
US005963220A

United States Patent [19] [11] Patent Number: 5,963,220

Lee et al. [45] Date of Patent: Oct. 5, 1999

[54] MIP MAP/RIP MAP TEXTURE LINEAR W. Newman & R. Sproull, Principles of Interactive Com
ADDRESSING MEMORY ORGANIZATION

AND ADDRESS GENERATOR

[75] Inventors: Ruen-Rone Lee, Hsinchu; Chun-Kai
Huang, Taichung; Wei-Kuo Chia,
Hsinchu, all of TaiWan

[73] Assignee: Industrial Technology Research
Institute, Hsinchu, TaiWan

[21] Appl. No.: 08/598,523

[22] Filed: Feb. 8, 1996

[51] Int. Cl.6 G06T 1/60

[52] US. Cl. 345/507; 345/430; 345/516

[58] Field of Search 345/425, 516,

345/430, 515, 507, 431

[56] References Cited

U.S. PATENT DOCUMENTS

5,046,023 9/1991 Katsura et a1. .

5,185,856 2/1993 Alcorn et a1. .

5,222,205 6/1993 Larson et a1. .

5,268,681 12/1993 Lin 6161..

5,268,682 12/1993 Yang et a1. .

5,321,425 6/1994 ch18. CI 8.1..

5,422,657 6/1995 Wang et a1. .

5,495,563 2/1996 Winser 345/430

5,606,650 2/1997 Kelley et a1. 345/430

OTHER PUBLICATIONS

L. Williams, Pyramidal Parametrics, Computer Graphics,
vol. 17, No. 3, pp. 1—11, Jul., 1983.

300
\

BASE G0

I I
312\ ADDER

puter Graphics, ch. 25, pp. 389—410 (1979).

Primary Examiner—Richard A. Hjerpe
Assistant Examiner—Francis N. Nguyen

Attorney, Agent, or Firm—Proskauer Rose LLP

[57] ABSTRACT

A linear address organization for physically storing mip
maps and rip maps in memory is disclosed. The subsampled
data arrays of the mip maps and rip maps are sequentially
stored in continuous subsequences of a continuous sequence

of memory addresses. The subsequences of addresses are

assigned in order of level of subsampling of the data arrays
Which make up the mip map or rip map. In the case of a mip

map, the subsequences are assigned to the data arrays in

order of increasing level of subsampling. In the case of rip

maps, the data arrays are segregated into groups according

to a ?rst one of the tWo subsampling directions, such that

each array in a particular group has the same level of

subsampling in the ?rst direction. Subsequences are
assigned to each group of data arrays. The addresses of the

subsequences are assigned Within each group on a span by

span basis Where a span includes the texture data in a

particular direction of each data array in order of increasing
level in the second one of the tWo subsampling directions.

Address generators are also disclosed for assisting in gen

erating linear addresses to texture data With speci?c coor

dinates (u,v) in arrays having particular levels of subsam
pling.

14 Claims, 6 Drawing Sheets

U

I I
ADDEH /314

ADDER / 315
310 /

U.S. Patent 0a. 5, 1999 Sheet 1 of6 5,963,220

FIG. 1
(PRIOR ART)

121 141 16 1B
PROCESSOR MAIN HEM INPUT DEVICE /-10

1 t 1 20 K

32\ DRAWING /
; PROCESSOR ‘*- ADDRESS : FRAME ‘ DISPLAY

I GENERATOR ‘ BUFFEH _’ DEVICE

: \35 : /
3° MEAFFIEEQQNIBELPEL _____ _ -I 34

FIG. 2
B1 (PHIOH ARR 52

U S U 3 i)1
R G

R +
V V

R

B
~I-U

+
V

B

U.S. Patent 0a. 5, 1999 Sheet 2 of6 5,963,220

FIG. 3
(PRIOR ART)

/51' 52' /53' /54'
“'U -’'U -’U

V + + +
V V V V

71' 72'

-’U -’U ---U

F i i 3 73'
65'\ 81- f

-.U -’U “"U
55 ~ \$ 74 \$ $ $ N82
871/‘ —_-u —I-u —--u

75' B3‘ 91

FIG. 5

113 115

I 1141)18
PROCESSOR MAIN MEMORY MEMORY INPUT DEVICE / 10°

1 I 1 22°
< >

_________ —_| 138

132\ DRAWING /
; PROCESSOR "- ADDRESS FRAME , DISPLAY

I GENERATOR BUFFER DEVICE

' \
I 135 ; /

INMMMLPMIFQQOMRQEF _____ ___J 134

U.S. Patent 0a. 5, 1999 Sheet 3 of6 5,963,220

FIG. 4
(PHIOHAHT)

VHAM VHAM COL

Hi»: i
o 1
1 2

511 512
o 513

514

387 900

U.S. Patent 0111. s, 1999 Sheet 4 0f 6 5,963,220

FIG. 5

210-1001
1 _('

210 10)210-1701

210-1011 212-1001
212-1101

21010.01
,{ADEDMHOERSYS 11111010

21010.71 \ /
/210-(7,7) / f , BASE 21010.0)

210 212 215 214 BASE + 1 210- (1.0)
220- (0.0) 220- (1.0)

222- (0.0) BASE + 7 210- (7 .0)

BASE + B 210- (0 . 1)

A + -

22441.1) 051 0 21011.11

D 01313 15 21011.1)

I‘ I‘ BASE+B3 210-11.?)
2?? 224 225 BASE+B4 212-1001

BASE + 65 212- (1.0)

BASE + 67 212-130)

BASE + 60 212- (0. 1)

BASE + 69 212- (1. 1)

BASE + 79 212- (3.3)

BASE + 80 214- (0.0)

BASE + 01 214- (1. 0)

BASE + B? 214- (0. 1)

BASE + B3 214- (1. 1)

BASE 1 B4 215- (0.0)

244 24

U.S. Patent 0a. 5, 1999 Sheet 5 of6 5,963,220

MEMUHY
ADDRESS

FIG. 7

0 u: |—u=01234557 u=0123 u=01

+ + + + .t... 01234567
: v

252 251 250

r__

;u=01234567 u=0123 u=01

252 281 250 254

+ + + + 1 6. I

271271-10.

______________________C’_

0123-1567
r

: u=

II I:

1 1272/11 280
___________2§U‘{=}_E"£=_L__;__

IIIIIIJI III

51
25B du=0

5,963,220
1

MIP MAP/RIP MAP TEXTURE LINEAR

ADDRESSING MEMORY ORGANIZATION

AND ADDRESS GENERATOR

RELATED APPLICATIONS

The following patents and patent applications are com
monly assigned to the assignee of this application and
contain subject matter related to this application:

1. patent application Ser. No. 08/598,522, entitled, “Vir
tual Coordinate To Linear Physical Memory Address Con
verter For Computer Graphics System,” ?led for Erh-Chia
Wang, Wei-Kuo Chia, and Chun-Yang Cheng on even date

hereWith;
2. patent application Ser. No. 08/598,520, entitled,

“Blending Apparatus for Computer Graphics System,” ?led
for Jan-Han Hsiao, Wei-Kuo Chia and Chun-Kai Huang on

even date hereWith;

3. US. patent application Ser. No. 08/598,521, entitled
“Texture Filter Apparatus for Computer Graphics System,”
?led for Yu-Ming Lin, Chun-Kai Huang, Wei-Kuo Chia on

even date hereWith;

4. US. Pat. No. 5,422,657, entitled, “A Graphics Memory
Architecture For Multi-mode Display System,” ?led for
Shu-Wei Wang, Wei-Kuo Chia, Chun-Kai Huang and Chun
Chie Hsiao on Sep. 13, 1993;

5. US. Pat. No. 5,321,425, entitled, “Resolution Indepen
dent Screen Refresh Strategy,” ?led for Wei-Kuo Chia,
Jiunn-Min Jue, Gen-Hong Chen and Chih-Yuan Liu on Feb.

19, 1992;
6. US. Pat. No. 5,268,682, entitled, “Resolution Indepen

dent Raster Display System,” ?led for Wen-Jann Yang,
Chih-Yuan Liu and Bor-Chuan Kuo on Oct. 7, 1991; and

7. US. Pat. No. 5,268,681, entitled, “Memory Architec
ture With Graphics Generator Including A Divide By Five

Divider,” ?led for Cheun-Song Lin, Bor-Chuan Kuo and
Rong-Chung Chen on Oct. 7, 1991.

The contents of the above-listed patents and patent applica
tions are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to graphics controllers in

computer systems. In particular, the present invention relates
to rendering 3-D objects With a speci?ed texture. Texture

data is often stored as plural progressively subsampled
arrays of data from Which interpolated texture values may be

generated. The present invention is speci?cally directed to a
novel manner of linearly storing the texture data arrays in

memory and for generating addresses to the texture data in

desired data arrays.

BACKGROUND OF THE INVENTION

FIG. 1 depicts a conventional computer system 10. The

computer system 10 has a processor 12, a main memory 14,

a disk memory 16 and an input device 18, such as a keyboard

and mouse. The devices 12—18 are connected to a bus 20

Which transfers data, i.e., instructions and information,
betWeen each of these devices 12—18. A graphics controller

30 is also connected to the bus 20. As shoWn, the graphics

controller 30 includes a draWing processor 32. The draWing

processor is also connected to an address generator 36 and

a data input of a frame buffer 34. The address generator 36,

in turn, is connected to RAS (roW address select), CAS
(column address select) and chip select inputs of the frame
buffer 34. Illustratively, the frame buffer 34 is implemented

10

15

25

35

45

55

65

2
With plural VRAMs (video random access memories) or
DRAMs (dynamic random access memories). The frame
buffer 34 is connected to a display device 38, such as a

cathode ray tube (CRT) or liquid crystal display (LCD)
monitor.

The draWing processor 32 receives instructions from the
processor 12 for draWing objects. For instance, in the case of
a computer aided design (CAD) application, the processor
12 may receive user input regarding creating and locating
objects in 3-D space. The processor 12, in turn, transfers

instructions regarding the siZe, location, texture,
translucence, etc. of such objects to the draWing processor
32. In response, the draWing processor 32 creates a pixel

image representation of a plane of vieW of such objects in
3-D space. The pixels of the image of each plane of vieW
form part of a frame that is stored by the draWing processor

32 in the frame buffer 34. Several draWing processors 32 are

knoWn, such as is disclosed in US. Pat. Nos. 5,046,023 and

5,185,856. The latter reference discloses a draWing proces
sor that is speci?cally adapted for rendering 3-D objects.

A computer system 10 capable of performing 3-D ren
dering advantageously “maps” texture onto the rendered
object. The mapping of texture onto objects is Well knoWn
and is not discussed in detail herein. See US. Pat. No.

5,222,205; L. Williams, Pyramidal Parametrics, ACM
COMPUTER GRAPHICS, vol. 17, no.3 p.1—11 (1983); and
W. NEWMAN & R. SPROULL, PRINCIPLES OF INTER

ACTIVE COMPUTER GRAPHICS, 2d ed., p. 389—410.
Suffice it to say that the texture pattern may be considered

a renderable source texture surface Which is to be mapped

onto a destination object surface. The object thus formed

may then be mapped onto the destination plane of vieW.

Such mapping is very computation intensive. As noted in

the above-noted Williams article, such mapping may require
sampling the texture data in a fashion Which is suited to the

vieW of the surface of the destination object. That is, the
visibility of the texture detail on the object surface depends

on hoW close or hoW far the object surface is located in 3-D

space from the plane of vieW. As the plane of vieW is brought
closer to the object surface, more texture detail is visible. As

the plane of vieW is move aWay from the object surface, less
texture detail is visible.

To reduce the amount of computation involved in map

ping texture When the object is moved closer or farther from

the plain of vieW, the Williams article proposes to initially
provide subsamplings of the textured data. This is illustrated
in FIG. 2. As shoWn, the texture data is stored in 2-D data

arrays. The texture data in each array is indexed, i.e.,
addressed With 2-D virtual address coordinates (u,v), i.e.,
one in each direction U and V. The texture data consists of

RGB data including one ?xed length data unit (e. g., byte) for
each color red (R), green (G) and blue (B) per point of
texture data. The R data is stored in array 61, the G data is

stored in array 62 and the B data is stored in array 63. As per

the Williams memory storage scheme, the array 64 is used
for storing subsampled versions of the RGB data. For

instance, subarray 71 of array 64 stores a 1/2 subsampling in
both the U and V directions of the R data of array 61.

Likewise, subarray 72 stores a 1/2 subsampling in both the U

and V directions of the G data of array 62. Subarray 73 stores

a 1/2 subsampling in both the U and V directions of the B data

of array 63. The subsampling process is then carried out

again in subarray 74 Which has subarrays 81, 82 and 83
Which contain 1A1 subsamplings in both the U and V direc

tions of the R,G, and B data of arrays 61, 62 and 63,
respectively. LikeWise, subarrays 91, 92 and 93 of subarray
84 contain Vs subsamplings in both the U and V directions

5,963,220
3

of the R,G and B data arrays 61, 62 and 63, respectively.
This subsampling is carried out until one texture data per

color is obtained. This data structure 51 is referred to as a

“mip map.” In a mip map 51, the full scale RGB data (in
arrays 61, 62 and 63) is said to be subsampled at level d=0,
the 1/2 subsampled RGB data (in arrays 71, 72 and 73) is said
to be subsampled at level d=1, and so on. In general, the 2'd
subsampled data is said to be subsampled at level d.

In order to map texture data onto an object, the appro

priate level RGB texture data array is used. Alternatively, if
the object surface siZe is betWeen tWo arrays that are

subsampled at levels d and d+1, a bilinear interpolation
betWeen the texture data of the tWo data arrays is used. The

mip map scheme therefore provides a relatively loW com
putation manner of mapping texture onto an arbitrary siZed
object surface.

Consider noW the case Where the object is both displaced

aWay from, and rotated With respect to, the plane of vieW.
The mip map can still be used to map texture on to the object

surface. HoWever, because the object surface has rotated, the
interpolated texture values produced using the mip map may
produce aliasing or blurring artifacts in the image. To
remedy this problem, US. Pat. No. 5,222,205 proposes a
modi?ed data structure referred to as a “rip map.” Arip map

52 is illustrated in FIG. 3. Illustratively, the rip map 52
shoWn in FIG. 3 is for the R texture data. Therefore, a rip

map for the G and B data Would also be provided.

The rip map 52 has a full scale data array 61‘ including
one R value for each pixel of the object surface. Like the mip

map 51, the rip map 52 also includes plural subsampled
versions of the full scale data array 61‘. HoWever, the

subsampled arrays of the rip map 52 need not be sampled in
each direction U and V the same. For instance, data array 62‘

is 1/z subsampled only in the direction U. Data array 63‘ is ‘A
subsampled only in the direction U. Data array 64‘ is Vs

subsampled only in the direction U, and so on. Likewise,
data array 65‘ is 1/2 subsampled only in the direction V, data
array 66‘ is ‘A subsampled only in the direction V and data

array 67‘ is Vs subsampled only in the direction V. The rip
map contains other permutations of subsampling, such as

data array 75‘ Which is 1/2 subsampled in the direction U and

Vs subsampled in the direction V. TWo levels of subsampling

(du,dv) are therefore used to designate a speci?c data array.

The folloWing table summarizes the assignment of levels to
the subsampled data arrays:

TABLE 1

Label du dv u dir. sampl. v dir. sampl.

61‘ O O 1 1

62‘ 1 O 1/2 1

63‘ 2 O 1/4 1

64‘ 3 O 1/8 1

65‘ O 1 1 1/2

66‘ O 2 1 1/4

67‘ O 3 1 1/8

71‘ 1 1 1/2 1/2

72‘ 2 1 1/4 1/2

73‘ 3 1 1/8 1/2

74‘ 1 2 1/2 1/4

75‘ 1 3 1/2 1/8

81‘ 2 2 1/4 1/4

82‘ 3 2 1/8 1/4

83‘ 2 3 1/4 1/8

91‘ 3 3 1/8 1/8

The rip map 51 provides more choices in subsampled data
for use in the interpolation. This tends to reduce the afore

mentioned aliasing and blurring artifacts.

15

25

35

45

55

65

4
Desirably, RGB texture data is supplemented With alpha

data A to form RGBA data for each pixel. The A data may

indicate, for instance, the property of “translucence” or the
amount of incident light that can pass through the object. For

instance, suppose an object models a green lens Which

passes 80% of the light incident thereon. If such a lens is

placed in front of other objects in the background With
respect to the plane of vieW, then the occluded pixels of the
objects should have a blended color. In particular, the

occluded object pixels should have a color Which is 80% of

their original color and 20% of the color of the green lens.

Both mip maps and rip maps are useful in reducing the
amount of computation for mapping texture data onto an

object surface. HoWever, the mip map can only accommo
date three data values per pixel, namely, RGB. Alpha data
cannot be accommodated in the mip map shoWn in FIG. 2.

In addition, both the mip map and rip map are implemented
using 2-D virtual coordinate addresses. HoWever, if such
2-D addresses are used to organiZe the physical storage of

the texture data in the VRAMs/DRAMs of the frame buffer,

then much of the storage capacity of the VRAMs/DRAMs
tends to be Wasted. This is illustrated in FIG. 4. As shoWn in

FIG. 4, the tWo dimensions of the texture data rarely

conform to the dimensions of the memory array of the

VRAMs/DRAMs. For instance, the suppose texture data has
the same dimensions of a display frame, such as 900x1152.

TWo banks of four VRAMs/DRAMs each are used to store

the texture data in an interleaved fashion. Nevertheless, the

shaded areas of the VRAMs/DRAMs are Wasted. See US.

Pat. Nos. 5,321,425, 5,268,682, and 5,268,681.

It is therefore an object of the present invention to

overcome the disadvantages of the prior art.

SUMMARY OF THE INVENTION

This and other objects are achieved by the present inven

tion. The present invention is illustratively used in a com

puter system environment. Illustratively, the computer sys
tem includes a processor, main memory, disk memory and

data input device, such as a keyboard and mouse, all of
Which are connected to a bus. Also connected to the bus is

a graphics controller Which includes a draWing processor

and an address generator. The draWing processor renders

3-D objects and maps texture data onto the rendered objects.

The address generator, amongst other things, assists the
draWing processor in determining the addresses of texture

data Which may be stored in main memory, disk memory or

a frame buffer.

According to one embodiment, the texture data is orga

niZed into plural subsampled data arrays, e.g., a mip map or

a rip map. HoWever, the storage of the texture data in the

memory, e.g., the frame buffer, is not physically organiZed
according to the 2-D virtual address coordinates in texture

space. Rather, the storage of the texture data is organiZed
according to linear addresses. Simply stated, the texture data
arrays are stored in a continuous sequence of linear memory

addresses. The texture data of the data arrays is sequentially

stored in subsequences of the sequence of linear memory

addresses. The subsequences are assigned to respective
texture data according to the order of subsampling of the

data arrays.

For example, in the case of a mip map, each data array has

a different level of subsampling Which is the same in both

directions of the data array. One subsequence of addresses is

assigned to each data array in order of increasing level of
subsampling. That is, the data array Which is subsampled by
1 (level 0) is stored in the ?rst subsequence of addresses, the

5,963,220
5

data array Which subsampled 1/2 (level 1) in both directions
is assigned the second subsequence of addresses, the data
array Which is subsampled 1A (level 2) in both directions is
assigned the third subsequence of addresses, etc. In the case
of a rip map, the data arrays are each subsampled With a

different combination of levels of subsampling du and dv in
the directions U and V. The rip map data arrays are segre
gated into groups according to a ?rst one of the tWo levels

of subsampling, e.g., dv, such that each array in a particular
group has the same ?rst level of subsampling. For example,
all data arrays With dv=0 form a ?rst group, all data arrays

With dv=1 form a second group, etc. Each group has one

span for each possible coordinate value in the ?rst direction,
e.g., the direction V, in the domain of coordinate values of

texture data in the data arrays of the group. For instance,
suppose that the domain of coordinate values of the texture

data in group one, in the direction V, is 0,1,2 and 3. Then

group one has four spans, namely, one span for each value

0,1,2 and 3 in the domain of coordinate v in group one. Each

span is a sequence, including one subsequence of texture

data from each data array, Which subsequences of texture

data are arranged in order of the second level (e.g., du) of
subsampling of the data arrays. Each subsequence of data
includes the texture data of a respective array that has the

same coordinate in the ?rst direction (e.g., V) as the span,

arranged in order of increasing coordinate in the second

direction (e.g., U). For instance, in the case of the roW-span
for roW v=2, the roW-span includes one roW of data from

each data array, i.e., the data (2,0), (2,1), (2,2), . . .

According to another embodiment, an address generator
is provided for accessing the texture data of a given level of

subsampling of a mip map Which is stored at linear memory

addresses as described above. Illustratively, the address

generator evaluates the following:

TLAM) : Base + LO + GO

LO: 2ML’d-v+14

Where

Base is a base address in Which a ?rst texture data

corresponding to coordinates (u=0, v=0) in the ?rst array of
level d=0 are stored,

i is an integer index,

GO is a global offset,
LO is a local offset,

ML is the maximum level of subsampling,

d is the depth of subsampling of the data array to be

accessed, and
u,v are the 2-D virtual address coordinates of the texture

data to be accessed.

The address generator has adder circuitry for receiving a
base address Base, the global offset GO, u and 2ML_d-v. The
adder circuitry adds Base to GO to produce a ?rst sum. The

adder circuitry also adds u to 2ML_d~v to produce a second

sum representing the local offset LO. Furthermore, the adder
circuitry adds the ?rst and second sums to produce the linear

memory address of the texture data.

According to another embodiment, an address generator
is provided for accessing the texture data of a given level of

subsampling of a rip map Which is stored at linear memory

addresses as described above. Illustratively, the address

generator evaluates the following:

10

15

25

35

45

55

65

TLAW : Base+ G0

G0 = (2m+1 - 1)GV + GU

GU = GOU + 14

CV = GOV + v

GOU : i:MLidu+l

0 if du : 0

ML _

21 if dv # 0

GOV : j:MLidv+l

Where

Base is a base address in Which a ?rst texture data

corresponding to coordinates (u=0,v=0) in the ?rst array of

level (du=0,dv=0) are stored,
GO is a global offset,

GV is a total v offset,

GOV is a global v offset,

GU is a total u offset,

GOU is a global u offset,

ML is the maximum level of subsampling in both direc

tions u and v,

du, dv are the levels of subsampling of the data array to

be accessed,
u,v are the 2-D virtual address coordinates of the texture

data to be accessed, and

i and j are integer indexes.
The address generator has a ?rst adder stage for adding v to

the ?rst global offset GOV to produce a ?rst sum, and for

adding u to the second global offset GOU to produce a

second sum. The address generator also has a concatenator

circuit for concatenating the ?rst and second sums to pro

duce a concatenated sum. The ?rst sum forms a most

signi?cant fragment of a partial concatenated sum and the

second sum forms a least signi?cant fragment of the partial

concatenated sum. A second adder stage is provided for

adding the concatenated sum to Base to produce the linear

address.

According to yet another embodiment, a combined
address generator is provided for accessing the texture data
in either a mip map or a rip map. The address generator

according to this embodiment has a ?rst multiplexer stage,

receiving, as selectable inputs, the base address Base, the
global offset GO in a mip map, the ?rst global offset GOV

in a rip map, the second global offset GOU in a rip map,

2ML_d~v and v, and a selector control signal. The ?rst

multiplexer stage outputs, in response to the selector control

signal, as ?rst, second and third outputs, either Base, GO and

2ML_d-v, respectively, or v, GOV and GOU, respectively.
The address generator also has a ?rst adder stage for adding

the ?rst and second outputs of the ?rst multiplexer stage to
produce a ?rst sum and for adding u to the third output to

produce a second sum. The address generator also has a

concatenator circuit for concatenating the ?rst sum to the

second sum to produce a concatenated sum. A second

multiplexer stage is provided for receiving, as selectable
inputs, the ?rst sum, the concatenated sum, the second sum

and the base address Base, and the selector control signal.
The second multiplexer stage outputs, in response to the
selector control signal, as fourth and ?fth outputs, either the

?rst sum and the second sum, respectively, or the concat

5,963,220
7

enated sum and Base. The address generator furthermore has

a second adder stage for adding the fourth and ?fth outputs

of the second multiplexer stage to produce the linear

memory address.

In short, a linear address organiZation is provided for
physically storing texture address data in memory. Address
generators are also provided for accessing the stored texture

data. The present invention therefore provides an ef?cient

manner for storing texture data and for accessing the stored

texture data.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shoWs a conventional computer system.

FIG. 2 illustrates a conventional mip map.

FIG. 3 illustrates a conventional rip map.

FIG. 4 illustrates a conventional 2-D memory address

con?guration for physically storing data in memory.

FIG. 5 shoWs a computer system according to the present
invention.

FIG. 6 illustrates a linear memory address organiZation

for physically storing a mip map in memory according to an
embodiment of the present invention.

FIG. 7 illustrates a linear memory address organiZation

for physically storing a rip map in memory according to an
embodiment of the present invention.

FIG. 8 illustrates an address generator for generating

linear addresses for a mip map according to an embodiment

of the present invention.

FIG. 9 illustrates an address generator for generating

linear addresses for a rip map according to an embodiment

of the present invention.

FIG. 10 illustrates a combined mip map/rip map address

generator for generating linear addresses according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE

INVENTION

FIG. 5 shoWs a computer system according to an embodi

ment of the present invention. As before, the computer

system 100 has a processor 112, a main memory 114, a disk

memory 116 and an input device 118. Each of these devices

is connected to a bus 120. Also connected to the bus 120 is

a graphics controller 130. The graphics controller includes a

draWing processor 132 and an address generator 136. The

draWing processor can output data to the frame buffer 134

While the address generator can output address and chip

select information to the frame buffer (e.g., RAS, CAS and

chip select). The pixel data stored in the frame buffer is
displayed on the display screen of the display device 138.

The draWing processor 132 can output parameters

(described beloW) including 2-D virtual address coordinates
and subsampling level(s) of texture data to the address
generator 136. The draWing processor 132 can also output

control signals to the address generator 136. In response, the

address generator 136 outputs to the draWing processor 132
the linear addresses of the desired texture data in physical

memory, e.g., the main memory 114, the disk memory 116
or the frame buffer 134. The draWing processor 132 can then

use the linear addresses to access the texture data in the main

memory 114, disk memory 116 or frame buffer 134 (via the

address generator 136). Alternatively, the address generator
136 outputs the physical addresses directly to the main

memory 114 or disk memory 116 (via the system bus 120)
or to the frame buffer 134. Such data addressing may be

10

15

25

35

45

55

65

8
utiliZed by the draWing processor 132 in Writing the sub
sampled texture data into memory, or, more importantly, in

reading out the texture data for use in mapping texture onto

rendered objects.

FIG. 6 illustrates a linear addressing organiZation for

physically storing a texture data mip map in memory. For

purposes of illustration, it is presumed that the texture data

mip map is stored in the main memory 114 (FIG. 5),
although the invention also applies to the frame buffer 134

(FIG. 5) and the disk memory 116 (FIG. 5). Suppose the mip
map includes a full resolution (subsampling factor of 1)

level d=0 of subsampling 2-D data array With 8x8 texture

data for each of the colors/alpha R,G,B and A. As shoWn in

FIG. 6, the full resolution arrays are labeled 210 (R), 220

(G), 230 (B) and 240 Each array has data at coordinates

(u,v) Where u=0,1, . . . ,7 and v=0,1, . . . ,7. The R pixels are

labeled 210-(u,v); for example, the data (0,0) is labeled
210-(0,0), the data (0,1) is labeled 210-(0,1). LikeWise, the
data (u,v) in the G,B and A arrays are labeled 220-(u,v),
230-(u,v) and 240-(u,v). The mip map also has higher level
d=1,2 and 3 subsampled arrays for each of the arrays 210,
220 230 and 240. The level 1 subsampled (1/z subsampled)
R array has 4><4 pixels and is labeled 212. The level 2

subsampled (% subsampled) R array has 2><2 pixels and is
labeled 214. The level 3 subsampled (Vs subsampled) R
array has 1 pixel and is labeled 216. LikeWise, the G,B and
A arrays have level 1 subsampled (1/z subsampled) arrays
222, 232 and 242, level 2 subsampled (% subsampled) arrays
224, 234 and 244 and level 3 subsampled (Vs subsampled)
arrays 226, 236 and 246. As before, texture data in any of the

arrays 212, 214, 216, 222, 224, 226, 232, 234, 236, 242, 244
or 246 is referred to With a label Which includes the label of

the array and the (u,v) coordinates of the texture data. Thus,
the G texture data With coordinates (1,1) on level d=2 is

labeled 224-(1,1).

According to the linear storage organiZation, a base
memory address “Base” is assigned to each color/alpha. For

purposes of illustration, texture data is presumed to include

one byte per color/alpha and each memory location is

presumed to store one byte. (Note hoWever, that other
combinations of texture data precisions and memory capaci

ties can be easily accommodated.) For instance, BaseR=0 is
assigned to R, BaseG=85 is assigned to G, BaseB=170 is
assigned to B and Base A=255 is assigned to A. The texture

data for each color/alpha, e.g., R, is stored at sequential

addresses, beginning With Base R, in order of increasing level
d. Thus, the texture data of array 210 is stored at memory

addresses BaseR to BaseR+63. The texture data of array 212

is stored at memory addresses BaseR+64 to BaseR+79. The
texture data of array 214 is stored at memory addresses

BaseR+80 to BaseR+83. The texture data of array 216 is

stored at memory address BaseR+84. Furthermore, the tex
ture data of each array is stored at continuous sequential

memory addresses. For instance, consider the case that

roW-column ordering is used to store the data. The folloWing

table summariZes the assignment of memory addresses to

texture data of the arrays 210, 212, 214 and 216:

TABLE 2

label addr

210-(0,0) Base
210-(1,0) Base + 1

210-(2,0) Base + 2

210-(3,0) Base + 3

210-(4,0) Base + 4

5,963,220
9 10

TABLE 2-continued TABLE 2-continued

label addr label addr

210—(5,0) Base + 5 5 214—(O,1) Base + 82

210—(6,0) Base + 6 214—(1,1) Base + 83

210—(7,0) Base + 7 216—(0,0) Base + 84

210—(O,1) Base + 8

210—(1,1) Base + 9

210-(2,1) Base + 10 A like memory address assignment is used for the arrays

210-(3J) Base + 11 10 220, 222, 224, 226, 230, 232, 234, 236, 240, 242, 244 and
210-(4,1) Base + 12 246
210-(5,1) Base + 13 ' _

21mm) Bage + 14 Note that in the example above, each memory array has

210-(7,1) Base + 15 dimensions Which are a power of 2. Therefore, the number

2lo-(oi) Base + 16 of data in an array of level d is 4ML_d Where ML is the

52:: i i; 15 “maximum level” of the mip map (in this case, 3). To
21O_(3:2) Bdse + 19 determine the linear address of texture data With coordinates

210-(4,2) Base + 20 (u,v) in an array of level d, a global offset “GO” and a local

Ease + offset “LO” are added to the base address Base. Thus:
— , ase +

210-(7,2) Base + 23 20
210- 0,3 B 24

210E133 B22: : 25 TLA<M)=BaSe+LO+GO
210-(2,3) Base + 26

210-(3,3) Base + 27 GO represents the addresses containing the texture data of

210-(43) Base + 28 the loWer level arrays (than the array of level d containing
210-(5 3) Base + 29 -
21O_(6’3) Base + 30 25 the texture data to be accessed). GO may be determined by:

210-(7,3) Base + 31

210-(0,4) Base + 32 ML

210-(1,4) Base + 33 4‘- if d ¢ 0

210-(2,4) Base + 34 G0 = [:Mbd?

210—(3,4) Base + 35 4 _

210-(4,4) Base + 36 30 0 1f d _ O

210—(5,4) Base + 37

210-(6,4) Base + 38
210-(7,4) Base + 39 Where

21O'(O>5) Base + 40 i is an integer index.

210415) Base ’' 41 L0 t th t t d d t ' th th d t
210%”) Base + 42 35 represen s e ex ure a a 1n e same array as e a a

210435) Bdse +43 to be retrieved Which precedes the data to be retrieved.

210-(4,5) Base + 44 Assuming roW-column ordering, LO may be determined by:
210—(5,5) Base + 45

210—(6,5) Base + 46

210—(7,5) Base + 47 _ MLii

210-(0,6) Base + 48 40 L04 W”

210- 1,6 B + 49 _

210E263 1322+ 50 Where v and u are the coordinates (u,v) of the data to be
210-(3,6) Base + 51 accessed and the operation sign “.” indicates a multiplication

210-95) Base + 52 operation betWeen 2ML_d and v.

28:53:; 52:: i 22 FIG. 7 illustrates the physical storage of a rip map
210416) Bdse + 55 45 according to a linear addressing organiZation. For sake of

10- 0,7 Base + 56 revi , on e a a is iscusse in e ai . oWever, e 2() b ty lythRdt d d dtlH th
210-03) Base +57 principles are easily extendible to the G, B and A data.
210—(2,7) Base + 58 - - ~
210 Consider a rip map for the R data. Each array of the rip map

'(3’7) BaSHSg h d'ff t 11' f1 1 r b 1' d 01
210743) Bage + 60 as a 1 eren permu a 1on o eve s o su samp 1ng u, v

210-(5,7) Base + 61 50 in the directions of U and V. Array 250 is subsampled at

'> eves u=, v= an as x exure aa. ra is 210(67) Base/+62 1 1d 0d 0 dh 88t t dt Ary251

52:: i 22 subsampled at levels du=1, dv=0 and has 4><8 texture data.
212411,) Bdse + 65 Array 252 is subsampled at levels du=2, dv=0 and has 2x8
212-(2,0) Base + 66 texture data. Array 253 is subsampled at levels du=3, dv=0

212431)) Base + 67 55 and has 1x8 texture data. Array 254 is subsampled at levels

52:: i 22 du=0, dv=1 and has 8x4 texture data. Array 255 is sub
212_(2:1) Bdse +70 sampled at levels du=0, dv=2 and has 2x8 texture data.

212-(3,1) Base + 71 Array 256 is subsampled at levels du=0, dv=3 and has 8x1
' > ex ure a a. ray 1s su samp e a eve s u= , v= 212(02) Base/+72 t t dt Ar 260 b ld tl ld 1d 1

2120;) Base + 73 60 and has 4><4 texture data. Arra 261 is subsam led at levels
212-(2,2) Base + 74 y p _
2126;) Base +75 du=2, dv=1 and has 2><4 texture data. Array 262 is sub

212-(0,3) Base +76 sampled at levels du=3, dv=1 and has 1><4 texture data.

21203) Base + 77 Array 263 is subsampled at levels du=1, dv=2 and has 4><2

52:: i Z: texture data. Array 264 is subsampled at levels du=1, dv=3
214_(O:O) Bdse + 80 65 and has 4><1 texture data. Array 270 is subsampled at levels

214-(1,0) Base +81 du=2, dv=2 and has 2><2 texture data. Array 271 is sub

sampled at levels du=3, dv=2 and has 1><2 texture data.

5,963,220
11

Array 272 is subsampled at levels du=2, dv=3 and has 2><1
texture data. Array 280 is subsampled at levels du=3, dv=3
and has 1><1 texture data. As in FIG. 6, individual texture

data are referred to by their array and their respective

coordinates (u,v). Thus, the pixel (u=0,v=1) in the array
subsampled at du=3, dv=2 is referred to as 271-(0,1).

As shown in FIG. 7, a continuous sequence of linear

addresses is assigned to the arrays as folloWs. First, one of

the tWo levels du or dv is chosen and the arrays themselves

are segregated into groups, Wherein each array in a given

group has the same value for the chosen level. Suppose dv

is selected. Four groups 291, 292, 293 and 294 are formed.

The ?rst group 291 (for dv=0) includes the arrays 250, 251,
252 and 253. The second group 292 (for dv=1) includes the

arrays 254, 260, 261 and 262. The third group 293 (for dv=2)
includes the arrays 255, 263, 270 and 271. The fourth group

(for dv=3) includes the arrays 256, 264, 272 and 280. One
continuous subsequence of addresses is assigned to each
group of arrays such that the four subsequences form the

continuous sequence of addresses assigned to the rip map.
The ?rst group is illustratively assigned the subsequence of
addresses Base to Base+119. The second group is assigned

the subsequence of addresses Base+120 to Base+179. The

third group is assigned the subsequence of addresses Base+
180 to Base+209. The fourth group is assigned the subse

quence of addresses Base+210 to Base+224.

At least one span of texture data is de?ned in each group.

One span is de?ned for each value in the domain of the

coordinate v (that is, the coordinate in the same direction V

as the level of subsampling chosen to use as a basis for

segregating the data arrays into groups, namely dv) for
texture data in that group. That is, eight spans are de?ned in

the group 291, namely, one for each coordinate value v=0,
v=1, v=2, v=3, v=4, v=5 v=6 and v=7. Four spans are
de?ned in group 292, namely, one for each coordinate value

v=0, v=1, v=2 and v=3. TWo spans are de?ned in group 293,

namely, one for v=0 and one for v=1. One span is de?ned in

group 294 for v=0.

Each span is de?ned as a sequence of texture data,

including one subsequence of texture data from each data

array in the respective group. The subsequences of texture

data are arranged in order of increasing level du (i.e., the
other of the tWo levels of subsampling du,dv not chosen to

use as a basis for segregating the data values into groups).

Each subsequence of texture data includes all of the texture

data in the respective data array having the same value for

coordinate v as the corresponding span. For instance, in the

?rst group, the span for roW v=3 includes the data 250-(0,3),

250-(1,3), . . . , 250-(7,3), 251-(0,3), 251-(1,3), . . . ,

251-(3,3), 252-(0,3), 252-(1,3), 253-(0,3). (Since, in this
illustration, each span includes the data of a respective roW

of a group, the spans are referred to as “roW-spans” beloW.

Note that “column-spans” are also possible.) The addresses

of each subsequence are assigned Within each group to the

sequences of texture data of the roW-spans in roW-span order

from roW v=0 to the maximum roW number in the respective

group. The sequential assignment of linear address to the rip
map is summariZed beloW:

TABLE 3

Data Address

250-(0,0) Base
250-(1,0) Base + 1

250-(2,0) Base + 2

250-(3,0) Base + 3

15

25

35

55

65

12

TABLE 3-continued

Data Address

250-(4,0) Base + 4

250-(5,0) Base + 5

250-(6,0) Base + 6

250-(7,0) Base + 7

251-(0,0) Base + 8

251-(1,0) Base + 9

251-(2,0) Base + 10

251-(3,0) Base + 11

252-(0,0) Base + 12

252-(1,0) Base + 13

253-(0,0) Base + 14

250-(O,1) Base + 15

250-(1,1) Base + 16

250-(2,1) Base + 17

250-(3,1) Base + 18

250-(4,1) Base + 19

250-(5,1) Base + 20

250-(6,1) Base + 21

250-(7,1) Base + 22

251-(O,1) Base + 23

251-(1,1) Base + 24

251-(2,1) Base + 25

251-(3,1) Base + 26

252-(0,1) Base + 27

252-(1,1) Base + 28

253-(O,1) Base + 29

250-(2,0) Base + 30

250-(2,1) Base + 31

250-(2,2) Base + 32

250-(3,2) Base + 33

250-(4,2) Base + 34

250-(5,2) Base + 35

250-(6,2) Base + 36

250-(7,2) Base + 37

251-(O,2) Base + 38

250-(1,2) Base + 39

251-(2,2) Base + 40

251-(3,2) Base + 41

252-(0,2) Base + 42

252-(1,2) Base + 43

253-(O,2) Base + 44

250-(O,3) Base + 45

250-(1,3) Base + 46

250-(2,3) Base + 47

250-(3,3) Base + 48

250-(4,3) Base + 49

250-(5,3) Base + 50

250-(6,3) Base + 51

250-(7,3) Base + 52

251-(1,0) Base + 53

251-(1,3) Base + 54

251-(2,3) Base + 55

251-(3,3) Base + 56

252-(0,3) Base + 57

252-(1,3) Base + 58

253-(O,3) Base + 59

250-(O,4) Base + 60

250-(1,4) Base + 61

250-(2,4) Base + 62

250-(3,4) Base + 63

250-(4,4) Base + 64

250-(5,4) Base + 65

250-(6,4) Base + 66

250-(7,4) Base + 67

251-(O,4) Base + 68

251-(1,4) Base + 69

251-(2,4) Base + 70

251-(3,4) Base + 71

252-(0,4) Base + 72

252-(1,4) Base + 73

253-(O,4) Base + 74

250-(O,5) Base + 75

250-(1,5) Base + 76

250-(2,5) Base + 77

250-(3,5) Base + 78

250-(4,5) Base + 79

250-(5,5) Base + 80

5,963,220
13 14

TABLE 3-continued TABLE 3-continued

Data Address Data Address

250-(6,5) Base + 81 5 260-(0,2) Base + 158

250-(7,5) Base + 82 260-(1,2) Base + 159

251-(0,5) Base + 83 260-(2,2) Base + 160

251-(1,5) Base + 84 260-(3,2) Base + 161

251-(2,5) Base + 85 261-(0,2) Base + 162

251-(3,5) Base + 86 261-(1,2) Base + 163

252-(0,5) Base + 87 10 262-(0,2) Base + 164

252-(1,5) Base + 88 254-(0,3) Base + 165

253-(5,0) Base + 89 254-(1,3) Base + 166

250-(0,6) Base + 90 254-(2,3) Base + 167

250-(1,6) Base + 91 254-(3,3) Base + 168

250-(2,6) Base + 92 254-(4,3) Base + 169

250-(3,6) Base + 93 15 254-(5,3) Base + 170

250-(4,6) Base + 94 254-(6,3) Base + 171

250-(5,6) Base + 95 254-(7,3) Base + 172

250-(6,6) Base + 96 260-(0,3) Base + 173

250-(7,6) Base + 97 260-(1,3) Base + 174

251-(0,6) Base + 98 260-(2,3) Base + 175

251-(1,6) Base + 99 2O 260-(3,3) Base + 176

251-(2,6) Base + 100 261-(0,3) Base + 177

251-(3,6) Base + 101 261-(1,3) Base + 178

252-(0,6) Base + 102 262-(0,3) Base + 179

252-(1,6) Base + 103 255-(0,0) Base + 180

253-(0,6) Base + 104 255-(1,0) Base + 181

250-(0,7) Base + 105 255-(2,0) Base + 182

250-(1,7) Base + 106 25 255-(3,0) Base + 183

250-(2,7) Base + 107 255-(4,0) Base + 184

250-(3,7) Base + 108 255-(5,0) Base + 185

250-(4,7) Base + 109 255-(6,0) Base + 186

250-(5,7) Base + 110 255-(7,0) Base + 187

250-(6,7) Base + 111 263-(0,0) Base + 188

250-(7,7) Base + 112 30 263-(1,0) Base + 189

251-(0,7) Base + 113 263-(2,0) Base + 190

251-(1,7) Base + 114 263-(3,0) Base + 191

251-(2,7) Base + 115 270-(0,0) Base + 192

251-(3,7) Base + 116 270-(1,0) Base + 193

252-(0,7) Base + 117 271-(0,0) Base + 194

252-(1,7) Base + 118 35 255-(1,0) Base + 195

253-(0,7) Base + 119 255-(1,1) Base + 196

254-(0,0) Base + 120 255-(2,1) Base + 197

254-(1,0) Base + 121 255-(3,1) Base + 198

254-(2,0) Base + 122 255-(4,1) Base + 199

254-(3,0) Base + 123 255-(5,1) Base + 200

254-(4,0) Base + 124 40 255-(6,1) Base + 201

254-(5,0) Base + 125 255-(7,1) Base + 202

254-(6,0) Base + 126 263-(0,1) Base + 203

254-(1,0) Base + 127 263-(1,1) Base + 204

260-(0,0) Base + 128 263-(2,1) Base + 205

260-(1,0) Base + 129 263-(3,1) Base + 206

260-(2,0) Base + 130 270-(0,1) Base + 207

260-(3,0) Base + 131 45 270-(1,1) Base + 208

261-(0,0) Base + 132 271-(0,1) Base + 209

261-(1,0) Base + 133 256-(0,0) Base + 210

262-(0,0) Base + 134 256-(1,0) Base + 211

254-(0,1) Base + 135 256-(2,0) Base + 212

254-(1,1) Base + 136 256-(3,0) Base + 213

254-(2,1) Base + 137 50 256-(4,0) Base + 214

254-(3,1) Base + 138 256-(5,0) Base + 215

254-(4,1) Base + 139 256-(6,0) Base + 216

254-(5,1) Base + 140 256-(7,0) Base + 217

254-(6,1) Base + 141 264-(0,0) Base + 218

254-(7,1) Base + 142 264-(1,0) Base + 219

260-(0,1) Base + 143 55 264-(2,0) Base + 220

260-(1,1) Base + 144 264-(3,0) Base + 221

260-(2,1) Base + 145 272-(0,0) Base + 222

260-(3,1) Base + 146 272-(1,0) Base + 223

261-(0,1) Base + 147 2s0-(0,0) Base + 224

261-(1,1) Base + 148

262-(0,1) Base + 149 60 _ _ _ _

254-(0,2) Base + 150 Suppose it is desired to access a texture data in an array

254-03) Base + 151 of subsampling levels du,dv With coordinates u,v. To deter
254'(2>2) Base + 152 mine the linear address for this texture data, the memory
254-(3,2) Base + 153 dd - d b th d- 1 t _
254_(4,2) Base + 154 a resses occuple y e prece ll'lg comp e 6 row spans

254672) Bdse + 155 must be skipped. Furthermore, the memory addresses occu

254_(6,2) Base + 156 65 pied by the partial roW-span of texture data, on the same roW

254-(7,2) Base + 157 v of, and Which precede, the texture data to be accessed,

must be skipped. The offset Which skips over the memory

5,963,220
15

addresses containing the complete preceding roW-spans may
be determined from the roW-span length “RSL” and a total

v offset “GV”. RSL is given by:

Where

ML is the maximum level for du and dv.

GV is given by GOV+v Where GOV is the global v offset

that accounts for complete roW-spans of entire groups of

arrays that are skipped. Here, v accounts for the skipped

complete roW-spans Within the same group that contains the

texture data to be accessed. GOV is given by:

GOV :

Where

i and j are integer indexes.

The offset for the partial precedent roW-span to be skipped
is given by GU=GOU+u Where “GU” is the total u offset and

“GOU” is the global u offset. GOU is given by:

GOU :

GOU is therefore the sum of the Widths of the roWs of the

skipped arrays in the same group as the accessed texture

data. Thus, the linear address of the texture data in the array

subsampled at levels du,dv With coordinates (u,v) is given
by:

FIG. 8 shoWs an address generator 300 for generating

linear addresses for a mip map that is physically stored in

memory as described above. The address generator 300 may

form part or all of the address generator 134 shoWn in FIG.

5. Preliminarily, the draWing processor 132 (FIG. 5) deter
mines the parameters “Base,” “GO,” “u,” and “2ML_d~v”
using the formulas described above. As shoWn, the address
generator 300 is provided With addition circuitry 310 Which
may be realiZed With a tWo stage adder tree. Speci?cally, the

addition circuitry 310 includes a ?rst adder circuit 312

Which receives the base address “Base” and global offset

“GO” from the draWing processor 132 (FIG. 5). The adder
312 produces the sum Base+GO. Asecond adder circuit 314

is provided Which operates in parallel to the ?rst adder
circuit 312. The second adder circuit 314 receives the

parameters “u” and “2ML_d~v” from the draWing processor
132 (FIG. 5). The second adder circuit 314 produces the sum
u+2ML_d~v. These tWo sums produces by the ?rst and second

adder circuits 312, 314 are inputted to a third adder circuit

316. The third adder circuit 316 adds these tWo sums

together to produce the linear address TLA(M)=Base+GO+
u+2ML_d~v. The linear address thus produced may be

returned to the draWing processor 132 (FIG. 5) or outputted
directly to memory, e.g., the frame buffer 136 (FIG. 5).

FIG. 9 shoWs an alternative address generator 320 for

generating linear addresses for accessing texture data in the

10

15

45

55

16
rip map shoWn in FIG. 7. The address generator 320 includes

a ?rst adder stage 330, a concatenator circuit 340 and a

second adder stage 350. Preliminarily, the draWing processor

132 (FIG. 5) determines the parameters “Base,” “V,”
“GOV,” “u,” and “GOU” using the formulas described
above. The ?rst adder stage 330 illustratively includes ?rst
and second adder circuits 332, 334 Which operate in parallel.
The ?rst adder circuit 332 receives the parameters v and

GOV from the draWing processor 132 (FIG. 5). The ?rst
adder circuit 332 adds these parameters together and pro
duces a ?rst sum v+GOV. The second adder circuit 334

receives the parameters u and GOU from the draWing

processor 132 (FIG. 5). The second adder circuit 334 adds
the parameters together and produces a second sum u+GOU.

The concatenator circuit 340 receives the ?rst and second

sums. The concatenator circuit 340 effects the multiplication

of the ?rst sum by RSL and addition of the product to the

second sum. As noted above, RSL is alWays 2ML+1~L. The
multiplication can be easily and quickly achieved in the
concatenator 340 by left shifting the ?rst sum ML+1 bits and

then subtracting the ?rst sum therefrom. HoWever, the
subtraction can be omitted due to the cost of hardWare

implementation. The result is that only a small amount of

memory (2ML+2—1) is Wasted for storing the rip map in
memory. The addition can thus be formed by concatenating
the left shifted ?rst sum With the second sum. The left shifted

?rst sum Would thus form the ML+1 most signi?cant bits

(most signi?cant fragment) and the second sum Would form
the ML least signi?cant bits of the partial concatenated sum

(least signi?cant fragment).
The second adder stage 350 is illustratively implemented

With an adder circuit 342. The adder circuit 342 receives the

concatenated sum outputted by the concatenator circuit 340

and the parameter “Base” from the draWing processor 132
(FIG. 5). The adder circuit 342 adds these tWo values

together to produce the linear address TLA(R)=Base+RSL~
(GOV+v)+GOU+u. The linear address TLA(R) thus pro
duced may be outputted to the draWing processor 132 (FIG.
5) or directly to memory, e.g., the frame buffer 134 (FIG. 5).

FIG. 10 illustrates another address generator 400 Which

can generate linear addresses for either the mip map physi
cally stored in memory as illustrated in FIG. 5 or the rip map

physically stored in memory as illustrated in FIG. 6.

Preliminarily, the draWing processor 132 (FIG. 5) deter
mines the parameters “Base,” “GO,” “u,” and “2ML_d~v” or

the parameters “Base,” “v,” “GOV,” “u,” and “GOU.”
Furthermore, the draWing processor 132 (FIG. 5) illustra
tively also generates a selector control signal S.
The address generator 400 has a ?rst multiplexer stage

410, a ?rst adder stage 420, a concatenator circuit 430, a

second multiplexer stage 440 and a second adder stage 450.

The ?rst multiplexer stage is illustratively implemented With
three multiplexer circuits 412, 414, and 416. The ?rst
multiplexer circuit 412 receives from the draWing processor

132 (FIG. 5), as selectable inputs, the parameters Base and
v. The second multiplexer circuit 414 receives from the

draWing processor 132 (FIG. 5), as selectable inputs, the
parameters GO and GOV. The third multiplexer circuit 416

receives from the draWing processor 132 (FIG. 5), as select
able inputs, the parameters 2ML_d~v and GOU. Furthermore,
the ?rst, second and third multiplexer circuits 412, 414 and
416 receive the selector control signal S from the draWing

processor 132 (FIG. 5). In response to the selector control
signal S, the multiplexer circuits 412, 414 and 416 select, as
?rst second and third outputs, either Base, GO and 2ML_d~v,
respectively, or v, GOV and GOU respectively. The draWing

processor 32 (FIG. 5) generates an appropriate signal S for

5,963,220
17

selecting Base, GO and 2ML_d~v for mip map linear address
calculation and v, GOV and GOU for rip map linear address
calculation.

The adder stage 420 illustratively includes tWo adder

circuits 422 and 424. The adder circuit 422 receives the ?rst

and second outputs of the ?rst multiplexer stage 410 and
adds them together to produce a ?rst sum. The adder circuit

424 receives the third output and the parameter u (from the
draWing processor 132 of FIG. 5) and adds the tWo together
to produce a second sum.

The concatenator 430 receives the second sum and the

?rst sum and concatenates them together in a similar fashion

as the concatenator 340 (FIG. 9). The concatenator 430
produces a concatenated sum from the ?rst and second sums.

The second multiplexer stage 440 is illustratively imple
mented With tWo multiplexer circuits 442 and 444. The

multiplexer 442 receives, as selectable inputs, the ?rst sum

and the concatenated sum. The multiplexer 444 receives, as

selectable inputs, the second sum and the parameter Base

(from the draWing processor 132 of FIG. 5). The multiplex
ers 442 and 444 also both receive the signal S from the

draWing processor 132 (FIG. 5) as a selector control input.
In response to the signal S, the multiplexers 442 and 444,
select as fourth and ?fth outputs, either the ?rst sum and the

second sum, respectively, or the concatenated sum and Base,

respectively. The draWing processor 132 (FIG. 5) generates
an appropriate signal S for selecting the ?rst and second
sums for mip map address calculation and for selecting the

concatenated sum and Base for rip map address calculation.

The second adder stage 450 is illustratively implemented
using an adder circuit 452. The adder circuit 452 receives the

fourth and ?fth outputs selected by the multiplexer stage
440. The adder circuit adds these tWo outputs together to

produce the linear address TLA.
In short, a linear address organiZation for physically

storing mip maps and rip maps in memory is disclosed. The
subsampled data arrays of the mip maps and rip maps are
sequentially stored in continuous subsequences of a con

tinuous sequence of memory addresses. The subsequences

of addresses are assigned in order of level of subsampling of

the data arrays Which make up the mip map or rip map. In

the case of a mip map, the subsequences are assigned to the

data arrays in order of increasing level of subsampling. In
the case of rip maps, the data arrays are segregated into

groups according to a ?rst one of the tWo subsampling

directions, such that each array in a particular group has the
same level of subsampling in the ?rst direction. Subse

quences are assigned to each group of data arrays. The

addresses of the subsequences are assigned Within each

group on a span by span basis Where a span includes the

texture data in a particular direction of each data array in

order of increasing level in the second one of the tWo

subsampling directions. Address generators are also pro

vided for assisting in generating linear addresses to texture

data With speci?c coordinates (u,v) in arrays having particu
lar levels of subsampling.

Finally, the above-discussion is intended to be merely
illustrative of the invention. Those having ordinary skill in
the art may devise numerous alternative embodiments With

out departing from the spirit and scope of the folloWing
claims.

The invention claimed is:

1. A method for storing texture data in a memory com

prising:
organiZing said texture data into plural arrays of data,

including a ?rst data array, containing plural texture

data values at a maximum resolution, and other data

10

15

25

35

45

55

65

18
arrays, each containing a different level of subsampling

of said data values of said ?rst data array, and

storing said texture data of said plural arrays of data in

continuous, subsequences of a continuous sequence of

linear memory addresses, such that a ?rst level and a

next level of subsampling being retrievable utiliZing a

same base address, said subsequences being assigned to

said texture data of said arrays in order of level of

subsampling.
2. The method of claim 1 Wherein each data array is a

tWo-dimensional array of textured data.

3. The method of claim 2 Wherein said data arrays form

a mip map With ML+1 data arrays, Where ML is an integer

21, wherein each data array is subsampled With the same

level of subsampling in each direction of said array, and

Wherein each of said subsequences of linear addresses is

assigned to a respective one of said data arrays in order of

increasing level of subsampling.
4. The method of claim 2 Wherein said data arrays form

a rip map With (ML+1)2 data arrays, Where ML is an integer

21, each of said data arrays being subsampled at a different

combination of ?rst and second levels of subsamplings in

?rst and second directions of said arrays, respectively,

Wherein said data arrays are divided into groups such that

each data array of each one of said groups is subsampled at

the same ?rst level of subsampling, in said ?rst direction,

Wherein each group has at least one span, including one

span for each different coordinate value, in said ?rst

direction, of a domain of texture data in said group,

Wherein each span comprises one subsequence of tex

ture data from each data array in said group, arranged

in order of increasing second level of subsampling,

Wherein each of said one subsequences of texture data

comprises texture data from a corresponding array,

With the same coordinate in said ?rst direction as said

span, said texture data being arranged in said one

subsequence in order of coordinate value in said second

direction,
Wherein each of said subsequences is assigned to said

spans in order of increasing second level of subsam

pling and order of increasing coordinate in said second

direction.

5. The method of claim 3 Wherein said texture data of an

array With a particular level d of subsampling With tWo

dimensional coordinate address (u,v) is stored at memory

address TLAW), Where

TLAM) : Base + LO + GO

ML

2 4", if d i 0
G0 : i:MLid+l

0, if d = 0

Where Base is a base address in Which a ?rst texture data

corresponding to coordinates (u=0,v=0) in said ?rst array of

level d=0 are stored, and i is an integer index.

6. The method of claim 4 Wherein said texture data of an

array With a particular level (du,dv) of subsampling With
tWo-dimensional coordinate address (u,v) is stored at

memory address TLA(R), Where

5,963,220
19

TLAW : Base+ G0

CV = GOV + v

GOU : i:MLidu+l

0 if du : 0

ML _

21 if dv # 0

GOV : j:MLidv+l

Where Base is a base address in Which a ?rst texture data

corresponding to coordinates (u=0, v=0) in said ?rst array of

level (du=0,dv=0) are stored, and
i an j are integer indexes.

7. An apparatus for calculating a linear memory address

of a texture data having coordinates (u,v) in a particular level

d of subsampling of a mip map, Wherein said mip map
includes ML+1 arrays of texture data, each With a different

level of subsampling 0,1, . . . ,ML, comprising:

adder circuitry for receiving a base address Base, a global

offset GO, u and 2ML_d*v, for adding Base to GO to

produce a ?rst sum, for adding u to 2ML_d*v to produce

a second sum, and for adding said ?rst and second sums

to produce said linear memory address of said texture

data

wherein said texture data of each data array are stored in

a continuous subsequence of a continuous sequence of

linear memory addresses, beginning With address Base,
said subsequences being assigned to each data array in
order of increasing level d of subsampling, such that a

?rst level and a next level of subsampling being retriev

able utiliZing said base address Base.
8. The apparatus of claim 7 Wherein said global offset GO

is given by:

GO:

Where i is an integer index.

9. An apparatus for calculating a linear memory address

of a texture data having 2-D virtual address coordinates (u,v)

in a particular level (du,dv) of subsampling of a rip map,
Wherein said rip map includes (ML+1)2 levels of texture
data, With different combinations of ?rst and second levels

of subsampling (du,dv) in directions of said coordinates u

and v, respectively, (0,0), (0,1), . . . , (0,ML), (1,0), (1,1), . . . ,

(1,ML), (ML,ML), comprising:
a ?rst adder stage for adding v to a ?rst global offset GOV

to produce a ?rst sum, and for adding u to a second

global offset GOU to produce a second sum,

a concatenator circuit, for concatenating said ?rst and

second sums to produce a concatenated sum, said ?rst

sum forming a most signi?cant fragment of said con

catenated sum and said second sum forming a least

signi?cant fragment of said concatenated sum, and

a second adder stage for adding said concatenated sum to

a base address Base to produce said linear address,

10

15

25

35

45

65

20
Wherein said data arrays are divided into groups such that

each data array of each one of said groups is sub

sampled at the same ?rst level of subsampling, Wherein
each group has at least one span, including one span for

each different coordinate value, in a ?rst direction, of a
domain of said texture data in said group, Wherein each

span comprises one subsequence of texture data from
each data array in said group, arranged in order of
increasing second level of subsampling, Wherein each
of said one subsequences of texture data comprises

texture data from a corresponding array, With the same

coordinate value in a second direction as said span, said

texture data being arranged in said one subsequence of
texture data in order of coordinate in said second

direction, Wherein each of plural continuous subse
quences of a continuous subsequence of linear

addresses is assigned to said spans in order of increas

ing second level of subsampling and order of increasing
coordinate value in said second direction, such that a

?rst level and a next level of subsampling being retriev

able utiliZing the same base address.

10. The apparatus of claim 9 Wherein GOV and GOU are

given by:

ML I

GOU Z 2‘ if a” i 0
i:MLidu+l

0 if du : 0

ML _

21 if dv # 0

GOV : j:MLidv+l

0 if dv : 0

Where i and i are integer indexes.

11. A method for storing texture data in a memory

comprising:
organiZing said texture data into plural arrays of data,

including a ?rst data array, containing plural texture
data values at a maximum resolution, and other data

arrays, each containing a different level of subsampling
of said data values of said ?rst data array for a ?rst

portion of data arrays and a second portion of data

arrays, and

storing said texture data of said plural arrays of data in

continuous, subsequences of a continuous sequence of

linear memory addresses, said subsequences being
assigned to said texture data of said plural arrays of data

in order of level of subsampling,

Wherein said ?rst portion of data arrays form a mip map

With ML+1 data arrays, Where ML is an integer 21,

wherein each of said ?rst portion of data arrays is

subsampled With a ?rst level of subsampling in each

direction of said array, and Wherein each of said sub

sequences of linear addresses is assigned to a respective

one of said ?rst portion of data arrays in order of

increasing level of subsampling,

Wherein said second portion of data arrays form a rip map

With (ML+1)2 data arrays, Where ML is an integer 21,
each of said second portion of data arrays being sub
sampled at a different combination of second and third

levels of subsamplings in ?rst and second directions of

said arrays, respectively, Wherein said second portion
of data arrays are divided into groups such that each

data array of each one of said groups is subsampled at

the same second level of subsampling, in said ?rst

direction,

5,963,220
21 22

wherein each group has at least one span, including one 13. The method of claim 11 Wherein said texture data of

span for each different coord1nate value, in said ?rst an array of Said Second portion of data arrays With a
direction, of a domain of teXture data in said group,
Wherein each span comprises one subsequence of teX
ture data from each data array in said group, arranged
in order of increasing third level of subsampling,
Wherein each of said one subsequences of teXture data

comprises teXture data from a corresponding array, TlA(R)=Base+GO
With the same coordinate in said ?rst direction as said

span, said teXture data being arranged in said one

particular level (du,dv) of subsampling With tWo

dimensional coordinate address (u,v) is stored at memory

address TLA(R), Where

subsequence in order of coordinate value in said second GU = GOU + u

direction,
Wherein each of said subsequences is assigned to said at GV : GOV + v

least one span in order of increasing third level of ML _

subsampling and order of increasing coordinate in said 15 GOU : Z 2‘ if du # 0
second direction. IIMbdHH

12. The method of claim 11 Wherein said texture data of 0 if d” = 0

an array of said ?rst portion of data arrays With a particular

level d of subsampling With tWo-dimensional coordinate
. 21' if dv ¢ 0

address (u,v) is stored at memory address TLA(M), where 20 GOV = jIMLidM

ML

TLAM) : Base + LO + GO

LO=2ML’d-v+u . . .

Where Base is a base address in WhlCh a ?rst teXture data

ii 4‘. if d i 0 25 corresponding to coordinates (u=0, v=0) in said ?rst array of

G0 = [:MLid+1 , level (du=0,dv=0) are stored, and i an j are integer indexes.

0’ if d = 0 14. The method of claim 1, Wherein said ?rst portion and

said second portion of said data arrays are stored, such that

Where Base is a base address in Which a ?rst teXture data 30 a ?rst level and a next level of subsampling may be retrieved

corresponding to coordinates (u=0,v=0) in said ?rst array of utilizing Same base addre55~

level d=0 are stored, and

i is an integer index. * * * * *

