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Abstract

Following a brief introduction to classical and behavioral

algebraic specification, this paper discusses the verification

of behavioral properties using BOBJ, especially its imple-

mentation of conditional circular coinductive rewriting with

case analysis. This formal method is then applied to prov-

ing correctness of the alternating bit protocol, in one of its

less trivial versions. We have tried to minimize mathemat-

ics in the exposition, in part by giving concrete illustrations

using the BOBJ system.

1. Introduction

Faced with increasingly complex software and hardware

systems, including distributed concurrent systems, where

the interactions among components can be very subtle, de-

velopers are turning more and more to formal methods.

Such methods use specifications written in mathematical

logic, and sound proof rules that support refinements, yield-

ing rigorous mathematical proofs of significant properties.

The goal is not only to increase quality and decrease cost,

but also to allow assertions about reliability that can be

checked in a precise way. Formal methods can be applied

throughout a development cycle, or at selected steps, in

which case refinement proofs can insure the correctness of

key decisions at those steps.

Formal methods involve specification and verification.

Formal specifications describe a system and its desired

properties in a formal language, using notation derived from

the underlying logic. Formal verification uses formal logic

to prove that a specification satisfies certain desirable prop-

erties. A proof can be viewed as a test of a specification,

which can help understand requirements, improve speci-

fications, and detect design errors. A specification with-

out proofs may contain inconsistencies or inappropriate as-

sumptions. In our opinion, code level verification is a dif-

ficult task that is often not worth the trouble (since code

level errors are a small percentage of the total errors in pro-

grams [4]), whereas design level verification is easier and

more likely to uncover subtle bugs, because it does not re-

quire dealing with the arbitrary complexities of program-

ming language semantics.

These points are illustrated by our proof of the alternat-

ing bit protocol in Section 4. There are actually many dif-

ferent ways to specify the alternating bit protocol, some of

which are rather trivial to verify, but our specification with

fair lossy channels is not one of them. The proof shows that

this specification is a behavioral refinement of another be-

havioral specification having perfect channels, and that the

latter is behaviorally equivalent to perfect transmission (we

thank Prof. Dorel Lucanu for this interpretation).

Many important contemporary computer systems are

distributed and concurrent, and are designed within the ob-

ject paradigm. It is a difficult challenge for formal meth-

ods to handle all the features involved within a uniform

framework. Hidden algebra, which was introduced in [12]

and elaborated in [21, 22, 16, 32, 34], is a systematic ap-

proach to such problems. Hidden algebra allows models

that only satisfy their specifications behaviorally, in that

they appear to exhibit the required behavior under all rel-

evant experiments; this is important because many clever

implementations used in practice only satisfy their specifi-

cations in this sense. Hidden algebra extends many sorted

algebra by distinguishing between “visible” sorts used to

model data, and “hidden” sorts used to model states. This

framework provides natural ways to handle the most trou-

bling features of large systems, including concurrency, dis-

tribution, nondeterminism, as well as the usual features of

the object paradigm, including classes, subclasses (inheri-

tance), and local states with attributes and methods, in addi-

tion to abstract data types, generic modules, and more gen-

erally, the powerful module system of parameterized pro-

gramming [11]. Hidden algebra generalizes the approaches

of process algebra and transition system to include non-

monadic parameterized methods and attributes; this extra

power can sometimes dramatically simplify verification.

Behavioral equations were introduced by Reichel [31] in

1981, and have since been used by many researchers. Be-
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havioral logic is a diverse research area, including not just

hidden algebra, but also the coherent hidden algebra of Di-

aconescu [8, 7], and the observational logic of Bidoit and

Hennicker [25, 3]. These approaches fall into two broad cat-

egories, depending on whether or not a fixed data algebra is

assumed for all models. A new generalization of hidden al-

gebra treats these variants in a uniform way [16, 34]. Coal-

gebra is another related area, in that is also supports behav-

ioral specification, and uses coinduction; e.g., see the sur-

vey paper [26].

Of course, the proof rules in these logics are sound,

but they are also incomplete [6], so there cannot be any

algorithm for proving all true statements. Context induc-

tion [24, 2] and general coinduction [18, 19] are two pop-

ular proof techniques for verifying behavioral properties,

but both need intensive human intervention. Circular coin-

duction, introduced in [34], is a powerful method, effec-

tively implemented by the circular coinductive rewriting al-

gorithm, which has automatically proved many behavioral

properties [16, 17]. Behavioral equivalence generalizes the

notion of bisimilarity used in process algebra, where there

is a very large literature, including proof methods that seem

to be special cases of coinduction. Howerer, this lies outside

the scope of this paper, so we just mention Milner’s very in-

fluential process algebra CCS [29], and [30], where the no-

tion of bisimilarity seems to have originated.

BOBJ [16, 17, 34, 32] is an executable algebraic spec-

ification language developed in the Meaning and Compu-

tation Lab at the University of California, San Diego, for

supporting behavioral specification and verification, based

on recent developments in hidden algebra. In addition to

rewriting for order sorted equational logic1, BOBJ also im-

plements order sorted behavioral rewriting and conditional

circular coinductive rewriting with case analysis (the latter

abbreviated C4RW). This paper illustrates this method by

verifying the Alternating Bit Protocol (abbreviated ABP),

in one of its less trivial versions; BOBJ seems to be the first

system to support automatic coinduction proofs of anything

like this complexity. Such proofs have only recently become

possible, due to the implementation of C4RW in BOBJ, and

a new event mark stream approach to fairness, as discussed

in Section 4.2 below. CafeOBJ [7] and Spike [2] also sup-

port behavioral specification and verification, but C4RW is

only implemented in BOBJ.

Section 2 explains some basics of classical and hidden

algebraic specification, Section 3 discuss the C4RW algo-

rithm, while Section 4 discusses conclusions and some fu-

ture work. We try to keep theory to a minimum, and we

also describe only features of BOBJ that are necessary for

our examples; much more information about BOBJ can be

found in the thesis of Kai Lin [27].

1 I.e., many sorted with subsorts [20, 23].

We offer many thanks to Grigore Roşu for his work

on circular coinductive rewriting, and to Kokichi Futatsugi

for his ongoing support and encouragement. We also thank

Monica Marcus for finding a bug, and Dorel Lucanu for his

helpful remarks.

2. Algebraic Specification and BOBJ

This section begins with a review of classical algebraic

specification, including both loose and initial specification,

and then moves on to behavioral algebraic specification,

particularly its foundation in hidden algebra, and its imple-

mentation in BOBJ.

2.1. Loose and Data Specification

This subsection introduces the basic concepts, notation and

terminology that we need from classical algebraic specifi-

cation; readers may wish to consult this material on an as-

needed basis. Given a set �, an �-sorted set � is a fam-

ily of sets ��, one for each � � �. The elements of � are

called sorts and the notation ��� � � � �� is used. A signa-

ture � is an ������-sorted set ����� � ��� �� � ��. The el-

ements of ���� are called operation (or function) symbols

of arity �, sort �, and type ��� ��; in particular, � � �� ℄��

is a constant symbol (� ℄ denotes the empty string). If � has

the type ��� ��, we write � � � � �, and constants are writ-

ten 
 � � � when 
 � �� ℄��.

Signatures are given in BOBJ by giving sorts after the

keywords sort or sorts, and operations after the key-

words op or ops. The form of an operation follows the op
keyword, then a colon followed by a list of the sorts for ar-

guments to that operation, followed by an arrow, followed

by the value sort of the operation. Underbar characters may

serve as place holders within the form, to indicate where

the arguments should go; the number of underbars and ar-

gument sorts should be the same, as in the in operation be-

low. If there are no underbars but the argument sort list is

non-empty, as with the insert operation below, the op-

eration is assumed to have syntax that requires opening and

closing parentheses, with commas between arguments, as in

insert(2, S). The following is a simple signature for a

theory of sets in BOBJ notation:

sorts Elt Set .
op empty : -> Set .
op _in_ : Elt Set -> Bool .
op insert : Elt Set -> Set .

Note that overloading is possible (and is helpful for read-

ability) in this framework, since the same form can have

more than one type. For example, the form _in_ could

also be an operation on lists, with type ����� ����� �����,
where Bool is the sort of Booleans, from the builtin mod-

ule BOOL, which is imported by default into every other

module.
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� is a ground signature iff �� ℄�� � �� ℄��� � � whenever

� �� �� and ���� � � unless � � � ℄. Union is defined com-

ponentwise, by ��������� � �������

���. A common case

is union with a ground signature � , where we use the nota-

tion ���� for � �� .

A �-algebra � consists of an S-sorted set also denoted

�, plus an interpretation of � in �, which is a family of ar-

rows ���������� � ���������� � ���� � ��� � ��� � ��℄ for

each type ��������� �� � �� � �, which interpret the oper-

ation symbols in � as actual operations on �. For constant

symbols, the interpretation is given by �� ℄�� � �� ℄�� � ��.

Usually we write just � for �������, but if we need to

make the dependence on � explicit, we may write ��.

�� is called the carrier of � of sort �. Given �-algebras

� and 	, a �-homomorphism 
 � � � 	 is an �-

sorted arrow 
 � � � 	 such that 
�������� ������� �
���
������� ���� 
������� for each � � ���������� and all

�� � ��� for � � �� ���� �, and such that 
��
�� � 
� for

each constant symbol 
 � �� ℄��.

A �-congruence relation 	 on a �-algebra � is a �-

indexed equivalence relation such that if � � ������� � �
and ��� �� � ��� with �� 	 �� for � 
 � 
 �, then

����� ���� ��� 	 ����� ���� ���. Given a �-congruence rela-

tion 	 on �, the quotient �-algebra ��	 is a �-algebra

�� 	 such that ��� 	�� is ��� 	� for any sort � and

�����℄� ���� ���℄� � ������ ���� ���℄ for any �� � ��� and

� 
 � 
 � and � � ������� � � � �.

Given an �-sorted signature �, the �-sorted set �� of �-

terms is the smallest �-sorted set that such that �� ℄�� � ����

and given � � ���������� and �� � ����� then ���������� �
����. Notice that �� is a �-algebra by interpreting � �
�� ℄�� as just �, and � � ���������� as the operation sending

��� ���� �� to the list ����������. Thus, �� is called the �-term

algebra. Note that because of overloading, terms do not al-

ways have a unique parse. The following is the key property

of this algebra:

Theorem 1 Given a signature � with no overloaded

constants and a �-algebra A, there is a unique �-

homomorphism �� � �. �

The proofs of this and other theorems in this section are

omitted; they can be found in [28, 9], among other places.

Given a signature � and a ground signature � disjoint

from �, we can form the ����-algebra ����� and then

view it as a �-algebra by forgetting the names of the new

constants in X; let us denote this �-algebra by �����. It has

the following universal freeness property:

Theorem 2 Given a �-algebra � and � � � � �, there is

a unique �-homomorphism � � ����� � � extending �, in

the sense that ����� � ����� for each � � �� and � � �;

sometimes we will write just � instead of �. �

A �-equation consists of a ground signature � of vari-

able symbols (disjoint from �) plus two ����-terms of

the same sort � � �; we may write such an equation ab-

stractly in the form ���� � � �� and concretely in the form

���� �� �� � � �� when 
� 
 � ��� �� �� and the sorts of

�� �� � can be inferred from their uses in � and in ��. Simi-

larly, a �-conditional equation consists of a ground signa-

ture� of variable symbols plus a set of pairs of ����-terms

��� �
�

� and �� ��, each pair of the same sort and � 
 � 
 �,

written in the form ���� � � �� if �� � ��

�� ���� �� � ��

�.

Hereafter we use the word “equation” for both the condi-

tional and unconditional cases. A specification or theory �
is a pair ��� ��, consisting of a signature � and a set � of

�-equations.

Suppose �-equation � is ���� � � �� if �� �
��

�� ���� �� � ��

� and � is a �-algebra, we say � satisfies

this equation, written � 
�� �, iff for any map � � � � �,

if ����� � ����

�� for � 
 � 
 �, then ���� � �����. Given

a specification � � ��� ��, � 
� � iff � 
�� � for ev-

ery � � �.

Given a set of �-equations �, we define the provabil-

ity relation �� for �-equations is defined by the following

rules:

1. � �� ���� � � �
2. If � �� ���� � � ��, then � �� ���� �� � �
3. If � �� ���� � � �� and � �� ���� �� � ���, then

� �� ���� � � ���

4. If ��� � � � �� if �� � ��

�� ���� �� � ��

� � � and

� � � � ����� and � �� ���� ����� � ����

�� for

� 
 � 
 �, then � �� ���� ���� � �����.
5. If � �� ��� � �� � ��� and �� � �������� for � 
 � 
 �

and � � ������� � �, then � �� ��������� ���� ��� �
������ ���� �

�

��.

Theorem 3 Completeness: If � is a �-equation, � 
��

� iff � �� �. �

The loose semantics of a specification ��� �� is the class

of all �-algebras that satisfy the equations in �.

Example 1 A Simple Loose Theory In BOBJ, loose spec-

ifications are given in modules delimited by the keywords

th and end, with sorts and operations as before, with vari-

ables following the keywords var or vars, and equations

following the keyword eq. The following is a loose theory

for monoids, which are sets with a binary operation (here in-

dicated by juxtaposition) that is associative and has an iden-

tity (which is here denoted e):

th MONOID is sort Elt .
op e : -> Elt .
op _ _ : Elt Elt -> Elt .
vars E E’ E’’ : Elt .
eq e E = E .
eq E e = E .
eq E (E’ E’’) = (E E’) E’’ .

end

Instead of writing out the associative and identity laws ex-

plicitly, we can also give them as what are called attributes

in BOBJ, in the following manner:
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th MONOID is sort Elt .
op e : -> Elt .
op _ _ : Elt Elt -> Elt [assoc id: e].

end

The assoc attribute actually does more than the associa-

tive equation: it enables parsing and pattern matching mod-

ulo associativity; similarly, the attribute id: enables pat-

tern matching modulo identity (see Section 2.2). �

Given a specification ��� ��, a natural congruence rela-

tion �� can be defined directly from �� by � �� �� iff

� �� ���� � � ��, and we have the following important re-

sult:

Theorem 4 Given a specification � � ��� ��, for

any �-algebra � with � �� �, there exists a unique

�-homomorphism from ����� to �. �

This property of ����� is called initiality. A useful char-

acterization of initiality is the following:

Theorem 5 Given a set of� of �-equations, a �-algebra�
is initial iff it has no junk (the �-homomorphism �� � �
is surjective) and no confusion (it satisfies only the equa-

tions that can be deduced from �). �

The initial semantics of a specification ��� �� is the class

of its initial algebras. It can be shown that all the initial al-

gebras of a specification are �-isomorphic. By Theorem 4,

��� �� is an initial algebra of ��� ��. Because any ele-

ment in ����� can be generated by operations, induction

is valid for proving properties of initial algebras. Generally,

more than one induction scheme is valid for a given specifi-

cation.

Example 2 The Peano Numbers Below is a simple ini-

tial theory of natural numbers in the style of Peano, with

addition. Initial theories in BOBJ are delimited by the key-

words dth (the “d” is for “data”) and end.

dth PEANO is sort Nat .
op 0 : -> Nat .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars M N : Nat .
eq M + 0 = M .
eq M + s N = s(M + N).

end

The first two operations are constructors, and one can do in-

duction over them to prove properties of addition, in the

usual way. (These numbers differ from those provided in

the builtin module NAT, which use Java numbers and pro-

vide many operations beyond addition.)�

Given signatures ���� with sorts �� ��, then a signature

morphism �� �� is a pair ��� �� where � � � � ��, and �
is an ��� ���-indexed function ���� � ���� � ��

���������.

A view, or theory morphism, from a theory � � ��� �� to

a theory � � � ���� ��� is a signature morphism 	 � � �

�� such that if ��
� � � �� is an equation in �, then �� �
��
� 	��� � 	���� where 
���� � 
� for any sort � � �
and 	 � ����� � ������ is the �-homomorphism induced

by 	; we may write 	 � � � � �. Note that BOBJ does not

check semantic correctness of views, but only their syntax;

therefore users must check the semantics.

Example 3 A Simple View

view V from MONOID to PEANO is
sort Elt to Nat .
op (_ _ ) to (_+_) .

end

The BOBJ syntax for views is straightforward, except that

when items are omitted, BOBJ attempts to figure out those

missing items; the resulting views are called default views;

see [23] for details. �

A parameterized specification or parameterized theory

is a pair ���� ��� of specifications such that �� is included

in ��; we call �� the parameter or interface theory and ��
the body. In Example 4 below, �� is ELT and �� is SET. In-

stantiation of ���� ��� with an actual parameter� requires a

view �� � � to describe the binding of actual to formal pa-

rameters; often a default view can be used. Following ideas

developed for the Clear specification language [5, 13], the

instantiation is given by a colimit construction. Although

not needed in this paper, by exploiting the power of colim-

its, the “parameterized programming” module system used

in BOBJ (and other algebraic specification languages) goes

well beyond that of standard programming languages, and

in fact, the parameterized modules of Clear and earlier ver-

sions of OBJ strongly influenced the module systems of

Ada, ML, and C++; see [11, 23] for details.

Example 4 A Parameterized Initial Theory of Sets The

initial theory SET allows us to form sets of elements from

any collection that has an equality relation defined on it sat-

isfying the law of identity, given in its interface theory ELT.

Parameterization of a module M by an interface I is indi-

cated with the notation M[X :: I], where X is the formal

parameter of the parameterized module.

th ELT is sort Elt .
op eq : Elt Elt -> Bool .
var E : Elt .
eq eq(E, E) = true .

end

dth SET[X :: ELT] is sort Set .
op empty : -> Set .
op _in_ : Elt Set -> Bool .
op insert : Elt Set -> Set .
vars E1 E2 : Elt . var S : Set .
eq E1 in empty = false .
eq E1 in insert(E2, S) =

eq(E1, E2) or E1 in S .
eq insert(E1, S) = S if E1 in S .

end
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We can tell BOBJ to instantiate SET with the builtin mod-

ule INT of integers, and call the result INTSET using a de-

fault view, with the following:

dth INTSET is
pr SET[INT] .

end

Note that this uses a default view from ELT to NAT, and the

pr (for “protecting”) indicates a module importation.�

Two additional features from parameterized program-

ming that will be used in our main example are renaming

and sums of modules. The first allows selected sorts and

operations to be renamed within a module; this can be very

helpful when reusing modules in new contexts. The sum

just combines two or more modules, taking proper account

of any shared submodules that may have arisen through im-

portation. The syntax of these features is illustrated in the

following:

dth PEANO+INT is
pr PEANO *(sort Nat to Peano, op 0 to zero)

+ NAT .
end

Here the sort and constant of PEANO are renamed to avoid

conflict with those of NAT, and are then combined. Now the

BOBJ parser will be able to determine whether the sort of

any given term is Peano or Nat, even though the opera-

tion _+_ is still overloaded.

2.2. Term Rewriting

Given a signature � and ground signatures ��� of vari-

able symbols (disjoint from �), a substitution � is a �-sorted

set � �� � �� � ������ � �. By Theorem 2, every such

� extends uniquely to a �-homomorphism � � ����� �
���� �. For any term � � �������, let ���� � �����. Given

a term � � ������� and a term � � ������ �, we say �

matches � if there exists a substitution � such that ���� is

syntactically the same as �.

Given a signature � and a ground signature � of vari-

able symbols (disjoint from �), a �-rewrite rule is a pair

of terms, written � � 	, such that � and 	 have the same

sort and all variables in 	 also appear in �. A �-rewrite sys-

tem, or term rewriting system, abbreviated TRS, 
 is a set of

�-rewrite rules. A term � rewrites to a term �� using 
, writ-

ten � �� �� or just � � ��, iff there exists a rewrite rule

� � 	 in 
 and a substitution � such that � has a subterm

���� and �� can be obtained from � by replacing ���� with

��	�; the term ���� is called the redex of the rewrite. Let

��

� be the reflexive and transitive closure of��. 
 is con-

fluent iff � ��

� �� and � ��

� ��, then there exists a term ��

such that �� �
�

� �� and �� �
�

� ��. 
 is terminating iff there

is no infinite rewriting �� �
�

� �� �
�

� ���. A normal for-

mal of � under 
 is a term �� such that �� cannot be written

and � ��

� ��; we may write ���℄℄� for the normal form of �

under
. A TRS is canonical iff it is confluent and terminat-

ing. It can be shown that in a canonical TRS, every �-term

has a unique normal form, called its canonical form. A sur-

vey of basic term rewriting for the one sorted case is given

in [1].

BOBJ’s term rewriting capability provides an opera-

tional semantics for modules, by viewing equations as

rewrite rules, i.e., by applying equations in the forward di-

rection. Term rewriting for initial and loose theories is in-

voked with the command red, followed by a term (and a

period). For example,

select INTSET .
red 3 in insert(1,insert(2,insert(3,empty))).

constructs the set ��� �� 	� and then tests whether 3 is in it,

in the context of the module INTSET, which is made the

module currently in focus by using the select command.

Here is the output produced by the above (slightly reformat-

ted to fit within the two column format of this paper):

reduce in INTSET : 3 in insert(1, insert(2,
insert(3, empty)))

result Bool: true
rewrite time: 165ms parse time: 4ms

If some operations have attributes for associativity, com-

mutativity, or identity, then rewriting is done module those

equations; we do not go into the details here, because this

feature is not needed in our ABP example, but the details

can be found in [23, 1] and many other places.

The builtin BOBJ module TRUTH, which is included in

BOOL and is therefore by default imported into every other

module, provides a polymorphic binary operation denoted

== which compares the normal forms of its two arguments.

For example,

red insert(3,insert(3,empty))
== insert(3,empty) .

returns true, since the two canonical forms are identi-

cal; otherwise it returns false. If the TRS is canonical,

then true is returned iff the two terms are provably equal,

but if the TRS is non-terminating, reduction may go into

an infinite loop, and if the TRS is not confluent, reduc-

tion could return false when the terms are nonetheless

provably equal. The negation of ==, denoted =/=, is also a

BOBJ builtin polymorphic operation.

Example 5 Substitution It may be interesting to see an

example of substitution in BOBJ, using the open and

close feature, which allows material to be temporarily

added to the module currently in focus. Note that a period

is required after open, but is forbidden after close.

open .
ops x y z : -> Nat .
eq x = 1 .
eq y = 2 .
eq z = 3 .
red 3 in insert(x,insert(y,insert(z,empty))) .

close
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Here the ops keyword allows a number of operations with

the same type to be introduced together; here they serve as

variables for the term to be reduced, while the three equa-

tions define a substitution. �

A conditional rewrite rule is a rewrite rule � � � with

a condition �� � ��� � ��� � �� � ��� such that all vari-

ables in the condition also appear in �, and it can be de-

noted as � � � �� �� � ��
�
� ���� �� � ���. A conditional

term rewriting system � is a set of conditional or uncondi-

tional rewrite rules. A meaningful conditional TRS should

contain at least one unconditional rewrite rule. The rewrite

relation �� induced by � is defined as follows: a term �

rewrites to a term �� using � iff there exists a rewrite rule

�� � �� �� � ��
�
� ���� �� � ��� in � and a substitution � such

that � has a subterm ����, and �� can be obtained from � by re-

placing ���� with ����, and ����℄℄� � �����℄℄� for � � � � �.

Since this is a recursive definition, we take �� to be the

least binary relation satisfying the definition.

2.3. Hidden Logic

Behavioral specifications characterize how systems behave

in response to relevant experiments, rather than how they

are implemented. It distinguishes visible from hidden sorts,

with equality being strict on visible sorts and behavioral

on hidden sorts, in the sense of indistinguishability under

experiments. More concretely, a hidden sort is treated as

a black box, whose status can only be observed and up-

dated by the operations defined on it. Behavioral specifica-

tion uses observations to specify the behavior of operations

without looking inside the black box. Behavioral specifica-

tion provides a more natural and flexible abstraction layer

for system design. Behavioral satisfaction is more general

than strict satisfaction, so that behavioral specifications im-

pose fewer constraints on the semantics of modules. As a

result, not all the inference rules of the ordinary equational

reasoning are valid for behavioral modules, and special care

must be taken in proving behavioral properties; however, a

small modification of equational deduction works for be-

havioral specifications.

A hidden signature � is a signature with its sorts par-

titioned into visible sorts 	 and hidden sorts 
 . Opera-

tions in � with one hidden argument and a visible result

are called attributes, and those with one hidden argument

and a hidden result are called methods. Constants of hid-

den sort are called hidden constants. A hidden �-algebra is

just a �-algebra. The elements of visible sort in a hidden

�-algebra represent data, and those of hidden sorts repre-

sent states; the subalgebra of visible sorts and operations of

visible type is called the data algebra. A behavioral spec-

ification or theory is a triple ����� �� where � is a hid-

den signature, and � is a hidden subsignature of �, and � is

a (finite) set of �-equations. The operations in � are called

behavioral.

The definition hidden algebra given above allows a loose

interpretation for the data algebra, following the general ap-

proach of [16, 34]. However, this is not appropriate for our

ABP example, since if true and false become identi-

fied in the Boolean subalgebra, the protocol cannot work

correctly. This may be remedied by requiring every hidden

algebra over a given signature to have a fixed data algebra,

as in the original version of hidden algebra, or alternatively,

by allowing so called data constraints, in the sense of [13],

as additional sentences. Note that general results proved for

the loose data approach will also apply to fixed data alge-

bras, so there is no loss of generality in proceeding in this

way.

Given a hidden signature �, a �-context denoted ��� ℄
for sort 
 is a �-term in ������ � �� having exactly one

special variable � of the sort 
, where � is an infinite set of

special variables different from �. If ��� ℄ is a �-context

of sort 
 and � � ��, let �� � ℄ denote the result of substi-

tuting � for �. A �-context ��� ℄ for hidden sort 
 is called

�-experiment if its sort is visible.

If � is a subsignature of a hidden signature � and � is

�-algebra and � is an equivalence on �, then an opera-

tion � in ���������� is congruent for � iff ������ ���� ��� �
����

�

�� ���� �
�

�� whenever �� � ��

� for � � � � �. A hidden

�-congruence on � is an equivalence relation on � that is

congruent for each operation in � and is the identity on vis-

ible sorts. The �-congruence ��

�
, called behavioral equiv-

alence, on � is defined as follows: two data elements are

equivalent iff they are equal, and two states are equivalent

iff they cannot be distinguished by �-experiments,i.e., iff

any experiment produces the same value when applied to

them. The following is a basic result of hidden algebra:

Theorem 6 Given a hidden subsignature � of � and a �-

algebra �, ��

�
is the largest hidden �-congruence on �. �

An operation � is �-behaviorally congruent for � (or

simply congruent) iff it is congruent for ��

�
. A hidden

�-algebra � �-behaviorally satisfies a �-equation � �
�	�� � � �� if �� � ��

�
� ���� �� � ��

�, written � 
��

�
�,

iff for any mapping � � � � �, if ����� �
�

�
����

�� for

� � � � �, then ���� ��

�
�����. If � is a set of �-equations,

then � 
��

�
� iff � 
��

�
� for any � � �. We say � behav-

iorally satisfies a behavioral specification � � ����� �� iff

� 
��

�
�; we write � 
��

�
�. Define � 
��

�
� iff � 
��

�
�

implies � 
��

�
� for every algebra �. Define � 
��

�
� iff

� 
��

�
�.

Given a behavioral specification � � ����� ��, the

provability relation Æ�

�
for �-equations is defined by the

following rules:

1. Reflexivity: � Æ�

�
�	�� � � �.
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2. Symmetry: If � Æ
�
� ���� �� � ��, then � Æ

�
�

���� �� � ��.

3. Transitivity: If � Æ
�
� ���� �� � �� and � Æ

�
�

���� �� � ��, then � Æ�
� ���� �� � ��.

4. Substitution: If ��� � � � �� if �� � ��

�� ���� �� � ��

�

in � and � � � � ����� and � Æ�
� ���� ����� �

����

�� for � � 	 � 
, then � Æ�
� ���� ���� � �����.

5. Congruence:

(a) If � Æ�
� ���� � � �� where �� �� � ������ and

� � � , and ��� ���� ����� ����� ���� �� � ���� , then

� Æ
�
� ���� 
���� ���� ����� �� ����� ���� ��� �


���� ���� ����� �
�� ����� ���� ���.

(b) If � Æ
�
� ���� �� � ��� for � � 	 � 


and 
 is congruent operation in �, then � Æ�
�

���� 
���� ���� ��� � 
����� ���� �
�

��.

Define � Æ ���� � � �� iff � Æ�
� ���� � � �� . These

rules specialize those of ordinary equational deduction by

considering congruent and non-congruent operations. Note

that (5b) only applies to congruent operations. If all oper-

ations are congruent, then ordinary equational deduction is

sound for behavioral satisfaction. The following expresses

soundness with respect to both equational and behavioral

satisfaction, generalizing a result in [6,7] that equational de-

duction is sound when all operations are congruent.

Theorem 7 If � Æ ���� � � ��, then ����
� ���� � � ��

and also � �� ���� � � ��. �

General coinduction [18, 19, 32] can be used to prove that

a �-equation ���� � � �� is behaviorally satisfied by a be-

havioral specification � by the following steps:

� Define a binary relation � on terms (� is called the

candidate relation).

� Show that � is a hidden �-congruence.

� Prove that � � ��.

The soundness of general coinduction follows directly from

Theorem 6. The major problem with this coinduction is that

it requires human intervention to define an appropriate can-

didate relation.

Context induction [24] can also be used to prove behav-

ioral properties, using well-founded induction on the con-

text structure to show that it is valid for all experiments. But

in many real examples, context induction is not trivial and

requires extensive human input, for example, in the form of

inductive lemmas that can be difficult to discover and diffi-

cult to prove [10].

It often happens that some experiments are unnecessary

in a context induction, because the equations imply that

some experiments are equivalent to others. A similar but

dual situation occurs in abstract data type theory when all

the elements can be generated from a subset of operations,

called the constructors, generators, or basis (when induc-

tion is involved). A general definition of cobasis is intro-

duced in [33], and a simplified version can be given as fol-

lows: a cobasis � is a subset of operations in � that gener-

ates enough experiments, in the sense that no other exper-

iment can distinguish any two states that cannot be distin-

guished by these experiments.

Behavioral rewriting [7] is to behavioral deduction

what standard rewriting is to standard equational deduc-

tion, a simple but useful proof method. Circular coinductive

rewriting proves behavioral equalities by combining be-

havioral rewriting with circular coinduction [16]; it also

strengthens the duality with induction by allowing coinduc-

tive hypotheses to be used in proofs.

Based on the notion of cobasis, a more powerful proof

method called circular coinduction is introduced in [34]. A

enriched behavioral deduction system can be got by adding

the following rule: Suppose � is a cobasis of a behavioral

specification � � ����� �� and � is a well founded par-

tial order on �-context which is preserved by the operations

in �. For any terms �� and �� in �����, if for any Æ � � and

for appropriate variables� , � Æ�
� ������� � Æ����� � �


������℄ and � Æ�
� ������� � Æ����� � � 
������℄ and


 � Æ, or � Æ�
� ������� � Æ����� � � � and � Æ�

�

������� � Æ����� � � � for some �-term �, then � Æ�
�

���� �� � ��.

2.4. Behavioral Specification

This section describes behavioral modules in BOBJ. Their

denotational semantics is the class of all algebras (i.e., im-

plementations) that behaviorally satisfy specifications, and

their operational semantics is given by behavioral rewriting.

Behavioral modules in BOBJ are defined between the key-

words bth and end. Sorts in behavioral modules are con-

sidered hidden unless declared with the keyword dsort,

for visible sorts in behavioral modules. Similarly, opera-

tions in behavioral modules are considered congruent un-

less given the attribute ncong.

Example 6 Behavioral Theory of Sets The following is a

behavioral specification for sets:

bth BSET[X :: ELT] is sort Set .
op empty : -> Set .
op _in_ : Elt Set -> Bool .
op insert : Elt Set -> Set .
vars E1 E2 : Elt . var S : Set .
eq E1 in empty = false .
eq E1 in insert(E2, S) =

eq(E1, E2) or E1 in S .
end

The first equation describes the observational result on

empty via _in_, and the next two equations give the ob-

servation result on insert via _in_.
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Comparing this behavioral theory with the initial theory

for sets given in Example 4, the most important difference

is that this theory does not have the equation insert(E1,

S) = S if E1 in S . We will later show that this equation

can be proved as a behavioral property of this specifica-

tion (see Example 15). Although the other equations look

the same, they are methodologically different. Data theo-

ries are usually designed with respect to some constructors,

but behavioral theories are designed with respect to obser-

vations. For example, empty and insert are “construc-

tors” of the data theory SET, i.e., all ground sets can be cre-

ated with them; and then all other operations can be defined

based on the terms generated by these constructors. In fact,

the operation _in_ is defined in this style. �

2.4.1. Methodology To design a behavioral theory, some

operations are selected as a cobasis to generate the behav-

ioral equivalence relation, and other operations are defined

with respect to these basic observers. For example, in the

behavioral theory BSET, the operation _in_ is selected as

a unique observer in a cobasis, which means that, two sets

are behaviorally equivalent iff they always return the same

visible results under the observation of _in_, i.e., iff they

have the same elements.

2.5. Behavioral Rewriting

BOBJ provides an operational semantics for behavioral

modules, again by applying equations as rewrite rules. But

because of non-congruent operations, ordinary rewriting is

not in general sound, as illustrated by the following exam-

ple of a behavioral theory with a non-congruent operation.

Example 7 Nondeterministic Stacks This behavioral the-

ory illustrates one way that nondeterminism can arise in hid-

den algebra specifications, on a variant of stacks:

bth NDSTACK is sort Stack .
protecting NAT .
op push _ : Stack -> Stack [ncong] .
op top _ : Stack -> Nat .
op pop _ : Stack -> Stack .
var S : Stack .
eq pop push S = S .

end

The operation push places a nondeterministically chosen

natural number on the top of a stack. Notice that even for

behaviorally equivalent stacks S1 and S2, push(S1) and

push(S2) may insert different natural numbers onto S1
and S2; therefore push(S1) and push(S2) may be dis-

tinguishable by the attribute top, so that push should be

declared non-congruent. The only equation in this specifica-

tion says that a stack is not behaviorally changed by push-

ing a new element and then popping it.

Notice that push(pop(push(S))) == push(S)
is not behaviorally satisfied, although pop(push(S))

and S are behaviorally equivalent. However, with ordi-

nary rewriting, push(pop(push(S))) is reduced to

push(S). �

Behavioral rewriting is invoked with the command red,

which handles non-congruent operations properly. A term

�� ���� ℄ is behaviorally rewritten to �� ���� ℄, where ��� ℄
is a context and � � � is a rewrite rule, iff ��� ℄ � �, or

if there exists a context ��� ℄ which is a subterm of ��� ℄,
such that the following conditions are satisfied:

1. ��� ℄ �� � and � occurs in ��� ℄.
2. For any subterm ��� ℄ of ��� ℄ where � occurs in

��� ℄ and ��� ℄ �� �, the top operation of ��� ℄ is

congruent.

3. ��� ℄ � ��� ℄ or ��� ℄ has visible sort.

According to the conditions above, a redex can be reduced

only if one of the following is satisfied:

1. The redex does not have a non-trivial context.

2. All operations from the top of � down to � are con-

gruent.

3. The context of the redex has a subcontext � such that

all the operations from the top of � to� are congruent

and � has a visible sort.

For example, push(pop(push(S))) cannot be reduced

to push(S), because the context ������� doesn’t satisfy

the conditions above.

Example 8 Behavioral Theory of Streams The behav-

ioral specifications STREAM and ZIP below are much used

in this section. The first declares infinite streams parameter-

ized by the “trivial” interface theory TRIV, which only re-

quires that some sort be designated.

th TRIV is sort Elt . end

bth STREAM[X :: TRIV] is sort Stream .
op head_ : Stream -> Elt .
op tail_ : Stream -> Stream .
op _&_ : Elt Stream -> Stream .
var E : Elt . var S : Stream .
eq head(E & S) = E.
eq tail(E & S) = S .

end

The operation _&_ inserts an element into the head of a

stream, and head and tail respectively return the first el-

ement, and the stream after removing its first element.

The next specification adds an operation which “zips”

two streams together by taking elements from them alter-

nately:

bth ZIP[X :: TRIV] is pr STREAM[X] .
op zip : Stream Stream -> Stream .
vars S S’ : Stream .
eq head zip(S,S’) = head S .
eq tail zip(S,S’) = zip(S’, tail S) .

end
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The picture below shows the application of zip to two in-

put streams:

��� �� �� ��

����������� ��� �� �� �� �� �� ��

��� �� �� ��

���������

��

��������

��
��

The command red does behavioral rewriting when in

the context of a behavioral theory. For example,

open ZIP[NAT] .
ops ones twos : -> Stream .
vars S S’ : Stream .
vars N M : Nat .
eq head ones = 1 .
eq tail ones = ones .
eq head twos = 2 .
eq tail twos = twos .
red head tail tail zip(ones, twos).

close

�

2.6. Behavioral Views

Behavioral parameterized theories can use any kind of the-

ory as their interfaces, but the interfaces of non-behavioral

theories must not be behavioral theories, i.e., behavioral the-

ories are only allowed as interfaces for other (parameter-

ized) behavioral theories.

For behavioral theories, we might require a view to

send visible sorts to visible sorts, and to satisfy the fol-

lowing condition: For any equation ���� � � �� in ��,

���� ���� � ����� is behaviorally satisfied by the target

module. Unfortunately this definition does not work in gen-

eral, as shown by the following:

Example 9 Views of Behavioral Theories A behavioral

theory for lists of natural numbers is below:

bth LIST is sort List .
pr NAT .
op nil : -> List .
op cons : Nat List -> List .
op _in_ : Nat List -> Bool .
op head_ : List -> Nat .
op tail_ : List -> List .
vars N M : Nat . vars L L1 L2 : List .
eq N in nil = false .
eq N in cons(M, L) = N == M or N in L .
eq head cons(N,L) = N .
eq tail cons(N,L) = L .

end

Now we define a view from BSET[NAT] to LIST, with

BSET from Example 6, as follows:

view BSET-TO-LIST from BSET[NAT] to LIST is
sort Set to List .
op empty to nil .
op (_in_) to (_in_) .
op insert to cons .

end

Then the translations of equations in the module

BSET[NAT] by the view above are all behaviorally sat-

isfied by LIST, and it is also straightforward to prove the

following behavioral property in BSET:

��� � ������� � ���� ��������� ��������� ��� �
��������� ��

This property and similar properties might have been used

in designing other parameterized behavioral theories, such

as APP[X::BSET[LIST]]. However, the corresponding

property

��� � ������� � 	���� 
������ 
������ ��� �

������ ��

is not behaviorally satisfied by LIST, because the exper-

iment ���
��������� can usually distinguish cons(N,
cons(N,S)) and cons(N,S). This means the view

BSET-TO-LIST should not be used to instantiate APP
above, and shows the inadequacy of the definition for be-

havioral theory morphism suggested above. �

Given behavioral theories �� � ������� ��� for � � �� �,

let the set of visible sorts and the set of hidden sorts in ��
be 	� and 
�, respectively. Then a behavioral view from

�� to �� is a signature morphism � � �� � �� such

that: (1) ���� � 	� for any sort � � 	�; and (2) for

any equation ���� � � ��, if ���� ���� � � ��, then

���� ���� ���� � ����� where ����� � �� for any sort

� � �� and � � ������ � ������ is the homomorphism

induced by �.

Notice that this definition of behavior views requires ver-

ifying all behavioral properties of the source module, which

is impossible in practice. It is sufficient to define a signature

morphism � from �� to �� such that (1) all translated equa-

tions of �� are behaviorally satisfied by ��; and (2) the im-

age of a cobasis of �� under � is a cobasis of ��. This is

because it then follows that any behavioral property of ��

is also behaviorally satisfied by ��. In practice, the condi-

tion (2) above can be satisfied by making some operations

non-congruent.

Example 10 Views between Behavioral Theories (Cont.)

A different behavioral theory for lists of natural numbers is

the following:

bth LISTNC is sort List .
pr NAT .
op nil : -> List .
op cons : Nat List -> List .
op _in_ : Nat List -> Bool .
op head_ : List -> Nat [ncong] .
op tail_ : List -> List [ncong] .
vars N M : Nat . vars L L1 L2 : List .
eq N in nil = false .
eq N in cons(M, L) = N == M or N in L .
eq head(cons(N,L)) = N .
eq tail(cons(N,L)) = L .

end
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The only difference between LISTNC and LIST is that

head and tail are declared non-congruent. Now we de-

fine the following view:

view BSET-TO-LISTNC from BSET[NAT] to LISTNC is
sort Set to List .
op empty to nil .
op (_in_) to (_in_) .
op insert to cons .

end

Because the cobasis {_in_} of BSET[NAT] is mapped to

the cobasis{_in_} of LISTNC and all the equations trans-

lated from the equations in BSET[NAT] are behaviorally

satisfied by LISTNC, we see that BSET-TO-LISTNC is

indeed a view. �

The definition of behavioral views allows the source to

be a behavioral, initial, or loose module; hidden sorts may

map to visible sorts, but it does not allow views from initial

or loose modules to behavioral modules, since these must

map visible sorts to hidden sorts; for example, the instan-

tiation STREAM[LIST[NAT]] is not correct, because the

interface TRIV of STREAM has a unique visible sort TRIV
whereas the principal sort List of LIST[NAT] is hidden,

and can not be used to replace a visible sort.

2.7. Concurrent Connection

The concurrent connection operation is important for con-

structing distributed concurrent systems from compo-

nents. BOBJ provides a binary associative infix operator

|| that takes two (or more) modules as arguments, cre-

ating a new hidden sort that is the tupling of the prin-

cipal sorts of the component modules. More concretely,

a concurrent connection yields a behavioral specifica-

tion whose states are tuples of the states of its compo-

nents, adding a new sort called Tuple, a tupling operation

< , ,..., > : S1 S2 ... Sn -> Tuple and pro-

jection operations i* : Tuple -> Si where i ranges

from 1 to the number of modules connected and Si is the

principal sort of the �-th component, plus the following “tu-

pling equation”

eq < 1*(T), 2*(T),..., n*(T) > = T

which says that all states are tuples of component states.

This construction has been shown to be behaviorally equiv-

alent to concurrent connection defined in a more abstract

(category theoretic) way which intuitively captures concur-

rency [14]. In particular, equations which say that methods

in component � commutate with or “interleave with”, to use

a term from concurrency theory, methods in component �,

for � �� �, can be proved to hold behaviorally.

The code below is equivalent to what BOBJ provides for

the case of � � � modules. The sort Tuple is always hid-

den, even when the module is instantiated with component

where all sorts are visible.

bth 2||[1 2 :: TRIV] is sort Tuple .
op <_,_ > : Elt.1 Elt.2 -> Tuple .
op 1*_ : Tuple -> Elt.1 [ncong].
op 2*_ : Tuple -> Elt.2 [ncong].
var E1 : Elt.1 . var E2 : Elt.2 .
var T : Tuple .
eq 1* <E1, E2> = E1 .
eq 2* <E1, E2> = E2 .
eq <1* T, 2* T> = T .

end

The connection operation <_,_> is a congruent operation

with two hidden arguments, but the untupling operations

are non-congruent, because two pairs may be behaviorally

equivalent, while their corresponding components are not

behaviorally equivalent. BOBJ also has builtin polymorphic

tupling for visible sorts, but we do not discuss this here be-

cause it is not needed for our ABP example.

3. Verification of Behavioral Properties

Behavioral rewriting can prove simple behavioral proper-

ties, but more powerful methods are needed to verify more

difficult behavioral properties. Unlike general coinduction

[19] and context induction [2], conditional circular coinduc-

tive rewriting with case analysis provides a powerful way to

prove behavioral properties, with intensive human interven-

tion. This section describes and illustrates the use of circu-

lar coinductive rewriting in BOBJ.

3.1. Cobasis Discovery and Declaration

Cobases are important for behavioral specification; they are

not only used in designing behavioral specifications and in

defining views, but also in the verification of behavioral

properties. BOBJ has an algorithm that computes default

cobases for behavioral specifications based on the congru-

ence criteria of [34]. This algorithm first takes all operations

in � as a cobasis, and then removes operations that it finds

to be redundant. The current version uses behavioral rewrit-

ing to check behavioral equivalence, which is stricter than

the congruence criterion in [34], which requires behavioral

equivalence. The computed default cobasis can be displayed

by the command “show cobasis <module-name>”.

Example 11 Default Cobasis for BSET In the context of

the behavioral theory BSET in Example 6, the command

“show cobasis Set” produces the output:

The cobasis for Set is:
op _ in _ : Elt Set -> Bool [prec 41]

The algorithm starts with the cobasis containing the op-

erations empty, insert and _in_. Because of the

equations E in empty = false and E1 in in-
sert(E2,S)) = E1 == E2 or E1 in S, the op-

erations empty and insert are removed.�
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Example 12 Default Cobases of STREAM and ZIP Let

STREAM and ZIP be the behavioral theories defined in Ex-

ample 8. BOBJ’s cobasis algorithm discovers that & and

zip are not needed for STREAM and ZIP. Thus the com-

puted default cobasis for sort Stream is:

op head : Stream -> Elt
op tail : Stream -> Stream

�

Given a behavioral theory, its default cobasis might not

be the best cobasis for a particular design, or verification

problem. BOBJ allows setting cobases for behavioral theo-

ries manually with the following syntax:

cobasis <cobasis-name> from <module-name> is
( <operation-declaration> . )+

end

This declares a cobasis for the behavioral theory with the

given name, where the body of the declaration gives a list of

congruent operations in the behavioral theory. For example,

if LIST is the behavioral theory defined in Example 9, then

we can declare a cobasis of LIST with:

cobasis SIMPLE-COBASIS-OF-LIST from LIST is
op head : List -> Nat .
op tail : List -> List .

end

This is correct because two lists are behaviorally equivalent

iff the results of observing them by head and tail are be-

haviorally equivalent. Note that this cobasis is smaller than

the default cobasis of LIST, and it doesn’t contain the op-

eration _in_. It is straightforward to see that if two lists

cannot be distinguished by any experiment with head and

tail, then they also can not be distinguished by any ex-

periment with head, tail and nil.

Another way to declare a cobasis for a module is to use

the command

set cobasis of <module-name> .

This sets the cobasis of the current module to the default

cobasis of the indicated module. For example, if we first

load the module LISTNC in Example 10, and then load the

module LIST in Example 9, the following sets the coba-

sis of LIST to the default cobasis of LISTNC.

set cobasis of LISTNC .

BOBJ does not verify the correctness of cobasis declara-

tions, so users must do that themselves.

3.2. The C4RW Algorithm

Circular coinductive rewriting proves behavioral equalities

that integrates behavioral rewriting [7] with circular coin-

duction [16, 17]. This section presents this algorithm, and

gives examples showing that it is quite powerful in practice.

It takes as input a pair of terms, and returns true whenever it

can prove the terms behaviorally equivalent, and otherwise

returns false or else fails to terminate, much as with prov-

ing term equality by rewriting. Here we describe the BOBJ

implementation; its correctness is shown in [34].

Given a behavioral specification � � ����� �� with a

cobasis� � �, a finite set of pairs of terms �, and a �-term

�, let ��� ���� be the term derived from � by rewriting with

the equations in � under the usual restrictions for behav-

ioral rewriting with �, and then applying the equations in

� at the top level. Given a pair of �-terms ��� ���, the circu-

lar coinductive rewriting algorithm, denoted C4RW, is pre-

sented in Figure 1.

Case analyses are first class citizens, that can be named,

reused, and combined with other case analyses. The follow-

ing is (part of) the syntax, though it is probably easier to ab-

sorb through examples:

<cred> ::= cred with <case-name>
<term> == <term>

<cases> ::= cases <case-name> for <mod-name> is
( <var> | <context> | <case> )+

end
<context>::= context <term> .
<case> ::= case ( <equation>.)+

In Figure 1, � denotes the goal equations, which must

have visible sorted conditions; elements of the set � are

called circularities; ��������� denotes the normal form of �

under behavioral rewriting with � and �, where � can only

be applied at the top level; and for � a signature, a �-case

definition is a pair ��� �� where � is a �-term called the pat-

tern, and � is a list of sets of �-equations, where each such

set is called a case. The variables in � get bound to terms

when the case definition is used. Also, ����, where � is the

condition of an equation, indicates the translation from a

Boolean expression to a set of equations. Finally, note that

the equality sign plays three different roles: for equations

in � and �, it is a symbol that separates the left and right

sides; for let (i.e., assignment) statements, it separates the

variable from the term assigned to that variable; and other-

wise, e.g., in if statements, it denotes the syntactic identity

relation on terms.

Example 13 A Simple Case Analysis We first define a

module APP as follows:

dth APP is pr NAT .
ops odd even : Nat -> Bool .
op sum : Nat -> Nat .
var N : Nat .
eq odd(0) = false .
eq odd(s 0) = true .
eq odd(s s N) = odd(N) .
eq even(N) = not odd(N) .
eq sum(0) = 0 .
eq sum(s N) = sum(N) + s N .

end

where the operations odd(N) and even(N) test whether

N is odd and even respectively, and sum(N) returns the sum

Proceedings of the Third International Conference On Quality Software (QSIC’03) 
0-7695-2015-4/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK DORTMUND. Downloaded on March 16,2010 at 12:04:37 EDT from IEEE Xplore.  Restrictions apply. 



of � � ����� for any natural number N. The following is a

case analysis named ODD-EVEN for this module:

cases ODD-EVEN for APP is
var N : Nat .
context sum(N) .
case eq odd(N) = true .
case eq even(N) = true .

end

A case analysis must be associated with a previously de-

fined module, and is valid only for that module. In the ex-

ample above, ODD-EVEN is associated with APP and it can

be used only for APP. For any case analysis, a unique con-

text must be defined. A context is a term preceded by the

keyword context, which specifies the target of the analy-

sis. ODD-EVEN has the context sum(N), which tells BOBJ

to use case analysis on any subterms matched by this pat-

tern. A typical case definition should contain several cases,

and each may contain one or more equations that can be

used in that case. ODD-EVEN defines two cases: one is for

odd natural numbers, and the other is for even natural num-

bers. Showing correctness of case analysis declarations is

the user’s responsibility.�

Nevertheless, the following intuitive explanation may

help. If case analysis is used with a cred command, when-

ever the left and right sides of a goal are expanded by a

cobasis operation and they reduce to different normal forms

under behavioral rewriting with circularities, BOBJ checks

if the context of some case analysis matches a subterm in ei-

ther normal form. If it does and the matching substitution is

�, then subgoals are created according to the cases for the

matching context, with each case enriched by the substitu-

tion instances under � of the equations in that case. This

is repeated until all subgoals reduce to true, which means

the proof task is proved; otherwise, a new subgoal is cre-

ated, whose left and right sides are the two different nor-

mal forms. If no further case analysis applies to some sub-

goal, then the original goal fails, and a new circularity is

added for it.

The following command invokes circular coinductive

rewriting with a specific case analysis declaration on a spe-

cific equational goal:

cred with <case-name> <term> == <term> .

In executing this command, BOBJ automatically uses case

analysis whenever the context of the indicated case defini-

tion is found in proof tasks.

Example 14 Behavioral Equivalence over Streams We

define two operations map and iter over streams in the

following modules:

th FUN is sort Elt .
op f_ : Elt -> Elt .

end

bth MAP[X :: FUN] is pr ZIP[X] .

Input: (1) a behavioral theory � � ����� ��
(2) a cobasis � of �
(3) a set � of conditional �-equations
(4) a �-case definition �����

Output: true if a proof of � �� � is found,
otherwise false (or non-terminating)

Procedure:
1. let � � �
2. for each ���� � � �� �� � in �
3. move ���� � � �� �� � from � to �
4. let � be a substitution on � assigning new constants to

the variables in �
5. let �� � � ��������
6. for each Æ � �
7. let � � ��� �����Æ������	 ℄� and

�� � ��� �����Æ����
���	 ℄�

8. if � 	� ��

9. then if CASE-ANAL(�, ��, �, �, �, �) is true

10. then continue
11. else add ���� ��	 � �������Æ���	 ℄� �

�������Æ��
��	 ℄� �� � to �

12. else continue

Procedure CASE-ANAL(�, �� , �, �� , �, �)
1. if � matches a subterm of � or �� with substitution 

2. then let 
� be 
 with a new constant

substituted for each variable
3. for each case � in �
4. if ����� � ������������� � �����

5. then continue

6. else let ��� � �� � 
���� � �������
7. let � � ���������


����� and

�� � ���������

������

8. if � � �� or
CASE-ANAL(�, ��, �, �� � 
����, �)

is true

9. then continue

10. else return false
11. else return true

Figure 1. The C4RW Algorithm

op map_ : Stream -> Stream .
op iter_ : Elt -> Stream .
var E : Elt . var S : Stream .
eq head map S = f head S .
eq tail map S = map tail S .
eq head iter E = E .
eq tail iter E = iter f E .

end

For any stream � � �� �� �� ���, map(s) returns

����� ����� ����� ���. For any element � of Elt, iter(e)
gives � ���� ����� ���. We show that map iter E =
iter f E with the following code below, in which trac-

ing is first enabled:

set cred trace on .
cred map iter E == iter f E .

Here is the BOBJ output:

c-reduce in MAP : map (iter E) == iter (f E)
using cobasis for MAP:

op head _ : Stream -> Elt [prec 15]
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op tail _ : Stream -> Stream [prec 15]
---------------------------------------

reduced to: map (iter E) == iter (f E)
-----------------------------------------
add rule (C1) : map (iter E) = iter (f E)
-----------------------------------------
target is: map (iter E) == iter (f E)
expand by: op head _ : Stream -> Elt [prec 15]
reduced to: true

nf: f E
-----------------------------------------
target is: map (iter E) == iter (f E)
expand by: op tail _ : Stream -> Stream [prec 15]
deduced using (C1) : true

nf: iter (f (f E))
-----------------------------------------
result: true
c-rewrite time: 81ms parse time: 3ms

Similarly, we can do the following

open .
vars S1 S2 : Stream .
cred map zip(S1, S2) ==

zip(map(S1), map(S2)) .
close

for which BOBJ returns true. �

Example 15 A Proof Using C4RW Example 6 showed

that insert(E,S) = S if E in S is a behavioral

property of BSET. The following is a proof using C4RW:

cases CASES for ELT is
vars X Y : Elt .
context eq(X, Y) .
case eq X = Y .
case eq eq(X, Y) = false .

end

set cred trace on .
cred with CASES

insert(E1,S) == S if E1 in S .

Two cases are tried when a subterm of the format ������ ���
is found in a proof goal, and one is enriched with the equa-

tion �� � ��, and the other is enriched with ������ ��� �
�����. Here is the BOBJ output (slightly reformatted to fit):

c-reduce in BSET : insert(E1, S) == S if E1 in S
use: CASES
using cobasis for BSET:

op _ in _ : Elt Set -> Bool [prec 41]
---------------------------------------

reduced to: insert(E1, S) == S
-----------------------------------------
add rule (C1) : insert(E1, S) = S if E1 in S
-----------------------------------------
target is: insert(E1, S) == S if E1 in S
expand by: op _ in _ : Elt Set -> Bool [prec 41]
reduced to: eq(˜sysconst˜Elt-0, e1) or

(˜sysconst˜Elt-0 in s) == ˜sysconst˜Elt-0
in s

-------------------------------------------
case analysis by CASES
-------------------------------------------
case 1 :
assume: ˜sysconst˜Elt-0 = e1
reduce: eq(˜sysconst˜Elt-0, e1) or

(˜sysconst˜Elt-0 in s) == ˜sysconst˜Elt-0

in s
nf: true

-------------------------------
case 2 :
assume: eq(˜sysconst˜Elt-0, e1) = false
reduce: eq(˜sysconst˜Elt-0, e1) or
(˜sysconst˜Elt-0 in s) == ˜sysconst˜Elt-0
in s

nf: true
-----------------------------------------
analyzed 2 cases, all cases succeeded
-----------------------------------------
result: true
c-rewrite time: 53ms parse time: 3ms

�

4. The Alternating Bit Protocol

The Alternating Bit Protocol is a well-established bench-

mark for proof technologies that address distributed con-

current non-deterministic systems; it is perhaps the simplest

non-trivial example of such a system. The ABP is a com-

munication protocol, i.e., a distributed algorithm for reli-

ably transferring data from a source to a target using un-

reliable channels. There are actually many different ways

to formalize the ABP, based on different assumptions about

process structure, time, reliability of channels, and so on.

This paper proves correctness for an ABP model of inter-

mediate complexity, assuming synchronous discrete time,

fair channels, and the ability to recognize transmission er-

rors. The proof relies heavily on the specification and ver-

ification methods of hidden algebra, and their implementa-

tion in the BOBJ system, especially its C4RW algorithm. As

far as we know, this paper presents the first complete alge-

braic proof for a system of this kind2.

  data bit   data bit

ack line

data line
source  target

input stream output stream

Figure 2. The Alternating Bit Protocol

The structure of the ABP is illustrated3 in Figure 2. It

has: an input stream of data to be transmitted; a source and a

target process, each having a data buffer and a one bit state;

a data channel, for ������ ���� pairs called packets; an ac-

knowledgement channel, for packets consisting of a single

bit; and an output data stream.

Here’s how the ABP works: the source process starts by

repeatedly sending packets ���� �� into the data channel,

where �� is the first element of the input stream, and � is 0

2 Here we mean “algebraic” in the sense of algebraic specification the-
ory, rather than, for example, process algebra.

3 This diagram and the subsequential informal discussion are intended
to motivate the formal specification and proof; they should not be con-
fused with the formalization itself, which is given later.
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or 1. The target process starts by waiting until it receives the

packet ���� ��, and then it repeatedly sends � over the ac-

knowledgement channel. When the source process receives

�, it begins repeatedly sending the packet ���� � � ��,
where �� is the second element of the input stream, which

is what the receiver process is now waiting for. When the

target receives ���� ����, it begins sending packets con-

taining ��� to the source process. And so on ... Note that

we must assume that the two bits are distinct, or this pro-

cess will fail, and that for convenience, our formalization of

the ABP uses Booleans instead of bits; we also need that the

natural numbers are distinct. So we take these to be a fixed

data algebra for this problem.

It must be assumed that the channels are fair in the

sense that if the sender persists, eventually a packet will get

through; without this assumption, the algorithm is not cor-

rect, because data transmission might fail forever. This as-

sumption also implies that the system is non-deterministic,

since we do not know how long it will take before a packet

gets through. Perhaps the single most challenging problem

associated with algebraic correctness proofs for algorithms

like ABP has been to formalize fairness. The formalization

used here is novel, simple, and powerful; moreover, it makes

good use of the capabilities of BOBJ, and is easily extended

to other situations.

The formalization of correctness is a crucial part of the

proof process. For the ABP, this is straightforward: the out-

put stream should equal the input stream, except that the

initial content of the target buffer and all erroneous trans-

missions should be disregraded.

Since streams are infinite “lazy” structures, coinductive

methods are required, as opposed to the inductive methods

that are appropriate for structures such as lists and natural

numbers defined with initial semantics.

4.1. The Specification and Goal

Although our ABP specification has just five modules, each

of which is small, there are some tricky points.

bth STREAM is sort DataStream . pr NAT .
op hd_ : DataStream -> Nat .
op tl_ : DataStream -> DataStream .
op _&_ : Nat DataStream -> DataStream .
var N : Nat . var Is : DataStream .
eq hd(N & Is) = N .
eq tl(N & Is) = Is .
eq hd Is & tl Is = Is . *** lemma

end

bth FAIR-STREAM is
pr STREAM * (sort DataStream to FairStream).
dsort Mark .
ops ok err : -> Mark .
op eq : Mark Mark -> Bool [comm] .
var M : Mark .
eq eq(M, M) = true .
eq eq(err, ok) = false .
op fhd_ : FairStream -> Mark .

op ftl_ : FairStream -> FairStream .
var N : Nat . var F : FairStream .
eq fhd(0 & F) = ok .
eq ftl(0 & F) = F .
eq fhd(N & F) = err if N > 0 .
eq ftl(N & F) = p N & F if N > 0 .

end

bth 2CHAN-STATE is
pr (FAIR-STREAM || FAIR-STREAM) *

(sort Tuple to 2ChState).
ops (data-ok_) (ack-ok_) : 2ChState -> Bool .
ops (fhd1_) (fhd2_) : 2ChState -> Mark .
op ftl_ : 2ChState -> 2ChState .
vars F F’ : FairStream . var Cs : 2ChState .
eq fhd1 <F, F’> = fhd F .
eq fhd2 <F, F’> = fhd F’ .
eq ftl <F, F’> = <ftl F, ftl F’> .
eq data-ok Cs = eq(fhd1 Cs, ok) .
eq ack-ok Cs = eq(fhd2 Cs, ok) .
ops (data-ok-after_) (ack-ok-after_) :

2ChState -> 2ChState .
eq data-ok-after Cs = data-ok-after ftl Cs

if not data-ok Cs .
eq data-ok-after Cs = Cs if data-ok Cs .
eq ack-ok-after Cs = ack-ok-after ftl Cs

if not ack-ok Cs .
eq ack-ok-after Cs = Cs if ack-ok Cs .

end

bth ABP is dsort 2PrState .
pr 2CHAN-STATE + STREAM .
op <_,_|_,_> : Bool Nat Bool Nat -> 2PrState .
op [_,_,_] : 2PrState DataStream 2ChState ->

DataStream .
vars B B1 B2 : Bool . vars M N : Nat .
var Is : DataStream . var Cs : 2ChState .
eq [<B,M | B,N>, Is, Cs] =

[<B,M | B,N>, Is, ftl Cs]
if not ack-ok Cs .

eq [<B1,M | B2,N>, Is, Cs] =
[<B1,M | B2,N>, Is, ftl Cs]

if B1 =/= B2 and not data-ok Cs .
eq [<B,M | B,N>, Is, Cs] =

[<not B, hd Is | B,N>, tl Is, ftl Cs]
if ack-ok Cs .

eq tl [<B1,M | B2,N>, Is, Cs] =
[<B1,M | B1,M>, Is, ftl Cs]

if B1 =/= B2 and data-ok Cs .
eq hd [<B1,M | B2,N>, Is, Cs] = N

if B1 =/= B2 and data-ok Cs .
end

The first module specifies data streams, where the data

items are natural numbers. It is the usual specification for

streams, but note that it cannot be specified using initial

or loose semantics; hidden algebra, or coalgebra, or a sim-

ilar institution supporting coinduction is necessary. These

streams are used for both the input and output data streams

of the ABP. The last equation is actually an easily proved

lemma, that is included here because it is needed in the cor-

rectness proof.

The second module, MARK, defines the “marks” that

we use to describe channel behavior. Fair streams of these

marks tell whether package transmissions succeed or fail.

The source and target processes will transfer packets when

the streams indicate success, and will wait when they indi-
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cate failure. The constant ok indicates successful transmis-

sion, while err indicates failure; this module has initial se-

mantics, so only these two values can appear in its models.

It turns out that this trick of indirectly representing chan-

nel behavior simplifies the specification and proof.

There is also a tricky point about the equality relation eq
in the module MARK. Our correctness proof introduces new

values of sort Mark through quantifier elimination, and in

fact, the proof is conducted in the larger term algebras gen-

erated by these constants, whereas the protocol itself lives

in smaller algebras without them. In the larger term alge-

bras, the operation eq is undefined in some cases, and this

is intentional. For example, if m is a new constant of sort

Mark, then both eq(m,ok) and eq(m,err) are unde-

fined, although eq(m,m) is true. This contrasts with the

behavior of the builtin equality ==, which always returns

true or false (or possibly fails to terminate). This in-

completeness of eq can be important when expressions like

not eq(X,ok) occur in the condition of an equation and

X is (for example) m, since then the equation cannot be ap-

plied, whereas it could be applied if =/= (the negation of

==) were used instead; of course, the equation can be ap-

plied when X is err. If == and =/= were used instead of

eq and not eq, the proof in this paper would fail. (By

the way, the attribute “[comm]” of eq makes it a symmet-

ric relation.)

The third module, FAIR-STREAM, gives our novel for-

malization of fairness, based on the infinite streams of nat-

ural numbers of the first module. Here the number 0 repre-

sents an immediately successful transmission, while � � �

represents � consecutive failures followed by a success.

Thus, wherever you are in such a stream, there is always

a success some finite distance in the future, which is the

meaning of fairness. These streams define when a trans-

mission succeeds, but not what is transmitted; let’s call

them event mark streams4. Notice that this module intro-

duces head and tail operations that are quite different from

those of STREAM; fhd returns a mark telling whether or

not transmission succeeds, and ftl returns the next event

mark stream.

The fourth module, 2CHAN-STATE, provides event

mark streams for the two channels. The sort 2ChState
is constructed as the concurrent connection of two fair

streams, using BOBJ’s builtin || operation; it has be-

havioral semantics. The operations fhd1 and fhd2
respectively extract the heads of the data and acknowledge-

ment streams, while ftl extracts the pair of tails of the two

streams. This much is straightforward, but some other op-

erations are more tricky. The operations data-ok and

4 The streams in this specification are fair to successes, but are not fair
to failures, since it is possible that failure never occurs, although suc-
cess must always occur eventually. Variations of the same approach
can be used to capture other kinds of fairness.

ack-ok respectively check whether the data and the ac-

knowledgement stream have succeeded; note that they both

use the specially defined eq operation. The operations

data-ok-after and ack-ok-after respectively ex-

tract the data and acknowledgement streams from the next

success onward, and since their conditions use the op-

erations data-ok and ack-ok respectively, they also

indirectly use eq in their conditions; this will be impor-

tant when new constants are introduced during the proof.

It is worth noticing that definedness of the operations

data-ok-after and ack-ok-after depends cru-

cially on fairness; for example, if used as rewrite rules

with an unfair event mark stream, they would fail to termi-

nate5.

The final module, ABP, specifies the operation of the

protocol, using all the previous modules. The operation

<_,_|_,_> constructs states of sort 2PrState for the

two processes. The arguments of this constructor represent

the states of a data buffer and a one bit register for each pro-

cess, where the bits are represented by Boolean values. The

keyword dsort indicates that it has initial semantics for

the sort 2PrState. The operation [_,_,_] takes as its

arguments a two process state, an input data stream, and

a two channel state, returning the next output data stream

state. Its four equations express the operational semantics

of the ABP in a straightforward way, although presuming

the tricks discussed above. When the two bits in the pro-

cess state are the same, the source process is ready for an

acknowledgement to arrive, and to then start sending an-

other data item; and when they are different, the target pro-

cess is ready to receive a new data packet and then to start

sending acknowledgements. The first equation says that the

source process waits when it is ready but the acknowledge-

ment channel fails. The second equation says the target pro-

cess waits when it is ready but the data channel fails. The

third equation says the source process flips its bit when it is

ready and receives an acknowledgement. The fourth equa-

tion says the target process flips its bit when it is ready and

receives a data packet.

The correctness criterion for the ABP is very simply ex-

pressed by the equation

tl [St, Is, Cs] = Is,

where St is a system state where the source is ready, Is
is an input data stream, and Cs is a state for the two chan-

nels; it just says that the entire input data stream is success-

fully transmitted (with the initial output ignored); note that

this expresses both safety and liveness for the ABP. How-

ever, we do not prove this form, but instead we prove

[ <B1,N | B2, M>, Is, Cs] = M & Is if B1 = B2,

5 This could be accomplished within the formalism of this paper by in-
troducing a new “infinite” constant inf of sort Nat, with the equa-
tions s inf = inf and p inf = inf, where s is successor and
p is predecessor for natural numbers.
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a hidden sorted conditional equation, from which the first

version follows immediately.

We conclude this section by discussing the form of non-

determinism involved in this specification, since we have

found that some readers consider it obscure, or even con-

troversial. The reason for this seems to be that each hidden

model of the specification is itself deterministic, whereas

most other computer science models of non-determinism

directly include some form of choice. In the present ex-

ample, there are an uncountable infinity of different fair

event mark stream pairs, each of which determines a dif-

ferent behavior of the alternating bit protocol system. Al-

though each model is deterministic, neither we nor the two

processes “know” which events will occur; nevertheless, ev-

erything we prove about the specification holds for every

one of these models. We could say that in hidden algebra,

non-determinism consists of choice among models rather

than choice within models6, or we could say that the “real

model” of a specification is the class of all hidden algebras

that satisfy it. But no matter what view we take, this is a

very convenient framework for specification and verifica-

tion, which covers every possible behavior of the system.

4.2. The Correctness Proof

The proof begins by proving the following five lemmas for

the ABP specification:

(A) fhd1 data-ok-after Cs = ok

(B) [<B,M | B,N>, Is, Cs] =
[<B,M | B,N>, Is, ack-ok-after ftl Cs]

if not ack-ok Cs

(C) [<B1,M | B2,N>, Is, Cs] =
[<B1,M | B2,N>, Is, data-ok-after ftl Cs]

if B1 =/= B2 and not data-ok Cs

(D) [<B,M | B,N>, Is, Cs] =
[<not B, hd Is | B,N>, tl Is,

data-ok-after ftl Cs]
if ack-ok Cs

(E) tl [<B1,M | B2,N>, Is, Cs] =
[<B1,M | B1,M>, Is, ack-ok-after ftl Cs]

if B1 =/= B2 and data-ok Cs

The following is the proof score for this verification:

bth SETUP is pr ABP .
vars-of ABP .
op c : -> 2ChState .
ops b1 b2 : -> Bool .

end

***> proof of Lemma A
open .
op f : -> FairStream .
op n : -> Nat .

6 This resembles the worldview of classical physics, where each uni-
verse is deterministic, but we don’t know which one we are in.

var Fs : FairStream .
*** base case
red fhd1 data-ok-after <0 & f, Fs> == ok .
*** induction step
eq fhd1 data-ok-after <n & f, Fs> = ok .
red fhd1 data-ok-after <s n & f, Fs> == ok .

close

***> proof of Lemma B
open . *** base case
eq fhd2 c = err .
eq ack-ok-after ftl c = ftl c .
red [<B,M | B,N>, Is, c] ==

[<B,M | B,N>, Is, ack-ok-after ftl c] .
close

open . *** induction step
eq fhd2 c = err .
eq fhd2 ftl c = err .
red [<B,M | B,N>, Is, ftl c] . *** LHS
eq [<B,M | B,N>, Is, ftl ftl c] =

[<B,M | B,N>, Is, ack-ok-after ftl ftl c] .
red [<B,M | B,N>, Is, c] ==

[<B,M | B,N>, Is, ack-ok-after ftl c] .
close

***> proof of Lemma C
open . *** base case
eq fhd1 c = err .
eq data-ok-after ftl c = ftl c .
red [<b1,M | b2,N>, Is, c] ==

[<b1,M | b2,N>, Is, data-ok-after ftl c] .
close

open . *** induction step
eq fhd1 c = err .
eq fhd1 ftl c = err .
red [<B1,M | B2,N>, Is, ftl c] . *** LHS
eq [<B1,M | B2,N>, Is, ftl ftl c] =

[<B1,M | B2,N>, Is,
data-ok-after ftl ftl c]

if B1 =/= B2 .
red [<B1,M | B2,N>, Is, c] ==

[<B1,M | B2,N>, Is, data-ok-after ftl c] .
close

set cobasis of STREAM .
set cred trace on .

***> proof of Lemma D
cases CASE-C for SETUP is
vars B B1 B2 : Bool .
vars M N P Q : Nat .
vars Is Ds : DataStream .
var Cs : 2ChState .
context [<B,M | B,N>, Is, Cs] .
case eq fhd1 ftl Cs = ok .

eq fhd2 Cs = ok .
case eq fhd1 ftl Cs = err .

eq fhd2 Cs = ok .
eq [<B1,P | B2, Q>, Ds, ftl ftl Cs] =

[<B1,P | B2, Q>, Ds,
data-ok-after ftl ftl Cs]
if B1 =/= B2 .

*** red [<B1,P | B2, Q>, Ds, ftl Cs] . *** LHS
end

cred with CASE-C
[<B,M | B,N>, Is, Cs] ==
[<not B, hd Is | B,N>, tl Is,

data-ok-after ftl Cs] .
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***> proof of Lemma E
cases CASE-D for SETUP is
vars B B1 B2 : Bool .
vars M N P Q : Nat .
vars Is Ds : DataStream .
var Cs : 2ChState .
context [<B1,M | B2,N>, Is, Cs] .
case eq fhd2 ftl Cs = ok .

eq fhd1 Cs = ok .
case eq fhd2 ftl Cs = err .

eq fhd1 Cs = ok .
eq [<B,P | B,Q>, Ds, ftl ftl Cs] =

[<B,P | B,Q>, Ds,
ack-ok-after ftl ftl Cs] .

*** red [<B,P | B,Q>, Ds, ftl Cs] . *** LHS
end

cred with CASE-D tl [<B1,M | B2,N>, Is, Cs] ==
[<B1,M | B1,M>, Is, ack-ok-after ftl Cs]
if B1 =/= B2 .

Lemmas A, B and C are proved by induction, whereas Lem-

mas D and E are proved by case analysis. The proof of

Lemma A is a straightforward induction on the natural num-

ber in the head of the event mark stream for the data chan-

nel. It says that the function data-ok-after always de-

livers an event mark stream indicating an immediate suc-

cessful data transmission. The equation

fhd2 ack-ok-after Cs = ok

can also be proved as a lemma, but fortunately it is

not needed, because adding it would cause some non-

terminating reductions in the proof.

Each of the next four lemmas is a behavioral conse-

quence of a corresponding axiom among the first four in the

ABP specification. However, the assumptions that appear in

the cases of their proofs are a bit tricky. For Lemma B, first

notice that its condition, not ack-ok Cs, can only be

satisfied if eq(fhd2 Cs, ok) is false, which accord-

ing to the initial semantics of the module MARK, can only

happen if fhd2 Cs is err. Therefore when setting up the

base case for Lemma B, implication elimination allows us

to assert fhd2 c = err before doing reduction to check

the equation. The same reasoning allows us to assert the

equation fhd1 c = err for the base case of Lemma C.

Lemmas B and C are proved by induction over the num-

ber of transmission failures. Since the condition of each

equation says there must be at least one failure, the sim-

plest case, which must be the base case, is that there is just

one failure, and this implies that the tail of the appropri-

ate channel indicates an immediate success. This and the

definitions of the operations ack-ok-after and data-
ok-after justify the second equation asserted for the base

cases of Lemmas B and C.

For the induction steps of Lemmas B and C, we know

there must be at least one more failure. Therefore tail of the

appropriate channel must also indicate failure, which jus-

tifies the second assumed equation, the first being just as

in the base cases. The third equation assumed in each case

is the induction hypothesis. For Lemma B, strictly speak-

ing this should be

[<B,M | B,N>, Is, ftl c] =
[<B,M | B,N>, Is, ack-ok-after ftl ftl c] .

However, under the assumptions of this case, the leftside of

this equation is not reduced, and in fact, the proof fails if

it is attempted using this equation. The way to escape from

this dilemma is to replace the leftside with its reduced form,

which is

[<B,M | B,N>, Is, ftl ftl c] ,

and this is what actually appears in the proof score. The re-

duction before the induction hypothesis justifies this substi-

tution, by calculating the reduced form of the lefthand side.

Exactly the same situation arises for the induction step of

Lemma C, and it is handled in the same way, for the same

reasons.

Lemma D is proved by case analysis on whether

fhd1 ftl Cs is ok, or is err, and the first equation as-

sumed for each case follows from one of these assump-

tions. Similar reasoning to that used for the base cases

of Lemmas B and C, based on consequences of the con-

dition of the lemma, justifies the second equation for

each case. The second case of Lemma D also uses a spe-

cial case of Lemma C, but under the assumptions of this

case, its leftside is not reduced; so as before, we use its re-

duced form instead. (The reduction of the leftside is given

as a comment here, since it cannot actually be run in-

side a case declaration.)

Similarly, Lemma E is proved by case analysis on

whether fhd2 ftl Cs is ok, or is err, giving rise

to the first equations in its cases, while the second equa-

tions follows from assuming its condition. Finally, the sec-

ond case of Lemma E uses a special case of Lemma D;

again, its left side is not reduced, and this is handled as be-

fore.

We use coinduction to prove Lemmas D and E, as indi-

cated by the commandcred, and therefore we need a coba-

sis. BOBJ can compute a default cobasis, but it is not the

right one for this problem, because correctness of the ABP

depends only on the input and output streams. For this rea-

son, the correct cobasis is that of the module STREAM. Fi-

nally, we prove ABP correctness using these lemmas:

bth ABP+ is dsort 2PrState .
pr 2CHAN-STATE + STREAM .
op <_,_|_,_> : Bool Nat Bool Nat -> 2PrState .
op [_,_,_] : 2PrState DataStream 2ChState ->

DataStream .
vars B B1 B2 : Bool . vars M N : Nat .
var Is : DataStream . var Cs : 2ChState .
eq fhd1 data-ok-after Cs = ok . *** A
eq [<B,M | B,N>, Is, Cs] =

[<B,M | B,N>, Is, ack-ok-after ftl Cs]
if not ack-ok Cs . *** B

eq [<B1,M | B2,N>, Is, Cs] =
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[<B1,M | B2,N>, Is, data-ok-after ftl Cs]
if B1 =/= B2 and not data-ok Cs .

*** C
eq [<B,M | B,N>, Is, Cs] =

[<not B, hd Is | B,N>, tl Is,
data-ok-after ftl Cs]

if ack-ok Cs . *** D
eq tl [<B1,M | B2,N>, Is, Cs] =

[<B1,M | B1,M>, Is, ack-ok-after ftl Cs]
if B1 =/= B2 and data-ok Cs . *** E

eq hd [<B1,M | B2,N>, Is, Cs] = N
if B1 =/= B2 and data-ok Cs .

end

cases CASE-OF-CHANNEL for ABP+ is
vars B1 B2 : Bool . vars N1 N2 : Nat .
var Is : DataStream . var Cs : 2ChState .
context [<B1,N1 | B2,N2>, Is, Cs] .
case eq fhd2 Cs = ok .
case eq fhd2 Cs = err .

eq fhd2 ack-ok-after ftl Cs = ok .
end

open .
vars B1 B2 : Bool . vars N M : Nat .
var Is : DataStream . var Cs : 2ChState .
cred with CASE-OF-CHANNEL

[<B1,N | B2,M>, Is, Cs] == M & Is
if B1 == B2 .

close

The module ABP+ consists of the five lemmas, plus the

fifth axiom of ABP. Since all these equations are be-

havioral consequences of the ABP specification7, it

is sound to use them in proving the correctness cri-

terion for ABP, and this is just what happens with

the final cred command, which again uses the coba-

sis of STREAM. The BOBJ output, which can be found at

www.cs.ucsd.edu/groups/tatami/bobj/abp.html,

shows that this correctness proof uses the full power of

C4RW; in particular, circularities are used in two sub-

goals of the final cred, because the word “deduced”

appears there instead of the word “reduced.” It is in-

evitable that some form of case analysis is used in this kind

of proof, because different values in fair event streams are

handled by the system in quite different ways.

5. Conclusions and Further Research

The ABP proof in this paper provides nice illustrations for

many BOBJ features, especially its C4RW algorithm. Some

“tricks of the trade” used to make this proof succeed were

already familiar long ago from proofs done in earlier ver-

sions of OBJ. These include the use of specially defined

equality relations to avoid difficulties with negation in the

conditions of rules, and replacing non-reduced leftsides of

7 More technically, we could say that ABP+ is a behavioral refine-
ment of ABP, or equivalently, that ABP behaviorally simulates ABP+.
Prof. Lucanu noted that our proof can be interpreted as showing that
ABP with fair lossy channels simulates ABP with perfect channels,
and that the latter is behaviorally equivalent to perfect transmission.

rules with their reduced forms. Other techniques are newer,

such as user-defined cobases and case splits.

We have also found it useful to extend the old trick of

comparing the reduced forms of two sides of an equational

goal to discover new lemmas needed to complete the proof,

by using cred with a case analysis having just one case.

Used together, these provide considerable power for debug-

ging specifications and proofs. However, the evidence for

this is not seen in the proof, but rather in our experience

in constructing the proof, which involved using these two

tricks many times over.

Our favorite tricks are the formalization of event mark

streams and fairness using natural number streams. We be-

lieve these are new ideas, and it seems clear that they gener-

alize to other variants of fairness, such as a fair interleaving

of two kinds of event, or more generally, � kinds of event,

some of which are subject to errors and some of which are

not. A builtin module providing all these options could be a

useful addition to BOBJ.

We are now applying the techniques of this paper to

other non-deterministic, distributed, concurrent algorithms;

for example, we have proved the Petersen critical section

algorithm, although the justifications for its proof score are

not yet written down. A next step would be to consider real-

time algorithms, building on recent work of Rutten, by us-

ing streams of pairs of event marks and positive real num-

bers as timed event mark streams.

It is interesting to consider what further support for proof

automation might be added to BOBJ. Although we have

found the current version of case analysis very useful, it can

certainly be extended. For example, one might implement

sums of case expressions, in addition to the products and

exceptions which are already implemented. BOBJ’s combi-

nation of case analysis with coinduction is already a useful

blend of theorem proving with model checking, but it would

be interesting to see how much more could be done along

these lines. For example, it might be possible to improve the

automatic elimination of cases, and it would be especially

good if efficiency could be improved when there are many

cases; model checking technology might help with this.

One should also consider the higher level question of the

right balance between mechanization and human input in

theorem proving. When humans are in the loop, the read-

ability of input and output becomes extremely important.

The style of “proof score” used in this paper is an attempt

to find such a balance, originating in the early days of OBJ.

Proof scores interleave specification and proof commands

with comments intended to clarify structure and intent. On

the other hand, our Kumo8 system [15, 27] supports com-

pletely mechanical proofs, while still trying to make the

8 Kumo is a Japanese word for “spider,” chosen for this system because
it weaves web sites for proofs.
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best use of the respective strong points of humans and ma-

chines. However, this ambitious goal requires formalizing

every form of inference used in proofs. The proofs of Lem-

mas B and C illustrate the difficulty that this might pose,

since they are inductions over the structure of items with

initial semantics inside of coinductive streams, and it seems

that any inference rule that could justify such proofs would

have to be rather specialized, so that some might consider

it better to leave it informal, as in this paper. Alternatively,

one might consider mechanical support for showing sound-

ness of new rules, and then automatically adding them to

the Kumo rule base for later use in proofs.
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ioral logics. In Horst Reichel, editor, Proceedings, Coalge-

braic Methods in Computer Science (CMCS’00), volume 33

of Electronic Notes in Theoretical Computer Science, pages

61–79. Elsevier Science, March 2000.
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[8] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural co-

herence in object-oriented algebraic specification. Journal of

Universal Computer Science, 6(1):74–96, 2000.

[9] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic

Specification 1: Equations and Initial Semantics. Springer,

1985. EATCS Monographs on Theoretical Computer Sci-

ence, Vol. 6.

[10] Marie-Claude Gaudel and Igor Privara. Context induction:

an exercise. Technical Report 687, LRI, Université de Paris-
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