James Wood

ABAP" Cookbook

Programming Recipes for Everyday Solutions

.-

Galileo Press

o,s. ®

GalileoPress

Bonn « Boston

Contents at a Glance

PART | Appetizers

1 String Processing Techniquescccccooiiiiiiiiiiiii i 27
2 Working with Numbers, Dates, and Bytesccocovviniiinnnn, 57
3 Dynamic and Reflective Programmingc.ccooviiiiininnn 81
4 ABAP and Unicodecocooiiiiiiiiiiii e 109

PART Il Main Courses

5 Working with Files ... 135
6 Database Programmingccoooiiiiiiiiiiii e, 183
7 Transactional Programmingccccoiiviiniiiiiiiiiici e, 233

PART Il Meals to Go

8 XML Processing in ABAP ... 283
9 Web Programming with the ICF ... 329
TO WED SErVICES ..o 361
11 Email Programming ..o..ooooviiiieie et 393

PART IV Side Dishes

12 Security Programming ... 419
13 Logging and Tracingcoooiiiiiiiiiii e 445
14 Interacting with the Operating System ... 459
15 Interprocess Communication ... 475

16 Parallel and Distributed Processing with RFCs ... 511

Contents

INEFOAUCTION e e 17

PART | Appetizers

1 String Processing Techniques

11 ABAP Character TYPES ...ooiiiiii e 27
1.2 Designing a Custom String Library ... 29
1.21 Developing the APl ..o 29
1.2.2 Encapsulating Basic String Processing Statements 33
1.3 Improving Productivity with Regular Expressionsccceeen. 36
1.31 Understanding Regular Expressionsccccccoceeen. 37
1.3.2 Regular Expression Syntax ..o, 37
1.3.3 Using Regular Expressions in ABAPccoooeviiiiiicinnn. 46

1.3.4 Integrating Regular Expression Support into the
String Libraryoooooiiiiii e 53
T4 SUMIMATY oo s 56

Working with Numbers, Dates, and Bytes

21 Numeric Operationsococooieiiimieeieieee e e 57
211 ABAP Math Functions ... 58
212 Generating Random Numbers ... 60
2.2 Date and Time Processingcccccoeviviiieniiniiciie e 64
2.21 Understanding ABAP Date and Time Types 64
2.2.2 Date and Time Calculationscccooviiiiiinininiinn 65
2.2.3 Working with Timestampscocooeiiiiiie e 66
2.2.4 Calendar Operationscccccceoiiviiiiieeeieiiiiiiiiinneiiseeieieens 70
2.3 Bitsand Bytes ... 73
2.31 Introduction to the Hexadecimal Type in ABAP 73
2.3.2 Reading and Writing Individual Bitsccccceiiiiiinenne 75
2.3.3 Bitwise Logical Operatorscccoviviiinniiiieniiiiieen, 76
2.4 SUMMATY ottt et et e e aa e 79

Contents

3 Dynamic and Reflective Programming

31 Working with Field Symbols ... 81
311 What Is a Field Symbol? ... 82
31.2 Field Symbol Declarationsccccoeiiiiiiiiiiiiiiiieiieen, 83
3.1.3 Assigning Data Objects to Field Symbols 85
3.1.4 Casting Data Objects During the Assignment Process 89
3.2 Reference Data ObJectsococoiiiiiiiiiiie e 91
3.21 Declaring Data Reference Variablesccccocvieinnnnn 91
3.2.2 Assigning References to Data Objects ..o 93
3.2.3 Dynamic Data Object Creationcccccevviiiiiiiniieninnnns 94
3.2.4 Performing Assignments Using Data Reference
Variables ... 96
3.2.5 De-Referencing Data Referencescccccococeiiiiviannne 96
3.3 Introspection with ABAP Run Time Type Servicesccceeernne 98
3.31 ABAP RTTS System Classesooccooiiiiiiiiiniiiiiec 929
3.3.2 Working with Type Objectsc.cccoiiiiiiiiiiiiiiiiice 100
3.3.3 Defining Custom Data Types Dynamically 102
3.3.4 Case Study: RTTS Usage in the ALV Object Model 104
3.4 Dynamic Program Generation ... 106
3.41 Creating a Subroutine Poolcc.cccceiiiiiiiiiii 106
3.4.2 Creating a Report Programccooiiiiiciiiicice 107
3.4.3 Drawbacks to Dynamic Program Generation 108
3.5 SUMMANY o e e 108

ABAP and Unicode

41 Introduction to Character Codes and Unicodecccceeie. 109
411 Understanding Character-Encoding Systems 110
41.2 Limitations of Early Character-Encoding Systems 111
413 What Is Unicode? ... 111
41.4 Unicode Support in SAP Systemsccccccvvieiiiiiiiiiniinnenenn 113
4.2 Developing Unicode-Enabled Programs in ABAP 113
4.21 Overview of Unicode-Related Changes to ABAP 114
4.2.2 Thinking in Unicode ..o 117
4.2.3 Turning on Unicode Checkscccccviiiiiiiiiiiiiiiiiiiine 120
4.3 Working with Unicode System Classescccccoiiiiiiiiiiiceene 121

4.4

Contents

4.31 Converting External Data into ABAP Data Objects 121
4.3.2 Converting ABAP Data Objects into External

Data Formats ..o 124
4.3.3 Converting Between External Formatsccccoeeinennns 126
4.3.4 Useful Character Utilitiescccoeoiiiiiiniiiiecne e 129
SUMIMETY ottt et e e e e e e e e e 131

PART Il Main Courses

5 Working with Files

51

5.2

53

54

55

5.6

57

File Processing on the Application Server ..., 135
511 Understanding the ABAP File Interface 136
51.2 Case Study: Processing Files with the ABAP File Interface ... 141
Working with Unicodeccoooiiiiiiiiiiiiccn 148
5.21 Changes to the OPEN DATASET Statement to

SUppPOrt Unicode ..o 149
5.2.2 Using Class CL_ABAP_FILE_UTILITIES . ..o, 149
Logical Files and Directoriescccooiieiiiiiiiiciiiiiiciiciiccicins 150
531 Defining Logical Directory Paths and Files in

Transaction FILE ... 151
5.3.2 Working with the Logical File APlcccccoiiiiiiiiiiiiinenn, 155
File Compression with ZIP Archivesccccccciiiiiiiinn, 157
541 The ABAP ZIP File APl ..oviiiiiiiiiiiiiiiiiiieie e 158
5.4.2 Creatinga ZIP Filecoociiiiiiiiiiiic e 159
543 ReadingaZIP File ..o 163
File Processing on the Presentation Servercccccoeiieiiiinn, 167
551 Interacting with the SAP GUI via

CL_GUI_FRONTEND_SERVICESoccoviiiiiiiiiiiiiiinnn 167
5.5.2 Downloading a Fileccoooeiiiiieiiiiiiiiiiecee e 168
5.53 Uploadinga Filecoooooiiiiiiiiiiiii e 171
Transmitting Files Using FTPccociiiiiiiiiiicin e 173
5.61 Introducing the SAPFTP Librarycccocviiieiiiiiiicnnne 173
5.6.2 Worapping the SAPFTP Library in an ABAP Objects

CIASS vttt 175
5.6.3 Uploading and Downloading Files Using FTPcc...... 176
5.6.4 Implementation Details ..o 179
SUMMATY oot 182

Contents

6 Database Programming

10

6.1

6.2

6.3

6.4

6.5

6.6

6.7

71
7.2

7.3

Object-Relational Mapping and Persistencecocoovviinninnnns 183
6.1.1 Positioning of Object-Relational Mapping Tools 184
6.1.2 Persistence Service OVEIVIEWccccocviiiiiinniiiiiiiniennn, 184
6.1.3 Mapping Concepts ... 187
Developing Persistent Classesccccooviiiniiiiiiciiiiciiciecn 189
6.2 Creating Persistent Classes in the Class Builder 190
6.2.2 Defining Mappings Using the Mapping Assistant Tool 192
Working with Persistent Objects ... 198
6.31 Understanding the Class Agent APlccccoiviiiieiins 199
6.3.2 Performing Typical CRUD Operationsccccccoeecueeeunnne 199
6.3.3 Querying Persistent Objects with the Query Service 204
Modeling Complex Relationships ... 206
6.41 Defining Custom Attributescoceviiiiiiiiiic 207
6.4.2 Filling in the Gaps ... 209
Storing Text with Text Objects ..o 214
6.51 Defining Text Objectsccooiiiiiiiiiiiiiiiiciccece 214
6.5.2 Using the Text Object APl ... 218
6.5.3 Alternatives to Working with Text Objects 222
Connecting to External Databasesccccccccviiiiiiiiniciciins 223
6.61 Configuring a Database Connectioncccccceiiiine 223
6.6.2 Accessing the External Databaseccccocccviiiiiiiinnns 225
6.6.3 Further Reading ... 230
SUMIMIAIY oo 231

Introduction to the ACID Transaction Modelcccoccivieiiiinine 233
Transaction Processing with SAP LUWS ..o, 235
7.21 Introduction to SAP Logical Units of Work 235
7.2.2 Bundling Database Changes in Update Function

Modules ... 239
7.2.3 Bundling Database Changes in Subroutines 242
7.2.4 Performing Local Updatesccccooiiiiiiiiiiiiiiiciie 244
7.2.5 Dealing with Exceptions in the Update Task 245
Working with the Transaction Service ... 248
7.31 Transaction Service Overviewccoooiiiiiiiiiinnn. 248
7.3.2 Understanding Transaction Modesc.cccoevviiiiinerennnan 249

7.4

75

7.6

Contents

7.3.3 Processing Transactions in Object-Oriented Mode 253
7.3.4 Performing Consistency Checks with Check Agents 259
Implementing Locking with the Enqueue Service 262
7.41 Introduction to the SAP Lock Concept ...coocvevvviiiiievinnnnn, 262
7.4.2 Defining Lock Objectscoccoiiiiiiiiiiiicn e 263
7.4.3 Programming with Lockscccccviiiiiiiiiiiii i, 265
7.4.4 Integration with the SAP Update System 267
745 Lock Administration ... 267
Tracking Changes with Change Documents 268
751 What Are Change Documents?ccccciiiiiiniiiiincinnnn 269
7.5.2 Creating Change Document Objectscccoeeeniiinenen. 269
753 Configuring Change-Relevant Fieldscccccviiiiinnn. 273
75.4 Programming with Change Documents 274
SUMIMATY 1ottt es e st at et e r e as s st 279

PART lll Meals to Go

8 XML Processing in ABAP

8.1

8.2

8.3

8.4

Introduction to XML ..o 283
811 What Is XML? 284
8.1.2 XML Syntax ... 285
8.1.3 Defining XML Documents Using XML Schema 289
Parsing XML with the iXML Library ... 291
8.21 Introducing the iXML Library APl ..o 291
8.2.2 Working with DOM ... 292
8.2.3 Case Study: Developing XML Mapping Programs

N ABAP 297
8.2.4 Next Steps ..o 304
Transforming XML Using XSLT ..o 304
8.31 WHhat Is XSLT? .o 305
8.3.2 Anatomy of an XSLT Stylesheet ... 305
8.3.3 Integrating XSLT with ABAP ..., 308
8.3.4 Creating XSLT Stylesheetscccooivviieviiiiiie i, 308
8.3.5 Processing XSLT Programs in ABAP ..., 310
8.3.6 Case Study: Transforming Business Partners with XSLT 311
8.3.7 Serialization of ABAP Data Objects Using asXML 314
Simple Transformationccccciiiiiniii 317

m

Contents

8.5

8.41 What Is Simple Transformation?cccccoviiiiivecinnnnns 318
8.4.2 Anatomy of a Simple Transformation Program 318
8.43 Learning Simple Transformation Syntax ... 319
8.4.4 Creating Simple Transformation Programscc.c.... 324
8.4.5 Case Study: Transforming Business Partners with ST 325
SUMIMIATY oottt ettt ettt ettt e e e ettt re e e e e ea e neeeaaen 327

Web Programming with the ICF

91

9.2
9.3

9.4

9.5

HTTP OVEIVIEW ..o 329
911 Working with the Uniform Interface ... 330
91.2 Addressability and URLSocoiiiiiicceec e 332
91.3 Understanding the HTTP Message Formatc....... 333
Introduction to the ICF L. 335
Developing an HTTP Client Programc.cccceviiiiiiiiincinciieninnns 336
9.31 Defining the Service Callcccooiiiiiiiiiiie 337
9.3.2 Working with the ICF Client APlcoccoiiiiiiiiiiiiiiniinns 338
9.3.3 Putting It All Together ... 340
Implementing ICF Handler Modulesccoeoviviiiiiiiiiiiciieen 346
9.41 Working with the ICF Server-Side APl 347
9.4.2 Creating an ICF Service Nodeccccoiviiiiiiiiiiiniiecinns 348
9.4.3 Developing an ICF Handler Classcccccooviiniineeennnnnn 354
9.4.4 Testing the ICF Service Nodeccoeeviiiiiiiiiiicici 358
SUMMATY e oo e e e e e e anens 360

10 Web Services

12

101 Web Service OVEIVIEWccocvviiiiiiiiiiciin e 361
1011 Introduction to SOAP ... 362
10.1.2 Describing SOAP-Based Services with WSDL 365
10.1.3 Web Service Discovery with UDDI ..o, 365

10.2 Providing Web Services ..o 366
10.21 Creating Service Definitionscccocooiiiiiiiiiiiiiieee 367
10.2.2 Configuring Runtime Settingscoccoiiiiiniinniiennnn, 373
10.2.3 Testing Service Providerscccccooiiiiiiiiieneccieciiin 376

10.3 Consuming Web Services ..o 378
10.31 Creating a Service CONSUMErccccicvivivimimiiiiiic i 379
10.3.2 Defining a Logical Portcccoovviiinniiniiiiiiinniienns 383

10.4
10.5

Contents

10.3.3 Using a Service Consumer in an ABAP Program 386
NEXE SEEPS oo e 391
SUMIMAIY oo e 391

11 Email Programming

111
11.2

11.3

11.4

PART IV

Introduction to BCS ... 393
Sending Email MESSAZES ..oooiioiciiiiiie e 394
11.21 Understanding the Simple Mail Transfer Protocol 395
11.2.2 Sending a Plain Text Messageccccccvoiiciiiieancien. 396
11.2.3 Working with Attachments ..., 403
11.2.4 Formatting Email Messages with HTML ..., 408
Receiving Email MeSSagesccovvviiiiiiieiiiiieiine e 411
11.31 Configuring Inbound Processing Rulesccccoooeeenen. 412
11.3.2 Processing Inbound Requestsccccoviiiniiniincin, 413
11.3.3 Potential Use Cases of Inbound Processing Rules 414
SUMMAETY oo 416

Side Dishes

12 Security Programming

121

12.2

12.3
12.4
12.5

Developing a Security Model ... 419
1211 Authenticating Userscocociviiiiiiiiiiieciecc e 420
12.1.2 Checking User Authorizations ... 420
12.1.3 Securing the Lines of Communication ..o, 421
121.4 Programming for Securityocoooiiiiiiiiiiiic 422
The SAP NetWeaver AS ABAP Authorization Concept 422
12,21 OVEIVIEW oo 423
12.2.2 Developing Authorization Objectscccoiie 424
12.2.3 Configuring Authorizations ..o, 430
12.2.4 Performing Authorization Checks in ABAPcc.c..... 433
12.2.5 Authorization Concept REVIEWcocoiiiiiiiiiiiiiiiiienn, 434
Encrypting Data with ABAP ..., 435
Performing Virus SCans ..ot 437
Protecting Web Content with CAPTCHAcoviiiiiiiiiiiicn 438
12.51 What Is CAPTCHA? it 439

12.5.2 Developing a CAPTCHA Component with Adobe Flex 439

13

Contents

12.5.3 Integrating the CAPTCHA Component with BSPs 440
12.5.4 Integrating the CAPTCHA Component with

WeDb DYNPIO oo 443

T2.6 SUMMANY covviiiiiiiiiiiii e s s e a e 444

13 Logging and Tracing

131 Introducing the Business Application Logccccoooiniiiiiiinninncnnn. 446
1311 Configuring Log Objectscccccviiiiviiiiniiiii e 446
13.1.2 Displaying LOZs ..o 448
13.1.3 Organization of the BALAPI ..o 450

13.2 Developing a Custom Logging Frameworkcccccoeiiiiiinnennnnnn 450
13.2.1 Organization of the Class-Based APlccccooivviciinnnnn 451
13.2.2 Configuring Log Severitiesccccocvoeiiiiiiieineeeie e 452

13.3 Case Study: Tracing an Application Programccccccevinenn 453
13.31 Integrating the Logging Framework into an

ABAP Programccccoviiiiiiiiiiniin 453
13.3.2 Viewing Log Instances in Transaction SLG1T 456
T34 SUMMATY et e et e 458

141 Programming with External Commands ... 459
1411 Maintaining External Commandsccocoivviiiinniiinnninnn 460
14.1.2 Restricting Access to External Commandsc....... 462
14.1.3 Testing External Commandscccoeeviiviiiiniiiinisiencn, 463
14.1.4 Executing External Commands in an ABAP Program 465

14.2 Case Study: Executing a Custom Perl Script ..o, 467
14.21 Defining the Command to Run the Perl Interpreter 468
14.2.2 Executing Perl Scripts ..o 469

T4.3 SUMMANY e e 474

15 Interprocess Communication

151 SAP NetWeaver AS ABAP Memory Organizationccccoev 476
15.2 Data CIUSLErSoooiiiiiiiiciiei i 477
15.21 Working with Data Clusterscocovviiiiniiiiiciee 478
15.2.2 Storage Media TYPES ..coviiciiiieieie et 478

14

Contents

15.2.3 Sharing Data Objects Using ABAP Memoryccccee... 479
15.2.4 Sharing Data Objects Using the Shared Memory Buffer ... 482
15.3 Working with Shared Memory Objects ... 486
15.31 Architectural OVerviewccoccviiiiiiiniciiiiiiiicicn, 486
15.3.2 Defining Shared Memory Areascccceeevcerceneiecinenn 489
15.3.3 Accessing Shared Objectscccocviiiiiiiciiiiiii i, 495
15.3.4 Locking CONCePs ..ooooviiiieiiii e 506
15.3.5 Area Instance Versioningccccoiiiiiiniiinnn, 507
15.3.6 Monitoring Techniques ..., 509
T5.4 SUMMATY oo 510

16 Parallel and Distributed Processing with RFCs

161 RFC OVEIVIBW ..o e 512
1611 Understanding the Different Variants of RFC 512

16.1.2 Developing RFC-Enabled Function Modules 513

16.2 Parallel Processing with aRFC ..o 515
16.271 Syntax OVErVIEW ... 515

16.2.2 Configuring an RFC Server Groupccceevvviiinniiiniennn. 518

16.2.3 Defining Parallel Algorithms ... 520

16.2.4 Case Study: Processing Messages in Parallel 522

6.3 SUMIMATY oeeiiiieeiiiie e rm e e e e e e e nnes 529
The AUTROT oo 531
INEX e e 533

15

Although amateur cooks may hesitate to experiment with spices, accom-
plished chefs know how to use them to create the perfect dish. As an ABAP
developer, the same can be said of certain data types. In this chapter, we
show you how you can use some of these types to improve the quality of
your programs.

2 Working with Numbers, Dates, and Bytes

One of the nice things about working with an advanced programming language
like ABAP is that you don't often have to worry about how that data is represented
behind the scenes at the bits and bytes level; the language does such a good job
of abstracting data that it becomes irrelevant. However, if you do come across a
requirement that compels you to dig a little deeper, you'll find that ABAP also has
excellent support for performing more advanced operations with elementary data
types. In this chapter, we investigate some of these operations and show you tech-
niques for using these features in your programs.

24 Numeric Operations

Whether it's keeping up with a loop index or calculating entries in a balance sheet,
almost every ABAP program works with numbers on some level. Typically, when-
ever we perform operations on these numbers, we use basic arithmetic operators
such as the + (addition), - (subtraction), * (multiplication), or / (division) opera-
tors. Occasionally, we might use the M0D operator to calculate the remainder of an
integer division operation, or the ** operator to calculate the value of a number
raised to the power of another. However, sometimes we need to perform more
advanced calculations. If you're a mathematics guru, then perhaps you could come
up with an algorithm to perform these advanced calculations using the basic arith-
metic operators available in ABAP. For the rest of us mere mortals, ABAP provides
an extensive set of mathematics tools that can be used to simplify these require-
ments. In the next two sections, we'll examine these tools and see how to use
them in your programs.

57

2

Working with Numbers, Dates, and Bytes

214 ABAP Math Functions

ABAP provides many built-in math functions that you can use to develop advanced
mathematical formulas as listed in Table 2.1. In many cases, these functions can
be called using any of the built-in numeric data types in ABAP (e.g., the I, F, and P
data types). However, some of these functions require the precision of the floating
point data type (see Table 2.1 for more details). Because ABAP supports implicit
type conversion between numeric types, you can easily cast non-floating point
types into floating point types for use within these functions.

Supported | Description

Numeric
Types
abs (A11) Calculates the absolute value of the provided
argument.
sign (A11) Determines the sign of the provided

argument. If the sign is positive, the function
returns 1; if it's negative, it returns -1;
otherwise, it returns 0.

ceil (A1) Calculates the smallest integer value that isn't
smaller than the argument.

floor (A1) Calculates the largest integer value that isn't
larger than the argument.

trunc (A11) Returns the integer part of the argument.

frac (A11) Returns the fractional part of the argument.

cos, sin, tan F Implements the basic trigonometric functions.

acos, asin, atan F Implements the inverse trigonometric
functions.

cosh, sinh, tanh F Implements the hyperbolic trigonometric
functions.

exp F Implements the exponential function with a
base e = 2.7182818285.

Tog F Implements the natural logarithm function.

Togl0 F Calculates a logarithm using base 10.

sqrt F Calculates the square root of a number.

Table 21 ABAP Math Functions

58

Numeric Operations 24

The report program 7MATHDEMO shown in Listing 2.1 contains examples of how to
call the math functions listed in Table 2.1 in an ABAP program. The output of this
program is displayed in Figure 2.1.

REPORT zmathdemo.

START-OF-SELECTION.

CONSTANTS: CO_PI TYPE f VALUE '3.14159265".
DATA: Tv_result TYPE p DECIMALS 2.

Tv_result = abs{ -3).
WRITE: / '"Absolute Value: ", Iv_result.

Tv_result = sign(-12).
WRITE: / '"Sign: ", Iv_result.

Tv_result = ceill "4.7").
WRITE: / 'Ceiling: ", Iv_result.

Tv_result = floor("4.7"').
WRITE: / 'Floor: ", Iv_result.

Tv_result = trunc("4.7').
WRITE: / '"Integer Part: ", Iv_result.

Tv_result = frac({ "4.7").
WRITE: / 'Fractional Part: ", Iv_result.

Tv_result = sin{ CO_PI).
WRITE: / 'Sine of PIL: ", Iv_result.

Tv_result = cos{ CO_PI).
WRITE: / 'Cosine of PI: ", Iv_result.

Tv_result = tan{ CO_PI).
WRITE: / 'Tangent of PI: ", Tv_result.

Tv_result = exp('2.3026" J.
WRITE: / 'Exponential Function:', lv_result.

lTv_result = log(lv_result).
WRITE: / '"Natural Logarithm: ", Tv_result.

59

Working with Numbers, Dates, and Bytes

Tv_result = Togl0O("1000.0").
WRITE: / 'Log Base 10 of 1000: ', Tv_result.

Tv_result = Tog(8) / Tog(2).
WRITE: / 'lLog Base 2 of 8: ", Tv_result.

Tv_result = sqrt('16.0°" J.
WRITE: / 'Saquare Root: ", Tv_result.

Listing 24 Working with ABAP Math Functions

List Edit Goto GSystem Help

Using Math Functions in ABAP

Using Math Functions in ABAP

Absolute VYalue: 3.00
sign; 1.00-
Ceiling: 5.08
Floor: 4,00
Integer Part; 4,00
Fractional Part: 8.70
Sine of PL: a.8a
Cosihe of PIL: 1.00-
Tangent of PI: a.08
Exponential Function: 16.08
Natural Logarithm: 2:38
Log Base 10 of 1000 3.08
Log Base 2 of 8: 3,008
Square Root: 4.00

Figure 24 Output Generated by Report ZMATHDEMO

The values of the function calls can be used as operands in more complex expres-
sions. For example, in Listing 2.1, notice how we're calculating the value of
lag(8). Here, we use the change of base formula Tog(x) / log(b) (where
b refers to the target base, and x refers to the value applied to the logarithm func-
tion) to derive the base 2 value. Collectively, these functions can be combined with
typical math operators to devise some very complex mathematical formulas.

21.2 Generating Random Numbers

Computers live in a logical world where everything is supposed to make sense.
Whereas this characteristic makes computers very good at automating many kinds

60

Numeric Operations I 24

of tasks, it can also make it somewhat difficult to model certain real-world phe-
nomena. Often, we need to simulate imperfection in some form or another. One
common method for achieving this is to produce randomized data using random
number generators. Random numbers are commonly used in statistics, cryptog-
raphy, and many kinds of scientific applications. They are also used in algorithm
design to implement fairness and to simulate useful metaphors applied to the
study of artificial intelligence (e.g., genetic algorithms with randomized muta-
tions, etc.).

SAP provides random number generators for all of the built-in numeric data types
via a series of ABAP Objects classes. These classes begin with the prefix clL_ABAP_
RANDOM (e.g., CL_ABAP_RANDOM_FLOAT, CL_ABAP_RANDOM_INT, etc.). Though none of
these classes inherit from the CL_ABAP_RANDOM base class, they do use its features
behind the scenes using a common OO technique called composition. Composition
basically implies that one class delegates certain functionality to an instance of
another class. The UML class diagram shown in Figure 2.2 shows the basic struc-
ture of the provided random number generator classes.

CL_ABAP_RANDOM_*

+ CREATE ()
+ GET_NEXT()

Figure 2.2 Basic UML Class Diagram for Random Number Generators

Unlike most classes where you create an object using the CREATE OBJECT statement,
instances of random number generators must be created via a call to a factory class
method called CREATE (). The signature of the CREATE () method is shown in Figure
2.3. Here, you can see that the method defines an importing parameter called SEED
that seeds the pseudo-random number generator algorithm that is used behind the
scenes to generate the random numbers. In a pseudo-random number generator,
random numbers are generated in sequence based on some calculation performed
using the seed. Thus, a given seed value causes the random number generator to
generate the same sequence of random numbers each time.

The CREATE() method for class CL_ABAP_RANDOM_INT also provides MIN and MAX
parameters that can place limits around the random numbers that are generated
(e.g., a range of 1-100, etc.). The returning PRNG parameter represents the gener-
ated random number generator instance. Once created, you can begin retrieving
random numbers via a call to the GET_NEXT () instance method.

61

Working with Numbers, Dates, and Bytes

Class Edi Golo Uliilies(M) Ervironment Systam Halp

(|

Cla AP_RANDOM_INT

||| class documentation

Class Intarface [CL_ABAP_RANDOH_INT] Implemented / Active

=[]

| Trping Method [associated Type Cefaulivalug |Description
Importing O F [Typs i Inttial Value of PRNG

Imporing O L[[Type H 2147483648 Lower Limitfor Value Area
Importing O = [Typs i 2147483647 Upper LUmitfor Value Area
Retuming [. [0 [Type Ref To CL_RBAP_RANDON_INT Random Number Generator Object

Figure 2.3 Signature of Class Method CREATE()

To demonstrate how these random number generator classes work, let's con-
sider an example program. Listing 2.2 contains a simple report program named
ZSCRAMBLER that defines a local class called LCL_SCRAMBLER. The LCL_SCRAMBLER
class includes an instance method SCRAMBLE () that can be used to randomly scram-
ble around the characters in a string. This primitive implementation creates a
random number generator to produce random numbers in the range of [0...
{String Lengthi]. Perhaps the most complex part of the implementation is related
to the fact that random number generators produce some duplicates along the
way. Therefore, we have to make sure that we haven't used the randomly gener-
ated number previously to make sure that each character in the original string is
copied into the new one.

REPORT zscrambler.

CLASS Tcl_scrambler DEFINITION.
PUBLIC SECTION.
METHODS: scramble IMPORTING im_value TYPE clike
RETURNING VALUE(re_svalue) TYPE string
EXCEPTIONS cx_abap_random.

PRIVATE SECTION.
CONSTAMTS: CO_SEED TYPE i VALUE 100.

TYPES: BEGIN OF ty_index,
index TYPE i,
END OF ty_index.
ENDCLASS.

CLASS Tcl_scrambler IMPLEMENTATLION.
METHOD scramble.

62

Numeric Operations 24

* Method-Local Data Declarations:

DATA: Tv_length TYPE i,
Tv_min TYPE i VALUE 0,
Tv_max TYPE 1,
To_prng TYPE REF TO cl_abap_random_int,
Tv_index TYPE 1,
Tt_indexes TYPE STANDARD TABLE OF ty_index.

FIELD-S5YMBOLS:

<Ofs_index> LIKE LINE OF 1t_indexes.

* Determine the length of the string as this sets the
* bounds on the scramble routine:

Iv_Tlength = strlen(im_value).

ITv_max = Tv_length - 1.

* Create a random number generator to return random
* numbers in the range of 1..{String Lenathl}:
CALL METHOD cl_abap_random_int=>create

EXPORTING
seed = CO_SEED
min = lv_min
max = lv_max
RECETVING
prng = lo_prng.

* Add the characters from the string in random order to
* the result string:
WHILE strilen(re_svalue) LT Tv_length.
Tv_index = lo_prng->get_next().
READ TABLE Tt_indexes TRANSPORTING NO FIELDS
WITH KEY index = Tw_index.
IF sy-subrc EQ 0.
CONTINUE.
ENDIF.

CONCATENATE re_svalue im_valuetlv_index(1)
INTO re_svalue.
APPEND INITIAL LINE TO Tt_indexes
ASSIGNING <1fs_index>.
< fs_index>-index = lv_index.
ENDWHILE.
ENDMETHOD .
ENDCLASS.

63

2

Working with Numbers, Dates, and Bytes

START-0F-SELECTION.
* Local Data Declarations:
DATA: To_scrambler TYPE REF TO Tcl_scrambler,
Tv_scrambled TYPE string.

* Use the scrambler to scramble around a word:
CREATE OBJECT lo_scrambler.
Tv_scrambled = To_scrambler->scramble("Andersen').
WRITE: / Tv_scrambled.

Listing 2.2 Using Random Number Generators in ABAP

Obviously, a simple scrambler routine like the one shown in Listing 2.2 isn't pro-
duction quality. Nevertheless, it does give you a glimpse of how you can use ran-
dom number generators to implement some interesting algorithms. As a reader
exercise, you might think about how you could use random number generators to
implement an UNSCRAMBLE () method to unscramble strings generated from calls
to method SCRAMBLE ().

2.2 Date and Time Processing

Online transaction processing (OLTP) systems such as the ones that make up the
SAP Business Suite maintain quite a bit of time-sensitive data, so it's important
that you understand how to work with the built-in date and time types provided
in ABAP. In the following subsections, we discuss these types and explain how to
use them to perform calculations and conversions.

2.21 Understanding ABAP Date and Time Types

ABAP provides two built-in types to work with dates and times: the D (date) data
type and the T (time) data type. Both of these types are fixed-length character types
that have the form YvvyYMMDD and HHMMSS, respectively. In addition to these built-in
types, the ABAP Dictionary types TIMESTAMP and TIMESTAMPL are being used more
and more in many standard application tables, and so on, to store a timestamp in the
UTC format.? Table 2.2 shows the basic date and time types available in ABAP.

1 The term “UTC" is an abbreviation for "Consolidated Universal Time,” which is a time standard
based on the International Atomic Time standard. UTC is roughly equivalent to the Greenwich
Mean Time standard (or GMT) which refers to the mean solar time at the Royal Observatory in
Greenwich, London. Collectively, these standards define a global time standard that can be used
to convert a given time to local time, and vice versa.

64

Date and Time Processing I 2.2

Data Type

D A built-in fixed-length date type of the form YYYYMMDD. For
example, the value 20100913 represents the date September
13, 2010.
T A built-in fixed-length time type of the form HHMMSS. For
example, the value 102305 represents the time 10:23:05 AM.
TIMESTAMP An ABAP Dictionary type used to represent short timestamps
(Type P in the form YYYYMMDDhhmmss. For example, the value
Length 8 20100913102305 represents the date September 13, 2010 at
. 10:23:05 AM.
No decimals)
TIMESTAMPL An ABAP Dictionary type used to represent long timestamps
(Type P - in the form YYYYMMODhhmms smmmuuun. The additional digits
Length 11 mmmuuun represent fractions of a second.
Decimals 7)

Table 2.2 ABAP Date and Time Data Types

2.2.2 Date and Time Calculations

When you're working with dates, you often need to perform various calculations
to compute the difference between two dates, make comparisons, or determine
a valid date range. As we mentioned in Section 2.2.1, Understanding ABAP Date
and Time Types, the built-in date and time types in ABAP are character types, not
numeric types. Nevertheless, the ABAP runtime environment allows you to per-
form basic numeric operations on these types by implicitly converting them to
numeric types behind the scenes.

The code excerpt shown in Listing 2.3 demonstrates how these calculations work.
Initially, the variable 1v_date is assigned the value of the current system date (e.g.,
the system field SY-DATUM). Next, we increment that date value by 30. In terms of
a date calculation in ABAP, this implies that we're increasing the day component
of the date object by 30 days. Here, note that the ABAP runtime environment is
smart enough to roll over the date value whenever it reaches the end of a month,
and so on. In other words, you can rely on the system to ensure that you don't
calculate an invalid date value (e.g., 01/43/2011).

DATA: lv_date TYPE d.
lv_date = sy-datum.
WRITE: / 'Current Date:', lv_date MM/DD/YYYY.

65

2

Working with Numbers, Dates, and Bytes

lv_date = Tv_date + 30.
WRITE: / '"Future Date:', Tv_date MM/DD/YYYY.

Listing 2.3 Performing Date Calculations in ABAP

Time calculations in ABAP work very similarly to the date calculations shown in
Listing 2.3. With time calculations, the computation is based upon the seconds
component of the time object. The code in Listing 2.4 shows how we can incre-
ment the current system time by 90 seconds using basic time arithmetic.

DATA: Tv_time TYPE .
Tv_time = sy-uzeit.
WRITE /(60 Tv_time USING EDIT MASK
"The current time is __:__: ".
Tv_time = Tv_time + 90.
WRITE /(60 Tv_time USING EDIT MASK
"A minute and a half from now it will be __:_: ",

Listing 2.4 Performing Time Calculations in ABAP

In addition to typical numeric calculations, you also have the option of working
with date/time fields using normal character-based semantics. For instance, you
can use the offset/length functionality to initialize date or time components. The
code excerpt in Listing 2.5 demonstrates how you can adjust the date 02/13/2003
to 01/13/2003 using offset/length semantics.

DATA: Tv_date TYPE d VALUE '20030213".
WRITE: / Tw_date MM/DD/YYYY.
Tv_date+4(2) = '01".

WRITE: / Tw_date MM/DD/YYYY.

Listing 2.5 Manipulating a Date Using Offset/Length Functionality

2.2.3 Working with Timestamps

If you've been working with some of the newer releases of the products in the
SAP Business Suite, you may have encountered certain applications that use the
TIMESTAMP or TIMESTAMPL data types to store time-sensitive data. As you can see in
Table 2.2, these ABAP Dictionary types store timestamps with varying degrees of
accuracy. Interestingly, though these types aren't built-in types like D or T, ABAP
does provide some native support for them in the form of a couple of built-in state-
ments. In addition, SAP also provides a system class called CL_ABAP_TSTMP, which
can be used to simplify the process of working with timestamps. We investigate
these features in the following subsections.

66

Date and Time Processing

Retrieving the Current Timestamp

You can retrieve the current system time and store it in a timestamp variable using
the GET TIME STAMP statement whose syntax is demonstrated in Listing 2.6. The
GET TIME STAMP statement stores the timestamp in a shorthand or longhand format
depending upon the type of the timestamp data object used after the FIELD addi-
tion. The timestamp value is encoded using the UTC standard.

DATA: Tv_tstamp_s TYPE timestamp,
Tv_tstamp_1 TYPE timestampl.
GET TIME STAMP FIELD lv_tstamp_s.
WRITE: / 'Short Time Stamp:', Tv_tstamp_s
TIME ZONE sy-zonlo.
GET TIME STAMP FIELD 1v_tstamp_1.
WRITE: / 'Long Time Stamp: ', Tv_tstamp_]
TIME ZONE sy-zonlo.

Listing 2.6 Using the GET TIME STAMP Statement

Looking at the code excerpt in Listing 2.6, you can see that we're displaying the
timestamp using the TIME 70NE addition of the WRI Tt statement. This addition for-
mats the output of the timestamp according to the rules for the time zone speci-
fied. In Listing 2.6, we used the system field SY-70NLO to display the local time zone
configured in the user's preferences. However, we could have just as easily used a
data object of type TIMEZONE, or even a hard-coded literal such as 'CST".

For a complete list of time zones configured in the system, have a look at the contents
of ABAP Dictionary Table TTZZ.

Converting Timestamps

You can convert a timestamp to a date/time data object and vice versa using the
CONVERT statement in ABAP. Listing 2.7 shows the syntax used to convert a time-
stamp into data objects of type D and 7. The TIME ZONE addition adjusts the UTC
date/time value within the timestamp in accordance with a particular time zone.
Additionally, the optional DAYLIGHT SAVING TIME addition can be used to deter-
mine whether or not the timestamp value happens to coincide with daylight sav-
ings time. If it does, the 1v_dst variable has the value 'x'; otherwise, it's blank.

67

2.2

w

2 I Working with Numbers, Dates, and Bytes

This feature can be helpful in differentiating between timestamp values that lie
within the transitional period between summer time and winter time.?

CONVERT TIME STAMP lv_tstamp TIME ZONE Tv_tzone
INTO [DATE Tv_date 1 [TIME Tv_time]
[DAYLIGHT SAVING TIME Tv_dst].

Listing 2.7 Syntax of CONVERT TIME STAMP Statement

Listing 2.8 shows how the CONVERT TIME STAMP statement is used to convert the
current system timestamp to date/time data objects using the local time zone.

TYPE-POOLS: abhap.

DATA: lv_ftstamp TYPE timestamp,
Tv_date TYPE d,
Tv_time TYPE t,
Tv_dst TYPE abap_bool.

GET TIME STAMP FIELD Tv_tstamp.

CONVERT TIME STAMP lv_tstamp TIME ZONE sy-zonlo
INTO DATE lv_date TIME Tv_time
DAYLIGHT SAVING TIME lwv_dst.

WRITE: / 'Today's date is: ", lv_date MM/DD/YYYY.
WRITE: /(60) lv_time USING EDIT MASK
"The current time is: __

I[F Iv_dst EO abap_true.

WRITE: / "In daylight savings time...".
ELSE.

WRITE: / "Not in daylight savings time...".
ENDIF.

Listing 2.8 Converting Timestamps to Date/Time Objects

To create a timestamp using a date/time object, you can use the syntax variant of
the CONVERT statement shown in Listing 2.9. The date/time values are qualified
using the TIME 7ONE addition so that the appropriate offsets can be applied as the
UTC timestamp is generated.

2 For a complete list of daylight savings time rules, have a look at the contents of the ABAP Dic-
tionary table TTZDV.

68

Date and Time Processing 2.2

CONVERT DATE 1v_date
[TIME Tv_time [DAYLIGHT SAVING TIME Tv_dst]]
[NTO TIME STAMP Tv_tstamp TIME ZONE Tv_tzone.

Listing 2.9 Syntax of CONVERT DATE Statement

The code excerpt in Listing 2.10 shows how the CONVERT DATE statement can be
used to generate a timestamp object from a date/time object.

[YPE-POOLS: abap.

DATA: Tv_tstamp TYPE timestamp,
Tv_date IYPE d,
Tv_time IYPE t,

Tv_dst IYPE abap_bool.

Tv_date = sy-datum.
Tv_time sy-uzeit.

CONVERT DATE Tv_date TIME Tv_time
INTO TIME STAMP Tv_tstamp TIME ZONE sy-zonlo.

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

Listing 2.0 Creating a Timestamp from a Date/Time Object

CL_ABAP_TSTMP

+ADD()

+ SUBTRACT()

+ SUBTRACTSECS()
+TD_ADD()

+ TD_SUBTRACT()

+ ISDOUBLEINTERVAL()

+ SYSTEMTSTMP_SYST2ZLOC()
+ SYSTEMTSTMP_LOC25YST()
+ SYSTEMTSTMP_UTC2SYST()
+SYSTEMTSTMP_SYST2ZUTC()
+ TD_NORMALIZE()

+ NORMALIZE()

Figure 2.4 UML Class Diagram for Class CL_ABAP_TSTMP

Timestamp Operations Using System Class CL_ABAP_TSTMP

Unlike the native D and T types, the ABAP runtime environment doesn't have
built-in functionality to perform calculations on timestamps (e.g., add or subtract,
etc.). Instead, SAP provides a system class called CL_#ABAP_TSTHMP for this purpose.
Figure 2.4 contains a UML class diagram that shows the publicly available methods
provided in this class. As you would expect, there are various forms of ADD() and

69

2

Working with Numbers, Dates, and Bytes

SUBTRACT () methods to perform timestamp calculations. In addition, a series of
conversion methods (e.g., SYSTEMTSTMP_SYSTZLOC(), etc.) can be used to convert
a timestamp to various time zones, a Boolean method called ISDOUBLEINTERVAL()
can be used to determine if a timestamp is in daylight savings time, and a couple
of methods can be used to normalize a timestamp. Here, normalization implies that
an invalid time value such as 10:30:60 would be adjusted to the value 10:31:00.

In UML class diagram notation, methods that are underlined are defined as class
methods. Class methods can be invoked without first creating an instance of the
class in which they are defined, as evidenced in the code excerpt shown in Listing
2.11. Here, we're using the class method ADD() to add 75 seconds to the current
system time.

DATA: lv_tstamp TYPE timestamp,
Tv_date TYPE d,
Tv_time TYPE t.

GET TIME STAMP FIELD Tv_tstamp.
WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

TRY.
CALL METHOD cl_abap_tstmp=>add
EXPORTING
tstmp = lv_tstamp
Secs =75
RECEIVING

r_tstmp = lv_tstamp.
CATCH CX_PARAMETER_THNVALTD_RANGE.
CATCH CX_PARAMETER_TNVALID_TYPE.
ENDTRY .

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.
Listing 211 Working with Timestamps Using CL_ABAP_TSTMP

The call signatures of most of the other methods in class CL_ABAP_TSTMP are similar
to the ADD() method demonstrated in Listing 2.11. For more details concerning the
functionality of particular methods in this class, see the class/method documenta-
tion for this class in the Class Builder (Transaction SE24).

2.2.4 Calendar Operations

So far, our discussion on dates has focused on raw calculations and conversions.

70

Date and Time Processing | 2.2

However, many typical use cases in the business world require that we look at
dates from a semantic point of view. For example, you might ask whether or
not the date 1/13/2010 is a working day, or whether 4/4/2010 is a holiday. The
answers to these kinds of questions require the use of a calendar. Fortunately, SAP
provides a very robust set of calendaring features straight out of the box with SAP
NetWeaver AS ABAP.

The SAP Calendar is maintained in a client-specific manner inside the SAP Custom-
izing implementation guide (Transaction SPRO). Depending on how your system
is set up, you might have a project-specific implementation guide. However, for
the purposes of this discussion, we assume that you're using the default SAP Ref-
erence Implementation Guide (IMG). You can access this guide by clicking on the
button labeled SAP Reference IMG on the initial screen of Transaction SPRO (see
Figure 2.5).

Project Edit Goto Seffings Tools System Help
=]

Customizing: Execute Project
[I&a SAP Reference MG 'ﬁ MG Infanmiation m Project Anatysis

Project Mame.

Figure 2.5 Initial Screen of Transaction SPRO

Inside the SAP Reference IMG, you can find the SAP Calendar under the navigation
path SAP NETWEAVER * GENERAL SETTINGS * MAINTAIN CALENDAR (see Figure 2.6).

Imnlememaﬂsn Guide dlt 010 Addil

Display IMG

|E@ | Existing BC Sets || BC Sets for Actity

T EAF Custompaing Implemeniaion Guide:
B @ Actvate Business Functions

i B General Setiings
P [B SetCountries
B[SetGeocoding
B[Curencles
[2 @ Check Units of Measurement
@- @ Maintain Calendar
@- @ Maintain Calendar for Japan

Figure 2.6 Navigating to the SAP Calendar in the IMG

71

2 | Working with Numbers, Dates, and Bytes

Figure 2.7 shows the main menu of the SAP Calendar transaction. From here, you
can configure subobjects such as public holidays, holiday calendars, and factory
calendars. By default, an SAP NetWeaver system comes preconfigured with some
typical settings in these subareas. However, you're also free to create customized
holidays and calendars as needed.

= -
Calendar Edit Golo Exras System Help
—= = 5 :

g -

SAP Calendar: Main Menu

Tha calendar is not clientspacifc.
Each change takes effect directly in all clients

@ Fublic holidavs
OHaliday calendar

O Factary calendar
&

Figure 2.7 Maintaining the SAP Calendar in the IMG

After the SAP Calendar is configured properly, you can use this data to perform
various types of calculations. Table 2.3 shows some useful function modules that
leverage this data to determine whether or not a given date is a working day, holi-
day, and so on. You can find out more information about these function modules
in the documentation provided for each module in the Function Builder (Transac-

tion SE37).
DATE_COMPUTE_DAY Computes the day of the week for a given
date. Day values are calculated as 1 (Monday),
2 (Tuesday), and so on.
DATE_COMPUTE_DAY_ENHANCED Computes the day of the week just like DATE_

COMPUTE_DAY; also returns the day value as
text (e.g., TUESDAY, etc.).

Table 2.3 Useful Date Functions in Function Group SCAL

72

Bits and Bytes I 2.3

DATE_CONVERT_TO_FACTORYDATE Calculates the factory date value for a given
date. Also provides an indicator that confirms
whether or not the given date is considered a
working day according to the selected factory
calendar.

DATE_GET_WEEK Determines the week of the year for the given
date. For example, the date 9/13/2010 would
be the 37th week of the year 2010.

FACTORYDATE_CONVERT_TO_DATE Converts a factory date value back into a date
object.

HOLIDAY_CHECK_AND_GET_INFO Tests to determine whether or not a given date
is a holiday based on the configured holiday
calendar.

WEEK_GET_FIRST_DAY Calculates the first day of a given week.

Table 2.3 Useful Date Functions in Function Group SCAL (Cont.)

2.3 Bits and Bytes

Modern programming languages do such a tremendous job of abstracting the com-
plexities of computer architectures that, these days, we seldom have any need to
work at the bits and bytes level. However, with the advent of Unicode, it's becom-
ing more important to understand how to work at this level because many exter-
nal data sources encode their data using multi-byte encodings — as opposed to
the single-byte code pages normally used in ABAP (e.g., ASCII, etc.). In addition,
knowledge of this area can be quite handy in other applications, as you'll see in
a moment.

2.31 Introduction to the Hexadecimal Type in ABAP

Normally, whenever we talk about the built-in native data types provided in the
ABAP programming language, we focus our attention around the numeric and
character data types. However, ABAP also provides a hexadecimal data type (X)
that is used to represent individual bytes in memory. The values stored in the indi-
vidual bytes are represented as two-digit hexadecimal numbers.

73

2 I Working with Numbers, Dates, and Bytes

Binary and Hexadecimal Numbers

If you have never worked with binary or hexadecimal numbers before, then a brief in-
troduction is in order. A byte is a unit of measure for memory inside of a computer. Each
byte is comprised of 8 bits. The term bit is an abbreviation for binary digit. A bit can
have one of two logical values: 1 (or true) or [(or false). In terms of computer circuitry,
bits that have the value 1 are turned on, while those that have the value 0 are turned
off.

The binary (or base-2) number system represents numeric values using binary digits.
Figure 2.8 shows an example of an 8-bit binary number whose decimal value is 170. As
you can see, reading from right to left, the value of each bit is calculated by multiplying
one or zero (i.e., the bit value) by two raised to the power of the current index (where
indexes start at zero).

=N+ @D+ @D+
=170

Figure 2.8 Example of an 8-Bit Binary Number

Binary numbers can be very difficult to work with if you're not a computer. Therefore,
the values of bytes are often represented using the hexadecimal (or base-16) numbering
system. Each hexadecimal digit is in the range [0123456789ABCDEF], where A =10, B =
11, € =12, and so on. Conveniently, each hexadecimal digit can hold any possible value
of 4 bits (commonly called a nibble). Therefore, two hexadecimal digits can be used to
represent a single byte of information in memory.

In addition to the fixed length ¥ data type, ABAP also provides the ¥STRING vari-
able-length hexadecimal type, which is commonly used in various input/output
(I/0) operations. Here, as is the case with the C and STRING data types described in
Chapter 1, String Processing Techniques, there is a trade-off between performance
and flexibility.

Now that you know a little bit about the hexadecimal type, let's take a look at the
types of operations you can perform on data objects of this type. The following
sections describe the built-in bitwise operators available in ABAP.

74

Bits and Bytes

2.3.2 Reading and Writing Individual Bits

You can use the GET BIT and SET BIT statements to read and write individual bits
of a hexadecimal data object. The general syntax of these statements is shown in
Listing 2.12 and Listing 2.13, respectively.

GET BIT Tv_index OF Tv_hex INTO lv_bit.
Listing 242 Syntax of GET BIT Statement

SET BIT lv_index OF Tv_hex TO Tv_bit.
Listing 243 Syntax of SET BIT Statement

To demonstrate how these statements work, let's consider an example. Listing 2.14
contains a contrived piece of sample code that swaps the first byte of a two-byte
hexadecimal data object with the last byte by manipulating individual bits inter-
nally. For good measure, we also shift the bits around one more time at the end of
the code snippet, using the SHIFT statement in byte mode.

DATA: Tv_hex(2) TYPE x VALUE 'FOOF",
Tv_front_idx TYPE 1,
lv_back_idx TYPE 1,
lv_front_bit TYPE 1,
Tv_back_bit TYPE 1.
WRITE: / Tw_hex.
DO 8 TIMES.
Tv_front_idx = sy-index.
lv_back_idx = Tv_front_idx + 8.

GET BIT Tv_front_idx OF Tv_hex INTO lv_front_bit.
GET BIT Tv_back_idx OF Tv_hex INTO Tv_back_bit.

SET BIT Tv_front_idx OF 1v_hex TO lv_back_bit.
SET BIT 1v_back_idx OF lv_hex TO lv_front_bit.
ENDDO.
WRITE: / Tw_hex.
SHIFT Tv_hex BY 1 PLACES CIRCULAR IN BYTE MODE.
WRITE: / Tw_hex.

Listing 244 Reading and Writing Bits in ABAP

In and of itself, low-level bit manipulation isn't all that exciting. However, there
are situations where it can be quite useful.

75

2.3

2

Working with Numbers, Dates, and Bytes

For example, let’s imagine you're working on a problem where you need to work
with arbitrarily large numbers that exceed the limits of the built-in ABAP numeric
types. One way other modern programming languages, such as Java or .NET, get
around this limitation is by developing a so-called numeric wrapper class. For
instance, the java.math.Biglnteger class provided with the Java 2 SDK is used to
represent arbitrarily large integer values. Internally, bitwise operators are used to
mimic the behavior of a normal primitive type represented in two's complement
notation.? Because this implementation is open source, it wouldn't be too difficult
to reverse-engineer an ABAP version of this class to suit your purposes.

2.3.3 Bitwise Logical Operators

In addition to the GET BIT and SET BIT statements, ABAP also provides a series of
bitwise logical operators that can be used to build Boolean algebraic expressions.
If you aren't familiar with Boolean algebra, there are many excellent resources
available online — simply search for the term “Boolean Algebra,” and you'll find
a wealth of information. Of course, even if you have worked with Boolean opera-
tors before, you might need a bit of a refresher. Table 2.4 depicts a truth table that
shows the values generated when applying the Boolean AND, OR, or XOR operators
against the two bit values contained in Field A and Field B.

| FieldA [FieldB ___[AND_____JOR_____|XoR |
0 0 0 0 0

0 1 0 1 1
1 0 0 1 1
1 1 1 1]

Table 2.4 Truth Table for Boolean Operators

Table 2.5 shows the bitwise operators provided with the ABAP language. Just like
normal arithmetic operators, the bitwise operators can be combined in complex
expressions using parentheses, and so on.

3 The two's complement notation is a common system used to represent signed integers in com-
puters.

76

Bits and Bytes I 2.3

Bitwise Description
Operator

BIT-NOT Unary operator that flips all of the bits in the hexadecimal number
to the opposite value. For example, applying this operator to a
hexadecimal number having the bit-level value 10101010 (e.g., 'AA")
would yield 01010101.

BIT-AND Binary operator that compares each field bit-by-bit using the Boolean
AND operator.

BIT-XOR Binary operator that compares each field bit-by-bit using the Boolean
XOR (or eXclusive OR) operator.

BIT-OR Binary operator that compares each field bit-by-bit using the Boolean
OR operator.

Table 2.5 Bitwise Logical Operators in ABAP

To see the power of bitwise operators such as the ones listed in Table 2.5, it's use-
ful to consider an example. Imagine that you are tasked with building a custom
document management system. One of the requirements of this system is to be
able to assign rights permissions to the individual documents maintained in the
system. For the purposes of this simple example, let's assume that the possible
permissions are Create, Remove, Update, and Display.

One way to store these assignments might be to create a database table that con-
tained a series of flag columns to indicate whether or not a user had a particu-
lar permission for a given document. Unfortunately, there are a couple of prob-
lems with this approach. First of all, it requires that we create separate fields for
each possible permission type. As the system grows, additional permission types
require a modification to the database table. This phenomenon leads into the sec-
ond problem — namely, space. In other words, each additional flag column adds
another byte or two of storage to every row in the table. Of course, another option
is to capture the permissions in separate rows. Still, either way you slice it, this can
get expensive from a storage perspective.

Instead of creating a new flag column each time we want to add a new permission
type to our system, what if we could figure out a way to store a bunch of Boolean
flags in a single field? Naturally, the hexadecimal data type lends itself well to this
kind of storage operation because it can be used as a type of bit mask to represent
a large number of flags at the bit level. For example, a single byte bit mask could
represent up to 28, or 256, possible values, leaving us plenty of room to grow. The

77

2 I Working with Numbers, Dates, and Bytes

values of the individual Boolean flags can then be set using bitwise operators. Col-
lectively, the process of representing a series of flags at the bit level and manipulat-
ing those flags using bitwise operators is referred to as bit masking.

The code excerpt in Listing 2.15 demonstrates how bit masking works using the
ABAP bitwise logical operators. To keep things simple, we've created an interface
that contains constants to represent the possible permission values (e.g., CO_CRE -
ATE, etc.). These permission values are assigned to a display-only user using the
BIT-OR operator, which effectively works like an addition operator in this case. We
can then confirm whether or not the user has a given permission by applying the
BIT-AND operator. Here, the result matches the permission constant bit-for-bit if
the particular permission has been assigned. This can be confirmed by using the
equality operator in an [+ statement. In the example, the user has Display permis-
sions but not Create permissions.

INTERFACE 1if_permissions.
CONSTANTS: CO_CREATE TYPE x VALUE '01°",
CO_REMOVE TYPE x VALUE 02",
CO_UPDATE TYPE x VALUE 04",
CO_DISPLAY TYPE x VALUE "08".
ENDINTERFACE.

DATA: lv_display_user TYPE x,
Tv_permissiaon TYPE x.

* Assign read-only access to a display user:
Tv_display_user =
Tv_display_user BIT-OR 1if_permissions=>CO_DISPLAY.

* Check the user's permissions:
Tv_permission =
lv_display_user BIT-AND lif_permissions=>CO_DISPLAY.
[F lv_permission EQ lif_permissions=>CO_DISPLAY.
WRITE: / '"User has display only access.’'.
ELSE.
WRITE: / 'User does not have display access.'.
ENDIF.

lv_permission =
lv_display_user BIT-AND lif_permissions=>CO_CREATE.
[F lv_permission EQ lif_permissions=>CO_CREATE.
WRITE: / 'User can create documents.'.

78

Summary 2.4

ELSE.
WRITE: / "User is not authorized to create documents.'.
ENDIF.

Listing 245 Mapping Permissions Using Bit Masking

As you can see, bit masking can be used as an effective compression technique.
Other practical examples of bit masking include the storage of user preferences
and set operations, which are described in an example in the online SAP Help
Portal.

2.4 Summary

In this chapter, you learned about some advanced and perhaps lesser-known fea-
tures of elementary data types in ABAP. During the course of this book, you'll see
how some of these fundamental concepts provide the foundation for implement-
ing new features in SAP NetWeaverAS ABAP, such as support for Unicode and
XML processing. In the next chapter, we mix things up a bit and take a look at
dynamic programming in ABAP.

79

Index

A

ABAP
Basic arithmetic operators, 57
Built-in math functions, 58
Date and time processing, 64
Date type, 64
Exponentiation operator, 57
Hexadecimal type, 73
Modulus operator, 57
Numeric operations, 57
Timestamp type, 64
Time type, 64
Unicode changes, 117
Unicode system classes, 121
XSTRING type, 74
ABAP and Unicode, 109
ABAP character types, 27
Built-in types, 27
CLIKE data type, 28
CSEQUENCE type, 28
Static length vs. variable length types,
28
ABAP date and time data types, 64, 65
ABAP Debugger, 445
ABAP dialog programming, 237
Dialog step, 238
Process before output event, 237
ABAP Dictionary
BLOB support, 222
CLOB support, 222
Enhancement categories, 119
ABAP Dictionary structure MATCH_
RESULT, 47
ABAP file interface, 136
Creating files, 141
Dataset, 136
Defined, 136
Logical file and directory API, 155

Logical files and directories, 150
Reading files, 143
Updating files, 145
Working with Unicode, 148

ABAP hexadecimal type
BIT-AND operator, 77
BIT-NOT operator, 77
BIT-OR operator, 77
Bitwise logical operators, 76
BIT-XOR operator, 77
GET BIT statement, 75
Reading and writing bits, 75
SET BIT statement, 75

ABAP math functions
Absolute value function, 58
Base-10 logarithm function, 58
Ceiling function, 58
Complex expressions, 60
Exponential function, 58
Floor function, 58
Fraction function, 58
Hyperbolic trigonometric functions, 58
Inverse trigonometric functions, 58
Natural logarithm function, 58
Sign function, 58
Square root function, 58
Trigonometric function, 58
Truncation function, 58
Usage example, 59

ABAP memory, 479
Accessibility, 480
Usage example, 480

ABAP Objects
Chained method calls, 35
Functional methods, 31
Transient nature, 184

ABAP Object Services, 183
As an ORM tool, 184
Persistence Service, 184

533

Index

Query Service, 198
Transaction Service, 248
ABAP regex classes
Example, 48
Exception types, 51
UML class diagram, 48
Working with submatches, 51
ABAP regular expression engine, 36
Initial release version, 36
ABAP Run Time Type Services, 98
ABAP Serialization XML, 314
asXML, 314
ABAP SHIFT statement
Byte mode, 75
ABAP string processing statements
IN BYTE MODE addition, 114
IN CHARACTER MODE addition, 115
Processing mode, 114
ABAP structures
Alignment bytes, 115
ABAP Web Service Framework
Advanced features, 391
Creating a service consumer, 379
Creating service definitions, 367
Generating a service consumer call,
387
Providing Web services, 366
Service consumer, 378
Transparency, 389
Abstract class, 186
Accessing an external database table, 226
ACID transaction model, 233
Definition, 233
Described, 234
Properties, 233
Adobe Flex, 439
Adobe Flex Framework
Adobe AIR runtime environment, 359
Application Log Object
Creating, 446
Area instance version, 507
Lifecycle, 508
Area instance versioning
Active version, 507

534

Area root class, 488
Defining, 488
ASCII, 73
ASSIGN COMPONENT statement, 87
ASSIGN statement, 85
Basic syntax, 85
CASTING addition, 89
CASTING addition syntax variants, 91
Asynchronous RFC
aRFC, 512
Retrieving results, 517
Synchronization with the WAIT UNTIL
statement, 516
Atomic commit protocol, 235
Authentication
CAPTCHA, 438
Defined, 420
AUTHORITY-CHECK statement, 433
FOR USER extension, 434
Syntax, 433
Authorization, 420, 423
Defined, 421
Authorization checks, 433
The AUTHORITY-CHECK statement,
433
Authorization fields, 426
Maintaining in Transaction SU20, 426
Authorization objects, 423
Authorization fields, 424
Creating a custom authorization
object, 427
Example, 425
Maintaining in Transaction SU21, 425
Overview, 424
Authorization profile, 423
Automatic area structuring
Interface IF_SHM_BUILD _INSTANCE,
502

Background RFC
bgRFC, 513

BAL
Application log object, 446
Application log sub-object, 446
Basic Multilingual Plane
BMF, 112
Binary and hexadecimal numbers, 74
Binary number system, 74
Bit, 74
Binary digit, 74
Value range, 74
Bit masking
Example, 78
Other practical examples, 79
Bits and bytes, 73
Bitwise logical operators in ABAP, 77
BLOBS, 222
Boolean methods, 33
Boolean operators
Truth table, 76
Boost Regex library, 36
John Maddock, 36
BSPs, 357
Class CL_HTTP_EXT_BSF, 357
Business Address Services, 394
Business Application Log, 445
API organization, 450
Configuring log severities, 452
Displaying logs, 448
Log handle, 450
Table BALHDR, 446
Transaction SLGO, 446
Business Communication Services, 393
B(CS, 393
Configuration, 394
Inbound processing rules, 412
Initial release, 393
Receiving email messages, 411
Usage example, 398
Working with attachments, 403
Business Server Pages
BSPs, 329
Business Workplace
Transaction SBWF, 397
Byte, 74

Index

C

CALL FUNCTION statement
IN UPDATE TASK addition, 241
CALL TRANSFORMATION statement,
310
PARAMETERS addition, 318
Syntax, 310
CAPTCHA, 419, 438
Adobe Flex component, 439
Defined, 439
Integration with BSPs, 440
Integration with Web Dynpro, 443
Change document object
Creating, 269
Defined, 269
Update module, 271
Change documents, 268
Configuring change-relevant fields, 273
Defined, 269
Programming with, 269, 273, 274
Table CDHDR, 277
Table CDPOS, 277
Character codes, 109
Character-encoding system, 109
ASCII, 110
Character set, 110
Code page, 110
Defined, 109
Described, 110
EBCDIC, 111
ISO/IEC 8859, 111
Limitations of early systems, 111, 113
Check modules
Function SXPG_DUMMY_COMMAND _
CHECK, 462
Class /BOWDK/CL_FTP_CLIENT, 175
UML class diagram, 175
Class /BOWDK/CL_HTML_DOCUMENT_
BCS, 409
Class /BOWDK/CL_LOGGER, 451
UML class diagram, 451
Class /BOWDK/CL_SAPSCRIPT_UTILS,
220

535

Index

Class /BOWDK/CL_STRING
Regular expression support, 53
UML class diagram, 32, 53
Class Builder, 33
Transaction SE24, 33
Class CL_ABAP_CHAR_UTILITIES, 129
UML class diagram, 129
Class CL_ABAP_CONV_IN_CE, 121
Stream-based processing model, 123
Structure conversions, 124
UML Class Diagram, 121
Usage example, 121
Class CL_ABAP_CONV_OUT_CE, 124
UML class diagram, 124
Usage example, 124
Class CL_ABAP_CONV_X2X_CE, 126
UML class diagram, 126
Usage example, 126
Class CL_ABAP_FILE_UTILITIES, 149
Class diagram, 149
Description, 150
Class CL_ABAP_MATCHER, 48
Defined, 48
Class CL_ABAP_REGEX, 46
Defined, 48
Class CL_ABAP_TSTMP
UML class diagram, 69
Class CL_ABAP_TYPEDESCR
UML class diagram, 99
Class CL_ABAP_VIEW_OFFLEN, 124
Class CL_ABAP_ZIP, 158
Description, 158
UML class diagram, 158
Class CL_BCS, 394, 396
And COMMIT WORK, 398
Persistent class, 396
Sending immediately, 402
Class CL_CAM_ADDRESS_BCS, 402
Class CL_DISTRIBUTIONLIST_BCS, 397
Class CL_DOCUMENT _BCS, 398
Creating a text message, 402

536

Class CL_GUI_FRONTEND_SERVICES,
167, 408
Method FILE_OPEN_DIALOG(), 171
Method FILE_ SAVE_DIALOG(), 168
Method GUI_DOWNLQAD(), 168
Method GUI_UPLOAD(), 171
UML class diagram, 167
Class CL_HTTP_CLIENT, 338
Class CL_IXML, 291, 292
Method CREATE(), 292
Class CL_OS_SYSTEM, 249
Method INIT_AND_SET_MODES, 250
Class CL_SAPUSER_BCS, 401
Class CX_SY_MATCHER, 51
Class CX_SY_REGEX, 51
CLOBS, 222
CLOSE DATASET statement, 140
Syntax, 140
COMMIT WORK statement, 200, 220,
237
AND WAIT addition, 241
Common Object Request Broker
Architecture
CORBA, 362
Composition technique, 61
Connecting to external databases, 223
Transaction DBCO, 223
CORBA, 362
CREATE DATA statement, 94
TYPE HANDLE addition, 94
CREATE DATA Statement
TYPE HANDLE Addition, 100

D

Database programming, 183
CRUD operations, 198
Data clusters, 477
Built-in statements, 478
Defined, 477

Limitations, 486
Storage media types, 478
Data encryption, 435
Data references, 91
Compared to pointers, 92
Declarations, 91
Declaring fully typed data references,
92
De-referencing, 92, 96
De-referencing generically typed data
references, 97
Safety precautions, 95
Data reference variables
Assignments, 96
Date and time calculations, 65
Date and time operations
Offset/length functionality, 66
Date calculations
Example, 66
DELETE DATASET statement, 140
Permissions, 140
Syntax, 140
DELETE statement, 478
Syntax, 478
De-referencing operator (->*), 96
DESCRIBE FIELD statement, 87
Document Object Model, 291
DOM, 291
Usage example, 292
Document Type Definition, 289
DTD, 289
Double-byte encoding schemes
BIGS, 113
SJIS, 113
Dynamic data objects, 477
Dynamic program generation, 106
Creating a report program, 107
Creating a subroutine pool, 106
Pitfalls, 108
Dynamic programming, 81

Index

Email, 394
Formatting with HTML, 409
Encryption
Defined, 421
Enqueue Service, 262
Enterprise Services Repository and
Services Registry, 366
ES Repository
Online Documentation, 366
Exception class /BOWDK/CX_FTP_
EXCEPTION, 176
Exception class CX_OS_CHECK_AGENT_
FAILED, 261
Exception class CX_OS_OBJECT_
EXISTING, 200
Exception class CX_OS_SYSTEM, 251
EXEC SQL statement, 226
CONNECT Statement, 226
Syntax diagram, 226
EXPORT statement, 478
Expanded syntax, 480, 483
SHARED BUFFER addition, 483
SHARED MEMORY addition, 483
Syntax, 478
Extensible Markup Language
XML, 283
External commands, 459, 460
Check modules, 462
Configuring the Perl interpreter, 468
Dynamic parameters, 462
Executing in ABAF, 465
Executing Perl scripts, 469
Function SXPG_COMMAND _
EXECUTE, 465
Perl, 467
Python, 467
Reading output, 472
Restricting access, 462
S_LOG_COM authorization object, 462
Static parameters, 462

537

Index

Testing, 463
Transaction SM69, 460

F

Field symbols, 81
Assignments, §5, 86
Casting data objects, 89
Declaration examples, 83
Declarations, 83
Declaration scope, 83
Defined, 82
Dynamic assignments, 86
Hlustration, 82
Relationship to pointers, 82
Static assignments, 85
Static assignments with offset/length
specifications, 85
Typing, 83
Verifying assignments, 85
Working with internal tables, 88
Working with structures, 87

File processing on the application server,

135
File processing on the presentation
server, 167

Downloading a file, 168

Uploading a file, 171
File Transfer Protocol, 135, 173

FTP 173

Secure FTP, 175
FIND statement

Example, 46

Syntax, 46
Function BAL_DB_SAVE, 450
Function BAL_LOG_CREATE, 450
Function BAL LOG_EXCEPTION_ADD,
450
Function BAL_LOG_MSG_ADD, 450
Function BAL_LOG_MSG_ADD_FREE
TEXT, 450

538

Function CHANGEDOCUMENT_READ,
278
Function DB_COMMIT, 237
Function DELETE_TEXT, 222
Function FILE_GET_NAME, 155
Usage Example, 155
Function FILE_GET_NAME_AND_
LOGICAL_PATH, 155
Function FILE_GET_NAME_USING_
PATH, 155
Function FTP_CLIENT_TO_R3, 174
Function FTP_COMMAND, 174
Function FTP_CONNECT, 174
Usage Example, 179
Function FTP_DISCONNECT, 174
Usage example, 181
Function FTP_R3_TO_CLIENT, 174
Function FTP_R3_TO_SERVER, 174
Usage example, 180
Function FTP_SERVER_TO_R3, 174
Function group GRAP, 167
Function group SFIL, 155
Function group SFTF, 174
Function GUID_CREATE, 201
Function MASTER_IDOC_DISTRIBUTE,
521
Function READ_TEXT, 221
Function SAVE_TEXT, 218
Function SCMS_BINARY_TO_XSTRING,
408
Function SCMS_XSTRING_TO_BINARY,
159, 163
Function SPBT_INITIALIZE, 521
Function SXPG_COMMAND_EXECUTE,
465

G

GENERATE SUBROUTINE POOL

statement, 106

GET DATASET statement, 146
Syntax, 146

GET REFERENCE OF statement, 93
Example, 93

GUID, 187
Globally Unique Identifier, 187

H

Hexadecimal number system, 74
HTML, 284
Example, 284
HTML entity references, 44
HTTP, 329
Addressability and URLs, 332
Common request methods, 331
DELETE method, 331
Example client program, 336
GET method, 331
Header fields, 333
HEAD method, 331
Hypertext Transfer Protocol, 329
Message format, 333
Overview, 329
POST method, 331
PUT method, 331
Relationship to the TCP/IP, 333
Request entity body, 334
Response entity body, 334
Transport protocol, 333
Uniform interface, 330

ICF, 329
Accessing URL query string
parameters, 355
Activating services, 354
Client API, 338
Configuring basic authentication, 351
Debugging with the ABAP Debugger,
358

Index

Definining service nodes in Transaction
SICF, 348
Developing an ICF handler class, 354
Handler modules, 346
Interface IF_HTTP_CLIENT, 338
Interface IF_HTTP_EXTENSION, 348
Interface IF_HTTP_SERVER, 348
Internet Communication Framewerk,
329
Introduction, 335
Positioning, 336
Service nodes, 348
Testing ICF service nodes, 358
Virtual hosts, 348
ICF handler module
Flow return code, 358
ICM
Functionality, 335
Internet Communication Manager, 335
Fositioning, 335
IDocs, 363
Implicit database commits, 237
IMPORT statement, 478
Syntax, 478
Information Age, 27
INSERT REPORT statement, 107
Integration testing, 445
Interface description language
IDL, 363
Interface IF_DOCUMENT_BCS, 398
Interface IF_HTTP_CLIENT, 338
Interface IF_HTTP_EXTENSION
Method HANDLE_REQUEST(), 348
Interface IF_HTTP_REQUEST, 338
Interface IF_HTTP_RESPONSE, 339
Interface IF_INBOUND_EXIT_BCS, 412
Implementation example, 414
Interface IF_IXML, 292
Interface IF_IXML_DOCUMENT, 311
Method CREATE_SIMPLE_ELEMENT(),
297
Interface IF_IXML_ISTREAM, 302, 310
Interface IF_IXML_NODE, 310

539

Index

Interface IF_IXML_OSTREAM, 311
Interface IF_IXML_PARSER, 302

Interface IF_IXML_STREAM_FACTORY,

302
Interface IF_MAPPING, 298
EXECUTE() method, 299
Interface IF_OS_CHECK, 259
Interface IF_OS_FACTORY, 203
Interface IF_OS_TRANSACTION, 249
Methods, 249
Interface IF_OS_TRANSACTION_
MANAGER, 249
Interface IF_RECIPIENT_BCS, 397
Interface IF_SENDER_BCS, 394, 397
Interface IF_SERIALIZABLE_OBJECT,
315, 489
Usage example, 315
Interface IF_SHM_BUILD_INSTANCE,
489, 502
Intermediate Documents, 363
IDocs, 363
Internal tables
Header lines, 88
Using assigned work areas, 89
Internet Message Access Protocol
IMAF, 395
Interprocess communication, 475
Introspection, 81
iXML library, 291
Implementation, 291
Release, 291
iXML library API, 291
UML class diagram, 292

J

Java, 298

K

Kernel methods, 291

540

L

LOAD-OF-PROGRAM event, 251
Local Data Queue
LDQ, 513
Locators and Streams API, 223
Lock object
As a logical lock, 263
Dequeue function, 265
Enqueue function, 265
Lock Mode, 264
Lock modules, 265
Ownership, 267
Lock objects, 263
Defining, 263
Foreign lock exceptions, 266
Logging, 445
Logical port, 383
Configuration type, 385
Defining in Transaction LPCONFIG,
384
Defining in Transaction
SOAMANAGER, 384
Editing in Transaction SOAMANAGER,
386
Setting the default port, 385
Logical unit of work
Lifecycle, 235
LUW, 235
LOOP AT statement
ASSIGNING addition, 89
Lvalue, 97

M

Mapping Assistant
Business key assignment type, 194
Class identifier assignment type, 194
Creating a persistence map, 192
GUID assignment type, 194
Object reference assignment type, 194
Value attribute assignment type, 194

Markup language, 284
Defined, 284
HTML, 284

MathML, 284

Message digest
ABAP implementation, 436
Defined, 435

Message digests
Encrypting passwords, 436
Function MD5_CALCULATE_HASH _
FOR_CHAR, 436
Function MD5_CALCULATE_HASH _
FOR_RAW, 437

N

Native SQL, 223
ABAP Keyword Documentation, 230
Numeric wrapper class, 76

o)

Object-oriented programming
Factory pattern, 61
Object-oriented transactions
Creating, 251
Object-relational mapping, 183
Benefits, 184
Mapping, 184
ORM, 184
OLTP systems, 64
OPEN DATASET statement, 136
Access mode, 136
ENCODING DEFAULT addition, 143,
149
Error handling, 138
File permissions, 138
NON-UNICODE addition, 149
Storage mode, 137
Syntax, 136

Index

Unicode changes, 149

UTF-8 addition, 149

WITH SMART LINEFEED addition,

143
Open SQL, 183

DELETE statement, 199

INSERT statement, 199

SELECT statement, 199

UPDATE statement, 199
Operating system, 459

P

Package SIXML_TEST, 304
Paging buffer, 477
Parallel processing, 511
Case study, 522
Class /BOWDK/CL_PBT_UTILITIES,
523
Designing algorithms, 520
Initializing the PBT environment, 523
With RFCs, 515
With the aRFC interface, 520
PERFORM statement
ON COMMIT addition, 242
ON ROLLBACK addition, 244
Perl, 467
Persistence, 183
Persistence classes
Agent classes, 185
Persistence map
Assignment types, 194
Persistence mapping
By business key, 187
By instance-GUID, 187
By instance-GUID and business key,
188
Multiple-table mapping, 188
Single-table mapping, 188
Strategies, 187
Structure mappings, 188

541

Index

Persistence Service, 184
Class agent API, 199
Layer of abstraction, 185
Managing persistent objects, 185
Mapping concepts, 187
Mapping strategies, 187
Multiple-table mapping, 188
Overview, 184
Persistent class, 185
Persistent objects, 184
Single-table mapping, 188
Structure mappings, 188
Support for other storage media, 188
Persistent classes, 185
Creating, 187, 189, 198, 206
Creating in the Class Builder, 190
Instantiation context, 187
Mapping Assistant teol, 192
Mapping by business key, 187
Mapping to a persistence model, 184
Mapping by instance-GUID, 187
Mapping types, 187
UML class diagram, 185
Persistent objects
Creating, 200
Deleting, 203
Managed objects, 186
Reading, 201
Updating, 202
Working with, 187, 198
Pointers
Defined, 82
De-referencing pointers, 82
Relationship to a data object, 92
Post Office Protocol
FPOF, 395
Process before output
PBO, 237
Programming with external commands,
459

542

Q

Query Service, 198, 204
Queued RFC
qRFC, 513

Random number generators, 61
Class CL_ABAP_RANDOM, 61
Class CL_ABAP_RANDOM_INT, 61
Seed, 61
Usage example, 62

Random numbers, 60
Generating, 60

READ DATASET statement, 139
ACTUAL LENGTH addition, 140
MAXIMUM LENGTH addition, 140
Syntax, 139

READ TABLE statement
ASSIGNING addition, 89

RECEIVE statement, 517

Reference data objects, 91

Reflective programming, 81

Regular expressions, 27, 36
ABAP regular expression classes, 46
Backreferences, 42
Basic metacharacters, 37
Boost Regex library, 36
Character class, 41
FIND statement, 46
Formatting URLs, 44
Ignoring case, 51
Lookahead, 45
Matching ABAP variable names, 40
Matching a word boundary, 41
Metacharacter, 37
Negative lookahead, 45
Parsing delimited file records, 43
Fositioning, 37
Positive lookahead, 45

POSIX-style regular expressions, 36
Regexes, 40
REPLACE statement, 46
Searching for HTML markup, 41
Syntax, 37
Testing with DEMO_REGEX_TOY, 52
Using ABAP regex classes, 48
Using quantifiers, 41
Using regexes in the FIND and
REPLACE statements, 46
Using regular expressions in ABAF, 46
Remote function call
RFC, 362
Remote method invocation
RMI, 362
Remote procedure call
RPC, 362
REPLACE statement
Example, 48
Syntax, 47
REST
Representational State Transfer, 336
RESTful Web Services, 336, 361
RFC interface, 511
RFCs, 511
Asynchronous call, 515
Example, 513
Finding, 514
Overview, 512
Variants, 512
RFC server group, 518
Example, 519
Maintaining in Transaction RZ12, 519
Roles, 423
ROLLBACK WORK statement, 238
RTTS, 99
Class CL_ABAP_TABLEDESCR, 100
Class CL_ABAP_TYPEDESCR, 99
Class hierarchy, 99
Common uses, 106
Creating a custom elementary type,
102
Creating a Custom Structure Type, 102

Index

Creating data objects dynamically, 100

System classes, 99

Usage in the ALV object model, 104
Rvalue, 97

S

SAP Business Suite, 64
SAP Calendar, 70
API functions, 72
Configuration, 72
Maintenance, 71
SAP Customizing implementation guide,
71
Transaction SPRO, 71
SAPFTP library, 173
Report program RSFTP002, 174
Report program RSFTP005, 174
SAP Interactive Forms, 415
SAP List Viewer, 104
ALV, 104
ALV Object Model, 104
Dynamic creation of field catalog, 104
Field catalog, 104
SAP Lock Concept, 262
Integration with the SAP update
system, 267
Introduction, 262
Lock administration, 267
SAP LUW, 235, 250
Bundling changes in subroutines, 242
Defined, 238
Introduction, 235
Local updates, 244
Update function modules, 239
SAP MaxDB, 225
SAP NetWeaver AS ABAP, 236
As a preemptive multitasking system,
236
Basic architecture, 236
Context switching, 238
Update work process, 238

543

Index

SAP NetWeaver AS ABAP authorization

concept, 419, 422
Authorization, 423
Authorization object, 423
Authorization profile, 423
Authorizations, 430
Overview, 423
Roles, 423
Summary, 434

SAP NetWeaver AS ABAP memory

organization, 476
Hlystration, 476
Local memory, 476
Shared memory, 476

SAP NetWeaver Process Integration, 297

Description, 297
SAP PI, 297

SAPscript text object
Text header, 218

SAPscript text object instances
Creating, 218
Deleting, 222
Reading, 221
Updating, 221

SAPscript text objects, 214
Alternatives, 222
API, 218
Defining, 214, 218
Text IDs, 214

Secure Network Communications
SNC, 421

Security model, 419
Key elements, 420

Security programming, 419
Authentication, 420
Authorization, 420
Design points, 422
Developing a security model, 419
Encryption, 421
Least privilege principle, 422
Performing autherization checks, 433
Virus scans, 437

Security roles, 430

544

Maintaining in Transaction PFCG, 430
Service consumer
ABAP proxy class, 383, 388
Binding to a WSDL file, 381
Design-time repository object, 383
Editing in the Object Navigator, 383
Example, 389
Logical port, 383
Selecting a prefix, 381
Usage scenario in ABAP, 386
Viewing an ABAP proxy class, 389
Service definition, 367
Assigning to a transport request, 370
Configuring runtime settings, 373
Creating with the Service Wizard, 367
Deploying, 370
Editing an endpoint, 375
Editing in the Object Navigator, 372
Name mapping, 370
Service-oriented architecture, 361
S0A, 361
Service provider
Authentication, 375
Downloading a WSDL file, 373
Testing, 376
Transport guarantee, 375
Service Wizard
Accessing in the Object Navigator, 367
SET DATASET statement
Syntax, 146
SET UPDATE TASK LOCAL statement,
244
Shared memory, 475
Extended memory buffer, 477
Paging buffer, 477
Roll buffer, 477
SAP buffer, 477
Shared memory area, 486
Area handle, 487
Area instance versioning, 507
Automatic area structuring, 502
Basic properties, 490
Defined, 487

Defining in Transaction SHMA, 486
Dynamic properties, 493
Fixed properties, 493
Monitoring in Transaction SHMM, 509
Naming conventions, 489
Runtime settings, 494

Shared memory area instance
Versioning, 487

Shared memory areas
Defining, 489

Shared memory objects, 486
Abstracting the API, 505
API usage, 495
Architecture, 486
Area class, 486
Area root class, 486
Locking concepts, 506
Read lock, 506
Shared memory area, 486
UML class diagram of base
components, 486
Update lock, 506
Write lock, 506

Simple API for XML, 291
SAX, 291

Simple Mail Transfer Protocel, 395
Defined, 395
SMTF, 395

Simple object access protocol, 362
SOAF, 362

Simple Transformation, 317, 409
ABAP data binding, 319
Addressing data roots, 321
Basic syntax, 325
Creating ST programs, 324
Data roots, 320
Defined, 318
Deserialization, 318
Flow control commands, 322
Main template, 318
Serialization, 318
ST, 318
Symmetry, 323

Index

<tt
attribute> command, 327
cond> command, 322
cond-var> command, 322
deserialize> command, 323
group> command, 323
loop> command, 323, 327
serialize> command, 323
skip> command, 322
switch> command, 322
switch-var> command, 322
value> command, 320
Usage example, 325
SOA, 361, 365
Web Services, 361
SOAP, 362
Comparison to legacy protocols, 362
Defined, 362
HTTP, 363
Introduction, 362
Language independence, 362
Message flow, 364
Message structure, 363
Platform independence, 362
Service Description Language, 365
Transport layer protocol, 363
Using SMTP, 415
XML message format, 362
soapUl, 376
Building a SOAP request, 377
Configuring basic authentication, 377
Running a test, 378
SPLIT statement, 43
SQL, 183
String processing techniques, 27
Built-in statements, 29
String testing, 445
Structure component de-referencing
operator, 97
Structure component SElECtOI’ operator,
87
Structure THEAD, 218
Structure TLINE, 218

545

Index

Synchronous RFC
SRFC, 512

T

Table VBLOG, 238
Tag interface, 315
Text files vs. binary files, 137
Time calculations
Example, 66
Timestamps, 66
Class CL_ABAP_TSTMF, 66
Conversion, 67
CONVERT statement, 67
Daylight savings time, 67
GET TIME STAMP statement, 67
Operations using CL_ABAP_TSTMF, 69
Retrieving system time, 67
TIMESTAMPL type, 66
TIMESTAMP type, 66
UTC format, 64
Tracing, 445
Transactional programming, 233
Transactional RFC
IRFC, 513
Transaction /BOWDK/LOG_CONF, 452
Transaction DBCO, 223
Creating a database connection, 224
Transaction FILE, 151
Creating a logical file path, 152
Physical path assignment, 152
Transaction SCOT, 412
Transaction SE75, 214
Transaction SE93, 251
Transaction Service, 248
Check agents, 259
Compatibility mode, 250
Listening for transaction events, 258
Object-oriented mode, 250
Subtransactions, 257
Transaction manager, 249
Transaction mode, 249

546

Typical usage scenario, 257
UML class diagram, 249
Update mode, 250
Transaction SHMA, 486
Transaction SICF, 348
Transaction SLGO, 446
Transaction SLG1, 448
Transaction SM12, 267
Transaction SM13, 245
Transaction SM69, 460
Transaction SOAMANAGER, 373
Access the WSDL document for a
service, 373
Service Configuration Editor, 373
TRANSFER statement, 138
Class-based exceptions, 139
LENGTH addition, 139
NO END OF LINE addition, 139
Syntax, 138
Two's complement notation, 76

Y

UDDI, 365, 366
Description and discovery process, 366
Service registry, 366

UML, 32
Class diagram, 32

Unicode, 73, 109, 148
ABAP development, 113
Basic Multilingual Plane, 112
Code point, 110
Code point conversions, 130
Defined, 111
Impacts to structure operations in
ABAF, 115
Support in SAP systems, 113
Thinking in Unicode, 117
Turning on Unicode checks, 120
Unicode-related changes to ABAF, 114
Using structured fields as character
types, 117

Unit testing, 445
Universal Description, Discovery, and
Integration, 366
UDDI, 366
Update function medule
Creating, 239
Processing options, 239
Update function medules
Restrictions, 240
Update request log, 245
Deleting entries, 246
Transaction SM13, 245
Update Request Log
Repeating an update, 246
Update task, 238
Dealing with exceptions, 240, 242,
245
URLs
Basic syntax, 332
Encoding with class CL_HTTP_UTILITY,
345
Host name, 332
Path, 333
Port, 332
Protocol specifier, 332
Query string, 333
URL encoding, 345
URLs, 332
UTF-8, 112
UTF-16, 112
Default usage in SAP systems, 114
Surrogate pairs, 112
UTF-32, 112

\

Variability analysis, 81

Variable-length encoding scheme
UTF-8, 112
UTF-16, 112
UTF-32, 112

Variable-length encoding schemes, 112

Index

Virus Scan Interface, 437
Class CL_VSI, 437
Usage example, 437

W

W3C, 305
WAIT UNTIL statement, 517
WDA, 357
Class CL_WDR_MAIN_TASK, 357
Web Dynpro for ABAP
WDA, 329
Web programming, 329
Human web, 329
Programmable web, 329
Web Service Navigator, 376
Web services, 361
ABAP Web Service Framework, 361
Consuming in ABAP, 378
Defined, 361
Discovery with UDDI, 365
Next steps, 391
Overview, 361
Providing in ABAP, 366
Proxy objects, 365
Recommended reading, 391
Self-describing, 365
Service registry, 366
SOAP, 362
Web Services Description Language, 365
WSDL, 365
World Wide Web, 27, 329
WSDL, 365
Client usage, 365
Generation, 365
Type declarations, 365

X

XHTML, 284
Extensible Hypertext Markup
Language, 409

547

Index

XML, 283
Comments, 288
Data modeling, 285
Defined, 283, 284
Defining attributes, 287
Defining elements, 286
Element naming rules, 286
Empty element, 286
Entity references, 288
Extensible Markup Language, 283
Format, 285
Introduction, 283
Meta-markup language, 284
Namespace, 306
Openness, 285
Farsing, 291
Processing instructions, 287
Processing models, 291
Root element, 286
Schema definition, 289
Self-describing documents, 285
Syntax, 285
Syntax example, 285
Unicode encoding, 285
Usage in Web services, 285
XML documents
validity, 289
XML processing in ABAF, 283
XML Schema, 289, 365
Constraints, 289
Example, 290
Use in standards, 289
XPath, 306
Location path, 306
Location steps, 306
Specification, 306

548

XSLT, 304
Anatomy of a stylesheet, 307
Calling ABAP modules in a stylesheet,
311
Creating XSLT programs, 308
Declarative approach, 305
Exceptions, 311
Extensible Stylesheet Language
Transformations, 304
Literal result elements, 307
Matching template rules, 307
Processor, 305
Resources, 304
SAP XSLT Processor Reference, 308
Specification, 306
Stylesheet, 305
Support release, 308
Template rules, 305
Testing XSLT programs, 313
Transformation, 305
Transformation Editor, 309, 313
Transformation process, 305

Y

Yahoo! Geocoding Web Service, 336

Z

ZIP archive files, 158
Creation example, 159
Reading example, 163

