

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

Property Library for R134a

FluidLAB
with LibR134a
for MATLAB®

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Matthias Kunick

A. Blaeser

Property Library for the Calculation of R134a

FluidLAB for MATLAB[®] LibR134a

Contents

- 0. Package Contents
 - 0.1 Zip file for 32-bit MATLAB®
 - 0.2 Zip file for 64-bit MATLAB®
- 1. Property Functions
- 2. Application of FluidLAB in MATLAB®
 - 2.1 Installing FluidLAB including LibR134a
 - 2.2 Licensing the LibR134a Property Library
 - 2.3 Example: Calculation of h = f(p,t,x) in an M-File
 - 2.4 Example: Calculation of h = f(p,t,x) in the Command Window
 - 2.5 Removing FluidLAB including LibR134a
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© Zittau/Goerlitz University of Applied Sciences, Germany

Faculty of Mechanical Engineering

Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49-3583-61-1846 or -1881

Fax: +49-3583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip file for 32-bit MATLAB®

The following zip file is delivered for your computer running a 32-bit version of MATLAB®.

"CD_FluidLAB_LibR134a.zip"

Including the following files:

FluidLAB_LibR134a_Setup.exe - Installation program for the FluidLAB Add-On

for use in MATLAB®

LibR134a.dll - Dynamic Link Library for R134a for use

in MATLAB®

FluidLAB_LibR134a_Docu_Eng.pdf - User's Guide

0.2 Zip file for 64-bit MATLAB®

The following zip file is delivered for your computer running a 64-bit version of MATLAB®.

"CD_FluidLAB_LibR134a_x64.zip"

Including the following files and folders:

Files:

Setup.exe - Self-extracting and self-installing program

for FluidLAB

FluidLAB_LibR134a_64_Setup.msi - Installation program for the FluidLAB Add-On

for use in MATLAB®

LibR134a.dll - Dynamic Link Library for R134a for use

in MATLAB®

FluidLAB_LibR134a_Docu_Eng.pdf - User's Guide

Folders:

vcredist_x64 - Folder containing the "Microsoft Visual C++

2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft Windows

Installer"

1. Property Functions

Functional Dependence	Function Name	Call from Fortran program	Call in DLL LibR134a as parameter	Property or Function	Unit of the result
a = f(p,t,x)	a_ptx_R134a	A_PTX_R134A(P,T,X)	C_A_PTX_R134A(A,P,T,X)	Thermal diffusivity	m ² /s
$c_p = f(p,t,x)$	cp_ptx_R134a	CP_PTX_R134A(P,T,X)	C_CP_PTX_R134A(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_V = f(p,t,x)$	cv_ptx_R134a	CV_PTX_R134A(P,T,X)	C_CV_PTX_R134A(CV,P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\eta = f(p,t,x)$	eta_ptx_R134a	ETA_PTX_R134A(P,T,X)	C_ETA_PTX_R134A(ETA,P,T,X)	Dynamic viscosity	Pa s
h = f(p,t,x)	h_ptx_R134a	H_PTX_R134A(P,T,X)	C_H_PTX_R134A(H,P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p,t,x)$	kappa_ptx_R134a	KAP_PTX_R134A(P,T,X)	C_KAP_PTX_R134A(KAP,P,T,X)	Isentropic exponent	-
$\lambda = f(\rho, t, x)$	lambda_ptx_R13a	LAM_PTX_R134A(P,T,X	C_LAM_PTX_R134A(LAM,P,T,X)	Thermal conductivity	W/m K
v = f(p,t,x)	ny_ptx_R134a	NY_PTX_R134A(P,T,X)	C_NY_PTX_R134A(NY,P,T,X)	Kinematic viscosity	m ² /s
$\rho_{\rm S} = {\sf f}(t)$	ps_t_R134a	PS_T_R134A(T)	C_PS_T_R134A(PS,T)	Vapor pressure from temperature	Bar
Pr = f(p,t,x)	Pr_ptx_R134a	PR_PTX_R134A(P,T,X)	C_PR_PTX_R134A(PR,P,T,X)	Prandtl-Number	-
$\rho = f(p,t,x)$	rho_ptx_R134a	RHO_PTX_R134A(P,T,X	C_RHO_PTX_R134A(RHO,P,T,X)	Density	kg/m³
s = f(p,t,x)	s_ptx_R134a	S_PTX_R134A(P,T,X)	C_S_PTX_R134A(S,P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_R134a	T_PH_R134A(P,H)	C_T_PH_R134A(T,P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_R134a	T_PS_R134A(P,S)	C_T_PS_R134A(T,P,S)	Backward function: Temperature from pressure and entropy	°C
$t_{\rm S} = f(p)$	ts_p_R134a	TS_P_R134A(P)	C_TS_P_R134A(TS,P)	Saturation temperature from pressure	°C
u = f(p,t,x)	u_ptx_R134a	U_PTX_R134A(P,T,X)	C_U_PTX_R134A(U,P,T,X)	Specific internal energy	kJ/kg
v = f(p,t,x)	v_ptx_R134a	V_PTX_R134A(P,T,X)	C_V_PTX_R134A(V,P,T,X)	Specific volume	m³/kg
w = f(p,t,x)	w_ptx_R134a	W_PTX_R134A(P,T,X)	C_W_PTX_R134A(W,P,T,X)	Isentropic speed of sound	m/s²
x = f(p,h)	x_ph_R134a	X_PH_R134A(P,H)	C_X_PH_R134A(X,P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_R134a	X_PS_R134A(P,S)	C_X_PS_R134A(X,P,S)	Backward function: Vapor fraction from pressure and entropy	kg/kg

Units: $t \text{ in } ^{\circ}\text{C}$

p in bar

x in (kg of saturated steam)/(kg wet steam)

Range of validity

Temperature range: from $t(p, \rho_{max})$ to 181.85 °C

Pressure range: from $p_t = 0.000389564$ bar to 700 bar

Reference state

h = 200 kJ/kg and s = 1 kJ/(kg K) at $t = 0 ^{\circ}\text{C}$ on the saturated liquid line (x = 0)

Details on the vapor fraction x

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value for t between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1000.

Wet steam region: Temperature ranges from $t_{\rm t}$ = -103.30 °C to $t_{\rm c}$ = 101.03 °C

Pressure ranges from p_t = 0. 000389564 bar to p_c = 40.566 bar

Hint:

If the calculation results in –1000, the values entered represent a state point beyond the range of validity of LibR134a. For further information on each function and its range of validity see Chapter 3. The same information may also be accessed via the online help pages.

2 Application of FluidLAB in MATLAB®

The FluidLAB Add-In has been developed to calculate thermodynamic properties in MATLAB® more conveniently. Within MATLAB® it enables the direct call of functions relating to R134a from the LibR134a property library.

2.1 Installing FluidLAB

Installing FluidLAB including LibR134a for 32-bit MATLAB®

This section describes the installation of FluidLAB LibR134a for a 32-bit version of MATLAB[®]. Before you begin, it is best to close any Windows[®] applications, since Windows[®] may need to be rebooted during the installation process.

After you have downloaded and extracted the zip-file "CD_FluidLAB_LibR134a.zip", you will see the folder

```
CD FluidLAB LibR134a
```

in your Windows Explorer®, Norton Commander® or another similar program you are using.

Open this folder by double-clicking on it.

In this folder you will see the following files:

```
FluidLAB_LibR134a_Docu_Eng.pdf
FluidLAB_LibR134a_Setup.exe
LibR134a.dll.
```

In order to run the installation of FluidLAB including, the LibR134a property library, double-click on the file

```
FluidLAB LibR134a Setup.exe.
```

Installation may start with a window noting that all Windows® programs should be closed. When this is the case, the installation can be continued. Click the "Next >" button.

In the following dialog box, "Destination Location", the default path offered automatically for the installation of FluidLAB is

```
C:\Program Files\FluidLAB\LibR134a (for English version of Windows)
C:\Programme\FluidLAB\LibR134a (for German version of Windows).
```

By clicking the "Browse..." button, you can change the installation directory before installation (see Figure 2.1).

Figure 2.1: "Destination Location"

If you wish to change directories, click the "Browse..." button and select your desired directory. The instructions in this documentation refer to the stated default directory. Leave this window by clicking the "Next >" button.

The dialog window "Start Installation" pops up. Click the "Next >" button to continue installation. The FluidLAB files are now being copied into the created directory on your hard drive. Click the "Finish >" button in the following window to complete installation.

The installation program has copied the following files for LibR134a into the directory:

C:\Program Files\FluidLAB\LibR134a (for English version of Windows)
C:\Programme\FluidLAB\LibR134a (for German version of Windows)):

advapi32.dll LC.dll

Dformd.dll msvcp60.dll
Dforrt.dll msvcrt.dll
INSTALL.LOG Unwise.exe
LibR134a.dll Unwise.ini

Now, you have to overwrite the file "LibR134a.dll" in your FluidLAB directory with the file of the same name provided on your CD with FluidLAB.

To do this, open the CD in "My Computer" and click on the file "LibR134a.dll" in order to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your FluidLAB directory (the standard being

C:\Program Files\FluidLAB\LibR134a (for English version of Windows)
C:\Programme\FluidLAB\LibR134a (for German version of Windows))

and insert the file "LibR134a.dll" by clicking the "Edit" menu in your Explorer and then select "Paste". Answer the question whether you want to replace the file by clicking the "Yes" button. Now, you have overwritten the file "LibR134a.dll" successfully and the property functions are available in MATLAB.

Installing FluidLAB including LibR134a for 64-bit MATLAB®

This section describes the installation of FluidLAB LibR134a.

Before you begin, it is best to close any Windows® applications, since Windows® may need to be rebooted during the installation process.

After you have downloaded and extracted the zip-file "CD_FluidLAB_LibR134a_x64.zip", you will see the folder

```
CD FluidLAB LibR134a
```

in your Windows Explorer®, Norton Commander® or any other similar program you are using.

Open this folder by double-clicking on it.

In this folder you will see the following files

FluidLAB_LibR134a_Docu_Eng.pdf FluidLAB_LibR134a_64_Setup.msi LibR134a.dll Setup.exe

and folders

/vcredist_x64

/WindowsInstaller3_1.

In order to run the installation of FluidLAB including, the LibR134a property library, double-click on the file

Setup.exe.

Installation of FluidLAB LibR134a starts with a window noting that the installer will guide you through the installation process. Click the "Next >" button to continue.

In the following dialog box, "Destination Location", the default path offered automatically for the installation of FluidLAB is

C:\Program Files\FluidLAB\LibR134a (for English version of Windows)
C:\Programme\FluidLAB\LibR134a (for German version of Windows)

By clicking the "Browse..." button, you can change the installation directory before installation (see Figure 2.2).



Figure 2.2: "Select Installation Folder"

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidLAB.

After FluidLAB has been installed, you will see the sentence "FluidLAB LibR134a 64 has been successfully installed." Confirm this by clicking the "Close" button.

The installation program has copied the following files for LibR134a into the directory

"C:\Program Files\FluidLAB\LibR134a" (for English version of Windows) "C:\Programme\FluidLAB\LibR134a" (for German version of Windows):

capt_ico_big.ico libifcoremd.dll
LC.dll libiomp5md.dll
LibR134a.dll libmmd.dll

Now, you have to overwrite the file "LibR134a.dll" in your FluidLAB directory with the file of the same name provided on your CD with FluidLAB.

To do this, open the CD in "My Computer" and click on the file "LibR134a.dll" in order to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your FluidLAB directory (the standard being

"C:\Program Files\FluidLAB\LibR134a" (for English version of Windows)
"C:\Programme\FluidLAB\LibR134a" (for German version of Windows))

and insert the file "LibR134a.dll" by clicking the "Edit" menu in your Explorer and then select "Paste". Answer the question whether you want to replace the file by clicking the "Yes" button. Now, you have overwritten the file "LibR134a.dll" successfully and the property functions are available in MATLAB.

The installation programs for both the 32-bit and the 64-bit Windows version have copied the following function files for LibR134a into the directory

"C:\Program Files\FluidLAB\LibR134a" (for English version of Windows)
"C:\Programme\FluidLAB\LibR134a" (for German version of Windows):

- Dynamic Link Library "LibR134a.dll" and other necessary system DLL files.
- MATLAB®-Interface-Program for calculable functions

a_ptx_R134a rho_ptx_R134a cp_ptx_R134a s_ptx_R134a cv_ptx_R134a t_ph_R134a eta_ptx_R134a t_ps_R134a h ptx R134a ts p R134a kappa_ptx_R134a u_ptx_R134a lambda ptx R134a v_ptx_R134a ny ptx R134a w ptx R134a Pr_ptx_R134a x_ph_R134a ps t R134a x ps R134a

Please note that there is a difference in the file extension of the function files.

The 32-bit installation program has copied function files with the file extension

.mexw32

and the 64-bit installation program has copied function files with the file extension

.mexw64

into your LibR134a directory (the standard being

"C:\Program Files\FluidLAB\LibR134a" (for English version of Windows)
"C:\Programme\FluidLAB\LibR134a" (for German version of Windows)).

2.2 Licensing the LibR134a Property Library

The licensing procedure must be carried out when the prompt message appears. In this case, you will see the "License Information" window for LibR134a (see figure below).

Figure 2.3: "License Information" window

Here you are asked to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. If you do not have this, or have any questions, you will find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.4: "Help" window

If you do not enter a valid license it is still possible to use MATLAB[®] by clicking "Cancel". In this case, the LibR134a property library will display the result "–11111111" for every calculation.

The "License Information" window will appear every time you use FluidLAB LibR134a until you enter a license code to complete registration. If you decide not to use FluidLAB LibR134a, you can uninstall the program following the instructions given in section 2.5 of this User's Guide.

2.3 Example: Calculation of h = f(p,t,x) in an M-File

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t and vapor fraction x using FluidLAB.

Please carry out the following instructions:

- Start Windows Explorer[®], Total Commander[®], My Computer or another file manager program. The following description refers to Windows Explorer[®].
- Your Windows Explorer[®] should be set to "Details" for easier viewing. Click the "Views" button and select "Details."
- Switch into the program directory of FluidLAB, in which you will find the folder "\LibR134a"; it is generally saved under: "C:\Program Files\FluidLAB"
- Create the folder "\LibR134a_Example" by clicking on "File" in the Explorer[®] menu, then "New" in the menu which appears and afterwards selecting "Folder". Name the new folder "\LibR134a Example."
- You will now see the following window:

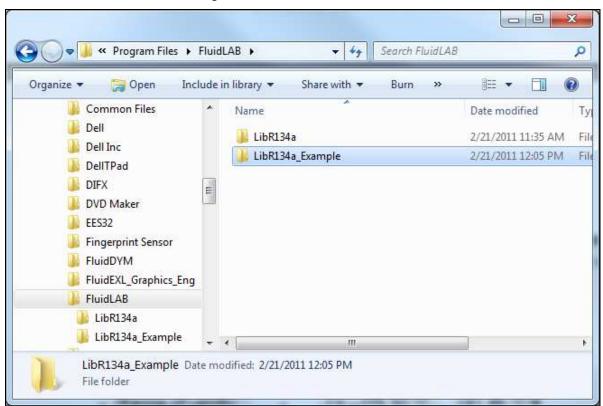


Figure 2.5: Folders "LibR134a" and "LibR134a_Example"

- Switch into the directory "LibR134a" within "\FluidLAB", the standard being
- "C:\Program Files\FluidLAB\LibR134a"
- (for English version of Windows)
- "C:\Programme\FluidLAB\LibR134a"
- (for German version of Windows))."

- You will see the following window:

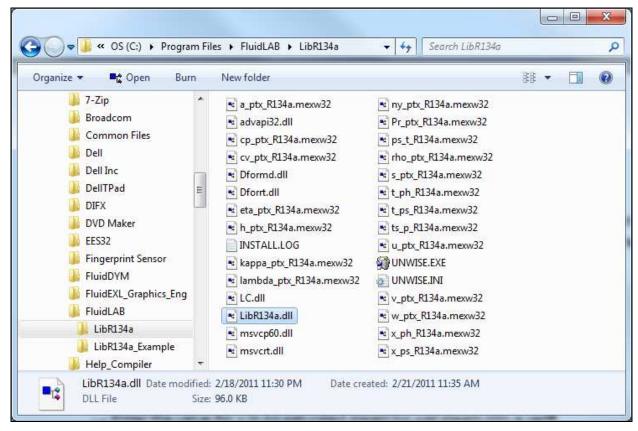


Figure 2.6: Contents of the folder "LibR134a"

If you have installed the <u>32-bit version</u> of LibR134a you will now have to copy the following files into the directory

- "C:\Program Files\FluidLAB\LibR134a_Example" (for English version of Windows)
- "C:\Programme\FluidLAB\LibR134a_Example" (for German version of Windows)

in order to calculate the function h = f(p,t,x).

- The following files are needed:
 - "h ptx 97.mexw32"
 - "LibR134a.dll"
 - "libifcoremdd.dll"
 - "libmmd.dll"
 - "libmmdd.dll"
 - "msvcr71d.dll"
 - "dforrt.dll.dll"
 - "msvcrt.dll"
- Click the file "h_ptx_R134a.mexw32", then click "Edit" in the upper menu bar and select "Copy".
- Switch into the directory
 - "C:\Program Files\FluidLAB\LibR134a_Example" (for English version of Windows)
 - "C:\Programme\FluidLAB\LibR134a Example" (for German version of Windows),

click "Edit" and select "Paste".

Repeat these steps in order to copy the other files listed above.

You may also select all the above-named files and then copy them as a group (press the Control button to enable multiple markings).

- You will see the following window:

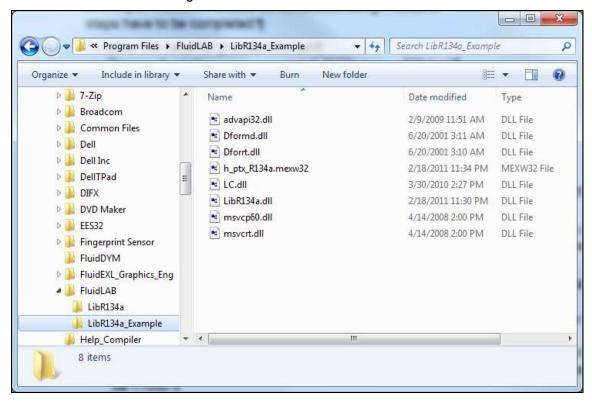


Figure 2.7: Contents of the folder "LibR134a_Example"

If you have installed the <u>64-bit version</u> of LibR134a you will now have to copy the following files into the directory

"C:\Program Files\FluidLAB\LibR134a_Example" (for English version of Windows)

"C:\Programme\FluidLAB\LibR134a_Example" (for German version of Windows)

in order to calculate the function h = f(p,t,x).

- The following six files are needed:
 - "h_ptx_R134a.mexw64"
 - "LC.dll"
 - "LibR134a.dll"
 - "libifcoremd.dll"
 - "libiomp5.dll"
 - "libmmd.dll."
- Click the file "h_ptx_R134a.mexw64", then click "Edit" in the upper menu bar and select "Copy."
- Switch into the directory

"C:\Program Files\FluidLAB\LibR134a_Example" (for English version of Windows) "C:\Programme\FluidLAB\LibR134a Example" (for German version of Windows),

click "Edit" and then "Paste."

- Repeat these steps in order to copy the other files listed above. You may also select all the above-named files and then copy them as a group (press the Control button to enable multiple markings).
- Now, start MATLAB (if you have not started it before).
- Click the button marked in the next figure in order to open the folder "\LibR134a_Example" in the "Current Folder" window.

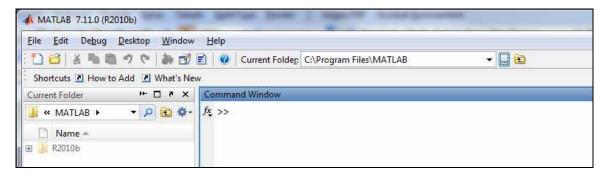


Figure 2.8: Selection of the working directory

- Find and select the directory "C:\Program Files\FluidLAB\LibR134a_Example" in the pop-up menu (see the following figure).

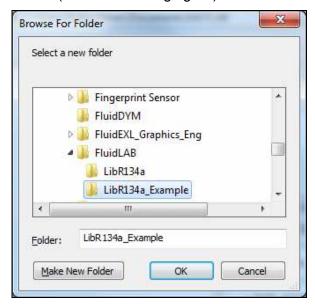


Figure 2.9: Choosing the "LibR134a Example" folder

- Confirm your selection by clicking the "OK" button.
- First of all you need to create an M–File in MATLAB[®]. Within MATLAB[®] click "Desktop", then select "Editor". Now click on the "New Script" button in the Editor Window.
- If the "Editor" window appears as a separate window, you can embed it into MATLAB[®] by clicking the insertion arrow (see next figure) in order to obtain a better view.

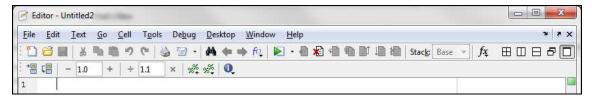


Figure 2.10: Embedding the "Editor" window

- In the following figure you will see the "Editor – Untitled" window.

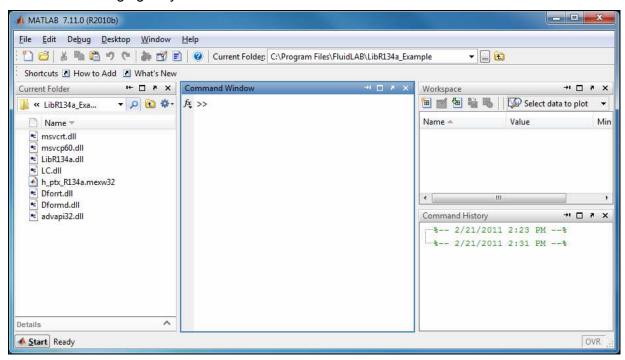


Figure 2.11: Embedded "Editor" window

Now type the following lines in the "Editor - Untitled" window:

Text to be written:	Explanation:	
% h_ptx_R134a.m	file name as comment	
88	paragraph separation	
p=10; % pressure in bar	declaration of the	
t=25; % temperature in °C	variables pressure,	
x=-1; % vapor fraction in kg/kg	temperature, art and composition of mixture	
	paragraph separation	
h=h_ptx_R134a(p,t,x)	function call	
%%	paragraph separation	

Remarks:

- The program interprets the first line, starting with "%," to be a data description in "Current Directory."
- Paragraph separations which are mandatory are marked with "%%". This also serves to separate the declaration of variables and calculation instructions.

- The words which are printed in green, start with "%" and come after the variables are comments. They are not in fact absolutely necessary, but they are very helpful for your overview and to make the process more easily understood.
- Omit the semicolons after the numerical values if you wish to see the result for *h* and the input parameters.

The values of the function parameters in their corresponding units stand for:

```
    First operand: Value for p = 10 (Range of validity: p = 0.00391 bar ... 700 bar)
    Second operand: Value for t = 25 °C (Range of validity: t = -103.30 °C ... 181.85 °C)
    Third operand: Value for x = -1 kg/kg
```

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction *x* are to be considered when the value for *x* is entered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam), e. g., pressure p and temperature t are given, x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000, plus the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the enthalpy calculated later will result in -1000.

```
(Vapor pressure curve of R134a: t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3) \dots t_{\text{C}} = 101.03 \text{ °C}

p_{\text{t}} = 0.00389564 \text{ bar} \dots p_{\text{C}} = 40.566 \text{ bar})
```

- Save the "M-File" by clicking the "File" button and then click "Save As...".
- The menu "Save file as:" appears; In this menu, the folder name "LibR134a_Example" must be displayed in the "Save in:" field.
- Next to "File name" you have to type "Example_h_ptx_R134a.m" and afterwards click the "Save" button.

Note.

The name of the example file has to be different in comparison to the name of the used function. For example, the file could not be named "h_ptx_R134a.m" in this case. Otherwise an error message will appear during the calculation.

- You will now see the following window:

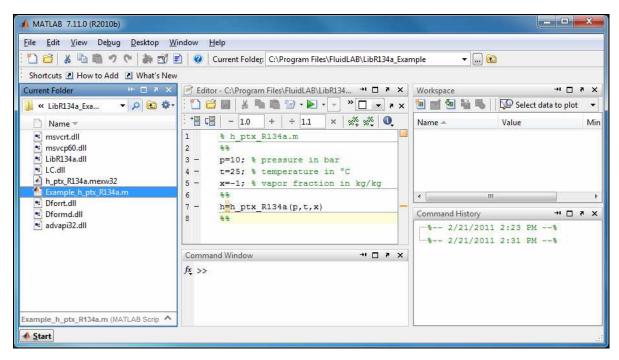


Figure 2.12: "Example_h_ptx_R134a.m" M-file

- Within the "Current Folder" window, the file "Example h ptx R134a.m" appears.
- Right-click on this file and select "Run" in the menu which appears (see next figure).

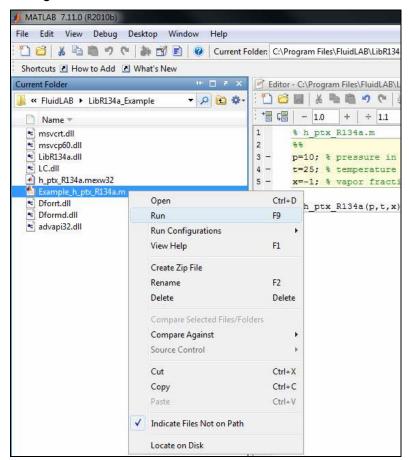


Figure 2.13: Running the "Example_h_ptx_R134a.m" M-file

You will see the following window:

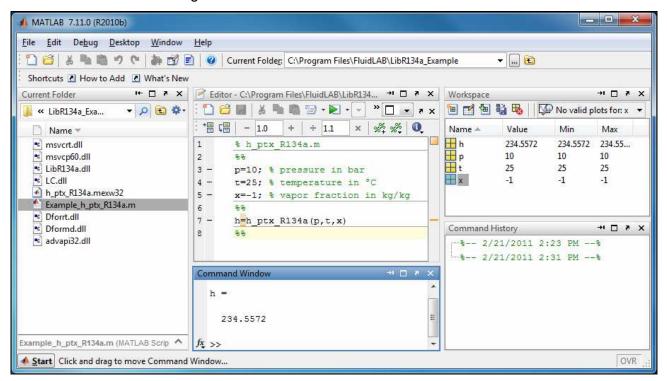


Figure 2.14: MATLAB® with calculated result

The result for *h* appears in the "Command Window".

 \Rightarrow The result in our sample calculation here is: "h = 234.5572". The corresponding unit is kJ/kg (see table of the property functions in Chapter 1).

To be able to calculate other values, you have to copy the associated mexw32 files as well because MATLAB[®] can only access functions that are located in the "Current Directory" window. The example calculated can be found in the directory

C:\Program Files\FluidLAB\LibR134a_Example," and you may use it as a basis for further calculations using FluidLAB.

2.4 Example: Calculation of h = f(p,t,x) in the Command Window

- Start MATLAB[®] (if you have not started it already).
- Click the button marked in the following image in order to open the folder "\LibR134a_Example" in the window "Current Folder."

(for English version of Windows)

(for German version of Windows)

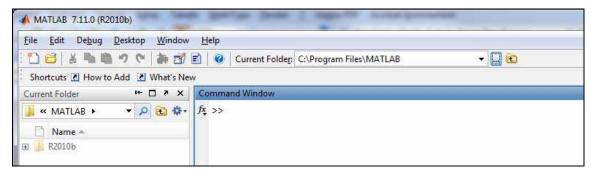


Figure 2.15: Selection of the working directory

- Find and select the directory

"C:\Program Files\FluidLAB\LibR134a_Example"

 $\label{lem:condition} $$ "C:\Programme\FluidLAB\LibR134a_Example" $$$

in the menu which appears (see the following figure).

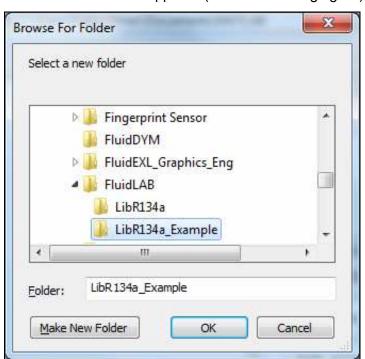


Figure 2.16: Choosing the "LibR134a_Example" folder

- Confirm your selection by clicking the "OK" button.
- You will see the following window:

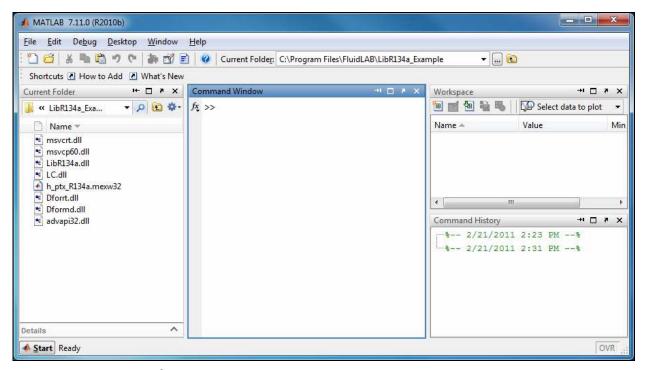


Figure 2.17: MATLAB® with necessary files

Corresponding to the table of the property functions in Chapter 1 you have to call up the function $"h_ptx_R134a"$ as follows for calculating h = f(p,t,x).

Write "h=h_ptx_R134a(10,25,-1)" within the "Command Window"

The values of the function parameters in their corresponding units stand for:

```
    First operand: Value for p = 10 bar (Range of validity: p = 0.00391 bar ... 700 bar)
    Second operand: Value for t = 25 °C (Range of validity: t = -103.30 °C ... 181.85 °C)
```

- Third operand: Value for x = -1

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction *x* are to be considered when the value for *x* is entered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam), e. g., pressure p and temperature t are given, x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000, plus the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the enthalpy calculated later will result in -1000.

```
(Vapor pressure curve of R134a: t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3) \dots t_{\text{C}} = 101.03 \text{ °C}

p_{\text{t}} = 0.00389564 \text{ bar} \dots p_{\text{C}} = 40.566 \text{ bar})
```

- Confirm your entry by pressing the "ENTER" button.
- You will see the following window:

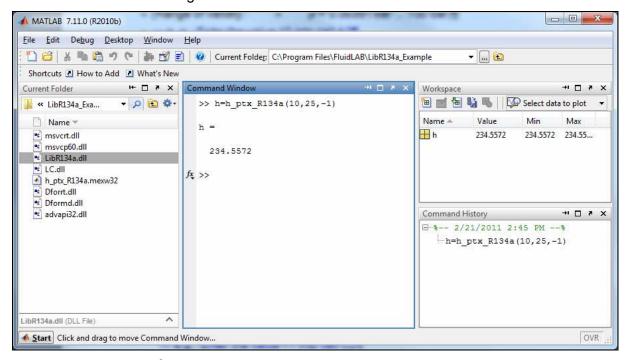


Figure 2.18: MATLAB® with calculated result

 \Rightarrow In the "Command Window" you will see the result "h = 234.5572". The corresponding unit is kJ/kg (see table of the property functions in Chapter 1).

To be able to calculate other values, you will have to copy the respective mexw32 or mexw64 files into the working directory as well because MATLAB® can only access functions that are located in the "Current Directory" window.

2.5 Removing FluidLAB including LibR134a

To remove the property library LibR134a from your hard disk drive in Windows[®], click "Start" in the Windows[®] task bar, select "Settings" and click "Control Panel".

Now double-click on "Add or Remove Programs". In the list box of the "Add or Remove Programs" window that appears select "FluidLAB LibR134a" by clicking on it and click the "Change/Remove" button.

In the following dialog box click "Automatic" and then click the "Next >" button.

Confirm the following menu "Perform Uninstall" by clicking the "Finish" button.

Finally, close the "Add or Remove Programs" and "Control Panel" windows. Now, FluidLAB has been removed.

If there is no library other than LibR134a installed, the directory "FluidLAB" will be removed as well.

3. Program Documentation

Thermal Diffusivity a = f(p,t,x)

Function Name: a_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION A_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_A_PTX_R134A(A,P,T,X)

for call from DLL: REAL*8 A,P,T,X

Input Values:

 ${\bf P}$ - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

A_PTX_R134A, **A** or **a_ptx_R134a** – Thermal diffusivity
$$a = \frac{\lambda^* v}{c_p}$$
 in m²/s

Range of validity

Temperature range: from - 73.15 °C to 176.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Density range: from $0.00105455 \text{ kg /m}^3 \text{ to } 1550 \text{ kg / m}^3$

Details on the vapor fraction \boldsymbol{x} and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Saturated liquid and saturated vapor line:

Temperature range from t = -73.15 °C to $t_c = 101.03$ °C

Pressure range from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result **A_PTX_R134A**, **A = -1000** or **a_ptx_R134a = -1000** for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or t < -103.3 °C or $\rho > 1550$ m³ / kg

Saturation lines: at p = -1000 and t > 101.03 °C or t < 73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or *t* < -103.3 °C

References: [16], [23]

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION CP_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_CP_PTX_R134A(CP,P,T,X)

for call from DLL: REAL*8 CP,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature *t* in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

CP_PTX_R134A, **CP** or **cp_ptx_R134a** – Specific isobaric heat capacity c_p in kJ/(kg K)

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result CP_PTX_R134A, CP = -1000, or cp_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ kg/m}^3$

Saturation lines: at p = -1000 and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Specific Isochoric Heat Capacity $c_v = f(p, t, x)$

Function Name: cv_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION CV_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_CV_PTX_R134A(CV,P,T,X)

for call from DLL: REAL*8 CV,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature *t* in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

CV_PTX_R134A, CV or cv_ptx_R134a — Specific isochoric heat capacity c_V in kJ/(kg K)

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result CV_PTX_R134A, CV = -1000 or cv_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3) \text{ or } \rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$

Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: eta_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION ETA_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_ETA_PTX_R134A(ETA,P,T,X)

for call from DLL: REAL*8 ETA,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

ETA_PTX_R134A, ETA or eta_ptx_R134a - Dynamic viscosity η in Pa s

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result ETA_PTX_R134A, ETA = -1000 or eta_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

References: [16], [22]

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION H_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_H_PTX_R134A(H,P,T,X)

for call from DLL: REAL*8 H,P,T,X

Input Values:

 ${f P}$ - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

H_PTX_R134A, H or h_ptx_R134a - Specific enthalpy h in kJ/kg

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{C}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result H_PTX_R134A, H = -1000 or eta_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Isentropic Exponent $\kappa = f(p,t,x)$

Function Name: kappa_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION KAP_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_KAP_PTX_R134A(KAP,P,T,X)

for call from DLL: REAL*8 KAP,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

KAP_PTX_R134A, **KAP** or **kappa_ptx_R134a** – Isentropic exponent
$$\kappa = \frac{w^2}{p^*v}$$

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction \boldsymbol{x} and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result KAP_PTX_R134A, KAP = -1000 or kappa_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: lambda_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION LAM_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_LAM_PTX_R134A(LAM,P,T,X)

for call from DLL: REAL*8 LAM,P,T,X

Input Values:

 ${f P}$ - Pressure p in bar

T - Temperature *t* in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

LAM_PTX_R134A, LAM or lambda_ptx_R134a − Thermal conductivity λ in W / m K

Range of validity

Temperature range: from - 73.15 °C to 176.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from t = -103.30 °C to $t_c = 101.03$ °C

Pressure range from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result LAM_PTX_R134A, LAM = - 1000 or lambda_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or t < -103.3 °C or $\rho > 1550$ m³ /kg

Saturation lines: at p = -1000 and t > 101.03 °C or t < 73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or *t* < -103.30 °C

References: [16], [23]

Kinematic Viscosity $\nu = f(p,t,x)$

Function Name: ny_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION NY_PTX_ R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_NY _PTX_ R134A(NY,P,T,X)

for call from DLL: REAL*8 NY,P,T,X

Input Values:

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

```
NY_PTX_ R134A, NY or ny_ptx_ R134a - Kinematic viscosity v = \eta * v in m<sup>2</sup>/s
```

Range of validity

Temperature range: from - 73.15 °C to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Density range: from 0.00105455 m³ / kg to 1550 m³ / kg

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from t = -103.30 °C to $t_c = 101.03$ °C

Pressure range from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result NY_PTX_ R134A, NY= -1000 or ny_ptx_ R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or t < -103.3 °C or $\rho > 1550$ m³ / kg Saturation lines: at $\rho = -1000$ and t > 101.03 °C or t < 73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

41 p = 40.000 bai oi p = 0.00000000 bai c

t > 101.03 °C or *t* < -103.30 °C

References: [16], [22]

Prandtl-Number Pr = f(p,t,x)

Function Name: Pr_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION PR_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_PR _PTX_R134A(PR,P,T,X)

for call from DLL: REAL*8 PR,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

PR_PTX_R134A, **PR** or **Pr_ptx_R134a** - Prandtl-Number Pr =
$$\frac{\eta * c_p}{\lambda}$$

Range of validity

Temperature range: from - 73.15 °C to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Density range: from 0.00105455 m³ / kg to 1550 m³ / kg

Details on the vapor fraction \boldsymbol{x} and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from t = -103.30 °C to $t_c = 101.03$ °C

Pressure range from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result PR_PTX_ R134A, PR= -1000 or Pr_ptx_ R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or t < -103.3 °C or $\rho > 1550$ m³ / kg Saturation lines: at $\rho = -1000$ and t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and

t > 101.03 °C or *t* < -103.30 °C

References: [16], [22], [23]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_R134a

Subroutine with function value: **REAL*8 FUNCTION PS_T_ R134A(T)**

for call from Fortran: REAL*8 T

INTEGER*4 FUNCTION C_PS_T_ R134A(PS,T) Subroutine with parameter:

for call from DLL: REAL*8 PS,T

Input Values:

T - Temperature t in °C

Result

PS_T_R134A, **PS** or **ps_t_R134a** – Vapor pressure p_s in bar

Range of validity

from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 101.03 °C Temperature range:

Results for wrong input values

Result **PS_T_ R134A**, **PS = -1000** or **ps_t_ R134a = -1000** for input values:

t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Density $\rho = f(p,t,x)$

Function Name: rho_ptx_ R134a

Subroutine with function value: REAL*8 FUNCTION RHO_PTX_ R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_RHO_PTX_ R134A(RHO,P,T,X)

for call from DLL: REAL*8 RHO,P,T,X

Input Values:

 ${f P}$ - Pressure p in bar

T - Temperature *t* in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

RHO_PTX_R134A, **RHO** or **rho_ptx_R134a** – Density ρ in kg/m³

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result RHO_PTX_R134a, RHO= -1000 or rho_ptx_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$

Specific Entropy s = f(p,t,x)

Function Name: s_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION S_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_S_PTX_R134A(S,P,T,X)

for call from DLL: REAL*8 S,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature *t* in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

S_PTX_R134A, S or s_ptx_R134a - Specific entropy s in kJ/kg K

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

If it is not the case the calculation for the quantity of the chosen function to be calculated results in - 1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result S_PTX_R134A , S = -1000 or $s_ptx_R134a = -1000$ for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or t < -73.15 °C or $\rho > 1550$ m³ / kg Saturation lines: t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_R134a

Subroutine with function value: REAL*8 FUNCTION T_PH_R134A(P,H)

for call from Fortran: REAL*8 P,H

Subroutine with parameter: INTEGER*4 FUNCTION C_T _PH_R134A(T,P,H)

for call from DLL: REAL*8 T,P,H

Input Values:

 ${\bf P}$ - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

T_PH_R134A, **T** or **t_ph_R134a** - Temperature *t* in °C

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result T_PH_R134A, T = -1000 or t_ph_R134a = -1000 for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p > 70.54 bar or p < 0.00389564 bar or

t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_R134a

Subroutine with function value: REAL*8 FUNCTION T_PS_R134A(P,S)

for call from Fortran: REAL*8 P,S

Subroutine with parameter: INTEGER*4 FUNCTION C_T_PS_R134A(T,P,S)

for call from DLL: REAL*8 T,P,S

Input Values:

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

T_PS_R134A, **T** or **t_ps_R134a** - Temperature *t* in °C

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result T_PS_R134A , T = -1000 or $t_ps_R134a = -1000$ for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p > 70.54 bar or p < 0.00389564 bar or

t > 101.03 °C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_R134a

Subroutine with function value: REAL*8 FUNCTION TS_P_R134A(P)

for call from Fortran: REAL*8 P

Subroutine with parameter: INTEGER*4 FUNCTION C_TS_P_R134A(TS,P)

for call from DLL: REAL*8 TS,P

Input Values:

P - Pressure *p* in bar

Result

TS_P_R134A, **TS** or **ts_p_R134a** – Saturation temperature t_s in °C

Range of validity

Pressure range: from 0.00389564 bar to 40.566 bar

Results for wrong input values

Result TS_P_R134A , TS = -1000 or $ts_p_R134a = -1000$ for input values:

p < 0.00389564 bar or p > 40.566 bar

Specific Internal Energy u = f(p,t,x)

Function Name: u_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION U_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_U_PTX_R134A(U,P,T,X)

for call from DLL: REAL*8 U,P,T,X

Input Values:

 ${\bf P}$ - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

U_PTX_R134A, **U** or **u_ptx_R134a** - Specific internal energy *u* in kJ/kg

Range of validity

Temperature range: from $t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result U_PTX_R134A , U = -1000 or $u_ptx_R134a = -1000$ for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Specific Volume v = f(p,t,x)

Function Name: v_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION V_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_V_PTX_R134A(V,P,T,X)

for call from DLL: REAL*8 V,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature *t* in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

 V_PTX_R134A , V or v_ptx_R134a – Specific volume v in m^3 / kg

Range of validity

Temperature range: from $t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result V_PTX_R134A , V = -1000 or $v_ptx_R134a = -1000$ for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_R134a

Subroutine with function value: REAL*8 FUNCTION W_PTX_R134A(P,T,X)

for call from Fortran: REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_W_PTX_R134A(W,P,T,X)

for call from DLL: REAL*8 W,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

W_PTX_R134A, W or w_ptx_R134a - Speed of sound w in m/s

Range of validity

Temperature range: from $t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

Saturated liquid and saturated vapor line:

Temperature range from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to $t_{\text{c}} = 101.03 \text{ °C}$ Pressure range from $p_{\text{t}} = 0.00389564$ bar to $p_{\text{c}} = 40.566$ bar

Results for wrong input values

Result W_PTX_R134A , W = -1000 or $w_ptx_R134a = -1000$ for input values:

Single phase region: p > 700 bar or p < 0.00389564 bar or

(x = -1) t > 181.85°C or $t < t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ or $\rho > 1550 \text{ m}^3 / \text{kg}$

Saturation lines: at p = -1000 and t > 101.03 °C or t < -73.15°C

at t = -1000 and p > 40.566 bar or p < 0.00389564 bar or

at p > 40.566 bar or p < 0.00389564 bar and t > 101.03 °C or $t < t(p, \rho_{max} = 1550 \text{ kg/m}^3)$

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_R134a

Subroutine with function value: REAL*8 FUNCTION X_PH_R134A(P,H)

for call from Fortran: REAL*8 P,H

Subroutine with parameter: INTEGER*4 FUNCTION C_X_PH_R134A(T,P,H)

for call from DLL: REAL*8 X,P,H

Input Values:

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

X_PH_R134A, X or x_ph_R134a - Vapor fraction x in (kg saturated steam/kg wet steam)

Range of validity

Temperature range: from $t(p, \rho_{\text{max}} = 1550 \text{ kg/m}^3)$ to 181.85 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result X_{PH_R134A} , X = -1 or $x_{ph_R134a} = -1$ for input values:

In case the state point is located in the single phase region

p < 40.566 bar or p > 0.00389564 bar

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_R134a

Subroutine with function value: REAL*8 FUNCTION X_PS_R134A(P,S)

for call from Fortran: REAL*8 P,S

Subroutine with parameter: INTEGER*4 FUNCTION C_X_PS_R134A(X,P,S)

for call from DLL: REAL*8 X,P,S

Input Values:

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

X_PS_R134A, X or x_ps_R134a - Vapor fraction x in (kg saturated steam/kg wet steam)

Range of validity

Temperature range: from $t(p, \rho_{max} = 1550 \text{ kg/m}^3)$ to 101.03 °C

Pressure range: from 0.00389564 bar to 700 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_t = 0.00389564$ bar to $p_c = 40.566$ bar

Results for wrong input values

Result X_PS_R134A , X = -1 or $x_ps_R134a = -1$ for input values:

In case the state point is located in the single phase region

p < 40.566 bar or p > 0.00389564 bar

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner O₂ - Schmidt and Wagner

H₂O - IAPWS-95

Ar - Tegeler et al.

N₂ - Span et al.

and of the ideal gases:

SO₂, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of:

Dissociation from VDI 4670 and Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry Air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from ASHRAE RP-1485

Carbon Dioxide including Dry Ice Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS Formulation 2008 of Feistel and IAPWS-IF97

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O_2	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Dry Air including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2007)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth (1995)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker et al. (2003)

n-Butane

Library LibButane_n

Formulation of Bücker et al. (2003)

Mixtures for Absorption Processes

Ammonia/Water Mixtures Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term
(also useable for calculating Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

 $\begin{array}{lll} \text{C}_2\text{H}_6\text{O}_2 & \text{Ethylene glycol} \\ \text{C}_3\text{H}_8\text{O}_2 & \text{Propylene glycol} \\ \text{C}_2\text{H}_5\text{OH} & \text{Ethyl alcohol} \\ \text{CH}_3\text{OH} & \text{Methyl alcohol} \\ \text{C}_3\text{H}_8\text{O}_3 & \text{Glycerol} \end{array}$

K₂CO₃ Potassium carbonate
CaCl₂ Calcium chloride
MgCl₂ Magnesium chloride
NaCl Sodium chloride
C₂H₃KO₂ Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Propane

Library LibPropane

Formulation of Lemmon et al. (2007)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Helium Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_ISO

Neopentane C₅H₁₂ Library LibC5H12_NEO

Isohexane C₅H₁₄ Library LibC5H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Dinitrogen monooxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

Zittau/Goerlitz University of Applied Sciences
Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16

02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de

E-mail: hj.kretzschmar@hs-zigr.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity $\boldsymbol{\eta}$
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

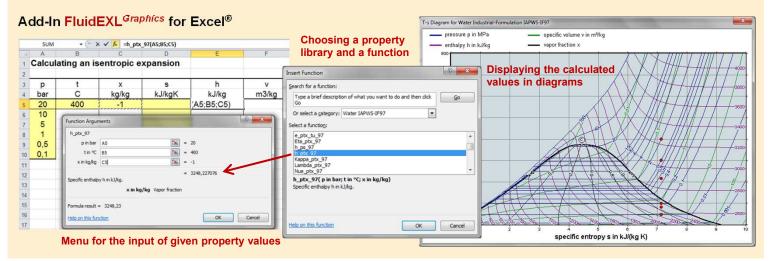
Backward Functions

- T, v, s (p,h)
- *T*, *v*, *h* (*p*,*s*)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

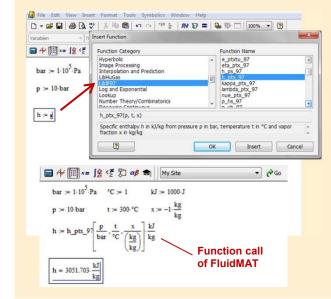
 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

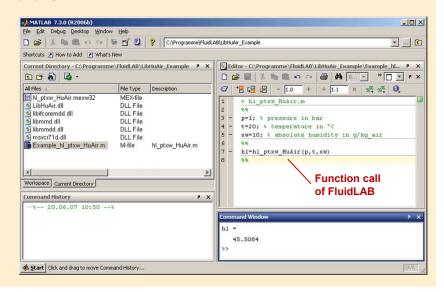


ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

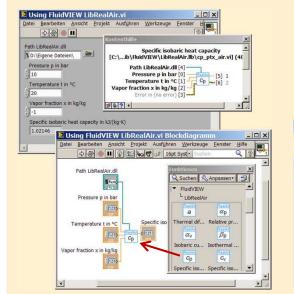
Department of Technical Thermodynamics www.thermodynamics-zittau.de



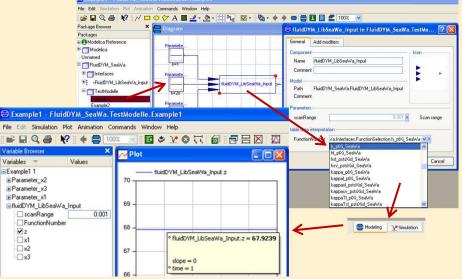
Property Software for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators


Add-In FluidMAT for Mathcad®

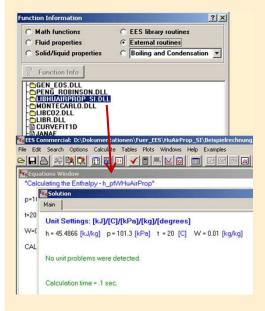
The property libraries can be used in Mathcad[®].


Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.


Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.



Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®

Add-In FluidEES for **Engineering Equation Solver®**

App International Steam Tables for iPhone, iPad, iPod touch, Android smart phones and tablets

Online Property Calculator at www.thermodynamics-zittau.de

Property Software for Pocket Calculators

For more information please contact:

Zittau/Goerlitz University of Applied Sciences **Department of Technical Thermodynamics** Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties a can be calculated in Excel®, MATLAB®, Mathcad®, Engineering Equation Solver® EES, DYMOLA® (Modelica), SimulationX®, and LabVIEW®:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

· Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 IAPWS Sekretariat, Dooley, B, EPRI, Palo Alto CA (1997)
- [2] Wagner, W.; Kruse, A.: Zustandsgrößen von Wasser und Wasserdampf. Springer-Verlag, Berlin (1998)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mareš, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Šifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.

 ASME Journal of Eng. for Gas Turbines and Power 122 (2000) Nr. 1, S. 150-182
- [4] Kretzschmar, H.-J.; Stöcker, I.; Klinger, J.; Dittmann, A.: Calculation of Thermodynamic Derivatives for Water and Steam Using the New Industrial Formulation IAPWS-IF97. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [5] Kretzschmar, H.-J.: Mollier h,s-Diagramm. Springer-Verlag, Berlin (1998)
- [6] Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [7] Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance.
 IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [8] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1994)
- [9] Kretzschmar, H.-J.; Stöcker, I.; Willkommen, Th.; Trübenbach, J.; Dittmann, A.: Supplementary Equations v(p,T) for the Critical Region to the New Industrial Formulation IAPWS-IF97 for Water and Steam. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [10] Kretzschmar, H.-J.; Cooper, J.R.; Dittmann, A.; Friend, D.G.; Gallagher, J.; Knobloch, K.; Mareš, R.; Miyagawa, K.; Stöcker, I.; Trübenbach, J.; Willkommen, Th.: Supplementary Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the Industrial Formulation IAPWS-IF97 for Water and Steam. ASME Journal of Engineering for Gas Turbines and Power in preparation
- [11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1995)

[12] Grigull, U.:

Properties of Water and Steam in SI Units. Springer-Verlag, Berlin (1989)

[13] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[14] VDI Richtlinie 4670

Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. VDI-Handbuch Energietechnik (2000)

[15] Lemmon, E. W.; Jacobsen, R. T; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. Journal of Physical Chemical Reference Data 29 (2000) Nr. 3, S. 331-385

[16] Baehr, H.D.; Tillner- Roth, R.:

Thermodynamische Eigenschaften umweltverträglicher Kältemittel, Zustandsgleichungen und Tafeln für Ammoniak, R22, R134a, R152a und R 123. Springer-Verlag, Berlin Heidelberg (1995)

- [17] Fenghour, A.; Wakeham, W. A.; Vesovic, V.; Watson, J. T. R.; Millat, J.; Vogel, E.: The Viskosity of Ammonia.
 - J. Phys. Chem. Ref. Data, 24, (1995) Nr. 5, S. 1649-1667
- [18] Tufeu, R.; Ivanov, D. Y.; Garrabos, Y.; Le Neindre, B.: Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Ber. Bunsenges. Phys. Chem. 88 (1984) S. 422-427
- [19] Span, R.; Wagner W.:

A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.

J. Phys. Chem. Ref. Data, 25, (1996) Nr. 6, S. 1506-1596

[20] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.:

The Transport Properties of Carbon Dioxide.

J. Phys. Chem. Ref. Data, 19, (1990) Nr. 3, S. 763-808

[21] Bläser, A.:

Diplomarbeit: Berechnung der thermodynamischen Stoffeigenschaften von Ammoniak in energietechnischen Prozessmodellierungen Hochschule Zittau/Görlitz, 2003

[22] Laesecke, A.:

Unpublished 1998 correlation R134aFitSelDV

[23] Perkins, R.A., Laesecke, A., Howley, J., Ramires, M.L.V., Gurova, A.N., Cusco, L.: Experimental thermal conductivity values for the IUPAC round-robin sample of 1,1,1,2-tetrafluoroethane (R134a)", NISTIR, 2000.

6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola[®] (Modelica)
- FluidVIEW for LabVIEW®:

2011

Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011, 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
Voith, Zschopau	07/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011

	Witt Consulting Engineers, Stade	03/2011
	Helbling, Zurich, Switzerland	03/2011
	MAN Diesel, Copenhagen, Denmark	03/2011
	AGO, Kulmbach	03/2011
	University of Duisburg	03/2011, 06/2011
	CCP, Marburg	03/2011
	BASF, Ludwigshafen	02/2011
	ALSTOM Power, Baden, Switzerland	02/2011
	Universität der Bundeswehr, Munich	02/2011
	Calorifer, Elgg, Switzerland	01/2011
	STRABAG, Vienna, Austria	01/2011
	TUEV Sued, Munich	01/2011
	ILK Dresden	01/2011
	Technical University of Dresden	01/2011, 05/2011,
		06/2011, 08/2011
20	010	
	Umweltinstitut Neumarkt	12/2010
	YIT Austria, Vienna, Austria	12/2010
	MCI Innsbruck, Austria	12/2010
	University of Stuttgart	12/2010
	HS Cooler, Wittenburg	12/2010
	Visteon, Novi Jicin, Czech Republic	12/2010
	CompuWave, Brunntal	12/2010
	Stadtwerke Leipzig	12/2010
	MCI Innsbruck, Austria	12/2010
	EVONIK Energy Services, Zwingenberg	12/2010
	Caliqua, Basel, Switzerland	11/2010
	Shanghai New Energy Resources Science & Technology, China	11/2010
	Energieversorgung Halle	11/2010
	Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
	Steinmueller, Berlin	11/2010
	Amberg-Weiden University of Applied Sciences	11/2010
	AREVA NP, Erlangen	10/2010
	MAN Diesel, Augsburg	10/2010
	KRONES, Neutraubling	10/2010

Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010

Augsburg University of Applied Sciences

	Augsburg Oniversity of Applied Colonics	02/2010
	ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
	MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
	Wieland Werke, Ulm	01/2010
	Siemens Energy, Goerlitz	01/2010, 12/2010
	Technical University of Freiberg	01/2010
	ILK, Dresden	01/2010, 12/2010
	Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2	009	
	ALSTOM Power, Baden, Schweiz	01/2009, 03/2009, 05/2009
	Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
	RWE, Neurath	02/2009
	Brandenburg University of Technology, Cottbus	02/2009
	Hamburg University of Applied Sciences	02/2009
	Kehrein, Moers	03/2009
	EPP Software, Marburg	03/2009
	Bernd Münstermann, Telgte	03/2009
	Suedzucker, Zeitz	03/2009
	CPP, Marburg	03/2009
	Gelsenkirchen University of Applied Sciences	04/2009
	Regensburg University of Applied Sciences	05/2009
	Gatley & Associates, Atlanta, USA	05/2009
	BOSCH, Stuttgart	06/2009, 07/2009
	Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
	Ferrostal Power, Saarlouis	06/2009
	BHR Bilfinger, Essen	06/2009
	Intraserv, Wiesbaden	06/2009
	Lausitz University of Applied Sciences, Senftenberg	06/2009
	Nuernberg University of Applied Sciences	06/2009
	Technical University of Berlin	06/2009
	Fraunhofer Institut UMSICHT, Oberhausen	07/2009
	Bischoff, Aurich	07/2009
	Fichtner IT Consulting, Stuttgart	07/2009
	Techsoft, Linz, Austria	08/2009

02/2010

	DLR, Stuttgart		08/2009
	Wienstrom, Vienna, Austria		08/2009
	RWTH Aachen University		09/2009
	Vattenfall, Hamburg		10/2009
	AIC, Chemnitz		10/2009
	Midiplan, Bietigheim-Bissingen		11/2009
	Institute of Air Handling and Refrigeration ILK, Dresden		11/2009
	FZD, Rossendorf		11/2009
	Techgroup, Ratingen		11/2009
	Robert Sack, Heidelberg		11/2009
	EC, Heidelberg		11/2009
	MCI, Innsbruck, Austria		12/2009
	Saacke, Bremen		12/2009
	ENERKO, Aldenhoven		12/2009
20	008		
	Pink, Langenwang		01/2008
	Fischer-Uhrig, Berlin		01/2008
	University of Karlsruhe		01/2008
	MAAG, Kuesnacht, Switzerland		02/2008
	M&M Turbine Technology, Bielefeld		02/2008
	Lentjes, Ratingen		03/2008
	Siemens Power Generation, Goerlitz		04/2008
	Evonik, Zwingenberg (general EBSILON program license)		04/2008
	WEBASTO, Neubrandenburg		04/2008
	CFC Solutions, Munich		04/2008
	RWE IT, Essen		04/2008
	Rerum Cognitio, Zwickau	04/2008,	05/2008
	ARUP, Berlin		05/2008
	Research Center, Karlsruhe		07/2008
	AWECO, Neukirch		07/2008
	Technical University of Dresden, Professorship of Building Services		07/2008
	Technical University of Cottbus, Chair in Power Plant Engineering	07/2008,	10/2008
	Ingersoll-Rand, Unicov, Czech Republic		08/2008
	Technip Benelux BV, Zoetermeer, Netherlands		08/2008

Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008, 11/2008
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007

National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences, Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics	02/2006
University of Stuttgart, Department of Thermal Fluid Flow Engines	02/2006
Technical University of Munich, Chair in Apparatus and Plant Engineering	02/2006
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig, Department of Thermodynamics	04/2006
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006

	University of Dresden, ship of Thermic Energy Machines and Plants	05/2006
	consulting & IT Stuttgart licenses and distribution)	05/2006
Suedzucke	er, Ochsenfurt	06/2006
M&M Turb	oine Technology, Bielefeld	06/2006
Feistel En	gineering, Volkach	07/2006
ThyssenKi	rupp Marine Systems, Kiel	07/2006
Caliqua, B	asel, Switzerland (company license)	09/2006
Atlas-Store	d, Rodovre, Denmark	09/2006
	University of Applied Sciences, Studies Construction and Development	10/2006
Siemens F	Power Generation, Duisburg	10/2006
	University of Applied Sciences, nt of Mechanical Engineering	10/2006
Siemens F	Power Generation, Berlin	11/2006
Zikesch Aı	rmaturentechnik, Essen	11/2006
Wismar Uı	niversity of Applied Sciences, Seafaring Department	11/2006
BASF, Sch	hwarzheide	12/2006
Enertech E	Energie und Technik, Radebeul	12/2006
2005		
TUEV Nor	rd, Hannover	01/2005
J.H.K Plan	nt Engineering and Service, Bremerhaven	01/2005
Electrowat	tt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stut	tgart	01/2005
Energieted	chnik Leipzig (company license)	02/2005, 04/2005, 07/2005
eta Energi	eberatung, Pfaffenhofen	02/2005
FZR Forso	chungszentrum, Rossendorf/Dresden	04/2005
University	of Saarbruecken	04/2005
	University of Dresden ship of Thermic Energy Machines and Plants	04/2005
Grenzebad	ch BSH, Bad Hersfeld	04/2005
TUEV Nor	rd, Hamburg	04/2005
Technical	University of Dresden, Waste Management	05/2005
Siemens F	Power Generation, Goerlitz	05/2005

	Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005
	Redacom, Nidau, Switzerland	06/2005
	Dumas Verfahrenstechnik, Hofheim	06/2005
	Alensys Engineering, Erkner	07/2005
	Stadtwerke Leipzig	07/2005
	SaarEnergie, Saarbruecken	07/2005
	ALSTOM ITC, Rugby, Great Britain	08/2005
	Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
	Vattenfall Europe, Berlin (group license)	08/2005
	Technical University of Berlin	10/2005
	Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005
	Midiplan, Bietigheim-Bissingen	11/2005
	Technical University of Freiberg, Chair in Hydrogeology	11/2005
	STORA ENSO Sachsen, Eilenburg	12/2005
	Energieversorgung Halle (company license)	12/2005
	KEMA IEV, Dresden	12/2005
20	004	
	Vattenfall Europe (group license)	01/2004
	TUEV Nord, Hamburg	01/2004
	University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
	MAN B&W Diesel A/S, Copenhagen, Denmark	
	MAN Daw Dieser A.G., Copenhagen, Denmark	02/2004
	Siemens AG Power Generation, Erlangen	02/2004 02/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences	02/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences	02/2004 03/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden,	02/2004 03/2004 10/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	02/2004 03/2004 10/2004 04/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau	02/2004 03/2004 10/2004 04/2004 04/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken	02/2004 03/2004 10/2004 04/2004 04/2004 04/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld	02/2004 03/2004 10/2004 04/2004 04/2004 04/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld SOFBID Zwingenberg (general EBSILON program license)	02/2004 03/2004 10/2004 04/2004 04/2004 04/2004 04/2004
	Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen 03/2004, Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld SOFBID Zwingenberg (general EBSILON program license) EnBW Energy Solutions, Stuttgart	02/2004 03/2004 10/2004 04/2004 04/2004 04/2004 04/2004 04/2004 05/2004

	Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
	Mainova Frankfurt	08/2004
	Rietschle Energieplaner, Winterthur, Switzerland	08/2004
	MAN Turbo Machines, Oberhausen	09/2004
	TUEV Sued, Dresden	10/2004
	STEAG Kraftwerk, Herne	10/2004, 12/2004
	University of Weimar	10/2004
	energeticals (e-concept), Munich	11/2004
	SorTech, Halle	11/2004
	Enertech EUT, Radebeul (company license)	11/2004
	Munich University of Applied Sciences	12/2004
	STORA ENSO Sachsen, Eilenburg	12/2004
	Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
	Freudenberg Service, Weinheim	12/2004
20	003	
	Paper Factory, Utzenstorf, Switzerland	01/2003
	MAB Plant Engineering, Vienna, Austria	01/2003
	Wulff Energy Systems, Husum	01/2003
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
	VER, Dresden	02/2003
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003
	DLR, Leupholdhausen	04/2003
	Emden University of Applied Sciences, Department of Technology	05/2003
	Petterssson+Ahrends, Ober-Moerlen	05/2003
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
	Ingenieurbuero Ostendorf, Gummersbach	05/2003
	TUEV Nord, Hamburg	06/2003
	Muenstermann GmbH, Telgte-Westbevern	06/2003
	University of Cali, Colombia	07/2003
	Atlas-Stord, Rodovre, Denmark	08/2003
	ENERKO, Aldenhoven	08/2003
	STEAG RKB, Leuna	08/2003
	eta Energieberatung, Pfaffenhofen	08/2003
	exergie, Dresden	09/2003

	AWTEC, Zurich, Switzerland	09/2003
	Energie, Timelkam, Austria	09/2003
	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003
	EnviCon & Plant Engineering, Nuremberg	11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
	SaarEnergie, Saarbruecken	11/2003
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
20	002	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002
	SAAS, Possendorf/Dresden	02/2002
	Siemens, Karlsruhe (general license for the WinIS information system)	02/2002
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002
	CompAir, Simmern	03/2002
	GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
	ALSTOM Power Baden, Switzerland (group licenses)	05/2002
	InfraServ, Gendorf	05/2002
	SoftSolutions, Muehlhausen (company license)	05/2002
	DREWAG, Dresden (company license)	05/2002
	SOFBID, Zwingenberg (general EBSILON program license)	06/2002
	Kleemann Engineering, Dresden	06/2002
	Caliqua, Basel, Switzerland (company license)	07/2002
	PCK Raffinerie, Schwedt (group license)	07/2002
	Fischer-Uhrig Engineering, Berlin	08/2002

	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	08/2002			
	Stadtwerke Duisburg	08/2002			
	Stadtwerke Hannover	09/2002			
	Siemens Power Generation, Goerlitz	10/2002			
	Energieversorgung Halle (company license)	10/2002			
	Bayer, Leverkusen	11/2002			
	Dillinger Huette, Dillingen	11/2002			
	G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002			
	VEAG, Berlin (group license)	12/2002			
20	01				
	ALSTOM Power, Baden, Switzerland	01/2001, 06/2001, 12/2001			
	KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001			
	Eco Design, Saitamaken, Japan	01/2001			
	M&M Turbine Technology, Bielefeld	01/2001, 09/2001			
	MVV Energie, Mannheim	02/2001			
	Technical University of Dresden, Department of Power Machinery and Plants	02/2001			
	PREUSSAG NOELL, Wuerzburg	03/2001			
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001			
	Muenstermann GmbH, Telgte-Westbevern	05/2001			
	SaarEnergie, Saarbruecken	05/2001			
	Siemens, Karlsruhe (general license for the WinIS information system)	08/2001			
	Neusiedler AG, Ulmerfeld, Austria	09/2001			
	h s energieanlagen, Freising	09/2001			
	Electrowatt-EKONO, Zurich, Switzerland	09/2001			
	IPM Zittau/Goerlitz University of Applied Sciences (general lic	ense) 10/2001			
	eta Energieberatung, Pfaffenhofen	11/2001			
	ALSTOM Power Baden, Switzerland	12/2001			
	VEAG, Berlin (group license)	12/2001			
2000					
	SOFBID, Zwingenberg (general EBSILON program license)	01/2000			
	AG KKK - PGW Turbo, Leipzig	01/2000			

	PREUSSAG NOELL, Wuerzburg	01/2000		
	M&M Turbine Technology, Bielefeld	01/2000		
	IBR Engineering Reis, Nittendorf-Undorf	02/2000		
	GK, Hannover	03/2000		
	KRUPP-UHDE, Dortmund (company license)	03/2000		
	UMAG W. UDE, Husum	03/2000		
	VEAG, Berlin (group license)	03/2000		
	Thinius Engineering, Erkrath	04/2000		
	SaarEnergie, Saarbruecken 05/200	0, 08/2000		
	DVO Data Processing Service, Oberhausen	05/2000		
	RWTH Aachen University	06/2000		
	VAUP Process Automation, Landau	08/2000		
	Knuerr-Lommatec, Lommatzsch	09/2000		
	AVACON, Helmstedt	10/2000		
	Compania Electrica, Bogota, Colombia	10/2000		
	G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000		
	Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000		
1999				
	Bayernwerk, Munich	01/1999		
	DREWAG, Dresden (company license)	02/1999		
	KEMA IEV, Dresden	03/1999		
	Regensburg University of Applied Sciences	04/1999		
	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999		
	Technical University of Cottbus, Chair in Power Plant Engineering	07/1999		
	Technical University of Graz, Department of Thermal Engineering, Austria	11/1999		
	Ostendorf Engineering, Gummersbach	12/1999		
1998				
	Technical University of Cottbus, Chair in Power Plant Engineering	05/1998		
	Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998		
	M&M Turbine Technology Bielefeld	06/1998		
	B+H Software Engineering Stuttgart	08/1998		
	Alfa Engineering, Switzerland	09/1998		

VEAG Berlin (group license)	09/1998		
NUTEC Engineering, Bisikon, Switzerland	10/1998		
SCA Hygiene Products, Munich	10/1998		
RWE Energie, Neurath	10/1998		
Wilhelmshaven University of Applied Sciences	10/1998		
BASF, Ludwigshafen (group license)	11/1998		
Energieversorgung, Offenbach	11/1998		
1997			
Gerb, Dresden	06/1997		
Siemens Power Generation, Goerlitz	07/1997		