
Chapter 4

Form Charts and Dialogue

Constraints

In Chapter 2 we have seen Form-Oriented Analysis in action for a typical exam-
ple system and have gained a learning-by-doing acquaintance with the concepts
of Form-Oriented Analysis. The goal of this chapter in contrast is to give a
terse definition of the form chart artifact, the final and most expressive artifact
of Form-Oriented Analysis. The definition in this chapter is still aimed at being
precise yet not formal, and in Chapter 5 we will give a formal definition of form
charts in the context of the UML.

Let us recall the basic viewpoint of Form-Oriented Analysis. Form-Oriented
Analysis is an approach tailored to the modeling of submit/response style ap-
plications. The form chart models the system interface as a bipartite state
transition diagram and relates it to a semantic data model. The form chart can
be annotated with declarative dialogue constraints based on an OCL extension.
Submit/response style interaction is two staged; the interaction is divided into
page interaction, which is temporary and logically local to the client until a sub-
mit is performed, and page change, i.e. a submit action. Forms and links can be
conceptually unified. Only page change can affect the system data state. Hence
the model is two tiered already on the analysis level. The core system state in
this view does not include the client state, which is the browser’s state. The
advantage of this software system paradigm is that the client is well understood
independent from the application. Other types of software may also use form
like interfaces, but are not submit/response style, e.g. the aforementioned desk-
top databases as well as spreadsheet applications found in office suites. They
have a single staged interaction paradigm in which each change is directly a
change of the system data state. Form-Oriented Analysis abstracts from page
interaction and views a page change always as a method call. In Form-Oriented
Analysis strong typing is maintained at the system interface.

In this chapter a succinct description of the modeling elements of the form
chart is given. Feature decomposition is explained and different degrees of com-

31



32 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

ba source name target name
transition name

client page
server action

client pagepage/server transition server/page transition

enabling
condition

server
input constraint

client
output constraint server

output constraint
m

flow conditio
n two

2

flow co
nditio

n one

1

client
input constraint

Figure 4.1: Form chart notational elements

pleteness for Form-Oriented Analysis models are defined.

4.1 The Form Chart

The user interaction with the system, called dialogue in the following, is a
sequence of interchanging client states and server states. A client state presents
information to the user and offers several capabilities of entering and submitting
data. The client state is called client page in the following. By submitting data
the dialogue changes into a server state. In the server state submitted data is
processed and depending on the current core system state the generation of a
new client page is triggered, i.e. the server state is left automatically. Submitting
data is conceptually like calling a method, the data being an actual parameter.
Therefore the server state is called server action in the following. The transition
to a client page is again considered the sending of a message, this time executed
automatically from the server.

Client states, server states and transitions between them form a bipartite
transition diagram. The state transition diagrams used in Form-Oriented Anal-
ysis are called form charts. The form chart is annotated by declarative dialogue
constraints, written in DCL, an extension of OCL.

The Dialogue Constraint Language DCL introduces special purpose con-
straint types, which are shown in Figure 4.1. Transitions from client pages to
server actions, page/server transitions for short, host two kinds of constraints,
namely enabling conditions and client output constraints. An enabling condi-
tion specifies under which circumstances this transition is enabled, based on the
state during the last server action. The enabling condition may depend on the
current dialogue history. The data submitted from a client page is constrained
by the client output constraint. Server actions host server input constraints.
They are server action preconditions in an incompletely specified system, they
must be transformed to other conditions. Transitions from server actions to



4.1. THE FORM CHART 33

client pages, called server/page transitions for short, host flow conditions and
server output constraints. The flow conditions specify for each outgoing transi-
tion, under which condition it is actually chosen. The server output constraint
determines which information is presented on the client page that follows in the
sequel. The client input constraint is a constraint on the information on the
client page, which is independent from the server page.

The constraints in the form chart are written in a variant of OCL [32]. For
this purpose OCL is enriched by new contexts and key labels with appropriate
semantics due to the needs of dialogue constraint writing. OCL has been chosen
as a basis for the resulting dialogue constraint language despite of its lack of
formal semantics [64]. Main arguments are the rich terminology introduced
with OCL, its clear informal semantics and most important its usability and
expressibility concerning e.g. navigations compared to other alternatives for
data type annotation languages [62]. Consequently data modeling is done with
the pure data kernel of UML [73], whereby we distinguish message types in
the so-called data dictionary from persistent data within the semantic data
model. Persistent data can be accompanied by ephemeral session related data.
The system functionality is seen as side effects of server actions. It may be
specified in the context of the server action, but it typically will be structured
by functional decomposition.

4.1.1 States

In the form chart, client pages are depicted by bubbles, server states are depicted
by rectangles. Every state, i.e. every client page and every server action must
be given a name with lowercase initial. Every state has a signature, which is
introduced as an OCL Type. It is defined by a UML class in the data dictionary.
This defining class must have the capitalized name of the respective state and
must be stereotyped as message. The message is the signature of the state as a
method. Every ingoing transition of a state represents a submission capability
on the preceding client page, which can be seen as a method call with the same
signature. Because the signature is combined in one single parameter for every
state the term superparameter is introduced for the object representing the state
visit together with the signature. In accordance with the objective of writing
powerful declarative dialogue constraints, superparameters must be understood
as deep unchangeable. The superparameter must not be in any way mistaken
as parameterized state in the sense of expressing an internal multiplicity of the
state. The internal multiplicity of the state is rather given by the session data
in the semantic data model.

4.1.2 Client Pages

The signature of a client page serves as abstract description of the information
presented to the user. Form-Oriented Analysis does not address layout specifi-
cation. Beyond the provided information a client page offers one or more data
submission capabilities to the user. Every page/server transition specifies that



34 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

the respective client page has a submission capability that calls the respective
server action and provides a superparameter. In a form chart a page/server-
transition may be context for OCL constraints. These constraints are either
client output constraints or enabling conditions, distinguished by an appropri-
ate label. Note that a transition may be labeled with a transition name, source
name and target name by the modeler. If not explicitly provided, these names
are derived in an obvious way from the names of the involved states, e.g. such
a transition is referred to as a to b. If two states are connected by more than
one transition, all but one transition must be explicitly named.

A transition without client output constraint represents a data submission
capability that is completely editable by the user. A client output constraint is
a constraint on the actual parameters that must be ensured by the client page.
Actual parameters that are constrained by a client output constraint must either
not be editable and correctly provided e.g. as hidden parameters, or a client-
side check must prevent data not fulfilling the constraint from being submitted.
An important usage of client output constraints is to specify, that a certain
actual parameter must be provided by selection from a set offered on the page.
Consider the home page of our example system, which is presenting the user the
participant list. The opaque references are not shown to the user, but are used
as hidden parameters in the links for e.g. deletion. Clicking a link will trigger
the generation of a page that presents to the user the confirmation dialogue and
therefore offers further dialogue options. The client output constraint is written
in the textual document attached to the form chart in the following way:

list to deleteLink {

clientOutput:

source.participants.person->includes(target.person)

}

In the above constraint the transition target name target refers to the actual
parameter that will be transmitted to the server action. The source name
source refers to the actual parameter of the client page. The explanation of
enabling conditions is given after explaining server actions.

A client page itself may be context for a client input constraint. This con-
straint must hold for all client page superparameters, independent from which
server action they are provided. In our example the homepage has the client
input constraint specifying, that it shows all participants in ordered sequence.
The singleton class PersonTable is necessary for obtaining an ordered list of
participants in OCL.

list {

clientInput:

this.participants.name = PersonTable.participants.personData.name and

this.participants.phone = PersonTable.participants.personData.phone

}



4.1. THE FORM CHART 35

4.1.3 Server Actions

A server action processes submitted data. Outgoing transitions lead to client
pages. These transitions are annotated with flow conditions, which are logically
mutually exclusive OCL-expressions. For one of the transitions the flow condi-
tion may be omitted, having the semantics of an ”else” clause. As shorthand
notation ensuring logical exclusiveness the modeler may number the outgoing
transitions to enforce an evaluation order. Based on the flow conditions exactly
one of the outgoing transitions is determined after server action processing. The
client page that is targeted by this transition is now rendered. For this purpose
the server action provides an instance of the client page data dictionary type
and fulfills the server output constraint that is annotated at the relevant transi-
tion. In general there may be more than one transition between a server action
and a client page, used to model conditional computation of different client page
contents. A server input constraint for a server action indicates that the sys-
tem is not yet completely modeled with respect to the system’s behavior upon
violation of this constraint. Consider the server action for changing user data.
The following server input constraint would express that a password submitted
by the user must be valid.

changeForm {

serverInput:

this.passwd=this.person.passwd

}

Later this server input constraint is replaced, typically by a flow condition
on a transition that deals with the opposite case. The following flow condition
specifies that the changed data is not accepted until the password is valid. The
dialogue returns to changePage.

changeForm to changePage {

flow:

source.passwd<>source.person.passwd

}

A server input constraint can be specified as the complement of all flow
conditions, like the empty flow condition. Such a server input constraint is
written as a single exclamation mark. A typical pattern is the replacement
of such a server input constraint by a server/page transition with empty flow
condition.

A server output condition specifies the content of a client page targeted by
a server/page transition. In contrast to a client input constraint this constraint
is used to specify page content, which depends on the way the client page is en-
tered. The following server output constraint specifies, that if the flow condition
shown above is true, an error message is shown to the user.



36 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

changeForm to changePage {

serverOutput:

target.errormessage = "invalid password"

// ... further constraints ...

}

As described so far the recommended server action specification already pro-
vides a tight description covering all functional aspects of this kind of system
component. Furthermore nothing of the effort made in server action speci-
fication is overhead because all found constraints might be reused in system
implementation. Beyond this our approach does not prescribe how to specify
the data processing associated with a server action, i.e. the side effect on the
system data state. Every ad hoc pseudo code notation may serve for this pur-
pose. We recommend refraining from describing this type of functionality by
any kind of artificial pre/post-condition specification that necessarily uses some
modal operator. Instead we offer a constraint label sideEffect, which is used
to host pseudocode describing the side effect. Annotations for side effects can
be made in all contexts of Form-Oriented Analysis, on states as well as edges.
A typical context is a server/page transition. Such a side effect specifies the
state change under a certain flow condition. The sideEffect annotation has of
course the full transition context, i.e. can access source as well as target. An
unconditional side effect of a server action can be specified in the server action
itself.

4.1.4 Enabling Conditions and the ”along” Property

An enabling condition for a page/server transition specifies, whether a sub-
mission capability is offered to the user. In our example application a typical
enabling condition would specify that the newLink is offered only, if the maximal
number of participants is not yet enrolled.

list to newLink {

enabling:

Person.allinstances()->count() < MAX_PARTICIPANTS

}

Enabling conditions cannot only depend on the current system state, but
they can also depend on the history of the dialogue that led to the current
client dialogue state. In order to express such constraints the new OCL property
”along” is introduced which can be applied to a path expression consisting of
state names and describing a path in the form chart. The resulting expression
evaluates to true if the current transition’s source client page has been entered
through states as specified in the path. This notation element makes enabling
conditions a key concept for flexible and succinct modeling of even complex use



4.1. THE FORM CHART 37

cases. Though the form-oriented approach to software engineering is not use-
case driven, but feature driven, use cases as an informal notion can be considered
in Form-Oriented Analysis. In the form chart every path can be considered a
use case if appropriate.

In the example in Figure 4.2) a system is described by two semantically
equivalent form charts. The system has two major use cases A and B. At a
certain point in each of the use cases a supporting use case S may be entered
which is the same in both cases. After finishing the supporting use case, the
respective major use case is re-entered. The first description does not use en-
abling conditions. Instead it makes use of the possibility that a state may occur
more than once in a form chart. We explain the semantics of this concept in
the next chapter. In the alternative second description the following enabling
conditions are used.

s5 to a5 {
enabled: s3.s2.s1.a4->along() or s4.s2.s1.a4->along()

}

s5 to b3 {
enabled: s3.s2.s1.b2->along() or s4.s2.s1.b2->along()

}

Each of the description styles has its advantages because there are tradeoffs
concerning global and local complexity and ease of understanding with respect
to the whole diagram and a single diagram state. A simple instance of the above
example is found in web shops. The customer can enter the ordering use case
in nearly every situation. After completing the ordering subdialogue the user
wants to be offered an explicit link to the dialogue state from which she has once
entered the ordering, i.e. she does not want to be forced to use the browser’s
history mechanism for this purpose.

There may be more than one transition between the same client page and
server action. These transitions must carry explicit distinguishing labels. The
need of several transitions is obvious with respect to enabling conditions and
client output constraints.

4.1.5 Representation of Widget Types in Client Output

Constraints

Form-Oriented Analysis abstracts from layout in the modeling of submit/response
style systems. Therefore it is important to understand, how we can ascend
from layout centric widgets to an abstract representation of interaction. In
this section we analyze typical interaction patterns and discuss, how they are
represented in client output constraints.

Widgets can be e.g. editable fields for primitive types, checkboxes or radio
button lists. Since we deal with the analysis level, the differences between
functionally equivalent widget types are of minor interest. Therefore a list



38 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

parameter free
server action call
from the outside,
e.g. bookmark

start

a2 a4a1 a3 a5

s1 s2

s3

s4

s5

s1 s2

s3

s4

s5

b1 b2 b3

a2 a4a1 a3 a5

s1 s2

s3

s4

s5

b1 b2 b3

start

Figure 4.2: Modeling enabling conditions based on multiple state occurrences

of submit buttons is equivalent to a single submit button and either a radio
button list or a selection list. Hence single selection lists, radio button lists as
well as submit button lists are conceived as particular presentations of a single
abstract interaction option, which we call single selection. We remember, that
it was depicted in the form storyboard by an arrowhead. Checkbox lists as well
as multiple select lists we consider accordingly as multiple selection. In both
selection types, single selection as well as multiple selection, the user can chose
from an offered collection, which must be part of the client page signature. In
case the user has to choose between a set of primitive values, these values are
wrapped as objects. This technique resembles the flyweight pattern [6] from the
design phase.

Selection Widgets

Selections in form charts give rise to a constraint between the offered collection
in the client page signature and the selected items that are part of the addressed
server action signature. In that server action signature the parameter that has
to be provided by the radio button list must be part of the offered collection in
the client page signature from which to choose. This constraint is a client output
constraint in Form-Oriented Analysis. Such a client output constraint written
in OCL was discussed above when it was used in our example application. It
is graphically shown in Figure 4.3, but for simplicity we assume there a data
dictionary slightly different from our running example, namely we assume that
the collection is top level part of the client page signature.

For single selections the association representing the chosen object has ac-
cordingly the cardinality 1. For multiple selections the association has unspec-
ified cardinality. The condition that each element of the offered collection is



4.2. FEATURE COMPOSITION 39

list changeLink

List ChangeLink

Person
1..*

1

Single selection

{subset}

No direct 
input

row

dataDictionary

formChart

Figure 4.3: Graphical representation of a client output constraint. The subset
constraint specifies that the chosen information must have been on the page.

selected only once is a direct consequence of the fact that associations are set
valued. These considerations hint immediately on a further possible type of se-
lection widget which would enable bag relational selection by using the ordered

annotation for the chosen collection.

Direct Input

The counterpart to selection is given by direct input fields. Direct input fields
are fully editable, but may be prefilled with a default parameter. Direct input
fields are applicable only to primitive types. Direct input fields may, but are
not required to have client output constraints, e.g. pure string input may have
no constraints. A typical nontrivial client output constraint is a constraint that
a time or date must lie in the future.

somePage to someAction {

clientOutput:

this.date > System.time

}

4.2 Feature Composition

Feature composition has been introduced as the composition mechanism for form
storyboards as well as form charts. The graph structure of a form storyboard or
a form chart has been specified as being a bipartite directed labeled multigraph.
Every sub graph of the form chart is called a feature chart. Two feature charts
are combined by graph union. A form chart decomposition is a collection of
feature charts in such a way that the combination of the feature charts yields
the complete form chart.

The perhaps most intuitive explanation, why feature composition is possi-
ble and meaningful in Form-Oriented Analysis is the inverse operation, feature



40 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

decomposition. A complete diagram of Form-Oriented Analysis, be it a page
diagram, a form storyboard or a form chart, has a uniquely stable semantics:
If page/server edges, i.e. interaction options are removed, the data integrity is
not endangered. Certain usages of the system may of course become impossible,
if one removes key interaction options for the system. But the semantic data
model is not corrupted by such operations: the system remains stable, if it was
stable before. As a consequence the form chart covers system behavior that is
inherently stable against runtime customizations.

The composition of the analysis model is of course especially important
with respect to the task of expressing preferences and priorities in the system
specification, as well as to enable the discussion of alternatives and trade-offs
between them.

4.2.1 Compatibility Issues

There are some rules for the composition of two features. The rules follow from
the fact that the features to merge must be subgraphs of one single form chart.
First no node is at the same time client page in one graph and server action in
the other. Nodes of the same name must have the same data dictionary type,
because different features are different form charts over the same data dictionary
and model.

If two features are combined, the constraints have to be compatible. If in
a feature composition step a server action receives server/page transitions from
different features, the flow condition numbers in both features must be different
in order to be merged into a single order unless they are mutually exclusive.
The server/page transition without flow condition has to be the same in both
features, or one of the features should have no server/page transition without
flow condition.

4.2.2 Hierarchical Feature Decomposition

A form chart can be decomposed in a hierarchical manner. The result is a
tree of chart decompositions. Decomposition makes the form chart manageable.
It is a tool for organizing the form chart artifact during the analysis phase.
The feature hierarchy as such is not semantically relevant for the specification.
Every combination of feature charts, even from different levels of the tree, yields
a correct sub graph of the form chart.

4.2.3 Menu-like User Interface Parts

An important special case of feature composition is the modeling of menu-like
options, i.e. interaction options, which are offered on many, perhaps even all
pages. A new notation element for this purpose is the state set, that is depicted
by a double lined state icon. It is annotated by a list of state names and
serves as shorthand notation for these states. The example in Figure 4.4 shows
page sets. An edge between two state sets of say m client pages and n server



4.2. FEATURE COMPOSITION 41

a

b

c

d

p

q

x

y

z

w

a,b,c p

M

b,c,d q

N

menu

form chart
decomposition

menu

M

M,N

M,N

N

a

b

c

d

x

y

z

w

Figure 4.4: Modeling menu-like user interface parts

actions represents the complete bipartite graph Km,n between the elements of
the state sets. A feature chart may be annotated as menu. Then the page/server
transitions contained in this feature must not be contained in the main form
chart or its decompositions. Affected states may reference the respective menu
feature chart by an explicitly given name. Figure 4.4 shows how the described
mechanism fosters readability of system interfaces with menu-like user interface
parts. Another notation flavor is to give the state set a single name, and to
reference the page set in its member states. The menu construct is used in
the form chart of the seminar registration system in order to model the home
button.

4.2.4 Refinement

Form-Oriented Analysis allows for different grades of detail. It does not require
complete specification. We do not confine Form-Oriented Analysis to a single
process model in this paper. Instead we provide a set of well-defined incomplete
abstraction layers called refinement stages. Refinement itself is defined by using
the notion of feature: the model B is a refinement of model A iff A is a fea-
ture of B. In an informal sense form charts can be seen as refinements of form
storyboards. We now explain the most important refinement stages:



42 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

Signature Model

This model contains the complete data model and the complete form chart, but
no constraint annotations in both diagrams. This model is valuable as the bare
metal model giving the complete structure of the user interface and the data.

Server Input Declared Model and Server Input Safe Model

Server input constraints have been explained as being related to user input that
does not meet the requirements, e.g. the user enters a sum above its limit.
Server input constraints have to be replaced in later stages by branches from
the server page for these cases. These branches are of minor interest, therefore
it is helpful if their full specification can be deferred. A server input declared
model is the model that contains server input constraints. The server input safe
model is the model where all server input constraints are replaced by branches
leaving the server state.

Multi-User Declared Model and

Multi-User Safe Model

Submit/response style applications are often multi-user systems. Therefore dur-
ing the usage one has to consider many clients enacting on the same semantic
data model. Each client has its own instance of the finite state machine. These
instances are completely independent and interact only via the semantic data
model. Single executions of the server action of different instances of the form
chart are considered as mutually exclusive and not interfering with each other,
i.e. the semantic data model is seen as accessed in a virtually serial manner.
This is a helpful viewpoint for the specification phase, and is fully compatible
with later development stages of typical form based applications. However, only
the single server action is executed atomic in this sense. Hence subsequent in-
teraction of the same user with the system can be influenced by the interaction
of other users. Such effects are therefore called multi-user exceptions. These
exceptions are due to the fact that submit/response style systems are typically
based on an optimistic business logic approach. Well-known examples are sys-
tems with shopping carts. A typical strategy is that the items in the shopping
cart are not reserved for the customer. It is assumed a rare event that the item
has been sold by the time the customer finally buys the content of the whole
shopping cart. This assumption exactly is the optimistic assumption, and vice
versa the multi-user exception occurs whenever the optimistic assumption fails.
In our example system the dialogue for enrollment follows an optimistic strategy.
The enrollment link is offered, as long as free places in the course are available.
The event considered rare in this context is the case that a student starts the
enrollment, and when he has filled out his form, he finds all places occupied.
For many purposes the modeler may want to use a model that abstracts from
such multi-user problems, and therefore does not contain all possible exceptions
of this type. Such a model, which will be the primary working model, we call
the multi-user abstracted model. The multi-user declared model is the model in



4.3. ADVANCED TOPICS 43

which all multi-user exceptions are excluded by server input constraints. The
multi-user safe model is the model in which these constraints are replaced by
branches leaving the server state.

4.3 Advanced Topics

4.3.1 Active Content

Form chart allows for certain system caused page updates during a single client
page. A typical example is the inbox in a mail system. The inbox page shows the
list of arrived mails. A desired behavior is, that incoming mails are immediately
shown to the user by appending them to the list. Pages, which offer such a server
cause update we call pages with active content. Form-Oriented Analysis allows
only for the augmentation of the current data dictionary object, which is shown.
The inbox is an example of a list, which receives additional elements. Another
example is the disabling of single selection options in a list. The active content
does not violate the overall system metaphor of Form-Oriented Analysis, that
page change is triggered by the user. The active content is conceptually on the
level of the page interaction of the user. Page changes cannot be triggered by
the system.

Active content must be explicitly indicated by an ampersand at the enabling
condition. Active content is typically necessary only at a small number of places.
A typical system model would put all active content in separate features. Some-
times a menu feature has an active component, specifying a single flag, which
is visible on all pages, e.g. a flag indicating new mail.

4.3.2 Communication with Other Systems

Frequently systems communicate by automated interfaces. Such communica-
tion has become recently an area of increased interest through the discussion
about web services. Though web services aim at being specifically lightweight
and try to open up new applications for automated communication, the princi-
ple of automated communication is well established within technologies such as
EDI. The keyword business-to-business hence refers partly to well-established
technology, partly to new initiatives to widen the use of inter-system communi-
cation. Form-Oriented Analysis is only concerned with the analysis-level view
on such services. In Form-Oriented Analysis such interfaces between systems
are called external interfaces.

The key argument, why external interfaces are semantically unproblematic
in Form-Oriented Analysis is that ingoing messages can never change the state
of the form chart directly. The ingoing messages only changes the system state
i.e. the state of the semantic data model directly. This principle is a direct
consequence of the fact that form charts represent pull style interfaces.

External interfaces in Form-Oriented Analysis are completely message based
i.e. they are either ports for ingoing messages or ports for outgoing messages.



44 CHAPTER 4. FORM CHARTS AND DIALOGUE CONSTRAINTS

The specification of external interfaces is straightforward in Form-Oriented
Analysis. Specifically outgoing interfaces are just part of the side effect of server
actions. Each server action can send an arbitrary number of messages. Ingoing
interfaces on the other hand require an own class of updates. Such updates
have one ingoing message type from the data dictionary, they can specify an
update on the semantic data model and can again send an arbitrary number
of messages. Ingoing external interfaces are global update operations on the
semantic data model.

Today there is intensive effort to specify such inter-system interfaces in which
a complex protocol has to be observed. Traditional analysis techniques like
Structured Analysis allows for no specification of such complex protocols. Form-
Oriented Analysis offers more specification options through the use of OCL
constraints in accordance to standard object-oriented specification methods.


