
RULE 2006

Inducing Constructor Systems from
Example-Terms by Detecting Syntactical

Regularities

Emanuel Kitzelmann a,1,3 Ute Schmid a,2,3

a Department of Information Systems and Applied Computer Science
University of Bamberg

96045 Bamberg, Germany

Abstract

We present a technique for inducing functional programs from few, well chosen
input/output-examples (I/O-examples). Potential applications for automatic pro-
gram or algorithm induction are to enable end users to create their own simple
programs, to assist professional programmers, or to automatically invent com-
pletely new and efficient algorithms. In our approach, functional programs are
represented as constructor term rewriting systems (CSs) containing recursive rules.
I/O-examples for a target function to be implemented are a set of pairs of terms
(F (ii), oi) meaning that F (ii)—denoting application of function F to input ii—
is rewritten to oi by a CS implementing the function F . Induction is based on
detecting syntactic regularities between example terms. In this paper we present
theoretical results and describe an algorithm for inducing CSs over arbitrary signa-
tures/data types which consist of one function defined by an arbitrary number of
rules with an arbitrary number of non-nested recursive calls in each rule. Moreover,
we present empirical results based on a prototypical implementation.

Key words: inductive program synthesis, rule-based
programming, functional programming, constructor systems

1 Introduction

Automatic induction of recursive declarative programs from input/output-
examples (I/O-examples) is an active area of research since the sixties (see [1]

1 Email: emanuel.kitzelmann@wiai.uni-bamberg.de
2 Email: ute.schmid@wiai.uni-bamberg.de
3 We would like to thank the anonymous reviewers whose comments helped to improve the
paper.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kitzelmann and Schmid

for classical methods, [3] for systems in the field of inductive logic program-
ming, and [5] for recent research).

There exist two general approaches to tackle inductive synthesis of pro-
grams: (i) In the generate-and-test approach (e.g., the ADATE system [10]),
programs of a defined class are enumerated heuristically and then tested
against given examples. (ii) In the analytical approach, programs of a de-
fined class are derived by detecting recurrences in given examples which are
then generalized to recursively defined functions. Generate-and-test methods
are applicable for very general program classes since there are no principal
difficulties in enumerating programs. They naturally facilitate usage of prede-
fined functions (background knowledge) in induced programs. Moreover, the
specification in terms of examples of the target function to be implemented can
be extremely declarative, e.g., can consist of example inputs together with an
evaluation function. On the other side, generate-and-test methods are search
intensive and therefore time consuming. These characteristics qualify them
for invention of new and efficient algorithms (cp. [10]). Analytical approaches
have more restricted program classes since deriving programs by analyzing ex-
amples is more complicated than enumerating programs. Facilitating the us-
age of background knowledge is more complicated for the same reason. More-
over, analysis of examples is not possible for example specifications based on
evaluation functions but requires input/output-examples (I/O-examples). On
the other side, analysis minimizes search and makes these approaches fast.
These characteristics qualify analytical approaches for end-user programming
(see [12] for an example) or assisting systems. Since the technique presented
in this paper is analytical, we focus to analytical approaches in the following.

One classical and influential analytical approach was developed by Sum-
mers [13], who put inductive synthesis on a firm theoretical foundation. Sum-
mers’ system induces functional Lisp programs. It proceeds in two steps: In a
first step, traces and predicates for distinguishing the inputs are calculated for
each I/O-example. By integrating traces and predicates into a conditional ex-
pression a non-recursive program computing all I/O-examples is constructed
as result of the first synthesis step. In a second step, regularities are searched
for between the traces and predicates respectively. Found regularities are then
inductively generalized and expressed in form of the resulting recursive pro-
gram. Summers’ method is able to induce one function definition whose body
consists of a conditional for an arbitrary number of base cases and exactly one
recursive case containing exactly one recursive call. Parameters are restricted
to the data type S-expression (the general data type in Lisp) and the I/O-
examples have to be linearly ordered. An interesting feature is a particular
heuristic for automatically introducing an additional parameter if needed, e.g.,
the accumulator variable for list reversing. An extension of Summers’ method
which relaxes the very simple program schema is the BMWk algorithm [7,4].
It is also restricted to parameters of type S-expression and to linear recursion.
A reformulation and generalization of the BMWk algorithm in the frame-

2

Kitzelmann and Schmid

work of term rewriting systems has been described by LeBlanc in [8]. This
generalization overcome the restriction to S-expressions as only usable data
type. Moreover, it overcome the restriction to linear recursion but requires
that the user provides the recursion scheme of a program to be induced, i.e.,
the patterns of the recursive rules and the arguments for the recursive calls.
LeBlanc’s generalization has not been implemented. A recent approach of
functional program induction inspired by these classical approaches and also
formulated within the term rewriting framework is described in [6]. Extensions
to the previous methods are that subfunctions/subprograms and additionally
needed parameters are inferred automatically and in a systematic way. All
these functional analytical two-step methods are restricted to small fixed sets
of primitive functions (basic constructors and selector functions for the respec-
tive data types and a predicate for testing whether a constructor is atomic,
e.g., the empty list) of which the induced programs can be composed. That is,
they cannot handle additionally provided problem-specific functions as back-
ground knowledge to induce more complex programs. Particularly, testing for
atomic expressions as the only used predicate restricts the class of inducable
programs to programs for structural problems. Reversing a list falls into this
class for example, but not sorting a list, since for sorting a list a predicate for
comparing two elements regarding an order is needed. Moreover, the described
systems have in common that the provided I/O-examples may not arbitrarily
be chosen from the graph of the target function but have to be the first k

examples regarding the inductive structure of the underlying data type.

Another line of research is the field of inductive logic programming (ILP).
Though ILP has a focus to non-recursive concept learning problems, there has
also been research in inducing recursive logic programs on inductive data types
in the field of ILP (see [3]). Most of the specialized systems are analytical ap-
proaches. In contrast to the classical functional approaches, some of them can
handle background knowledge; particularly, some of them are not restricted to
structural problems. Two relatively recent ILP methods for induction of re-
cursive logic programs are DIALOGS-II [14] and an (unimplemented) method
described in [11] by Rao. Both methods allow arbitrary numbers of base cases
and recursive cases for one relation and more than one recursive call in one
body. Moreover, usage of background knowledge is facilitated by both sys-
tems. Both methods can infer additional predicates and parameters, yet this
ability is restricted to particular schemas “hard-wired” in the induction sys-
tem in case of DIALOGS-II. Moreover, the user has to choose the schema
which shall be utilized. DIALOGS-II is restricted to some predefined data
types like lists and natural numbers. Rao’s method is restricted to decompose
the inputs respecting their recursive structure, e.g., a list can only be decom-
posed into the first k elements and the rest list. In contrast, DIALOGS-II can,
for example, decompose a list into two lists of equal length. The user has to
choose from a set of predefined decompositions. Both methods are restricted
to only one recursion parameter, i.e., one parameter have to decrease in each

3

Kitzelmann and Schmid

recursive call and is checked in the base cases.

The analytical and functional approach described in this paper represents
I/O-examples as well as induced programs as constructor term rewriting sys-
tems (CSs) as a generic model of functional programs, instead of using a partic-
ular programming language. Compared to DIALOGS-II it is more general in
that induced programs are not restricted to particular predefined data types,
e.g., to lists or numbers, but I/O-examples can be defined over arbitrary finite
signatures which are then adopted for the induced programs. Decompositions
of inputs and argument terms for recursive calls are inferred automatically,
but with Rao’s method it shares the restriction to decompositions respecting
the internal inductive structure of the respective data type. It is more general
than both other methods in that the number of recursion parameters is not
restricted to one. In contrast to DIALOGS-II and Rao’s method our approach
is in the current state not able to use background knowledge nor is it able to
induce additional parameters (which are not given in the I/O-examples) or
subfunctions.

2 Preliminaries

We give an introduction to term rewriting systems and define some data types
in this section.

2.1 Terms and Positions

The set of (finite) terms over a finite signature Σ and a countably infinite set
of variables V disjoint from the function symbols in Σ is denoted by T (Σ, V).
Terms without variables are called ground terms. A term t is called linear iff
each variable occurs only once in t. A term can be viewed as a finite, labelled,
ordered tree as follows: (i) Each variable or constant corresponds to a tree
consisting of only one node labelled by the variable or constant respectively
and (ii) the term f(t1, . . . , tn) corresponds to the tree with the root node
labelled by f and the trees corresponding to t1, . . . , tn as immediate subtrees
in order from left to right. A position within a term t is a sequence of positive
integers indicating a path from the root of the tree of t to one of its nodes.
The position of the root node is the empty sequence, denoted by ǫ. The
subtree/subterm at position u is written t|u. If we want to state that a term
t contains a subterm s at any position, we write t = C[s]. C is called context.
For two terms t, s and a position u of t, t[s]u denotes the result of replacing
the subterm of t at position u by the term s.

A substitution is a mapping from variables to terms, σ : V → T (Σ, V).
A substitution σ : V → T (Σ, V) is extended to a mapping from T (Σ, V) to
T (Σ, V) which is also denoted by σ and written in postfix notation; tσ is the
result of applying σ to all variables in t. A substitution which maps variables
to variables only is called variable renaming. If s = tσ, then s is called an

4

Kitzelmann and Schmid

instance of t. We say that t subsumes s or that t is a generalization of s. We
also say that s matches t by σ. Given two terms s1, s2 and a substitution σ

such that s1σ = s2σ, then we say that s1, s2 unify and call σ unifier of s1 and
s2. We generalize the subsumption relation to sets of terms and say that a set
of terms T subsumes another set of terms S if each term s ∈ S is subsumed
by a term t ∈ T . Given a set of terms, S = {s, s′, s′′, . . .}, then there exists
a linear term t which subsumes all terms in S and which is itself subsumed
by each other linear term subsuming all terms in S. The term t is called least
general linear generalization (lglg) (of the terms in S).

A reduction order on T (Σ, V) is a well-founded order≺ro on T (Σ, V) that is
(i) closed under substitutions, i.e., if t ≺ro s and σ is an arbitrary substitution
then tσ ≺ro sσ, and (ii) closed under contexts, i.e., if t ≺ro s and C is an
arbitrary context then C[t] ≺ro C[s].

2.2 (Constructor) Term Rewriting Systems

A term rewriting system (TRS) is a pair (Σ, R) where R is a finite set of rewrite
rules (or rules for short) l → r where l, r ∈ T (Σ, V), l 6∈ V , and Var(r) ⊆
Var(l). In the following we write only R for a TRS (Σ, R). For a rule l→ r, l

is called left-hand side (lhs) and r is called right-hand side (rhs) of the rule. A
constructor system (CS) is a TRS in which Σ can be partitioned into a set F of
defined function symbols and a set C of constructors, such that the lhs of every
rewrite rule has the form F (t1, . . . , tn) with F ∈ F and t1, . . . , tn ∈ T (C, V).
The rewrite relation →R is defined as follows: A term t rewrites to s according
to R, written t →R s iff there exists a rule l → r in R, a substitution σ,
and a context C such that t = C[lσ] and s = C[rσ]. We call lσ redex and
rσ contractum. The reflexive-transitive closure of the rewrite relation →R is
denoted by

∗

→R. If a term cannot be rewritten, then it is in normal form. A
sequence of finitely or infinitely many rewrite steps t0 →R t1 →r · · · is called
derivation. We call s reduct of t iff t

∗

→R s. If additionally s is in normal form,

then s is called normal form of t, written t
!
→ s. We say that t normalizes to

s. A TRS is called terminating iff there is no infinite derivation, i.e., if each
derivation leads to a normal form after finitely many rewrite steps. A TRS is
called confluent iff every two reducts of one term have a common reduct. If
a TRS is confluent, then every term has at most one normal form. A TRS is
left-linear iff all its lhss are linear. A sufficient condition for confluence of a CS
is that it is left-linear and no two of its lhss unify. A confluent CS constitutes a
functional program: defined function symbols denote defined functions of the
program. Constructors denote predefined functions which are used to compose
the program. Consider a “program call” F (t1, . . . , tn) which normalizes to s.
We call t1, . . . , tn input and s output of F (t1, . . . , tn) iff t1, . . . , tn ∈ T (C, V)
and s ∈ T (C, V) respectively.

5

Kitzelmann and Schmid

2.3 Data-Type Definitions

The examples in this paper use the data types natural numbers, list, and
binary tree. A natural number is either the constant zero, 0, or a term s(x)
denoting the successor of the natural number x. A list is either the empty list
[] or a term cons(x, xs) with x the first element and xs the rest list. We denote
the list cons(x, xs) by [x|xs] and a list cons(x1, cons(x2, . . . , cons(xm, xs) · · ·))
by [x1, x2, . . . , xm|xs]. If xs = [] we write [x1, x2, . . . , xm]. A binary tree
is either a value x expressed by the term val(x) or a term tree(l, val(x), r)
(written 〈l, val(x), r〉) with l, r the left and right subtree respectively and
val(x) the value of the root node.

3 The Considered Class of Constructor Systems

We define the subclass of CSs which can be induced by our algorithm in terms
of a schema.

3.1 Flat One-Function CSs

The class of constructor systems (CSs) which can be induced is characterized
as follows: Each rule has the form

F (p1, . . . , pn)→ t

for a fixed defined function symbol F , i.e., F = {F}. Since t may contain the
defined function symbol, rules can be recursive. For a recursive rule

F (p1, . . . , pn)→ C[F (r1, . . . , rn)]

holds (i) that C may contain (further) occurrences of the defined function
symbol F , i.e., that a rule may contain an arbitrary number of recursive calls,
and (ii) that r1, . . . , rn ∈ T (C, V), i.e., that recursive calls are non-nested. We
call the class of CSs matching this basic schema flat one-function CSs.

We call p1, . . . , pn in the lhs of a rule pattern, F (r1, . . . , rn) in the rhs
recursive call, and r1, . . . , rn recursion terms. We denote a flat one-function
CS by its unique defined function symbol F . We require that (i) F (r) is smaller
than F (p) for any recursive call regarding a fixed reduction order ≺ro , (ii) all
rules are left-linear, and (iii) no two lhss unify. These conditions guarantee
termination and confluence.

Remark 3.1 Note, that we do not require the set of patterns in a flat one-
function CS to be complete (or exhaustive) in the sense, that all terms in
T (C, V) are matched by at least one pattern. Thus, there might be normal
forms for particular inputs which contain the defined function symbol. Com-
pleteness of induced flat one-function CSs depends on the given I/O-examples.

6

Kitzelmann and Schmid

DelZeros([]) → []

DelZeros([0|xs]) → DelZeros(xs)

DelZeros([s(x)|xs]) → [s(x)|DelZeros(xs)]

TreeRev(val(x)) → val(x)

TreeRev(〈l, val(x), r〉) → 〈TreeRev(r), val(x),TreeRev(l)〉

Fig. 1. Two example CSs, DelZeros and TreeRev

3.2 Examples for Flat One-Function CSs

The class of flat one-function CSs contains several standard functions for lists,
e.g., Head , Tail , Append , Length, Last (returns the last element), Init (re-
turns the given list without the last element), Take and Drop (keeping only
the first n elements of a list and dropping the first n elements from a list
respectively), Zip (takes two lists and returns a list of pairs of corresponding
elements), Sum (takes a list of natural numbers and returns the sum of all
contained numbers), and Reverse (reversing a list by using an accumulator
variable). Examples of flat one-function CSs for functions on natural numbers
are Add , Sub, and several predicates, e.g., Odd , Even, =, ≤. A particular
subclass of flat one-function CSs are (non-recursive) classifiers on instance
spaces defined by attribute vectors which are classically learned in the field of
machine learning. We do not consider such classifiers in this paper since we
are interested in inducing recursive programs on recursive data types. Figure 1
shows two further examples for the class of flat one-function CSs. DelZeros
deletes all zeros from a list and TreeRev reverses a binary tree. TreeRev is an
example for a tree-recursive flat one-function CS. In Section 5 we evaluate our
induction algorithm empirically for some of the the mentioned examples and
some additional examples.

Examples for CSs not contained in the class of flat one-function CSs are
Mult , Member (a predicate which checks whether a particular element is con-
tained in a list), or sorting lists, because each of these functions needs subfunc-
tions to be implemented, i.e., the respective CSs contain rules for more than
one defined function symbol. E.g., a CS for Mult consists of rules for Mult and
rules for Add , or a CS implementing quicksort consists of rules for the main
function as well as rules for the subfunctions Partition, Append , and ≤. Of
course one can consider such subfunctions as predefined and define their sym-
bols to be constructors such that the CSs for the respective main function con-
sist of only the main function. Then these CSs also fall in the class of flat one-
function CSs but they cannot be induced from I/O-examples containing only
the basic constructors introduced in Section 2.3 by the method presented here
because our method cannot deal with background knowledge until yet. These

7

Kitzelmann and Schmid

CSs can only be induced if the provided example outputs are already composed
of the constructors denoting the subfunctions. E.g., Mult could be induced
from I/O-examples like (Mult(s2(0), s3(0)), Add(Add(0, s3(0)), s3(0))) but not
from I/O-examples like (Mult(s2(0), s3(0)), s6(0)).

3.3 Regularities between Computations

Inputs, patterns, and recursion terms each are lists or vectors respectively
of terms. For better readability, we denote a vector of terms t1, . . . , tn by
tn, i.e., we denote inputs, patterns, and recursion terms by in, pn, and rn,
respectively. For a list of terms tn = t1, . . . , tn and a substitution σ, we denote
the instantiated list t1σ, . . . , tnσ by tnσ. We transfer the terms subsumes,
matches, unifies, and least general linear generalization (lglg) to lists of terms
analogously. E.g., pn subsumes in iff there exists a substitution σ such that
in = pnσ (in matches pn by σ). Or, for example, pn is an lglg of a set of inputs
{in, i′n, i′′n, . . .} iff p1 is an lglg of {i1, i

′

1
, i′′

1
, . . .}, p2 is an lglg (containing other

variables) of {i2, i
′

2
, i′′

2
, . . .} and so on.

In tradition of Summers [13], we use relations which hold between re-
cursively defined functions and computations processed by such functions to
inductively infer the recursive definition from given computations which are
assumed to be computations of a recursive target function. If F (in) matches
a recursive rule with lhs F (pn) by σ, i.e., F (in) = F (pn)σ then we call cor-
responding instances of the recursive calls, F (rn)σ, in the instantiated rhs tσ

of that rule recursive calls of F (in). The subterm lists rnσ = i′n of tσ are
again inputs to F and normalize to their outputs o′. The following theorem
states that for an input in and the corresponding output o, the outputs o′ of
the recursive calls F (i′n) of F (in) occur as subterms in o at the positions of
the respective recursive calls. Essentially, induction of recursive rules in our
approach is done by reverting the theorem:

Theorem 3.2 Let F be a flat one-function CS, in an input, and o the corre-

sponding output, i.e., i1, . . . , in, o ∈ T (C, V) and F (in)
!
→ o. Let F (pn)→ t be

the rule for which in matches pn and let σ be the corresponding substitution,
i.e., in = pnσ. We assume that t contains at least one recursive call. Let
{F (rn

1
), . . . , F (rn

k)} (k ≥ 1) be all different recursive calls which occurs in t

and U1, . . . , Uk the sets of positions of the recursive calls such that u ∈ Uj iff

t|u = F (rn
j) for all j ∈ {1, . . . , k}. Let F (rn

j)σ
!
→ oj with oj ∈ T (C, V) for all

j ∈ {1, . . . , k}. Then for all j ∈ {1, . . . , k} and any u ∈ Uj holds o|u = oj.

Proof. F (in) = F (pn)σ rewrites according to the rule F (pn)→ t in one step
to tσ. In tσ occur subterms F (rn

j)σ at positions Uj for j ∈ {1, . . . , k}. These
recursive calls are normalized to o1, . . . , ok per precondition. ✷

For an example, let F be the DelZeros-CS as shown in Figure 1. This
CS takes only one parameter, i.e., we write i, p, and r instead of in, pn, and
rn for inputs, patterns, and recursion terms, respectively. Let be i = [3, 0, 1]

8

Kitzelmann and Schmid

then holds o = [3, 1]. The rule whose lhs is matched by the “program call”
DelZeros([3, 0, 1]) is the third one: DelZeros([s(x)|xs])→ [s(x)|DelZeros(xs)].
The corresponding substitution is σ = {x 7→ 2, xs 7→ [0, 1]}. The rule has only
one recursive call (k = 1), namely F (rn

1
) = DelZeros(xs) at position 2 in the

rhs, i.e., U1 = {2}. The recursive call of DelZeros([3, 0, 1]) is DelZeros(xsσ) =
DelZeros([0, 1]) at position 2 in the instantiated rhs. It normalizes to the
output o1 = [1] which is the subterm of o = [3, 1] at position 2.

4 Inducing Correct Flat 1-Function CSs

We start with basic definitions which we need throughout this section:

Definition 4.1 A set of I/O-examples for a function F from T (C, V)n to
T (C, V) is a CS F consisting of non-recursive rules such that F (in) = o if
F (in) → o (o ∈ T (C, V)) is an I/O-example. We use an index and write FE

instead of simply F for the example CS if the context is ambiguous.

Definition 4.2 A confluent and terminating CS F consisting of rules F (pn)→
t is consistent/complete/correct w.r.t. a set of I/O-examples FE iff

consistent: for each I/O-example F (in)→ o holds: F (in)
!
→F o or F (in)

!
→F

s for a term s 6∈ T (C, V).

complete: for each I/O-example F (in) → o holds: F (in)
!
→F s for a term

s ∈ T (C, V).

correct: the CS is both consistent and complete.

Since the rules of a CS are induced independently, we need to define cor-
rectness of a single rule:

Definition 4.3 For a pattern pn let F be a CS containing I/O-examples—i.e.,
non-recursive rules—whose inputs are subsumed by pn. Let E be a subset of
these I/O-examples and C(E) the remaining rules, i.e., C(E) = F \E. A rule
ρ with pattern pn is called correct w.r.t. E and C(E) iff the CS which results
from replacing E by ρ in F is correct w.r.t. E.

This definition includes the special case that F is a set of I/O-examples
and E is the subset containing all I/O-examples whose inputs are subsumed
by pn. In this case the definition states that a rule ρ with pattern pn is correct
w.r.t. E and the remaining I/O-examples iff the CS resulting from replacing
the set of I/O-examples E whose inputs match pn by ρ is correct w.r.t. the
replaced I/O-examples.

Induction of a correct CS is organized in two levels as follows: At the
higher level, lhss of the rules of the CS to be induced are searched for. This
is essentially a search for patterns because each pattern determines the lhs of
a rule. At a second level, an rhs is computed for each lhs. If computation of
a rhs succeeds for each found lhs, then the result is the completely induced

9

Kitzelmann and Schmid

CS. If computation of rhss fails for at least one lhs, then a new set of lhss is
searched for. Computation of an rhs fails if and only if no rhs exists for the
corresponding lhs such that the resulting rule is correct.

Generally there is an infinite number of CSs with different normalizing
relations which are correct w.r.t. a set of I/O-examples because correctness
w.r.t. I/O-examples makes no claim concerning all terms other than the exam-
ple inputs. The induction algorithm returns only one CSs and therefore it is
important to know, which of the correct CSs will be selected. Such a criterion
is called inductive bias. Informally, the inductive bias of our algorithm can be
described by three criteria (the stated order is relevant): An induced correct
CS has (i) as few as possible rules, (ii) as specific as possible patterns, and (iii)
as general as possible rhss. As few as possible rules means that there exists no
other correct CS containing fewer rules. As specific as possible patterns means
that each pattern pn is the lglg of all example inputs in which it subsumes. As
general as possible rhss means that if there are different possibilities for a par-
ticular position, then a variable from the pattern is preferred over a recursive
call and a recursive call is preferred over a constructor symbol.

4.1 I/O-examples

Our algorithm is based on detecting regularities between I/O-examples. These
regularities are—roughly—the relations between outputs as stated in Theo-
rem 3.2. “Roughly” since—according to Theorem 3.2—the outputs oj, j ∈
{1, . . . , k} are assumed to be equal to the subterms of o at positions Uj up to
variable renaming. Because of this regularity-detection method, I/O-examples
have to be well chosen. More technically, the inputs have to be recursively
subsumed w.r.t. a CS computing the target function:

Definition 4.4 Let F be a CS which is correct w.r.t. a set of I/O-examples
FE. The I/O-examples are called recursively subsumed w.r.t. F iff for all
example inputs in which match the pattern of any recursive rule of F hold: Let
F (pn)→ t be the recursive rule such that in matches pn by the substitution σ.
Then for each recursive call F (rn) in t the instantiation rnσ is, up to variable
renaming, contained as an example input in FE.

Since the induction algorithm is not able to use background knowledge
nor is it able to automatically introduce additional parameters, the example
outputs have to be composed of the constructors of which the resulting rhss
are composed and the example inputs have to be inputs for all parameters.

4.2 Searching for Patterns

Before we describe the search for patterns, we state a few characteristics of
the state space: If F is a CS induced from a set of I/O-examples FE, then
each example input is subsumed by a pattern of F and there does not exist
a pattern which subsumes no example input. In order to reduce the search

10

Kitzelmann and Schmid

space, we only consider those patterns which are lglgs of all example inputs
in FE which they respectively subsume.

These three characteristics and the requirement for target CSs, that no
two lhss unify, lead to the following characterization of the state space. For
each considered set of patterns P holds:

• P subsumes all example inputs,

• no two patterns in P unify,

• each pattern in P subsumes at least one example input,

• each pattern in P is the lglg of all example inputs which it subsumes.

The search space is finite, if the number of I/O-examples is finite. In
order to induce a CS with as few as possible rules, the state space will be
ordered such that sets with fewer patterns are considered before sets with
more patterns. With this order, the state space has exactly one (up to variable
renaming) minimum, namely the set containing exactly one pattern—the lglg
of all example inputs. This state is the initial state. And the state space has
exactly one (up to variable renaming) maximum, namely the set containing
each example input as its own pattern. This state is the last state considered
for which computation of correct rules ever succeeds since simply the I/O-
example itself is a rule which is correct (w.r.t. itself).

Now suppose a state P with an arbitrary number of patterns which comply
with the stated conditions. If for at least one pattern a correct rule could not
be computed, then successor states have to be computed. Let pn be such
a pattern for which no correct rule exists. Then the I/O-examples whose
inputs are subsumed by pn has to be partitioned into a minimum number of
at least two subsets and pn has to be replaced by the lglgs of the inputs of
the respective subsets. We call the new set of lglgs/patterns most generally
partitioning lglgs (mgpls).

This is done as follows: First a position u from F (pn) which is labeled
by a variable in F (pn) and by a constructor in each subsumed example lhs is
selected. Since F (pn) is the lglg of the subsumed example lhss it then holds
that in at least two example inputs these constructors differ. Then respectively
all example inputs with the same constructor at position u are taken into the
same subset. That leads to a partition of the example inputs. Finally, for
each subset the lglg is computed.

A successor state is a state in which all patterns for which no correct rule
could be computed are replaced by corresponding sets of mgpls. Since the
position which determines a partition is generally not unique, also the sets of
mgpls are not unique. Thus, all combinations of replacing these patterns by
mgpls are included as successor states.

11

Kitzelmann and Schmid

For example, let

1. DelZeros([]) → []

2. DelZeros([0]) → []

3. DelZeros([s(x)]) → [s(x)]

4. DelZeros([0, 0]) → []

5. DelZeros([s(x), 0]) → [s(x)]

6. DelZeros([s(x), s(y)]) → [s(x), s(y)]

be I/O-examples for DelZeros (cp. Fig. 1). The initial state consists of the lglg
of the six example inputs [], [0], [s(x)], [0, 0], [s(x), 0], [s(x), s(y)] which is simply
a single variable, q. Since there exists no correct rule for this pattern, successor
sets of patterns has to be computed. Since the current pattern is a variable, the
(unique) position in DelZeros(q) determining the partition is position 1. The
two constructors which occurs at this position in the example lhss are [] and
cons . Hence, the examples are partitioned into two subsets containing the first
example and all other examples respectively. The new patterns are [] and [q|qs]
since these are the lglgs of the first input and the other inputs respectively.
For pattern [] a rule will be found (simply the first I/O-example) but for
pattern [q|qs] no rhs will be found. Thus, the remaining examples has to be
partitioned again. Now there are two positions in DelZeros([q|qs]) which come
into question, 1.1 and 1.2. Position 1.1 denotes the variable q in the current lhs
and the constructors 0 and s in the remaining example inputs 2-6 respectively.
It partitions the I/O-examples into one set consisting of I/O-examples 2 and
4 and another set consisting of I/O-examples 3, 5, and 6. This leads to two
new patterns/lglgs, [0|qs] and [s(x)|qs]. Position 1.2 denotes the variable qs
in the current lhs and the constructors [] and cons in the remaining example
inputs respectively. It partitions the I/O-examples into one set consisting of
I/O-examples 2 and 3 and another set consisting of I/O-examples 4-6. This
leads to two new patterns, [q] and [q, q′]. Thus, we get two successor states
for the pattern state {[], [q|qs]}, namely first {[], [0|qs], [s(x)|qs]} (cp. the
DelZeros-CS shown in Fig. 1) and second {[], [q], [q, q′]}.

4.3 Computing Right Hand Sides

Given a set of patterns, for each lhs with pattern pn a correct rhs has to be
computed. The symbol at an arbitrary position in an rhs of a flat one-function
CS F can be either

• a constructor from C,

• the defined function symbol F (recursive call), or

• a variable contained in the pattern pn of the corresponding lhs.

12

Kitzelmann and Schmid

The following theorem states sufficient conditions for a recursive calls:

Theorem 4.5 Let F (in) → o be an I/O-example and pn a pattern which
subsumes in with substitution σ. Let F (i′n)→ o′ be a second I/O-example such
that (i) o|u = o′τ for some position u and variable renaming τ , (ii) i′n = rnθ

for a list of terms rn and some substitution θ for all variables contained in rn,
and (iii) θτ ⊆ σ. Let F be a confluent and terminating CS which is correct
w.r.t. F (i′n) → o′ and contains a rule ρ : F (pn) → t[F (rn)]u such that the
lhs F (pn) does not unify with another lhs in F . Then F (in) normalizes to
a term s with s|u = o|u, i.e., local correctness at position u of ρ w.r.t. the
I/O-example F (in)→ o and F \ {ρ} is assured.

Proof. F (in) = F (pn)σ per precondition rewrites in one step to t[F (rn)]uσ =
tσ[F (rn)σ]u according to rule ρ. According to (ii) and (iii) holds tσ[F (rn)σ]u =
tσ[F (rn)θτ]u = tσ[F (i′n)τ]u. F (i′n)τ normalizes to o′τ per precondition, i.e.,
tσ[F (i′n)τ]u normalizes to t′[o′τ]u for some term t′. It holds t′[o′τ]u = t′[o|u]u
according to (i), i.e., F (in) normalizes to s = t′[o|u]u and it holds s|u = o|u.✷

The theorem states conditions respecting one I/O-example F (in) → o

whose input is subsumed by a pattern pn of a rule to be constructed, which
are sufficient to introduce a particular recursive call F (rn) at a particular
position u. Of course, all I/O-examples whose inputs are subsumed by pn has
to fulfill the conditions of the theorem with the same recursive call F (rn).

The previous characterization of rhss and the theorem about recursive calls
lead to the following general method for constructing an rhs of a correct rule
given a pattern pn and I/O-examples whose inputs match the pattern. The
following three cases are considered in the stated order:

1. Pattern variable: All outputs can be produced by the same pattern vari-
able: Then the rhs becomes this variable.

2. Recursive call: All outputs can be produced by the same recursive call
F (rn): Then the rhs becomes F (rn).

3. Constructor: The roots of all outputs are the same constructor f with
arity m: Then the rhs becomes the term f(t1, . . . , tm) where the ti are
constructed by considering these three cases for the subterms of the outputs
at position i.

If no case is applicable then no correct rhs exists for this pattern and it has
to be searched for a new set of patterns.

For an example, let us again consider the I/O-examples for DelZeros :

1. DelZeros([])→ [], 2. DelZeros([0])→ [],

3. DelZeros([s(x)])→ [s(x)], 4. DelZeros([0, 0])→ [],

5. DelZeros([s(x), 0])→ [s(x)], 6. DelZeros([s(x), s(y)])→ [s(x), s(y)]

Assumed, the pattern [s(x)|qs] which subsumes the inputs 3, 5, and 6 with
substitutions σ3 = {x 7→ x, qs 7→ []}, σ5 = {x 7→ x, qs 7→ [0]}, and σ6 =

13

Kitzelmann and Schmid

{x 7→ x, qs 7→ [s(y)]} respectively has been found. Since for all of the three
considered I/O-examples the output differs from the respective instantiations
of both pattern variables, case 1 fails. Also case 2 fails, because no recursive
call can be found such that for all three I/O-examples the conditions from
Theorem 4.5 are fulfilled. Case 3 succeeds because all three considered outputs
have the same constructor symbol, cons , as root. Thus, the root of the rhs
to be constructed becomes cons and the three cases are applied to positions
1 and 2 of the three considered example outputs. For position 1 this leads
to the subterm s(x) after two steps. For position 2 case 1 fails. But case
2 (recursive call) succeeds, because for the recursive call DelZeros(qs) the
conditions from Theorem 4.5 are fulfilled for all three subterms at position 2
of the three outputs: The subterm of output 3 at position 2 is []. For I/O-
example 1 holds that its output equals this subterm with variable renaming
τ = ∅. The input of I/O-example 1 matches the recursive call DelZeros(qs)
by substitution θ = {qs 7→ []} and it holds θτ ⊆ σ3. For I/O-example 5 the
conditions are fulfilled with I/O-example 2 as second I/O-example, τ = ∅, and
θ = [0]. For I/O-example 6 the conditions are fulfilled with I/O-example 3
as second I/O-example, τ = {x 7→ y}, and θ = [s(x)]. The resulting rhs is
[s(x)|DelZeros(qs)].

5 Evaluation of the Approach

Though our approach essentially learns functional programs, it is straightfor-
ward to transform any induced flat one-function CS into a logic program, e.g.,
a prolog program. For example, consider the DelZeros-CS shown in Figure 1.
An equivalent prolog program is:

DelZeros([], []) ←

DelZeros([0|XS], Z) ← DelZeros(XS, Z)

DelZeros([s(X)|XS], [s(X)|Z]) ← DelZeros(XS, Z)

We have implemented a prototype of the described algorithm in the pro-
gramming language Maude [2]. Maude is a reflective language which is based
on equational and rewriting logic. Reflection means that Maude programs can
deal with Maude programs as data.

In Table 1 we have listed experimental results for sample problems. The
first column lists the names for the induced functions, the second the number
of given I/O-examples, the third the total number of induced rules and in
parentheses the number of induced recursive rules, the fourth the maximal
number of recursive calls within one rule, the fifth the number of recursion
parameters, and the sixth the times in seconds consumed by the synthesis.
The experiments were performed on a Pentium 4 with Linux and the program
runs are interpreted with the Maude 2.2 interpreter.

14

Kitzelmann and Schmid

function #expl #rules(#rec) #rec. calls #rec. params times

Length 3 2(1) 1 1 .002

Last 3 2(1) 1 1 .003

IncList 3 2(1) 1 1 .003

Even 4 3(1) 1 1 .004

TreeRev 4 2(1) 2 1 .009

Add 9 2(1) 1 1 .022

DelZeros 6 3(2) 1 1 .055

≤ 9 3(1) 1 2 .081

Sum 13 3(2) 1 1 .127

Take 9 3(2) 1 2 .145

Zip 9 3(2) 1 2 .263

PlayTennis 14 5(0) 0 0 .679

Table 1
Some inferred functions

The functions, except for IncList and PlayTennis , are described in Sec-
tion 3.2. IncList applies the successor function, s, to each element of a
given list. PlayTennis is an attribute vector concept learning example from
Mitchell’s machine learning text book [9]. The 14 training instances consist
of four attributes. The five non-recursive rules learned by our approach are
equivalent with the decision tree learned by ID3 which is shown on page 53 in
the book. All induced programs compute the intended function.

6 Conclusions and Further Research

We described a method to induce a particular class of functional programs
represented by confluent and terminating flat one-function CSs. The presented
methodology is inspired by classical and recent analytical approaches to the
induction of functional programs. The method is distinguished from most
other methods in its ability to induce programs over arbitrary data types and
in that the induced programs can contain more than one recursion parameter.
Until now, neither background knowledge can be used nor can additional
subprograms or parameters not contained in the I/O-examples be induced.
Yet techniques for automatic introduction of further subprograms as well as
further parameters to the induced programs have been developed within the
analytical approaches and should be applicable to our approach as well.

15

Kitzelmann and Schmid

References

[1] Biermann, A. W., G. Guiho and Y. Kodratoff, editors, “Automatic Program
Construction Techniques,” Collier Macmillan, 1984.

[2] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and
C. Talcott, The maude 2.0 system, in: R. Nieuwenhuis, editor, Rewriting
Techniques and Applications (RTA 2003), number 2706 in Lecture Notes in
Computer Science (2003), pp. 76–87.

[3] Flener, P. and S. Yilmaz, Inductive synthesis of recursive logic programs:
Achievements and prospects, Journal of Logic Programming 41 (1999), pp. 141–
195.

[4] Jouannaud, J. P. and Y. Kodratoff, Characterization of a class of functions
synthesized from examples by a summers like method using a ‘B.M.W.’ matching
technique, in: Proc. International Joint Conference on Artificial Intelligence
(IJCAI-79) (1979), pp. 440–447.

[5] Kitzelmann, E., R. Olsson and U. Schmid, editors, “Proceedings of the ICML
2005 Workshop Approaches and Applications of Inductive Programming,” 2005.

[6] Kitzelmann, E. and U. Schmid, Inductive synthesis of functional programs:
An explanation based generalization approach, Journal of Machine Learning
Research 7 (2006), pp. 429–454, special topic on Approaches and Applications
of Inductive Programming.

[7] Kodratoff, Y. and J.Fargues, A sane algorithm for the synthesis of LISP
functions from example problems: The Boyer and Moore algorithm, in: Proc.
AISE Meeting Hambourg, 1978, pp. 169–175.

[8] Le Blanc, G., BMWk revisited: Generalization and formalization of an algorithm
for detecting recursive relations in term sequences, in: F. Bergadano and
L. de Raedt, editors, Machine Learning, Proc. of ECML-94 (1994), pp. 183–197.

[9] Mitchell, T. M., “Machine Learning,” McGraw-Hill Higher Education, 1997.

[10] Olsson, R., Inductive functional programming using incremental program
transformation, Artificial Intelligence 74 (1995), pp. 55–83.

[11] Rao, M. R. K. K., Learning recursive prolog programs with local variables
from examples, in: Proceedings of the ICML’05-workshop on Approaches and
Applications of Inductive Programming, 2005, pp. 51–57.

[12] Schmid, U. and J. Waltermann, Automatic synthesis of XSL-transformations
from example documents, in: Artificial Intelligence and Applications Proceedings
(AIA 2004, Innsbruck, Austria, February 16-18) (2004), pp. 252–257.

[13] Summers, P. D., A methodology for LISP program construction from examples,
Journal ACM 24 (1977), pp. 162–175.

[14] Yilmaz, S., “Inductive Synthesis of Recursive Logic Programs,” Master’s thesis,
Bilkent University (1997), http://user.it.uu.se/ pierref/pub/SerapMSc.ps.gz.

16

