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Although amateur cooks may hesitate to experiment with spices, accom-
plished chefs know how to use them to create the perfect dish. As an ABAP
developer, the same can be said of certain data types. In this chapter, we
show you how you can use some of these types to improve the quality of
your programs.

2 Working with Numbers, Dates, and Bytes

One of the nice things about working with an advanced programming language
like ABAP is that you don't often have to worry about how that data is represented
behind the scenes at the bits and bytes level; the language does such a good job
of abstracting data that it becomes irrelevant. However, if you do come across a
requirement that compels you to dig a little deeper, you'll find that ABAP also has
excellent support for performing more advanced operations with elementary data
types. In this chapter, we investigate some of these operations and show you tech-
niques for using these features in your programs.

24 Numeric Operations

Whether it's keeping up with a loop index or calculating entries in a balance sheet,
almost every ABAP program works with numbers on some level. Typically, when-
ever we perform operations on these numbers, we use basic arithmetic operators
such as the + (addition), - (subtraction), * (multiplication), or / (division) opera-
tors. Occasionally, we might use the M0D operator to calculate the remainder of an
integer division operation, or the ** operator to calculate the value of a number
raised to the power of another. However, sometimes we need to perform more
advanced calculations. If you're a mathematics guru, then perhaps you could come
up with an algorithm to perform these advanced calculations using the basic arith-
metic operators available in ABAP. For the rest of us mere mortals, ABAP provides
an extensive set of mathematics tools that can be used to simplify these require-
ments. In the next two sections, we'll examine these tools and see how to use
them in your programs.
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Working with Numbers, Dates, and Bytes

214 ABAP Math Functions

ABAP provides many built-in math functions that you can use to develop advanced
mathematical formulas as listed in Table 2.1. In many cases, these functions can
be called using any of the built-in numeric data types in ABAP (e.g., the I, F, and P
data types). However, some of these functions require the precision of the floating
point data type (see Table 2.1 for more details). Because ABAP supports implicit
type conversion between numeric types, you can easily cast non-floating point
types into floating point types for use within these functions.

Supported | Description

Numeric
Types
abs (A11) Calculates the absolute value of the provided
argument.
sign (A11) Determines the sign of the provided

argument. If the sign is positive, the function
returns 1; if it's negative, it returns -1;
otherwise, it returns 0.

ceil (A1) Calculates the smallest integer value that isn't
smaller than the argument.

floor (A1) Calculates the largest integer value that isn't
larger than the argument.

trunc (A11) Returns the integer part of the argument.

frac (A11) Returns the fractional part of the argument.

cos, sin, tan F Implements the basic trigonometric functions.

acos, asin, atan F Implements the inverse trigonometric
functions.

cosh, sinh, tanh F Implements the hyperbolic trigonometric
functions.

exp F Implements the exponential function with a
base e = 2.7182818285.

Tog F Implements the natural logarithm function.

Togl0 F Calculates a logarithm using base 10.

sqrt F Calculates the square root of a number.

Table 21 ABAP Math Functions
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Numeric Operations 24

The report program 7MATHDEMO shown in Listing 2.1 contains examples of how to
call the math functions listed in Table 2.1 in an ABAP program. The output of this
program is displayed in Figure 2.1.

REPORT zmathdemo.

START-OF-SELECTION.

CONSTANTS: CO_PI TYPE f VALUE '3.14159265".
DATA: Tv_result TYPE p DECIMALS 2.

Tv_result = abs{ -3 ).
WRITE: / '"Absolute Value: ", Iv_result.

Tv_result = sign( -12 ).
WRITE: / '"Sign: ", Iv_result.

Tv_result = ceill "4.7" ).
WRITE: / 'Ceiling: ", Iv_result.

Tv_result = floor( "4.7"' ).
WRITE: / 'Floor: ", Iv_result.

Tv_result = trunc( "4.7' ).
WRITE: / '"Integer Part: ", Iv_result.

Tv_result = frac({ "4.7" ).
WRITE: / 'Fractional Part: ", Iv_result.

Tv_result = sin{ CO_PI ).
WRITE: / 'Sine of PIL: ", Iv_result.

Tv_result = cos{ CO_PI ).
WRITE: / 'Cosine of PI: ", Iv_result.

Tv_result = tan{ CO_PI ).
WRITE: / 'Tangent of PI: ", Tv_result.

Tv_result = exp( '2.3026" J.
WRITE: / 'Exponential Function:', lv_result.

lTv_result = log( lv_result ).
WRITE: / '"Natural Logarithm: ", Tv_result.
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Working with Numbers, Dates, and Bytes

Tv_result = Togl0O( "1000.0" ).
WRITE: / 'Log Base 10 of 1000: ', Tv_result.

Tv_result = Tog( 8 ) / Tog( 2 ).
WRITE: / 'lLog Base 2 of 8: ", Tv_result.

Tv_result = sqrt( '16.0°" J.
WRITE: / 'Saquare Root: ", Tv_result.

Listing 24 Working with ABAP Math Functions

List Edit Goto GSystem Help

Using Math Functions in ABAP

Using Math Functions in ABAP

Absolute VYalue: 3.00
sign; 1.00-
Ceiling: 5.08
Floor: 4,00
Integer Part; 4,00
Fractional Part: 8.70
Sine of PL: a.8a
Cosihe of PIL: 1.00-
Tangent of PI: a.08
Exponential Function: 16.08
Natural Logarithm: 2:38
Log Base 10 of 1000 3.08
Log Base 2 of 8: 3,008
Square Root: 4.00

Figure 24 Output Generated by Report ZMATHDEMO

The values of the function calls can be used as operands in more complex expres-
sions. For example, in Listing 2.1, notice how we're calculating the value of
lag( 8 ). Here, we use the change of base formula Tog( x ) / log( b ) (where
b refers to the target base, and x refers to the value applied to the logarithm func-
tion) to derive the base 2 value. Collectively, these functions can be combined with
typical math operators to devise some very complex mathematical formulas.

21.2  Generating Random Numbers

Computers live in a logical world where everything is supposed to make sense.
Whereas this characteristic makes computers very good at automating many kinds
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Numeric Operations I 24

of tasks, it can also make it somewhat difficult to model certain real-world phe-
nomena. Often, we need to simulate imperfection in some form or another. One
common method for achieving this is to produce randomized data using random
number generators. Random numbers are commonly used in statistics, cryptog-
raphy, and many kinds of scientific applications. They are also used in algorithm
design to implement fairness and to simulate useful metaphors applied to the
study of artificial intelligence (e.g., genetic algorithms with randomized muta-
tions, etc.).

SAP provides random number generators for all of the built-in numeric data types
via a series of ABAP Objects classes. These classes begin with the prefix clL_ABAP_
RANDOM (e.g., CL_ABAP_RANDOM_FLOAT, CL_ABAP_RANDOM_INT, etc.). Though none of
these classes inherit from the CL_ABAP_RANDOM base class, they do use its features
behind the scenes using a common OO technique called composition. Composition
basically implies that one class delegates certain functionality to an instance of
another class. The UML class diagram shown in Figure 2.2 shows the basic struc-
ture of the provided random number generator classes.

CL_ABAP_RANDOM_*

+ CREATE ()
+ GET_NEXT()

Figure 2.2 Basic UML Class Diagram for Random Number Generators

Unlike most classes where you create an object using the CREATE OBJECT statement,
instances of random number generators must be created via a call to a factory class
method called CREATE (). The signature of the CREATE () method is shown in Figure
2.3. Here, you can see that the method defines an importing parameter called SEED
that seeds the pseudo-random number generator algorithm that is used behind the
scenes to generate the random numbers. In a pseudo-random number generator,
random numbers are generated in sequence based on some calculation performed
using the seed. Thus, a given seed value causes the random number generator to
generate the same sequence of random numbers each time.

The CREATE() method for class CL_ABAP_RANDOM_INT also provides MIN and MAX
parameters that can place limits around the random numbers that are generated
(e.g., a range of 1-100, etc.). The returning PRNG parameter represents the gener-
ated random number generator instance. Once created, you can begin retrieving
random numbers via a call to the GET_NEXT () instance method.
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Class Edi Golo  Uliilies(M) Ervironment Systam  Halp

(|

Cla AP_RANDOM_INT

||| class documentation

Class Intarface [CL_ABAP_RANDOH_INT ] Implemented / Active

=[]

| Trping Method [associated Type Cefaulivalug  |Description
Importing O F [Typs i Inttial Value of PRNG

Imporing O L[ [Type H 2147483648  Lower Limitfor Value Area
Importing O = [Typs i 2147483647 Upper LUmitfor Value Area
Retuming [ . [0 [Type Ref To  CL_RBAP_RANDON_INT Random Number Generator Object

Figure 2.3 Signature of Class Method CREATE()

To demonstrate how these random number generator classes work, let's con-
sider an example program. Listing 2.2 contains a simple report program named
ZSCRAMBLER that defines a local class called LCL_SCRAMBLER. The LCL_SCRAMBLER
class includes an instance method SCRAMBLE () that can be used to randomly scram-
ble around the characters in a string. This primitive implementation creates a
random number generator to produce random numbers in the range of [0...
{String Lengthi]. Perhaps the most complex part of the implementation is related
to the fact that random number generators produce some duplicates along the
way. Therefore, we have to make sure that we haven't used the randomly gener-
ated number previously to make sure that each character in the original string is
copied into the new one.

REPORT zscrambler.

CLASS Tcl_scrambler DEFINITION.
PUBLIC SECTION.
METHODS: scramble IMPORTING im_value TYPE clike
RETURNING VALUE(re_svalue) TYPE string
EXCEPTIONS cx_abap_random.

PRIVATE SECTION.
CONSTAMTS: CO_SEED TYPE i VALUE 100.

TYPES: BEGIN OF ty_index,
index TYPE i,
END OF ty_index.
ENDCLASS.

CLASS Tcl_scrambler IMPLEMENTATLION.
METHOD scramble.
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* Method-Local Data Declarations:

DATA: Tv_length TYPE i,
Tv_min TYPE i VALUE 0,
Tv_max TYPE 1,
To_prng TYPE REF TO cl_abap_random_int,
Tv_index TYPE 1,
Tt_indexes TYPE STANDARD TABLE OF ty_index.

FIELD-S5YMBOLS:

<Ofs_index> LIKE LINE OF 1t_indexes.

* Determine the length of the string as this sets the
* bounds on the scramble routine:

Iv_Tlength = strlen( im_value ).

ITv_max = Tv_length - 1.

* Create a random number generator to return random
* numbers in the range of 1..{String Lenathl}:
CALL METHOD cl_abap_random_int=>create

EXPORTING
seed = CO_SEED
min = lv_min
max = lv_max
RECETVING
prng = lo_prng.

* Add the characters from the string in random order to
* the result string:
WHILE strilen( re_svalue ) LT Tv_length.
Tv_index = lo_prng->get_next( ).
READ TABLE Tt_indexes TRANSPORTING NO FIELDS
WITH KEY index = Tw_index.
IF sy-subrc EQ 0.
CONTINUE.
ENDIF.

CONCATENATE re_svalue im_valuetlv_index(1)
INTO re_svalue.
APPEND INITIAL LINE TO Tt_indexes
ASSIGNING <1fs_index>.
< fs_index>-index = lv_index.
ENDWHILE.
ENDMETHOD .
ENDCLASS.
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START-0F-SELECTION.
* Local Data Declarations:
DATA: To_scrambler TYPE REF TO Tcl_scrambler,
Tv_scrambled TYPE string.

* Use the scrambler to scramble around a word:
CREATE OBJECT lo_scrambler.
Tv_scrambled = To_scrambler->scramble( "Andersen' ).
WRITE: / Tv_scrambled.

Listing 2.2 Using Random Number Generators in ABAP

Obviously, a simple scrambler routine like the one shown in Listing 2.2 isn't pro-
duction quality. Nevertheless, it does give you a glimpse of how you can use ran-
dom number generators to implement some interesting algorithms. As a reader
exercise, you might think about how you could use random number generators to
implement an UNSCRAMBLE () method to unscramble strings generated from calls
to method SCRAMBLE ().

2.2 Date and Time Processing

Online transaction processing (OLTP) systems such as the ones that make up the
SAP Business Suite maintain quite a bit of time-sensitive data, so it's important
that you understand how to work with the built-in date and time types provided
in ABAP. In the following subsections, we discuss these types and explain how to
use them to perform calculations and conversions.

2.21  Understanding ABAP Date and Time Types

ABAP provides two built-in types to work with dates and times: the D (date) data
type and the T (time) data type. Both of these types are fixed-length character types
that have the form YvvyYMMDD and HHMMSS, respectively. In addition to these built-in
types, the ABAP Dictionary types TIMESTAMP and TIMESTAMPL are being used more
and more in many standard application tables, and so on, to store a timestamp in the
UTC format.? Table 2.2 shows the basic date and time types available in ABAP.

1 The term “UTC" is an abbreviation for "Consolidated Universal Time,” which is a time standard
based on the International Atomic Time standard. UTC is roughly equivalent to the Greenwich
Mean Time standard (or GMT) which refers to the mean solar time at the Royal Observatory in
Greenwich, London. Collectively, these standards define a global time standard that can be used
to convert a given time to local time, and vice versa.
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Data Type

D A built-in fixed-length date type of the form YYYYMMDD. For
example, the value 20100913 represents the date September
13, 2010.
T A built-in fixed-length time type of the form HHMMSS. For
example, the value 102305 represents the time 10:23:05 AM.
TIMESTAMP An ABAP Dictionary type used to represent short timestamps
(Type P in the form YYYYMMDDhhmmss. For example, the value
Length 8 20100913102305 represents the date September 13, 2010 at
. 10:23:05 AM.
No decimals)
TIMESTAMPL An ABAP Dictionary type used to represent long timestamps
(Type P - in the form YYYYMMODhhmms smmmuuun. The additional digits
Length 11 mmmuuun represent fractions of a second.
Decimals 7)

Table 2.2 ABAP Date and Time Data Types

2.2.2 Date and Time Calculations

When you're working with dates, you often need to perform various calculations
to compute the difference between two dates, make comparisons, or determine
a valid date range. As we mentioned in Section 2.2.1, Understanding ABAP Date
and Time Types, the built-in date and time types in ABAP are character types, not
numeric types. Nevertheless, the ABAP runtime environment allows you to per-
form basic numeric operations on these types by implicitly converting them to
numeric types behind the scenes.

The code excerpt shown in Listing 2.3 demonstrates how these calculations work.
Initially, the variable 1v_date is assigned the value of the current system date (e.g.,
the system field SY-DATUM). Next, we increment that date value by 30. In terms of
a date calculation in ABAP, this implies that we're increasing the day component
of the date object by 30 days. Here, note that the ABAP runtime environment is
smart enough to roll over the date value whenever it reaches the end of a month,
and so on. In other words, you can rely on the system to ensure that you don't
calculate an invalid date value (e.g., 01/43/2011).

DATA: lv_date TYPE d.
lv_date = sy-datum.
WRITE: / 'Current Date:', lv_date MM/DD/YYYY.
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lv_date = Tv_date + 30.
WRITE: / '"Future Date:', Tv_date MM/DD/YYYY.

Listing 2.3 Performing Date Calculations in ABAP

Time calculations in ABAP work very similarly to the date calculations shown in
Listing 2.3. With time calculations, the computation is based upon the seconds
component of the time object. The code in Listing 2.4 shows how we can incre-
ment the current system time by 90 seconds using basic time arithmetic.

DATA: Tv_time TYPE .
Tv_time = sy-uzeit.
WRITE /(60 Tv_time USING EDIT MASK
"The current time is __:__: ".
Tv_time = Tv_time + 90.
WRITE /(60 Tv_time USING EDIT MASK
"A minute and a half from now it will be __:_: ",

Listing 2.4 Performing Time Calculations in ABAP

In addition to typical numeric calculations, you also have the option of working
with date/time fields using normal character-based semantics. For instance, you
can use the offset/length functionality to initialize date or time components. The
code excerpt in Listing 2.5 demonstrates how you can adjust the date 02/13/2003
to 01/13/2003 using offset/length semantics.

DATA: Tv_date TYPE d VALUE '20030213".
WRITE: / Tw_date MM/DD/YYYY.
Tv_date+4(2) = '01".

WRITE: / Tw_date MM/DD/YYYY.

Listing 2.5 Manipulating a Date Using Offset/Length Functionality

2.2.3 Working with Timestamps

If you've been working with some of the newer releases of the products in the
SAP Business Suite, you may have encountered certain applications that use the
TIMESTAMP or TIMESTAMPL data types to store time-sensitive data. As you can see in
Table 2.2, these ABAP Dictionary types store timestamps with varying degrees of
accuracy. Interestingly, though these types aren't built-in types like D or T, ABAP
does provide some native support for them in the form of a couple of built-in state-
ments. In addition, SAP also provides a system class called CL_ABAP_TSTMP, which
can be used to simplify the process of working with timestamps. We investigate
these features in the following subsections.
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Retrieving the Current Timestamp

You can retrieve the current system time and store it in a timestamp variable using
the GET TIME STAMP statement whose syntax is demonstrated in Listing 2.6. The
GET TIME STAMP statement stores the timestamp in a shorthand or longhand format
depending upon the type of the timestamp data object used after the FIELD addi-
tion. The timestamp value is encoded using the UTC standard.

DATA: Tv_tstamp_s TYPE timestamp,
Tv_tstamp_1 TYPE timestampl.
GET TIME STAMP FIELD lv_tstamp_s.
WRITE: / 'Short Time Stamp:', Tv_tstamp_s
TIME ZONE sy-zonlo.
GET TIME STAMP FIELD 1v_tstamp_1.
WRITE: / 'Long Time Stamp: ', Tv_tstamp_]
TIME ZONE sy-zonlo.

Listing 2.6 Using the GET TIME STAMP Statement

Looking at the code excerpt in Listing 2.6, you can see that we're displaying the
timestamp using the TIME 70NE addition of the WRI Tt statement. This addition for-
mats the output of the timestamp according to the rules for the time zone speci-
fied. In Listing 2.6, we used the system field SY-70NLO to display the local time zone
configured in the user's preferences. However, we could have just as easily used a
data object of type TIMEZONE, or even a hard-coded literal such as 'CST".

For a complete list of time zones configured in the system, have a look at the contents
of ABAP Dictionary Table TTZZ.

Converting Timestamps

You can convert a timestamp to a date/time data object and vice versa using the
CONVERT statement in ABAP. Listing 2.7 shows the syntax used to convert a time-
stamp into data objects of type D and 7. The TIME ZONE addition adjusts the UTC
date/time value within the timestamp in accordance with a particular time zone.
Additionally, the optional DAYLIGHT SAVING TIME addition can be used to deter-
mine whether or not the timestamp value happens to coincide with daylight sav-
ings time. If it does, the 1v_dst variable has the value 'x'; otherwise, it's blank.
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This feature can be helpful in differentiating between timestamp values that lie
within the transitional period between summer time and winter time.?

CONVERT TIME STAMP lv_tstamp TIME ZONE Tv_tzone
INTO [ DATE Tv_date 1 [ TIME Tv_time ]
[DAYLIGHT SAVING TIME Tv_dst].

Listing 2.7 Syntax of CONVERT TIME STAMP Statement

Listing 2.8 shows how the CONVERT TIME STAMP statement is used to convert the
current system timestamp to date/time data objects using the local time zone.

TYPE-POOLS: abhap.

DATA: lv_ftstamp TYPE timestamp,
Tv_date TYPE d,
Tv_time TYPE t,
Tv_dst TYPE abap_bool.

GET TIME STAMP FIELD Tv_tstamp.

CONVERT TIME STAMP lv_tstamp TIME ZONE sy-zonlo
INTO DATE lv_date TIME Tv_time
DAYLIGHT SAVING TIME lwv_dst.

WRITE: / 'Today's date is: ", lv_date MM/DD/YYYY.
WRITE: /(60) lv_time USING EDIT MASK
"The current time is: __

I[F Iv_dst EO abap_true.

WRITE: / "In daylight savings time...".
ELSE.

WRITE: / "Not in daylight savings time...".
ENDIF.

Listing 2.8 Converting Timestamps to Date/Time Objects

To create a timestamp using a date/time object, you can use the syntax variant of
the CONVERT statement shown in Listing 2.9. The date/time values are qualified
using the TIME 7ONE addition so that the appropriate offsets can be applied as the
UTC timestamp is generated.

2 For a complete list of daylight savings time rules, have a look at the contents of the ABAP Dic-
tionary table TTZDV.
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CONVERT DATE 1v_date
[TIME Tv_time [DAYLIGHT SAVING TIME Tv_dst]]
[NTO TIME STAMP Tv_tstamp TIME ZONE Tv_tzone.

Listing 2.9 Syntax of CONVERT DATE Statement

The code excerpt in Listing 2.10 shows how the CONVERT DATE statement can be
used to generate a timestamp object from a date/time object.

[YPE-POOLS: abap.

DATA: Tv_tstamp TYPE timestamp,
Tv_date IYPE d,
Tv_time IYPE t,

Tv_dst IYPE abap_bool.

Tv_date = sy-datum.
Tv_time sy-uzeit.

CONVERT DATE Tv_date TIME Tv_time
INTO TIME STAMP Tv_tstamp TIME ZONE sy-zonlo.

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

Listing 2.0 Creating a Timestamp from a Date/Time Object

CL_ABAP_TSTMP

+ADD()

+ SUBTRACT( )

+ SUBTRACTSECS()
+TD_ADD()

+ TD_SUBTRACT()

+ ISDOUBLEINTERVAL( )

+ SYSTEMTSTMP_SYST2ZLOC( )
+ SYSTEMTSTMP_LOC25YST()
+ SYSTEMTSTMP_UTC2SYST()
+SYSTEMTSTMP_SYST2ZUTC( )
+ TD_NORMALIZE()

+ NORMALIZE()

Figure 2.4 UML Class Diagram for Class CL_ABAP_TSTMP

Timestamp Operations Using System Class CL_ABAP_TSTMP

Unlike the native D and T types, the ABAP runtime environment doesn't have
built-in functionality to perform calculations on timestamps (e.g., add or subtract,
etc.). Instead, SAP provides a system class called CL_#ABAP_TSTHMP for this purpose.
Figure 2.4 contains a UML class diagram that shows the publicly available methods
provided in this class. As you would expect, there are various forms of ADD() and
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SUBTRACT () methods to perform timestamp calculations. In addition, a series of
conversion methods (e.g., SYSTEMTSTMP_SYSTZLOC(), etc.) can be used to convert
a timestamp to various time zones, a Boolean method called ISDOUBLEINTERVAL()
can be used to determine if a timestamp is in daylight savings time, and a couple
of methods can be used to normalize a timestamp. Here, normalization implies that
an invalid time value such as 10:30:60 would be adjusted to the value 10:31:00.

In UML class diagram notation, methods that are underlined are defined as class
methods. Class methods can be invoked without first creating an instance of the
class in which they are defined, as evidenced in the code excerpt shown in Listing
2.11. Here, we're using the class method ADD() to add 75 seconds to the current
system time.

DATA: lv_tstamp TYPE timestamp,
Tv_date TYPE d,
Tv_time TYPE t.

GET TIME STAMP FIELD Tv_tstamp.
WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

TRY.
CALL METHOD cl_abap_tstmp=>add
EXPORTING
tstmp = lv_tstamp
Secs =75
RECEIVING

r_tstmp = lv_tstamp.
CATCH CX_PARAMETER_THNVALTD_RANGE.
CATCH CX_PARAMETER_TNVALID_TYPE.
ENDTRY .

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.
Listing 211 Working with Timestamps Using CL_ABAP_TSTMP

The call signatures of most of the other methods in class CL_ABAP_TSTMP are similar
to the ADD() method demonstrated in Listing 2.11. For more details concerning the
functionality of particular methods in this class, see the class/method documenta-
tion for this class in the Class Builder (Transaction SE24).

2.2.4 Calendar Operations

So far, our discussion on dates has focused on raw calculations and conversions.
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However, many typical use cases in the business world require that we look at
dates from a semantic point of view. For example, you might ask whether or
not the date 1/13/2010 is a working day, or whether 4/4/2010 is a holiday. The
answers to these kinds of questions require the use of a calendar. Fortunately, SAP
provides a very robust set of calendaring features straight out of the box with SAP
NetWeaver AS ABAP.

The SAP Calendar is maintained in a client-specific manner inside the SAP Custom-
izing implementation guide (Transaction SPRO). Depending on how your system
is set up, you might have a project-specific implementation guide. However, for
the purposes of this discussion, we assume that you're using the default SAP Ref-
erence Implementation Guide (IMG). You can access this guide by clicking on the
button labeled SAP Reference IMG on the initial screen of Transaction SPRO (see
Figure 2.5).

Project Edit Goto Seffings Tools System Help
=]

Customizing: Execute Project
[I&a SAP Reference MG 'ﬁ MG Infanmiation m Project Anatysis

Project Mame.

Figure 2.5 Initial Screen of Transaction SPRO

Inside the SAP Reference IMG, you can find the SAP Calendar under the navigation
path SAP NETWEAVER * GENERAL SETTINGS * MAINTAIN CALENDAR (see Figure 2.6).

Imnlememaﬂsn Guide dlt 010 Addil

Display IMG

|E@ | Existing BC Sets || BC Sets for Actity

T EAF Custompaing Implemeniaion Guide:
B @ Actvate Business Functions

i B General Setiings
P [B  SetCountries
B[ SetGeocoding
B[ Curencles
[2 @ Check Units of Measurement
@- @ Maintain Calendar
@- @ Maintain Calendar for Japan

Figure 2.6 Navigating to the SAP Calendar in the IMG
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Figure 2.7 shows the main menu of the SAP Calendar transaction. From here, you
can configure subobjects such as public holidays, holiday calendars, and factory
calendars. By default, an SAP NetWeaver system comes preconfigured with some
typical settings in these subareas. However, you're also free to create customized
holidays and calendars as needed.

= -
Calendar Edit Golo Exras  System Help
—= = 5 :

g -

SAP Calendar: Main Menu

Tha calendar is not clientspacifc.
Each change takes effect directly in all clients

@ Fublic holidavs
OHaliday calendar

O Factary calendar
&

Figure 2.7 Maintaining the SAP Calendar in the IMG

After the SAP Calendar is configured properly, you can use this data to perform
various types of calculations. Table 2.3 shows some useful function modules that
leverage this data to determine whether or not a given date is a working day, holi-
day, and so on. You can find out more information about these function modules
in the documentation provided for each module in the Function Builder (Transac-

tion SE37).
DATE_COMPUTE_DAY Computes the day of the week for a given
date. Day values are calculated as 1 (Monday),
2 (Tuesday), and so on.
DATE_COMPUTE_DAY_ENHANCED Computes the day of the week just like DATE_

COMPUTE_DAY; also returns the day value as
text (e.g., TUESDAY, etc.).

Table 2.3 Useful Date Functions in Function Group SCAL

72



Bits and Bytes I 2.3

DATE_CONVERT_TO_FACTORYDATE Calculates the factory date value for a given
date. Also provides an indicator that confirms
whether or not the given date is considered a
working day according to the selected factory
calendar.

DATE_GET_WEEK Determines the week of the year for the given
date. For example, the date 9/13/2010 would
be the 37th week of the year 2010.

FACTORYDATE_CONVERT_TO_DATE Converts a factory date value back into a date
object.

HOLIDAY_CHECK_AND_GET_INFO Tests to determine whether or not a given date
is a holiday based on the configured holiday
calendar.

WEEK_GET_FIRST_DAY Calculates the first day of a given week.

Table 2.3 Useful Date Functions in Function Group SCAL (Cont.)

2.3 Bits and Bytes

Modern programming languages do such a tremendous job of abstracting the com-
plexities of computer architectures that, these days, we seldom have any need to
work at the bits and bytes level. However, with the advent of Unicode, it's becom-
ing more important to understand how to work at this level because many exter-
nal data sources encode their data using multi-byte encodings — as opposed to
the single-byte code pages normally used in ABAP (e.g., ASCII, etc.). In addition,
knowledge of this area can be quite handy in other applications, as you'll see in
a moment.

2.31  Introduction to the Hexadecimal Type in ABAP

Normally, whenever we talk about the built-in native data types provided in the
ABAP programming language, we focus our attention around the numeric and
character data types. However, ABAP also provides a hexadecimal data type (X)
that is used to represent individual bytes in memory. The values stored in the indi-
vidual bytes are represented as two-digit hexadecimal numbers.
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Binary and Hexadecimal Numbers

If you have never worked with binary or hexadecimal numbers before, then a brief in-
troduction is in order. A byte is a unit of measure for memory inside of a computer. Each
byte is comprised of 8 bits. The term bit is an abbreviation for binary digit. A bit can
have one of two logical values: 1 (or true) or [ (or false). In terms of computer circuitry,
bits that have the value 1 are turned on, while those that have the value 0 are turned
off.

The binary (or base-2) number system represents numeric values using binary digits.
Figure 2.8 shows an example of an 8-bit binary number whose decimal value is 170. As
you can see, reading from right to left, the value of each bit is calculated by multiplying
one or zero (i.e., the bit value) by two raised to the power of the current index (where
indexes start at zero).

=N+ @D+ @D+
=170

Figure 2.8 Example of an 8-Bit Binary Number

Binary numbers can be very difficult to work with if you're not a computer. Therefore,
the values of bytes are often represented using the hexadecimal (or base-16) numbering
system. Each hexadecimal digit is in the range [0123456789ABCDEF], where A =10, B =
11, € =12, and so on. Conveniently, each hexadecimal digit can hold any possible value
of 4 bits (commonly called a nibble). Therefore, two hexadecimal digits can be used to
represent a single byte of information in memory.

In addition to the fixed length ¥ data type, ABAP also provides the ¥STRING vari-
able-length hexadecimal type, which is commonly used in various input/output
(I/0) operations. Here, as is the case with the C and STRING data types described in
Chapter 1, String Processing Techniques, there is a trade-off between performance
and flexibility.

Now that you know a little bit about the hexadecimal type, let's take a look at the
types of operations you can perform on data objects of this type. The following
sections describe the built-in bitwise operators available in ABAP.
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2.3.2 Reading and Writing Individual Bits

You can use the GET BIT and SET BIT statements to read and write individual bits
of a hexadecimal data object. The general syntax of these statements is shown in
Listing 2.12 and Listing 2.13, respectively.

GET BIT Tv_index OF Tv_hex INTO lv_bit.
Listing 242 Syntax of GET BIT Statement

SET BIT lv_index OF Tv_hex TO Tv_bit.
Listing 243 Syntax of SET BIT Statement

To demonstrate how these statements work, let's consider an example. Listing 2.14
contains a contrived piece of sample code that swaps the first byte of a two-byte
hexadecimal data object with the last byte by manipulating individual bits inter-
nally. For good measure, we also shift the bits around one more time at the end of
the code snippet, using the SHIFT statement in byte mode.

DATA: Tv_hex(2) TYPE x VALUE 'FOOF",
Tv_front_idx TYPE 1,
lv_back_idx TYPE 1,
lv_front_bit TYPE 1,
Tv_back_bit TYPE 1.
WRITE: / Tw_hex.
DO 8 TIMES.
Tv_front_idx = sy-index.
lv_back_idx = Tv_front_idx + 8.

GET BIT Tv_front_idx OF Tv_hex INTO lv_front_bit.
GET BIT Tv_back_idx OF Tv_hex INTO Tv_back_bit.

SET BIT Tv_front_idx OF 1v_hex TO lv_back_bit.
SET BIT 1v_back_idx OF lv_hex TO lv_front_bit.
ENDDO.
WRITE: / Tw_hex.
SHIFT Tv_hex BY 1 PLACES CIRCULAR IN BYTE MODE.
WRITE: / Tw_hex.

Listing 244 Reading and Writing Bits in ABAP

In and of itself, low-level bit manipulation isn't all that exciting. However, there
are situations where it can be quite useful.

75

2.3




2

Working with Numbers, Dates, and Bytes

For example, let’s imagine you're working on a problem where you need to work
with arbitrarily large numbers that exceed the limits of the built-in ABAP numeric
types. One way other modern programming languages, such as Java or .NET, get
around this limitation is by developing a so-called numeric wrapper class. For
instance, the java.math.Biglnteger class provided with the Java 2 SDK is used to
represent arbitrarily large integer values. Internally, bitwise operators are used to
mimic the behavior of a normal primitive type represented in two's complement
notation.? Because this implementation is open source, it wouldn't be too difficult
to reverse-engineer an ABAP version of this class to suit your purposes.

2.3.3 Bitwise Logical Operators

In addition to the GET BIT and SET BIT statements, ABAP also provides a series of
bitwise logical operators that can be used to build Boolean algebraic expressions.
If you aren't familiar with Boolean algebra, there are many excellent resources
available online — simply search for the term “Boolean Algebra,” and you'll find
a wealth of information. Of course, even if you have worked with Boolean opera-
tors before, you might need a bit of a refresher. Table 2.4 depicts a truth table that
shows the values generated when applying the Boolean AND, OR, or XOR operators
against the two bit values contained in Field A and Field B.

| FieldA [ FieldB ___[AND_____JOR_____|XoR |
0 0 0 0 0

0 1 0 1 1
1 0 0 1 1
1 1 1 1 ]

Table 2.4 Truth Table for Boolean Operators

Table 2.5 shows the bitwise operators provided with the ABAP language. Just like
normal arithmetic operators, the bitwise operators can be combined in complex
expressions using parentheses, and so on.

3 The two's complement notation is a common system used to represent signed integers in com-
puters.
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Bitwise Description
Operator

BIT-NOT Unary operator that flips all of the bits in the hexadecimal number
to the opposite value. For example, applying this operator to a
hexadecimal number having the bit-level value 10101010 (e.g., 'AA")
would yield 01010101.

BIT-AND Binary operator that compares each field bit-by-bit using the Boolean
AND operator.

BIT-XOR Binary operator that compares each field bit-by-bit using the Boolean
XOR (or eXclusive OR) operator.

BIT-OR Binary operator that compares each field bit-by-bit using the Boolean
OR operator.

Table 2.5 Bitwise Logical Operators in ABAP

To see the power of bitwise operators such as the ones listed in Table 2.5, it's use-
ful to consider an example. Imagine that you are tasked with building a custom
document management system. One of the requirements of this system is to be
able to assign rights permissions to the individual documents maintained in the
system. For the purposes of this simple example, let's assume that the possible
permissions are Create, Remove, Update, and Display.

One way to store these assignments might be to create a database table that con-
tained a series of flag columns to indicate whether or not a user had a particu-
lar permission for a given document. Unfortunately, there are a couple of prob-
lems with this approach. First of all, it requires that we create separate fields for
each possible permission type. As the system grows, additional permission types
require a modification to the database table. This phenomenon leads into the sec-
ond problem — namely, space. In other words, each additional flag column adds
another byte or two of storage to every row in the table. Of course, another option
is to capture the permissions in separate rows. Still, either way you slice it, this can
get expensive from a storage perspective.

Instead of creating a new flag column each time we want to add a new permission
type to our system, what if we could figure out a way to store a bunch of Boolean
flags in a single field? Naturally, the hexadecimal data type lends itself well to this
kind of storage operation because it can be used as a type of bit mask to represent
a large number of flags at the bit level. For example, a single byte bit mask could
represent up to 28, or 256, possible values, leaving us plenty of room to grow. The
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values of the individual Boolean flags can then be set using bitwise operators. Col-
lectively, the process of representing a series of flags at the bit level and manipulat-
ing those flags using bitwise operators is referred to as bit masking.

The code excerpt in Listing 2.15 demonstrates how bit masking works using the
ABAP bitwise logical operators. To keep things simple, we've created an interface
that contains constants to represent the possible permission values (e.g., CO_CRE -
ATE, etc.). These permission values are assigned to a display-only user using the
BIT-OR operator, which effectively works like an addition operator in this case. We
can then confirm whether or not the user has a given permission by applying the
BIT-AND operator. Here, the result matches the permission constant bit-for-bit if
the particular permission has been assigned. This can be confirmed by using the
equality operator in an [+ statement. In the example, the user has Display permis-
sions but not Create permissions.

INTERFACE 1if_permissions.
CONSTANTS: CO_CREATE TYPE x VALUE '01°",
CO_REMOVE TYPE x VALUE 02",
CO_UPDATE TYPE x VALUE 04",
CO_DISPLAY TYPE x VALUE "08".
ENDINTERFACE.

DATA: lv_display_user TYPE x,
Tv_permissiaon TYPE x.

* Assign read-only access to a display user:
Tv_display_user =
Tv_display_user BIT-OR 1if_permissions=>CO_DISPLAY.

* Check the user's permissions:
Tv_permission =
lv_display_user BIT-AND lif_permissions=>CO_DISPLAY.
[F lv_permission EQ lif_permissions=>CO_DISPLAY.
WRITE: / '"User has display only access.’'.
ELSE.
WRITE: / 'User does not have display access.'.
ENDIF.

lv_permission =
lv_display_user BIT-AND lif_permissions=>CO_CREATE.
[F lv_permission EQ lif_permissions=>CO_CREATE.
WRITE: / 'User can create documents.'.
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ELSE.
WRITE: / "User is not authorized to create documents.'.
ENDIF.

Listing 245 Mapping Permissions Using Bit Masking

As you can see, bit masking can be used as an effective compression technique.
Other practical examples of bit masking include the storage of user preferences
and set operations, which are described in an example in the online SAP Help
Portal.

2.4 Summary

In this chapter, you learned about some advanced and perhaps lesser-known fea-
tures of elementary data types in ABAP. During the course of this book, you'll see
how some of these fundamental concepts provide the foundation for implement-
ing new features in SAP NetWeaverAS ABAP, such as support for Unicode and
XML processing. In the next chapter, we mix things up a bit and take a look at
dynamic programming in ABAP.
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