

derivative and functional dependence and give a normal form for the 

nonlinear equation (3). 

In many problems, such as the analysis of electrical circuits 

[4]-[6] and mechanical systems [ 5 ] ,  [6], modeling of chemical 

reactions [ 5 ] ,  and numerical solution of partial differential equations 

by discretization [5], one has to deal with equations of form 

0 = f(z, i). ( 5 )  

These are usually referred to as Differential-Algebraic Equations 

(DAE's), if f : V  + R" E C1, V R" x IR" is open, and 

r a n k D z f ( z ,  y) = const. as long as (2, y) E V [6]. DAE's arising 

in one of the fields mentioned above are of a special form each. 

However, in order to establish a uniform theory that covers all of 

the above applications, it is important to treat the general case (5). 
This can be considerably simplified by using the normal form of 

(3), which, in case of DAE's, turns out to exactly correspond to 

semi-implicit DAE's. Further, we generalize known results from the 

solution theory of DAE's by applying the latter fact. 

11. A COROLLARY TO THE RANK THEOREM 

We first give the classical result [ l ,  10.3.1.].* 

11.1. Theorem (Rank Theorem): Let U IR" be open, xo E U, 
f: U -+ IR" E C" (s E N U (03, U}), and r a n k D f ( z )  = const. 

for z E U. 
R", V C R", 

and V' R" of 0, zo ,  f(zo), and 0, respectively, and CY- 

diffeomorphisms '$: W -+ W' and @: V + V', that 

Then there are neighborhoods W C R", W' 

@ 0 f 0 9 = Df(z0)lw. 

U 

Rk and U R" be open, (PO, 20) E 
P x U ,  f : P  x U + R" E C" (s E N U  { c q w } ) ,  and 

rankDzf(p ,  z) = const. for (p, z) E P x U .  

We now give a parameterized version of the Rank Theowm. 

11.2. Corollary: Let P 

*N denotes the set of natural numbers 1, 2, . . ., the set of s times 
continuously differentiable functions from E into F is denoted by C " ( E ,  F ) ,  
for s E N U 00, and the set of analytic functions from E into F is denoted 
by C". We will omit naming E and F explicitly unless these abbreviations 
lead to misunderstandings. 

Then there are neighborhoods P c R', W c R" and V R" 
of p o ,  0, and_f(po, XO), respectively, and C"-mappings '$: PX W + 

R" and @: P x V + R"' that for any p E P the following hold 

i) @(P, .) 0 f(p, .) 0 '$@, .) = Dzf(p0,zo)lw. 
ii) @ ( p ,  .): V -+ @ ( p ,  V) and @ ( p ,  .): W + @(p,  W) are C"- 

Further, the mappings @ and !P have the following proper- 

iii) @(PO, f ( p 0 ,  20)) = 0, Di@(po ,  f(po, 2 0 ) )  = 

iv) "(PO, 0) = 20, DI*(PO, 0) = 0, and Dz'P(p0, 0) = 
idlRn. 0 

Proof: The crucial trick of this proof is to consider the following 

diffeomorphisms. 

ties: 

-Dlf(po,  zo) ,  and Dz@(Po ,  f(p0, 2 0 ) )  = idlRm. 

mapping: 

F :  P x U -+ R' x IR": ( p ,  z) H ( p ,  f(p, z)). 

Obviously, F is C" if f is, and, for h E R', I E R", 
we have D F ( p ,  z ) ( h ,  1 )  = ( h ,  D f ( p ,  z ) (h ,  I ) ) ,  and therefore, 

ker D F ( p ,  z) = ( 0 )  x ker D z f ( p ,  z). Hence, DF(p ,  z) is of 

constant rank for (p, z) E P x U, since D z f ( p ,  z) is. Further 

considerations, conclusions from Rank Theorem and Implicit 

Function Theorem (a) in the main, yield the assertions [7]. 0 

111. APPLICATIONS 

A. Functional Dependence and a Normal Form 

for a Class of Nonlinear Equations 

In this section, we will investigate functional dependence between 

parts of those functions that Corollary 11.2. applies to. A basic result 

is the following: 

Il1.1. Corollary (Functional Dependence): Let P, U, (PO, XO), 
and f as in Corollary 11.2. Let further Fz be some algebraic 

complement of im D z f ( p 0 ,  zo) ,  T:R" + E" be the projector 

onto FZ along im D z f ( p 0 ,  zo), and Q: R-" -+ IR" be a projector 

onto Fz. Then there are neighborhoods P E", and 

V C ker Q of P O ,  zo, v d  (idlRm - Q ) f ( p o ,  ZO), respectively, and 

some C"-mapping H: P x V -+ FZ that the following hold: 

i) v(p, .) E p x o  Q 0 f(p, z) = H ( P ,  ( i d k m  - Q )  0 f(p, z)). 
ii) D l H ( p o ,  (id(Rm - Q ) o f ( p o ,  zo)) = idlFzOnoDlf(po, 20). 

iii) DzH(po,  ( i d h m  - Q) 0 f ( p o ,  20) )  = -idlFZ 0 Klker Q. 0 

IRk, U 

Proof: By Corollary II.2., we have 

@(P, .) 0 f(p, .) 0 '$bl .)(.) = Dzf(p0, zo)z 

as long as ( p ,  z) in some neighborhood pf (PO, 0). Conclude from 

the IFT [2] that there is some mapping that 

@(P> .) 0 f(P, .)(.) = Dzf(P0, zo)%% 

for ( p ,  z) in some neighborhood of ( P O ,  zo) [7]. We then have 

= 0 @(P, f(p, .)) = 0 

as long as ( p ,  z) in some neighborhood of ( P O ,  z o ) .  Applying the 

IFT to the mapping g: (p, 2 1 ,  z ~ )  H idlFz o T o @ ( p ,  11 + ZZ), for 

0 

We are now interested in the set of solutions of (3), for f as in 

Corollaries 11.2. and 111.1. 

In case f is independent of p, which is the classical situation 

where the Rank Theorem can be applied, a certain part of (3) can be 

completely neglected, namely, (1) is equivalent to (2), see Section I. 

For the parameter dependent case, the analogous result is as follows: 

(p, z1, 2 2 )  in a suitable open set, completes the proof [7]. 
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111.2. Corollary (Normal Form): Let f be as in Corollaries 11.2. 

and III.l., consider (3) and assume that f(p0, 20) = 0. Let further 

be Fz,  T ,  and Q as in Corollary III.1. 

Then there are neighborhoods P R'and U C R" of po and 

ZO, respectively, and a C"-mapping g: P + FZ that the system of 

equations 

has exactly the same solutions as (3) in P x U and D g ( p o )  = 

idlFz 0 T 0 D l f ( p o ,  50). 0 

Proof: Apply Corollary IILl., set g := H(., 0), and we are 

done [7]. 0 

111.3. Remark: 

i) In [8], there is a result similar to Corollary 111.2. However, we 

do not assume that f-' (0) is a manifold, which is an essential 

hypothesis in [8]. Indeed, circuits containing multipliers or 

hysteresis elements lead to (3) and (5) with f - ' ( O )  being not 

a manifold [9]. 

ii) Corollary 11.2. is an independent result that led to the normal 
form of (3) given in Corollary 111.2. However, one can obtain 

this normal form without using any Rank Theorem. I thank the 

0 

111.4. Remark: 

i) In case f(p, z) = (fl(p, z), ... , fm(p, z)) and T = 
rankDzf(p0,  20) we can-choye FZ and Q such that (3) 

has the same solutions in P x U as 

reviewer who pointed this out to me. 

0 = gm-r(p)> 

where n: (1, . . . , m} -+ { 1, . . . , m} is a suitable bijection 

ii) D f ( p 0 ,  20) is surjective if and only if D g ( p 0 )  is. 

iii) Note that imDz((idlR- - Q )  o f)(po, z o )  = ker Q, and 

hence, the structure of the zero set of f(p, .) is known from 

the Surjective Implicit Function Theorem [2] if the parameter 

p is sufficiently close to PO and g ( p )  = 0. 

iv) f - ' (O)  is a C*-submanifold of Rk x R" near (PO, ZO) if 

g-'(O) is a Cq-submanifold of Rk near PO, for 1 5 q 5 
S. 0 

and g b )  = (gl(p), . . .>  gm-rb)). 

A proof to the foregoing Remark 111.4. can be found in [7]. 

B. Application to DifSerential-Algebraic Equations 

The special case that shall be of primary interest here, is the 

semi-implicit case of (5), namely, we call (5) a semi-implicit DAE 

[6] if V = V, x V, and there are functions fl: V + R' and 

fz:VZ + R"-' that 

and  D2fl(z, y )  is surjective 

as long as (z, y )  E V. The fundamental result of this section is that 

the class of semi-implicit DAE's even is a normal form. 

111.5. Corollary: Consider DAE (5) and let (20, yo) E f-'(O). 

Then there is some semi-implicit DAE that has exactly the same 

C1-solutions as DAE (5)  locally near (zo, yo). 

More precisely, if f E C ( s  E N U (CO, U } ) ,  and T = 

rankDzf(z0 ,  yo), then there are neighborhoods V, of 20 and 

V, of yo, V, x V, C V, and C"-functions fl: V + IR' and 

f z :  V, --f R"-' that 

has exactly the same C1 -solutions as 

Moreover, fl and fz  can be chosen to have the following properties: 

i) fl = III 0 (id(R- - Q )  0 flv,xv, 

ii) fZ(z0) = 0 

iii) D f z ( z 0 )  = IIz 0 T 0 Dlf(zo, YO), 

where {e,[ i E (1, . . .  , n}}  is the canonical basis of R", 
n: (1, . . .  , n} + (1, ..., n}  is a suitable bijection and 

FZ = span(e,('j, . - - ,  eK(n-rj} is an algebraic complement of 

imDzf(z0 ,  yo), Q:R" + R" is the orthogonal projector onto Fz,  

T:R" + IR" is the projector onto FZ along imDzf(z0 ,  yo), and 

II,: ker Q -+ R' and IIz: FZ + R"-' are linear isomorphisms. 0 

Proof: Apply Corollary 111.2. The special choice of FZ is 

practicable by STEINITZ's Exchange Lemma, and Dzf l (z ,  y) is 

U 

When dealing with problems of existence and uniqueness of 

solutions of DAE (3, one is necessarily led to the following problem: 

Let X I  + R" E C' be a solution to DAE ( 5 )  and let t o  E I .  
Under which conditions to f does the relation 

surjective for all (2, y )  E V, x V, by Remark III.4.iii). 

hold? 

In [lo,  Lemma 2.1.1 it is proved that relation (6) holds if 

D f ( z ( t o ) ,  ? ( t o ) )  is surjective. However, from Corollary IIIS., 
it immediately follows that this restriction to cases where f - l ( O )  is 

a manifold is not necessary. 

111.6. Corollary: Let x :  I --+ R" E C' be a solution to DAE (5) 
0 

Proof: For semi-implicit DAE's, the assertion is trivial. Apply- 

0 

and let t o  E I .  Then relation (6) holds. 

ing Corollary 111.5. completes the proof [7]. 

IV. CONCLUSION 

We gave a Corollary to the Rank Theorem that generalizes the 

classical result to the case when a partial derivative of a function is 

of constant rank. We then investigated the relation between functional 

dependence of certain parts of a function and constancy of rank of a 

partial derivative of that function. 

These results were used to establish a normal form for a class 

of nonlinear equations. In case of Differential-Algebraic Equations 

(DAE's) it turned out that this normal form exactly corresponds to 

semi-implicit DAE's. This is a cornerstone of a solution theory for 

DAE's (5) in case f- ' (O) is not a manifold. Such DAE's arise in 

the analysis of even simple circuits if these, for example, contain 

multipliers or hysteresis elements [9 ] .  

Let us finally remark that our assumption on constancy of rank 

of Dzf is essential. There are simple implicit Differential Equations 

that do not satisfy it, and our theorems do not apply in this case. 
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On Approximation of Linear Functionals on 

Irwin W. Sandberg and Ajit Dingankar 

Abstract-In a recent paper certain approximations 

L, Spaces 

to continuous 
nonlinear functionals defink-on an L, spa;; (1 < p < 03) are shown to 
exist. These approximations may be realized by sigmoidal neural networks 
employing a linear input layer that implements finite sums of integrals of 
a certain type. In another recent paper similar approximation results are 
obtained using elements of a general class of continuous linear functionals. 
In this note we describe a connection between these results by showing 
that every continuous linear functional on a compact subset of L, may 
be approximated uniformly by certain finite sums of integrals. 

I. INTRODUCTION 

One of the earliest results in the area of neural networks is 

the proposition that any continuous real function defined on a 

compact subset of Rk (k an arbitrary positive integer) can be 

approximated arbitrarily well using a single-hidden-layer network 

with sigmoidal nonlinearities (see, for example, [2]). Among other 

results in the literature concerning arbitrarily good approximation 

that concem more general types of “target” functionals, different 

network structures, other nonlinearities, and various measures of 

approximation errors is the proposition in [5], [4] that any continuous 

Manuscript received October 27, 1994; revised February 23, 1995. This 
paper was recommended by Associate Editor H.-D. Chiang. 
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real nonlinear functional on a compact subset of a real normed linear 

space can be approximated arbitrarily well using a single-hidden-layer 

neural network with a linear functional input layer and exponential 

(or polynomial or sigmoidal) nonlinearities. 

In an interesting paper [ l ]  by Chen and Chen similar results 

Concerning single-hidden-layer neural networks with sigmoidal non- 

linearities are proved for continuous real functionals on a compact 

subset of an L, space (1 < p < m ). One of the main results in 

[ l ]  is the proposition that the linear functionals in the input layer 

may have the special form of a finite sum of integrals of a certain 

type. Here we connect these results by showing that every continuous 

linear functional can be approximated arbitrarily well on compact sets 

by finite sums of the type used in [l]. 

More specifically, the main result in [4] shows that any real 

continuous functional defined over a compact subset of a real normed 

linear space can be approximated arbitrarily well with a neural 

network employing an input layer of functionals that can be taken to 

be linear, and a single-hidden-layer implementing nonlinearities that, 

for example, can be taken to be sigmoidal. To describe the result 

proved there, let X be a real normed linear space, and let X* be 

the set of bounded linear functionals on X (i.e., the set of bounded 

linear maps from X to the reals R). Given a compact subset C of 

X, let Y be any set of continuous maps from X to R that is dense 

in X* on C,  in the sense that for each 4 E X’ and any p > 0 

there is a y E Y such that Id(.) - y(x)l < p ,  x E C. Also, let U 
be any set of continuous maps U : R + R such that given U > 0 

and any bounded interval (PI, P z )  C R there exists a finite number 

of elements u1,. . . , ag of U for which I exp(P) - cj uj(P)I  < U 

for P E (P1,/3~).’ The result in [4] is this: Let g be a real-valued 

continuous map defined on C. Then given E > 0 there are a positive 

integer k ,  real numbers c1,. . . , c k ,  elements ~ 1 , .  . . , U k  of U ,  and 

elements y1, . . . , Y k  of Y such that 

for x E C. 

The proof in [4]* of the result described above shows that the 

result can be slightly sharpened in that “ ~ 1 , .  . . , Y k  of Y” can be 

replaced with “311, . . . , Y k  of Yp for some p > 0,” where each Yp 

is any set of continuous maps from X to R with the property 

that given 4 E X* with 11411 5 1 there is a y E Yp such that 

I+(.) - Y ( x ) l  < p ,  z E C. Now suppose that X = L, with 

1 < p < CO, and that U = {a : U @ )  = cs(wP + y), c,  w, y E R}, 
where s is a sigmoidal function. In this setting we obtain one of the 

main results in [ l ]  (assuming continuous as opposed to generalized 

[ l ]  sigmoids) as a special case of the above slightly-sharpened result, 

since our theorem below and a simple observation in Section 2.3 
about its proof permit us to take the Yp to be sets of finite linear 

combinations of integral functionals of the form considered in [l].3 

That is, in the L, setting, for each p there is an h > 0 such that we 

can take the value at x of the elements y of Yp to be given by certain 

‘Of course we can take U to be the set whose only element is exp(.), or 
the set {U : u(p) = ( @ ) “ / n ! ,  n E {0,1,.. .}}. 

*We take this opportunity to correct three typos in the proof in [4], all 
of which occur in the second column of page 373: The third p i  on line 2 
should be replaced with p2. and 1 Cj d, exp[zj(z)]-Cj d j  exp[yj(z)]l and 
(26)/3 should be added in the obvious places on lines 7 and 17, respectively. 

We also extend the result in [l] to p = 1. 
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