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[57] ABSTRACT 

A linear address organization for physically storing mip 
maps and rip maps in memory is disclosed. The subsampled 
data arrays of the mip maps and rip maps are sequentially 
stored in continuous subsequences of a continuous sequence 

of memory addresses. The subsequences of addresses are 

assigned in order of level of subsampling of the data arrays 
Which make up the mip map or rip map. In the case of a mip 

map, the subsequences are assigned to the data arrays in 

order of increasing level of subsampling. In the case of rip 

maps, the data arrays are segregated into groups according 

to a ?rst one of the tWo subsampling directions, such that 

each array in a particular group has the same level of 

subsampling in the ?rst direction. Subsequences are 
assigned to each group of data arrays. The addresses of the 

subsequences are assigned Within each group on a span by 

span basis Where a span includes the texture data in a 

particular direction of each data array in order of increasing 
level in the second one of the tWo subsampling directions. 

Address generators are also disclosed for assisting in gen 

erating linear addresses to texture data With speci?c coor 

dinates (u,v) in arrays having particular levels of subsam 
pling. 

14 Claims, 6 Drawing Sheets 
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FIG. 3 
(PRIOR ART) 
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MIP MAP/RIP MAP TEXTURE LINEAR 

ADDRESSING MEMORY ORGANIZATION 

AND ADDRESS GENERATOR 

RELATED APPLICATIONS 

The following patents and patent applications are com 
monly assigned to the assignee of this application and 
contain subject matter related to this application: 

1. patent application Ser. No. 08/598,522, entitled, “Vir 
tual Coordinate To Linear Physical Memory Address Con 
verter For Computer Graphics System,” ?led for Erh-Chia 
Wang, Wei-Kuo Chia, and Chun-Yang Cheng on even date 

hereWith; 
2. patent application Ser. No. 08/598,520, entitled, 

“Blending Apparatus for Computer Graphics System,” ?led 
for Jan-Han Hsiao, Wei-Kuo Chia and Chun-Kai Huang on 

even date hereWith; 

3. US. patent application Ser. No. 08/598,521, entitled 
“Texture Filter Apparatus for Computer Graphics System,” 
?led for Yu-Ming Lin, Chun-Kai Huang, Wei-Kuo Chia on 

even date hereWith; 

4. US. Pat. No. 5,422,657, entitled, “A Graphics Memory 
Architecture For Multi-mode Display System,” ?led for 
Shu-Wei Wang, Wei-Kuo Chia, Chun-Kai Huang and Chun 
Chie Hsiao on Sep. 13, 1993; 

5. US. Pat. No. 5,321,425, entitled, “Resolution Indepen 
dent Screen Refresh Strategy,” ?led for Wei-Kuo Chia, 
Jiunn-Min Jue, Gen-Hong Chen and Chih-Yuan Liu on Feb. 

19, 1992; 
6. US. Pat. No. 5,268,682, entitled, “Resolution Indepen 

dent Raster Display System,” ?led for Wen-Jann Yang, 
Chih-Yuan Liu and Bor-Chuan Kuo on Oct. 7, 1991; and 

7. US. Pat. No. 5,268,681, entitled, “Memory Architec 
ture With Graphics Generator Including A Divide By Five 

Divider,” ?led for Cheun-Song Lin, Bor-Chuan Kuo and 
Rong-Chung Chen on Oct. 7, 1991. 

The contents of the above-listed patents and patent applica 
tions are incorporated herein by reference. 

FIELD OF THE INVENTION 

The present invention relates to graphics controllers in 

computer systems. In particular, the present invention relates 
to rendering 3-D objects With a speci?ed texture. Texture 

data is often stored as plural progressively subsampled 
arrays of data from Which interpolated texture values may be 

generated. The present invention is speci?cally directed to a 
novel manner of linearly storing the texture data arrays in 

memory and for generating addresses to the texture data in 

desired data arrays. 

BACKGROUND OF THE INVENTION 

FIG. 1 depicts a conventional computer system 10. The 

computer system 10 has a processor 12, a main memory 14, 

a disk memory 16 and an input device 18, such as a keyboard 

and mouse. The devices 12—18 are connected to a bus 20 

Which transfers data, i.e., instructions and information, 
betWeen each of these devices 12—18. A graphics controller 

30 is also connected to the bus 20. As shoWn, the graphics 

controller 30 includes a draWing processor 32. The draWing 

processor is also connected to an address generator 36 and 

a data input of a frame buffer 34. The address generator 36, 

in turn, is connected to RAS (roW address select), CAS 
(column address select) and chip select inputs of the frame 
buffer 34. Illustratively, the frame buffer 34 is implemented 
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2 
With plural VRAMs (video random access memories) or 
DRAMs (dynamic random access memories). The frame 
buffer 34 is connected to a display device 38, such as a 

cathode ray tube (CRT) or liquid crystal display (LCD) 
monitor. 

The draWing processor 32 receives instructions from the 
processor 12 for draWing objects. For instance, in the case of 
a computer aided design (CAD) application, the processor 
12 may receive user input regarding creating and locating 
objects in 3-D space. The processor 12, in turn, transfers 

instructions regarding the siZe, location, texture, 
translucence, etc. of such objects to the draWing processor 
32. In response, the draWing processor 32 creates a pixel 

image representation of a plane of vieW of such objects in 
3-D space. The pixels of the image of each plane of vieW 
form part of a frame that is stored by the draWing processor 

32 in the frame buffer 34. Several draWing processors 32 are 

knoWn, such as is disclosed in US. Pat. Nos. 5,046,023 and 

5,185,856. The latter reference discloses a draWing proces 
sor that is speci?cally adapted for rendering 3-D objects. 

A computer system 10 capable of performing 3-D ren 
dering advantageously “maps” texture onto the rendered 
object. The mapping of texture onto objects is Well knoWn 
and is not discussed in detail herein. See US. Pat. No. 

5,222,205; L. Williams, Pyramidal Parametrics, ACM 
COMPUTER GRAPHICS, vol. 17, no.3 p.1—11 (1983); and 
W. NEWMAN & R. SPROULL, PRINCIPLES OF INTER 

ACTIVE COMPUTER GRAPHICS, 2d ed., p. 389—410. 
Suffice it to say that the texture pattern may be considered 

a renderable source texture surface Which is to be mapped 

onto a destination object surface. The object thus formed 

may then be mapped onto the destination plane of vieW. 

Such mapping is very computation intensive. As noted in 

the above-noted Williams article, such mapping may require 
sampling the texture data in a fashion Which is suited to the 

vieW of the surface of the destination object. That is, the 
visibility of the texture detail on the object surface depends 

on hoW close or hoW far the object surface is located in 3-D 

space from the plane of vieW. As the plane of vieW is brought 
closer to the object surface, more texture detail is visible. As 

the plane of vieW is move aWay from the object surface, less 
texture detail is visible. 

To reduce the amount of computation involved in map 

ping texture When the object is moved closer or farther from 

the plain of vieW, the Williams article proposes to initially 
provide subsamplings of the textured data. This is illustrated 
in FIG. 2. As shoWn, the texture data is stored in 2-D data 

arrays. The texture data in each array is indexed, i.e., 
addressed With 2-D virtual address coordinates (u,v), i.e., 
one in each direction U and V. The texture data consists of 

RGB data including one ?xed length data unit (e. g., byte) for 
each color red (R), green (G) and blue (B) per point of 
texture data. The R data is stored in array 61, the G data is 

stored in array 62 and the B data is stored in array 63. As per 

the Williams memory storage scheme, the array 64 is used 
for storing subsampled versions of the RGB data. For 

instance, subarray 71 of array 64 stores a 1/2 subsampling in 
both the U and V directions of the R data of array 61. 

Likewise, subarray 72 stores a 1/2 subsampling in both the U 

and V directions of the G data of array 62. Subarray 73 stores 

a 1/2 subsampling in both the U and V directions of the B data 

of array 63. The subsampling process is then carried out 

again in subarray 74 Which has subarrays 81, 82 and 83 
Which contain 1A1 subsamplings in both the U and V direc 

tions of the R,G, and B data of arrays 61, 62 and 63, 
respectively. LikeWise, subarrays 91, 92 and 93 of subarray 
84 contain Vs subsamplings in both the U and V directions 
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of the R,G and B data arrays 61, 62 and 63, respectively. 
This subsampling is carried out until one texture data per 

color is obtained. This data structure 51 is referred to as a 

“mip map.” In a mip map 51, the full scale RGB data (in 
arrays 61, 62 and 63) is said to be subsampled at level d=0, 
the 1/2 subsampled RGB data (in arrays 71, 72 and 73) is said 
to be subsampled at level d=1, and so on. In general, the 2'd 
subsampled data is said to be subsampled at level d. 

In order to map texture data onto an object, the appro 

priate level RGB texture data array is used. Alternatively, if 
the object surface siZe is betWeen tWo arrays that are 

subsampled at levels d and d+1, a bilinear interpolation 
betWeen the texture data of the tWo data arrays is used. The 

mip map scheme therefore provides a relatively loW com 
putation manner of mapping texture onto an arbitrary siZed 
object surface. 

Consider noW the case Where the object is both displaced 

aWay from, and rotated With respect to, the plane of vieW. 
The mip map can still be used to map texture on to the object 

surface. HoWever, because the object surface has rotated, the 
interpolated texture values produced using the mip map may 
produce aliasing or blurring artifacts in the image. To 
remedy this problem, US. Pat. No. 5,222,205 proposes a 
modi?ed data structure referred to as a “rip map.” Arip map 

52 is illustrated in FIG. 3. Illustratively, the rip map 52 
shoWn in FIG. 3 is for the R texture data. Therefore, a rip 

map for the G and B data Would also be provided. 

The rip map 52 has a full scale data array 61‘ including 
one R value for each pixel of the object surface. Like the mip 

map 51, the rip map 52 also includes plural subsampled 
versions of the full scale data array 61‘. HoWever, the 

subsampled arrays of the rip map 52 need not be sampled in 
each direction U and V the same. For instance, data array 62‘ 

is 1/z subsampled only in the direction U. Data array 63‘ is ‘A 
subsampled only in the direction U. Data array 64‘ is Vs 

subsampled only in the direction U, and so on. Likewise, 
data array 65‘ is 1/2 subsampled only in the direction V, data 
array 66‘ is ‘A subsampled only in the direction V and data 

array 67‘ is Vs subsampled only in the direction V. The rip 
map contains other permutations of subsampling, such as 

data array 75‘ Which is 1/2 subsampled in the direction U and 

Vs subsampled in the direction V. TWo levels of subsampling 

(du,dv) are therefore used to designate a speci?c data array. 

The folloWing table summarizes the assignment of levels to 
the subsampled data arrays: 

TABLE 1 

Label du dv u dir. sampl. v dir. sampl. 

61‘ O O 1 1 

62‘ 1 O 1/2 1 

63‘ 2 O 1/4 1 

64‘ 3 O 1/8 1 

65‘ O 1 1 1/2 

66‘ O 2 1 1/4 

67‘ O 3 1 1/8 

71‘ 1 1 1/2 1/2 

72‘ 2 1 1/4 1/2 

73‘ 3 1 1/8 1/2 

74‘ 1 2 1/2 1/4 

75‘ 1 3 1/2 1/8 

81‘ 2 2 1/4 1/4 

82‘ 3 2 1/8 1/4 

83‘ 2 3 1/4 1/8 

91‘ 3 3 1/8 1/8 

The rip map 51 provides more choices in subsampled data 
for use in the interpolation. This tends to reduce the afore 

mentioned aliasing and blurring artifacts. 
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4 
Desirably, RGB texture data is supplemented With alpha 

data A to form RGBA data for each pixel. The A data may 

indicate, for instance, the property of “translucence” or the 
amount of incident light that can pass through the object. For 

instance, suppose an object models a green lens Which 

passes 80% of the light incident thereon. If such a lens is 

placed in front of other objects in the background With 
respect to the plane of vieW, then the occluded pixels of the 
objects should have a blended color. In particular, the 

occluded object pixels should have a color Which is 80% of 

their original color and 20% of the color of the green lens. 

Both mip maps and rip maps are useful in reducing the 
amount of computation for mapping texture data onto an 

object surface. HoWever, the mip map can only accommo 
date three data values per pixel, namely, RGB. Alpha data 
cannot be accommodated in the mip map shoWn in FIG. 2. 

In addition, both the mip map and rip map are implemented 
using 2-D virtual coordinate addresses. HoWever, if such 
2-D addresses are used to organiZe the physical storage of 

the texture data in the VRAMs/DRAMs of the frame buffer, 

then much of the storage capacity of the VRAMs/DRAMs 
tends to be Wasted. This is illustrated in FIG. 4. As shoWn in 

FIG. 4, the tWo dimensions of the texture data rarely 

conform to the dimensions of the memory array of the 

VRAMs/DRAMs. For instance, the suppose texture data has 
the same dimensions of a display frame, such as 900x1152. 

TWo banks of four VRAMs/DRAMs each are used to store 

the texture data in an interleaved fashion. Nevertheless, the 

shaded areas of the VRAMs/DRAMs are Wasted. See US. 

Pat. Nos. 5,321,425, 5,268,682, and 5,268,681. 

It is therefore an object of the present invention to 

overcome the disadvantages of the prior art. 

SUMMARY OF THE INVENTION 

This and other objects are achieved by the present inven 

tion. The present invention is illustratively used in a com 

puter system environment. Illustratively, the computer sys 
tem includes a processor, main memory, disk memory and 

data input device, such as a keyboard and mouse, all of 
Which are connected to a bus. Also connected to the bus is 

a graphics controller Which includes a draWing processor 

and an address generator. The draWing processor renders 

3-D objects and maps texture data onto the rendered objects. 

The address generator, amongst other things, assists the 
draWing processor in determining the addresses of texture 

data Which may be stored in main memory, disk memory or 

a frame buffer. 

According to one embodiment, the texture data is orga 

niZed into plural subsampled data arrays, e.g., a mip map or 

a rip map. HoWever, the storage of the texture data in the 

memory, e.g., the frame buffer, is not physically organiZed 
according to the 2-D virtual address coordinates in texture 

space. Rather, the storage of the texture data is organiZed 
according to linear addresses. Simply stated, the texture data 
arrays are stored in a continuous sequence of linear memory 

addresses. The texture data of the data arrays is sequentially 

stored in subsequences of the sequence of linear memory 

addresses. The subsequences are assigned to respective 
texture data according to the order of subsampling of the 

data arrays. 

For example, in the case of a mip map, each data array has 

a different level of subsampling Which is the same in both 

directions of the data array. One subsequence of addresses is 

assigned to each data array in order of increasing level of 
subsampling. That is, the data array Which is subsampled by 
1 (level 0) is stored in the ?rst subsequence of addresses, the 
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data array Which subsampled 1/2 (level 1) in both directions 
is assigned the second subsequence of addresses, the data 
array Which is subsampled 1A (level 2) in both directions is 
assigned the third subsequence of addresses, etc. In the case 
of a rip map, the data arrays are each subsampled With a 

different combination of levels of subsampling du and dv in 
the directions U and V. The rip map data arrays are segre 
gated into groups according to a ?rst one of the tWo levels 

of subsampling, e.g., dv, such that each array in a particular 
group has the same ?rst level of subsampling. For example, 
all data arrays With dv=0 form a ?rst group, all data arrays 

With dv=1 form a second group, etc. Each group has one 

span for each possible coordinate value in the ?rst direction, 
e.g., the direction V, in the domain of coordinate values of 

texture data in the data arrays of the group. For instance, 
suppose that the domain of coordinate values of the texture 

data in group one, in the direction V, is 0,1,2 and 3. Then 

group one has four spans, namely, one span for each value 

0,1,2 and 3 in the domain of coordinate v in group one. Each 

span is a sequence, including one subsequence of texture 

data from each data array, Which subsequences of texture 

data are arranged in order of the second level (e.g., du) of 
subsampling of the data arrays. Each subsequence of data 
includes the texture data of a respective array that has the 

same coordinate in the ?rst direction (e.g., V) as the span, 

arranged in order of increasing coordinate in the second 

direction (e.g., U). For instance, in the case of the roW-span 
for roW v=2, the roW-span includes one roW of data from 

each data array, i.e., the data (2,0), (2,1), (2,2), . . . 

According to another embodiment, an address generator 
is provided for accessing the texture data of a given level of 

subsampling of a mip map Which is stored at linear memory 

addresses as described above. Illustratively, the address 

generator evaluates the following: 

TLAM) : Base + LO + GO 

LO: 2ML’d-v+14 

Where 

Base is a base address in Which a ?rst texture data 

corresponding to coordinates (u=0, v=0) in the ?rst array of 
level d=0 are stored, 

i is an integer index, 

GO is a global offset, 
LO is a local offset, 

ML is the maximum level of subsampling, 

d is the depth of subsampling of the data array to be 

accessed, and 
u,v are the 2-D virtual address coordinates of the texture 

data to be accessed. 

The address generator has adder circuitry for receiving a 
base address Base, the global offset GO, u and 2ML_d-v. The 
adder circuitry adds Base to GO to produce a ?rst sum. The 

adder circuitry also adds u to 2ML_d~v to produce a second 

sum representing the local offset LO. Furthermore, the adder 
circuitry adds the ?rst and second sums to produce the linear 

memory address of the texture data. 

According to another embodiment, an address generator 
is provided for accessing the texture data of a given level of 

subsampling of a rip map Which is stored at linear memory 

addresses as described above. Illustratively, the address 

generator evaluates the following: 
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TLAW : Base+ G0 

G0 = (2m+1 - 1)GV + GU 

GU = GOU + 14 

CV = GOV + v 

GOU : i:MLidu+l 

0 if du : 0 

ML _ 

21 if dv # 0 

GOV : j:MLidv+l 

Where 

Base is a base address in Which a ?rst texture data 

corresponding to coordinates (u=0,v=0) in the ?rst array of 

level (du=0,dv=0) are stored, 
GO is a global offset, 

GV is a total v offset, 

GOV is a global v offset, 

GU is a total u offset, 

GOU is a global u offset, 

ML is the maximum level of subsampling in both direc 

tions u and v, 

du, dv are the levels of subsampling of the data array to 

be accessed, 
u,v are the 2-D virtual address coordinates of the texture 

data to be accessed, and 

i and j are integer indexes. 
The address generator has a ?rst adder stage for adding v to 

the ?rst global offset GOV to produce a ?rst sum, and for 

adding u to the second global offset GOU to produce a 

second sum. The address generator also has a concatenator 

circuit for concatenating the ?rst and second sums to pro 

duce a concatenated sum. The ?rst sum forms a most 

signi?cant fragment of a partial concatenated sum and the 

second sum forms a least signi?cant fragment of the partial 

concatenated sum. A second adder stage is provided for 

adding the concatenated sum to Base to produce the linear 

address. 

According to yet another embodiment, a combined 
address generator is provided for accessing the texture data 
in either a mip map or a rip map. The address generator 

according to this embodiment has a ?rst multiplexer stage, 

receiving, as selectable inputs, the base address Base, the 
global offset GO in a mip map, the ?rst global offset GOV 

in a rip map, the second global offset GOU in a rip map, 

2ML_d~v and v, and a selector control signal. The ?rst 

multiplexer stage outputs, in response to the selector control 

signal, as ?rst, second and third outputs, either Base, GO and 

2ML_d-v, respectively, or v, GOV and GOU, respectively. 
The address generator also has a ?rst adder stage for adding 

the ?rst and second outputs of the ?rst multiplexer stage to 
produce a ?rst sum and for adding u to the third output to 

produce a second sum. The address generator also has a 

concatenator circuit for concatenating the ?rst sum to the 

second sum to produce a concatenated sum. A second 

multiplexer stage is provided for receiving, as selectable 
inputs, the ?rst sum, the concatenated sum, the second sum 

and the base address Base, and the selector control signal. 
The second multiplexer stage outputs, in response to the 
selector control signal, as fourth and ?fth outputs, either the 

?rst sum and the second sum, respectively, or the concat 
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enated sum and Base. The address generator furthermore has 

a second adder stage for adding the fourth and ?fth outputs 

of the second multiplexer stage to produce the linear 

memory address. 

In short, a linear address organiZation is provided for 
physically storing texture address data in memory. Address 
generators are also provided for accessing the stored texture 

data. The present invention therefore provides an ef?cient 

manner for storing texture data and for accessing the stored 

texture data. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 shoWs a conventional computer system. 

FIG. 2 illustrates a conventional mip map. 

FIG. 3 illustrates a conventional rip map. 

FIG. 4 illustrates a conventional 2-D memory address 

con?guration for physically storing data in memory. 

FIG. 5 shoWs a computer system according to the present 
invention. 

FIG. 6 illustrates a linear memory address organiZation 

for physically storing a mip map in memory according to an 
embodiment of the present invention. 

FIG. 7 illustrates a linear memory address organiZation 

for physically storing a rip map in memory according to an 
embodiment of the present invention. 

FIG. 8 illustrates an address generator for generating 

linear addresses for a mip map according to an embodiment 

of the present invention. 

FIG. 9 illustrates an address generator for generating 

linear addresses for a rip map according to an embodiment 

of the present invention. 

FIG. 10 illustrates a combined mip map/rip map address 

generator for generating linear addresses according to an 
embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 

INVENTION 

FIG. 5 shoWs a computer system according to an embodi 

ment of the present invention. As before, the computer 

system 100 has a processor 112, a main memory 114, a disk 

memory 116 and an input device 118. Each of these devices 

is connected to a bus 120. Also connected to the bus 120 is 

a graphics controller 130. The graphics controller includes a 

draWing processor 132 and an address generator 136. The 

draWing processor can output data to the frame buffer 134 

While the address generator can output address and chip 

select information to the frame buffer (e.g., RAS, CAS and 

chip select). The pixel data stored in the frame buffer is 
displayed on the display screen of the display device 138. 

The draWing processor 132 can output parameters 

(described beloW) including 2-D virtual address coordinates 
and subsampling level(s) of texture data to the address 
generator 136. The draWing processor 132 can also output 

control signals to the address generator 136. In response, the 

address generator 136 outputs to the draWing processor 132 
the linear addresses of the desired texture data in physical 

memory, e.g., the main memory 114, the disk memory 116 
or the frame buffer 134. The draWing processor 132 can then 

use the linear addresses to access the texture data in the main 

memory 114, disk memory 116 or frame buffer 134 (via the 

address generator 136). Alternatively, the address generator 
136 outputs the physical addresses directly to the main 

memory 114 or disk memory 116 (via the system bus 120) 
or to the frame buffer 134. Such data addressing may be 
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utiliZed by the draWing processor 132 in Writing the sub 
sampled texture data into memory, or, more importantly, in 

reading out the texture data for use in mapping texture onto 

rendered objects. 

FIG. 6 illustrates a linear addressing organiZation for 

physically storing a texture data mip map in memory. For 

purposes of illustration, it is presumed that the texture data 

mip map is stored in the main memory 114 (FIG. 5), 
although the invention also applies to the frame buffer 134 

(FIG. 5) and the disk memory 116 (FIG. 5). Suppose the mip 
map includes a full resolution (subsampling factor of 1) 

level d=0 of subsampling 2-D data array With 8x8 texture 

data for each of the colors/alpha R,G,B and A. As shoWn in 

FIG. 6, the full resolution arrays are labeled 210 (R), 220 

(G), 230 (B) and 240 Each array has data at coordinates 

(u,v) Where u=0,1, . . . ,7 and v=0,1, . . . ,7. The R pixels are 

labeled 210-(u,v); for example, the data (0,0) is labeled 
210-(0,0), the data (0,1) is labeled 210-(0,1). LikeWise, the 
data (u,v) in the G,B and A arrays are labeled 220-(u,v), 
230-(u,v) and 240-(u,v). The mip map also has higher level 
d=1,2 and 3 subsampled arrays for each of the arrays 210, 
220 230 and 240. The level 1 subsampled (1/z subsampled) 
R array has 4><4 pixels and is labeled 212. The level 2 

subsampled (% subsampled) R array has 2><2 pixels and is 
labeled 214. The level 3 subsampled (Vs subsampled) R 
array has 1 pixel and is labeled 216. LikeWise, the G,B and 
A arrays have level 1 subsampled (1/z subsampled) arrays 
222, 232 and 242, level 2 subsampled (% subsampled) arrays 
224, 234 and 244 and level 3 subsampled (Vs subsampled) 
arrays 226, 236 and 246. As before, texture data in any of the 

arrays 212, 214, 216, 222, 224, 226, 232, 234, 236, 242, 244 
or 246 is referred to With a label Which includes the label of 

the array and the (u,v) coordinates of the texture data. Thus, 
the G texture data With coordinates (1,1) on level d=2 is 

labeled 224-(1,1). 

According to the linear storage organiZation, a base 
memory address “Base” is assigned to each color/alpha. For 

purposes of illustration, texture data is presumed to include 

one byte per color/alpha and each memory location is 

presumed to store one byte. (Note hoWever, that other 
combinations of texture data precisions and memory capaci 

ties can be easily accommodated.) For instance, BaseR=0 is 
assigned to R, BaseG=85 is assigned to G, BaseB=170 is 
assigned to B and Base A=255 is assigned to A. The texture 

data for each color/alpha, e.g., R, is stored at sequential 

addresses, beginning With Base R, in order of increasing level 
d. Thus, the texture data of array 210 is stored at memory 

addresses BaseR to BaseR+63. The texture data of array 212 

is stored at memory addresses BaseR+64 to BaseR+79. The 
texture data of array 214 is stored at memory addresses 

BaseR+80 to BaseR+83. The texture data of array 216 is 

stored at memory address BaseR+84. Furthermore, the tex 
ture data of each array is stored at continuous sequential 

memory addresses. For instance, consider the case that 

roW-column ordering is used to store the data. The folloWing 

table summariZes the assignment of memory addresses to 

texture data of the arrays 210, 212, 214 and 216: 

TABLE 2 

label addr 

210-(0,0) Base 
210-(1,0) Base + 1 

210-(2,0) Base + 2 

210-(3,0) Base + 3 

210-(4,0) Base + 4 
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TABLE 2-continued TABLE 2-continued 

label addr label addr 

210—(5,0) Base + 5 5 214—(O,1) Base + 82 

210—(6,0) Base + 6 214—(1,1) Base + 83 

210—(7,0) Base + 7 216—(0,0) Base + 84 

210—(O,1) Base + 8 

210—(1,1) Base + 9 

210-(2,1) Base + 10 A like memory address assignment is used for the arrays 

210-(3J) Base + 11 10 220, 222, 224, 226, 230, 232, 234, 236, 240, 242, 244 and 
210-(4,1) Base + 12 246 
210-(5,1) Base + 13 ' _ 

21mm) Bage + 14 Note that in the example above, each memory array has 

210-(7,1) Base + 15 dimensions Which are a power of 2. Therefore, the number 

2lo-(oi) Base + 16 of data in an array of level d is 4ML_d Where ML is the 

52:: i i; 15 “maximum level” of the mip map (in this case, 3). To 
21O_(3:2) Bdse + 19 determine the linear address of texture data With coordinates 

210-(4,2) Base + 20 (u,v) in an array of level d, a global offset “GO” and a local 

Ease + offset “LO” are added to the base address Base. Thus: 
— , ase + 

210-(7,2) Base + 23 20 
210- 0,3 B 24 

210E133 B22: : 25 TLA<M)=BaSe+LO+GO 
210-(2,3) Base + 26 

210-(3,3) Base + 27 GO represents the addresses containing the texture data of 

210-(43) Base + 28 the loWer level arrays (than the array of level d containing 
210-(5 3) Base + 29 - 
21O_(6’3) Base + 30 25 the texture data to be accessed). GO may be determined by: 

210-(7,3) Base + 31 

210-(0,4) Base + 32 ML 

210-(1,4) Base + 33 4‘- if d ¢ 0 

210-(2,4) Base + 34 G0 = [:Mbd? 

210—(3,4) Base + 35 4 _ 

210-(4,4) Base + 36 30 0 1f d _ O 

210—(5,4) Base + 37 

210-(6,4) Base + 38 
210-(7,4) Base + 39 Where 

21O'(O>5) Base + 40 i is an integer index. 

210415) Base ’' 41 L0 t th t t d d t ' th th d t 
210%”) Base + 42 35 represen s e ex ure a a 1n e same array as e a a 

210435) Bdse +43 to be retrieved Which precedes the data to be retrieved. 

210-(4,5) Base + 44 Assuming roW-column ordering, LO may be determined by: 
210—(5,5) Base + 45 

210—(6,5) Base + 46 

210—(7,5) Base + 47 _ MLii 

210-(0,6) Base + 48 40 L04 W” 

210- 1,6 B + 49 _ 

210E263 1322+ 50 Where v and u are the coordinates (u,v) of the data to be 
210-(3,6) Base + 51 accessed and the operation sign “.” indicates a multiplication 

210-95) Base + 52 operation betWeen 2ML_d and v. 

28:53:; 52:: i 22 FIG. 7 illustrates the physical storage of a rip map 
210416) Bdse + 55 45 according to a linear addressing organiZation. For sake of 

10- 0,7 Base + 56 revi , on e a a is iscusse in e ai . oWever, e 2() b ty lythRdt d d dtlH th 
210-03) Base +57 principles are easily extendible to the G, B and A data. 
210—(2,7) Base + 58 - - ~ 
210 Consider a rip map for the R data. Each array of the rip map 

'(3’7) BaSHSg h d'ff t 11' f1 1 r b 1' d 01 
210743) Bage + 60 as a 1 eren permu a 1on o eve s o su samp 1ng u, v 

210-(5,7) Base + 61 50 in the directions of U and V. Array 250 is subsampled at 

'> eves u=, v= an as x exure aa. ra is 210(67) Base/+62 1 1d 0d 0 dh 88t t dt Ary251 

52:: i 22 subsampled at levels du=1, dv=0 and has 4><8 texture data. 
212411,) Bdse + 65 Array 252 is subsampled at levels du=2, dv=0 and has 2x8 
212-(2,0) Base + 66 texture data. Array 253 is subsampled at levels du=3, dv=0 

212431)) Base + 67 55 and has 1x8 texture data. Array 254 is subsampled at levels 

52:: i 22 du=0, dv=1 and has 8x4 texture data. Array 255 is sub 
212_(2:1) Bdse +70 sampled at levels du=0, dv=2 and has 2x8 texture data. 

212-(3,1) Base + 71 Array 256 is subsampled at levels du=0, dv=3 and has 8x1 
' > ex ure a a. ray 1s su samp e a eve s u= , v= 212(02) Base/+72 t t dt Ar 260 b ld tl ld 1d 1 

2120;) Base + 73 60 and has 4><4 texture data. Arra 261 is subsam led at levels 
212-(2,2) Base + 74 y p _ 
2126;) Base +75 du=2, dv=1 and has 2><4 texture data. Array 262 is sub 

212-(0,3) Base +76 sampled at levels du=3, dv=1 and has 1><4 texture data. 

21203) Base + 77 Array 263 is subsampled at levels du=1, dv=2 and has 4><2 

52:: i Z: texture data. Array 264 is subsampled at levels du=1, dv=3 
214_(O:O) Bdse + 80 65 and has 4><1 texture data. Array 270 is subsampled at levels 

214-(1,0) Base +81 du=2, dv=2 and has 2><2 texture data. Array 271 is sub 

sampled at levels du=3, dv=2 and has 1><2 texture data. 
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Array 272 is subsampled at levels du=2, dv=3 and has 2><1 
texture data. Array 280 is subsampled at levels du=3, dv=3 
and has 1><1 texture data. As in FIG. 6, individual texture 

data are referred to by their array and their respective 

coordinates (u,v). Thus, the pixel (u=0,v=1) in the array 
subsampled at du=3, dv=2 is referred to as 271-(0,1). 

As shown in FIG. 7, a continuous sequence of linear 

addresses is assigned to the arrays as folloWs. First, one of 

the tWo levels du or dv is chosen and the arrays themselves 

are segregated into groups, Wherein each array in a given 

group has the same value for the chosen level. Suppose dv 

is selected. Four groups 291, 292, 293 and 294 are formed. 

The ?rst group 291 (for dv=0) includes the arrays 250, 251, 
252 and 253. The second group 292 (for dv=1) includes the 

arrays 254, 260, 261 and 262. The third group 293 (for dv=2) 
includes the arrays 255, 263, 270 and 271. The fourth group 

(for dv=3) includes the arrays 256, 264, 272 and 280. One 
continuous subsequence of addresses is assigned to each 
group of arrays such that the four subsequences form the 

continuous sequence of addresses assigned to the rip map. 
The ?rst group is illustratively assigned the subsequence of 
addresses Base to Base+119. The second group is assigned 

the subsequence of addresses Base+120 to Base+179. The 

third group is assigned the subsequence of addresses Base+ 
180 to Base+209. The fourth group is assigned the subse 

quence of addresses Base+210 to Base+224. 

At least one span of texture data is de?ned in each group. 

One span is de?ned for each value in the domain of the 

coordinate v (that is, the coordinate in the same direction V 

as the level of subsampling chosen to use as a basis for 

segregating the data arrays into groups, namely dv) for 
texture data in that group. That is, eight spans are de?ned in 

the group 291, namely, one for each coordinate value v=0, 
v=1, v=2, v=3, v=4, v=5 v=6 and v=7. Four spans are 
de?ned in group 292, namely, one for each coordinate value 

v=0, v=1, v=2 and v=3. TWo spans are de?ned in group 293, 

namely, one for v=0 and one for v=1. One span is de?ned in 

group 294 for v=0. 

Each span is de?ned as a sequence of texture data, 

including one subsequence of texture data from each data 

array in the respective group. The subsequences of texture 

data are arranged in order of increasing level du (i.e., the 
other of the tWo levels of subsampling du,dv not chosen to 

use as a basis for segregating the data values into groups). 

Each subsequence of texture data includes all of the texture 

data in the respective data array having the same value for 

coordinate v as the corresponding span. For instance, in the 

?rst group, the span for roW v=3 includes the data 250-(0,3), 

250-(1,3), . . . , 250-(7,3), 251-(0,3), 251-(1,3), . . . , 

251-(3,3), 252-(0,3), 252-(1,3), 253-(0,3). (Since, in this 
illustration, each span includes the data of a respective roW 

of a group, the spans are referred to as “roW-spans” beloW. 

Note that “column-spans” are also possible.) The addresses 

of each subsequence are assigned Within each group to the 

sequences of texture data of the roW-spans in roW-span order 

from roW v=0 to the maximum roW number in the respective 

group. The sequential assignment of linear address to the rip 
map is summariZed beloW: 

TABLE 3 

Data Address 

250-(0,0) Base 
250-(1,0) Base + 1 

250-(2,0) Base + 2 

250-(3,0) Base + 3 
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TABLE 3-continued 

Data Address 

250-(4,0) Base + 4 

250-(5,0) Base + 5 

250-(6,0) Base + 6 

250-(7,0) Base + 7 

251-(0,0) Base + 8 

251-(1,0) Base + 9 

251-(2,0) Base + 10 

251-(3,0) Base + 11 

252-(0,0) Base + 12 

252-(1,0) Base + 13 

253-(0,0) Base + 14 

250-(O,1) Base + 15 

250-(1,1) Base + 16 

250-(2,1) Base + 17 

250-(3,1) Base + 18 

250-(4,1) Base + 19 

250-(5,1) Base + 20 

250-(6,1) Base + 21 

250-(7,1) Base + 22 

251-(O,1) Base + 23 

251-(1,1) Base + 24 

251-(2,1) Base + 25 

251-(3,1) Base + 26 

252-(0,1) Base + 27 

252-(1,1) Base + 28 

253-(O,1) Base + 29 

250-(2,0) Base + 30 

250-(2,1) Base + 31 

250-(2,2) Base + 32 

250-(3,2) Base + 33 

250-(4,2) Base + 34 

250-(5,2) Base + 35 

250-(6,2) Base + 36 

250-(7,2) Base + 37 

251-(O,2) Base + 38 

250-(1,2) Base + 39 

251-(2,2) Base + 40 

251-(3,2) Base + 41 

252-(0,2) Base + 42 

252-(1,2) Base + 43 

253-(O,2) Base + 44 

250-(O,3) Base + 45 

250-(1,3) Base + 46 

250-(2,3) Base + 47 

250-(3,3) Base + 48 

250-(4,3) Base + 49 

250-(5,3) Base + 50 

250-(6,3) Base + 51 

250-(7,3) Base + 52 

251-(1,0) Base + 53 

251-(1,3) Base + 54 

251-(2,3) Base + 55 

251-(3,3) Base + 56 

252-(0,3) Base + 57 

252-(1,3) Base + 58 

253-(O,3) Base + 59 

250-(O,4) Base + 60 

250-(1,4) Base + 61 

250-(2,4) Base + 62 

250-(3,4) Base + 63 

250-(4,4) Base + 64 

250-(5,4) Base + 65 

250-(6,4) Base + 66 

250-(7,4) Base + 67 

251-(O,4) Base + 68 

251-(1,4) Base + 69 

251-(2,4) Base + 70 

251-(3,4) Base + 71 

252-(0,4) Base + 72 

252-(1,4) Base + 73 

253-(O,4) Base + 74 

250-(O,5) Base + 75 

250-(1,5) Base + 76 

250-(2,5) Base + 77 

250-(3,5) Base + 78 

250-(4,5) Base + 79 

250-(5,5) Base + 80 
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TABLE 3-continued TABLE 3-continued 

Data Address Data Address 

250-(6,5) Base + 81 5 260-(0,2) Base + 158 

250-(7,5) Base + 82 260-(1,2) Base + 159 

251-(0,5) Base + 83 260-(2,2) Base + 160 

251-(1,5) Base + 84 260-(3,2) Base + 161 

251-(2,5) Base + 85 261-(0,2) Base + 162 

251-(3,5) Base + 86 261-(1,2) Base + 163 

252-(0,5) Base + 87 10 262-(0,2) Base + 164 

252-(1,5) Base + 88 254-(0,3) Base + 165 

253-(5,0) Base + 89 254-(1,3) Base + 166 

250-(0,6) Base + 90 254-(2,3) Base + 167 

250-(1,6) Base + 91 254-(3,3) Base + 168 

250-(2,6) Base + 92 254-(4,3) Base + 169 

250-(3,6) Base + 93 15 254-(5,3) Base + 170 

250-(4,6) Base + 94 254-(6,3) Base + 171 

250-(5,6) Base + 95 254-(7,3) Base + 172 

250-(6,6) Base + 96 260-(0,3) Base + 173 

250-(7,6) Base + 97 260-(1,3) Base + 174 

251-(0,6) Base + 98 260-(2,3) Base + 175 

251-(1,6) Base + 99 2O 260-(3,3) Base + 176 

251-(2,6) Base + 100 261-(0,3) Base + 177 

251-(3,6) Base + 101 261-(1,3) Base + 178 

252-(0,6) Base + 102 262-(0,3) Base + 179 

252-(1,6) Base + 103 255-(0,0) Base + 180 

253-(0,6) Base + 104 255-(1,0) Base + 181 

250-(0,7) Base + 105 255-(2,0) Base + 182 

250-(1,7) Base + 106 25 255-(3,0) Base + 183 

250-(2,7) Base + 107 255-(4,0) Base + 184 

250-(3,7) Base + 108 255-(5,0) Base + 185 

250-(4,7) Base + 109 255-(6,0) Base + 186 

250-(5,7) Base + 110 255-(7,0) Base + 187 

250-(6,7) Base + 111 263-(0,0) Base + 188 

250-(7,7) Base + 112 30 263-(1,0) Base + 189 

251-(0,7) Base + 113 263-(2,0) Base + 190 

251-(1,7) Base + 114 263-(3,0) Base + 191 

251-(2,7) Base + 115 270-(0,0) Base + 192 

251-(3,7) Base + 116 270-(1,0) Base + 193 

252-(0,7) Base + 117 271-(0,0) Base + 194 

252-(1,7) Base + 118 35 255-(1,0) Base + 195 

253-(0,7) Base + 119 255-(1,1) Base + 196 

254-(0,0) Base + 120 255-(2,1) Base + 197 

254-(1,0) Base + 121 255-(3,1) Base + 198 

254-(2,0) Base + 122 255-(4,1) Base + 199 

254-(3,0) Base + 123 255-(5,1) Base + 200 

254-(4,0) Base + 124 40 255-(6,1) Base + 201 

254-(5,0) Base + 125 255-(7,1) Base + 202 

254-(6,0) Base + 126 263-(0,1) Base + 203 

254-(1,0) Base + 127 263-(1,1) Base + 204 

260-(0,0) Base + 128 263-(2,1) Base + 205 

260-(1,0) Base + 129 263-(3,1) Base + 206 

260-(2,0) Base + 130 270-(0,1) Base + 207 

260-(3,0) Base + 131 45 270-(1,1) Base + 208 

261-(0,0) Base + 132 271-(0,1) Base + 209 

261-(1,0) Base + 133 256-(0,0) Base + 210 

262-(0,0) Base + 134 256-(1,0) Base + 211 

254-(0,1) Base + 135 256-(2,0) Base + 212 

254-(1,1) Base + 136 256-(3,0) Base + 213 

254-(2,1) Base + 137 50 256-(4,0) Base + 214 

254-(3,1) Base + 138 256-(5,0) Base + 215 

254-(4,1) Base + 139 256-(6,0) Base + 216 

254-(5,1) Base + 140 256-(7,0) Base + 217 

254-(6,1) Base + 141 264-(0,0) Base + 218 

254-(7,1) Base + 142 264-(1,0) Base + 219 

260-(0,1) Base + 143 55 264-(2,0) Base + 220 

260-(1,1) Base + 144 264-(3,0) Base + 221 

260-(2,1) Base + 145 272-(0,0) Base + 222 

260-(3,1) Base + 146 272-(1,0) Base + 223 

261-(0,1) Base + 147 2s0-(0,0) Base + 224 

261-(1,1) Base + 148 

262-(0,1) Base + 149 60 _ _ _ _ 

254-(0,2) Base + 150 Suppose it is desired to access a texture data in an array 

254-03) Base + 151 of subsampling levels du,dv With coordinates u,v. To deter 
254'(2>2) Base + 152 mine the linear address for this texture data, the memory 
254-(3,2) Base + 153 dd - d b th d- 1 t _ 
254_(4,2) Base + 154 a resses occuple y e prece ll'lg comp e 6 row spans 

254672) Bdse + 155 must be skipped. Furthermore, the memory addresses occu 

254_(6,2) Base + 156 65 pied by the partial roW-span of texture data, on the same roW 

254-(7,2) Base + 157 v of, and Which precede, the texture data to be accessed, 

must be skipped. The offset Which skips over the memory 
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addresses containing the complete preceding roW-spans may 
be determined from the roW-span length “RSL” and a total 

v offset “GV”. RSL is given by: 

Where 

ML is the maximum level for du and dv. 

GV is given by GOV+v Where GOV is the global v offset 

that accounts for complete roW-spans of entire groups of 

arrays that are skipped. Here, v accounts for the skipped 

complete roW-spans Within the same group that contains the 

texture data to be accessed. GOV is given by: 

GOV : 

Where 

i and j are integer indexes. 

The offset for the partial precedent roW-span to be skipped 
is given by GU=GOU+u Where “GU” is the total u offset and 

“GOU” is the global u offset. GOU is given by: 

GOU : 

GOU is therefore the sum of the Widths of the roWs of the 

skipped arrays in the same group as the accessed texture 

data. Thus, the linear address of the texture data in the array 

subsampled at levels du,dv With coordinates (u,v) is given 
by: 

FIG. 8 shoWs an address generator 300 for generating 

linear addresses for a mip map that is physically stored in 

memory as described above. The address generator 300 may 

form part or all of the address generator 134 shoWn in FIG. 

5. Preliminarily, the draWing processor 132 (FIG. 5) deter 
mines the parameters “Base,” “GO,” “u,” and “2ML_d~v” 
using the formulas described above. As shoWn, the address 
generator 300 is provided With addition circuitry 310 Which 
may be realiZed With a tWo stage adder tree. Speci?cally, the 

addition circuitry 310 includes a ?rst adder circuit 312 

Which receives the base address “Base” and global offset 

“GO” from the draWing processor 132 (FIG. 5). The adder 
312 produces the sum Base+GO. Asecond adder circuit 314 

is provided Which operates in parallel to the ?rst adder 
circuit 312. The second adder circuit 314 receives the 

parameters “u” and “2ML_d~v” from the draWing processor 
132 (FIG. 5). The second adder circuit 314 produces the sum 
u+2ML_d~v. These tWo sums produces by the ?rst and second 

adder circuits 312, 314 are inputted to a third adder circuit 

316. The third adder circuit 316 adds these tWo sums 

together to produce the linear address TLA(M)=Base+GO+ 
u+2ML_d~v. The linear address thus produced may be 

returned to the draWing processor 132 (FIG. 5) or outputted 
directly to memory, e.g., the frame buffer 136 (FIG. 5). 

FIG. 9 shoWs an alternative address generator 320 for 

generating linear addresses for accessing texture data in the 
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rip map shoWn in FIG. 7. The address generator 320 includes 

a ?rst adder stage 330, a concatenator circuit 340 and a 

second adder stage 350. Preliminarily, the draWing processor 

132 (FIG. 5) determines the parameters “Base,” “V,” 
“GOV,” “u,” and “GOU” using the formulas described 
above. The ?rst adder stage 330 illustratively includes ?rst 
and second adder circuits 332, 334 Which operate in parallel. 
The ?rst adder circuit 332 receives the parameters v and 

GOV from the draWing processor 132 (FIG. 5). The ?rst 
adder circuit 332 adds these parameters together and pro 
duces a ?rst sum v+GOV. The second adder circuit 334 

receives the parameters u and GOU from the draWing 

processor 132 (FIG. 5). The second adder circuit 334 adds 
the parameters together and produces a second sum u+GOU. 

The concatenator circuit 340 receives the ?rst and second 

sums. The concatenator circuit 340 effects the multiplication 

of the ?rst sum by RSL and addition of the product to the 

second sum. As noted above, RSL is alWays 2ML+1~L. The 
multiplication can be easily and quickly achieved in the 
concatenator 340 by left shifting the ?rst sum ML+1 bits and 

then subtracting the ?rst sum therefrom. HoWever, the 
subtraction can be omitted due to the cost of hardWare 

implementation. The result is that only a small amount of 

memory (2ML+2—1) is Wasted for storing the rip map in 
memory. The addition can thus be formed by concatenating 
the left shifted ?rst sum With the second sum. The left shifted 

?rst sum Would thus form the ML+1 most signi?cant bits 

(most signi?cant fragment) and the second sum Would form 
the ML least signi?cant bits of the partial concatenated sum 

(least signi?cant fragment). 
The second adder stage 350 is illustratively implemented 

With an adder circuit 342. The adder circuit 342 receives the 

concatenated sum outputted by the concatenator circuit 340 

and the parameter “Base” from the draWing processor 132 
(FIG. 5). The adder circuit 342 adds these tWo values 

together to produce the linear address TLA(R)=Base+RSL~ 
(GOV+v)+GOU+u. The linear address TLA(R) thus pro 
duced may be outputted to the draWing processor 132 (FIG. 
5) or directly to memory, e.g., the frame buffer 134 (FIG. 5). 

FIG. 10 illustrates another address generator 400 Which 

can generate linear addresses for either the mip map physi 
cally stored in memory as illustrated in FIG. 5 or the rip map 

physically stored in memory as illustrated in FIG. 6. 

Preliminarily, the draWing processor 132 (FIG. 5) deter 
mines the parameters “Base,” “GO,” “u,” and “2ML_d~v” or 

the parameters “Base,” “v,” “GOV,” “u,” and “GOU.” 
Furthermore, the draWing processor 132 (FIG. 5) illustra 
tively also generates a selector control signal S. 
The address generator 400 has a ?rst multiplexer stage 

410, a ?rst adder stage 420, a concatenator circuit 430, a 

second multiplexer stage 440 and a second adder stage 450. 

The ?rst multiplexer stage is illustratively implemented With 
three multiplexer circuits 412, 414, and 416. The ?rst 
multiplexer circuit 412 receives from the draWing processor 

132 (FIG. 5), as selectable inputs, the parameters Base and 
v. The second multiplexer circuit 414 receives from the 

draWing processor 132 (FIG. 5), as selectable inputs, the 
parameters GO and GOV. The third multiplexer circuit 416 

receives from the draWing processor 132 (FIG. 5), as select 
able inputs, the parameters 2ML_d~v and GOU. Furthermore, 
the ?rst, second and third multiplexer circuits 412, 414 and 
416 receive the selector control signal S from the draWing 

processor 132 (FIG. 5). In response to the selector control 
signal S, the multiplexer circuits 412, 414 and 416 select, as 
?rst second and third outputs, either Base, GO and 2ML_d~v, 
respectively, or v, GOV and GOU respectively. The draWing 

processor 32 (FIG. 5) generates an appropriate signal S for 
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selecting Base, GO and 2ML_d~v for mip map linear address 
calculation and v, GOV and GOU for rip map linear address 
calculation. 

The adder stage 420 illustratively includes tWo adder 

circuits 422 and 424. The adder circuit 422 receives the ?rst 

and second outputs of the ?rst multiplexer stage 410 and 
adds them together to produce a ?rst sum. The adder circuit 

424 receives the third output and the parameter u (from the 
draWing processor 132 of FIG. 5) and adds the tWo together 
to produce a second sum. 

The concatenator 430 receives the second sum and the 

?rst sum and concatenates them together in a similar fashion 

as the concatenator 340 (FIG. 9). The concatenator 430 
produces a concatenated sum from the ?rst and second sums. 

The second multiplexer stage 440 is illustratively imple 
mented With tWo multiplexer circuits 442 and 444. The 

multiplexer 442 receives, as selectable inputs, the ?rst sum 

and the concatenated sum. The multiplexer 444 receives, as 

selectable inputs, the second sum and the parameter Base 

(from the draWing processor 132 of FIG. 5). The multiplex 
ers 442 and 444 also both receive the signal S from the 

draWing processor 132 (FIG. 5) as a selector control input. 
In response to the signal S, the multiplexers 442 and 444, 
select as fourth and ?fth outputs, either the ?rst sum and the 

second sum, respectively, or the concatenated sum and Base, 

respectively. The draWing processor 132 (FIG. 5) generates 
an appropriate signal S for selecting the ?rst and second 
sums for mip map address calculation and for selecting the 

concatenated sum and Base for rip map address calculation. 

The second adder stage 450 is illustratively implemented 
using an adder circuit 452. The adder circuit 452 receives the 

fourth and ?fth outputs selected by the multiplexer stage 
440. The adder circuit adds these tWo outputs together to 

produce the linear address TLA. 
In short, a linear address organiZation for physically 

storing mip maps and rip maps in memory is disclosed. The 
subsampled data arrays of the mip maps and rip maps are 
sequentially stored in continuous subsequences of a con 

tinuous sequence of memory addresses. The subsequences 

of addresses are assigned in order of level of subsampling of 

the data arrays Which make up the mip map or rip map. In 

the case of a mip map, the subsequences are assigned to the 

data arrays in order of increasing level of subsampling. In 
the case of rip maps, the data arrays are segregated into 

groups according to a ?rst one of the tWo subsampling 

directions, such that each array in a particular group has the 
same level of subsampling in the ?rst direction. Subse 

quences are assigned to each group of data arrays. The 

addresses of the subsequences are assigned Within each 

group on a span by span basis Where a span includes the 

texture data in a particular direction of each data array in 

order of increasing level in the second one of the tWo 

subsampling directions. Address generators are also pro 

vided for assisting in generating linear addresses to texture 

data With speci?c coordinates (u,v) in arrays having particu 
lar levels of subsampling. 

Finally, the above-discussion is intended to be merely 
illustrative of the invention. Those having ordinary skill in 
the art may devise numerous alternative embodiments With 

out departing from the spirit and scope of the folloWing 
claims. 

The invention claimed is: 

1. A method for storing texture data in a memory com 

prising: 
organiZing said texture data into plural arrays of data, 

including a ?rst data array, containing plural texture 

data values at a maximum resolution, and other data 
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18 
arrays, each containing a different level of subsampling 

of said data values of said ?rst data array, and 

storing said texture data of said plural arrays of data in 

continuous, subsequences of a continuous sequence of 

linear memory addresses, such that a ?rst level and a 

next level of subsampling being retrievable utiliZing a 

same base address, said subsequences being assigned to 

said texture data of said arrays in order of level of 

subsampling. 
2. The method of claim 1 Wherein each data array is a 

tWo-dimensional array of textured data. 

3. The method of claim 2 Wherein said data arrays form 

a mip map With ML+1 data arrays, Where ML is an integer 

21, wherein each data array is subsampled With the same 

level of subsampling in each direction of said array, and 

Wherein each of said subsequences of linear addresses is 

assigned to a respective one of said data arrays in order of 

increasing level of subsampling. 
4. The method of claim 2 Wherein said data arrays form 

a rip map With (ML+1)2 data arrays, Where ML is an integer 

21, each of said data arrays being subsampled at a different 

combination of ?rst and second levels of subsamplings in 

?rst and second directions of said arrays, respectively, 

Wherein said data arrays are divided into groups such that 

each data array of each one of said groups is subsampled at 

the same ?rst level of subsampling, in said ?rst direction, 

Wherein each group has at least one span, including one 

span for each different coordinate value, in said ?rst 

direction, of a domain of texture data in said group, 

Wherein each span comprises one subsequence of tex 

ture data from each data array in said group, arranged 

in order of increasing second level of subsampling, 

Wherein each of said one subsequences of texture data 

comprises texture data from a corresponding array, 

With the same coordinate in said ?rst direction as said 

span, said texture data being arranged in said one 

subsequence in order of coordinate value in said second 

direction, 
Wherein each of said subsequences is assigned to said 

spans in order of increasing second level of subsam 

pling and order of increasing coordinate in said second 

direction. 

5. The method of claim 3 Wherein said texture data of an 

array With a particular level d of subsampling With tWo 

dimensional coordinate address (u,v) is stored at memory 

address TLAW), Where 

TLAM) : Base + LO + GO 

ML 

2 4", if d i 0 
G0 : i:MLid+l 

0, if d = 0 

Where Base is a base address in Which a ?rst texture data 

corresponding to coordinates (u=0,v=0) in said ?rst array of 

level d=0 are stored, and i is an integer index. 

6. The method of claim 4 Wherein said texture data of an 

array With a particular level (du,dv) of subsampling With 
tWo-dimensional coordinate address (u,v) is stored at 

memory address TLA(R), Where 
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TLAW : Base+ G0 

CV = GOV + v 

GOU : i:MLidu+l 

0 if du : 0 

ML _ 

21 if dv # 0 

GOV : j:MLidv+l 

Where Base is a base address in Which a ?rst texture data 

corresponding to coordinates (u=0, v=0) in said ?rst array of 

level (du=0,dv=0) are stored, and 
i an j are integer indexes. 

7. An apparatus for calculating a linear memory address 

of a texture data having coordinates (u,v) in a particular level 

d of subsampling of a mip map, Wherein said mip map 
includes ML+1 arrays of texture data, each With a different 

level of subsampling 0,1, . . . ,ML, comprising: 

adder circuitry for receiving a base address Base, a global 

offset GO, u and 2ML_d*v, for adding Base to GO to 

produce a ?rst sum, for adding u to 2ML_d*v to produce 

a second sum, and for adding said ?rst and second sums 

to produce said linear memory address of said texture 

data 

wherein said texture data of each data array are stored in 

a continuous subsequence of a continuous sequence of 

linear memory addresses, beginning With address Base, 
said subsequences being assigned to each data array in 
order of increasing level d of subsampling, such that a 

?rst level and a next level of subsampling being retriev 

able utiliZing said base address Base. 
8. The apparatus of claim 7 Wherein said global offset GO 

is given by: 

GO: 

Where i is an integer index. 

9. An apparatus for calculating a linear memory address 

of a texture data having 2-D virtual address coordinates (u,v) 

in a particular level (du,dv) of subsampling of a rip map, 
Wherein said rip map includes (ML+1)2 levels of texture 
data, With different combinations of ?rst and second levels 

of subsampling (du,dv) in directions of said coordinates u 

and v, respectively, (0,0), (0,1), . . . , (0,ML), (1,0), (1,1), . . . , 

(1,ML), (ML,ML), comprising: 
a ?rst adder stage for adding v to a ?rst global offset GOV 

to produce a ?rst sum, and for adding u to a second 

global offset GOU to produce a second sum, 

a concatenator circuit, for concatenating said ?rst and 

second sums to produce a concatenated sum, said ?rst 

sum forming a most signi?cant fragment of said con 

catenated sum and said second sum forming a least 

signi?cant fragment of said concatenated sum, and 

a second adder stage for adding said concatenated sum to 

a base address Base to produce said linear address, 
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Wherein said data arrays are divided into groups such that 

each data array of each one of said groups is sub 

sampled at the same ?rst level of subsampling, Wherein 
each group has at least one span, including one span for 

each different coordinate value, in a ?rst direction, of a 
domain of said texture data in said group, Wherein each 

span comprises one subsequence of texture data from 
each data array in said group, arranged in order of 
increasing second level of subsampling, Wherein each 
of said one subsequences of texture data comprises 

texture data from a corresponding array, With the same 

coordinate value in a second direction as said span, said 

texture data being arranged in said one subsequence of 
texture data in order of coordinate in said second 

direction, Wherein each of plural continuous subse 
quences of a continuous subsequence of linear 

addresses is assigned to said spans in order of increas 

ing second level of subsampling and order of increasing 
coordinate value in said second direction, such that a 

?rst level and a next level of subsampling being retriev 

able utiliZing the same base address. 

10. The apparatus of claim 9 Wherein GOV and GOU are 

given by: 

ML I 

GOU Z 2‘ if a” i 0 
i:MLidu+l 

0 if du : 0 

ML _ 

21 if dv # 0 

GOV : j:MLidv+l 

0 if dv : 0 

Where i and i are integer indexes. 

11. A method for storing texture data in a memory 

comprising: 
organiZing said texture data into plural arrays of data, 

including a ?rst data array, containing plural texture 
data values at a maximum resolution, and other data 

arrays, each containing a different level of subsampling 
of said data values of said ?rst data array for a ?rst 

portion of data arrays and a second portion of data 

arrays, and 

storing said texture data of said plural arrays of data in 

continuous, subsequences of a continuous sequence of 

linear memory addresses, said subsequences being 
assigned to said texture data of said plural arrays of data 

in order of level of subsampling, 

Wherein said ?rst portion of data arrays form a mip map 

With ML+1 data arrays, Where ML is an integer 21, 

wherein each of said ?rst portion of data arrays is 

subsampled With a ?rst level of subsampling in each 

direction of said array, and Wherein each of said sub 

sequences of linear addresses is assigned to a respective 

one of said ?rst portion of data arrays in order of 

increasing level of subsampling, 

Wherein said second portion of data arrays form a rip map 

With (ML+1)2 data arrays, Where ML is an integer 21, 
each of said second portion of data arrays being sub 
sampled at a different combination of second and third 

levels of subsamplings in ?rst and second directions of 

said arrays, respectively, Wherein said second portion 
of data arrays are divided into groups such that each 

data array of each one of said groups is subsampled at 

the same second level of subsampling, in said ?rst 

direction, 
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wherein each group has at least one span, including one 13. The method of claim 11 Wherein said texture data of 

span for each different coord1nate value, in said ?rst an array of Said Second portion of data arrays With a 
direction, of a domain of teXture data in said group, 
Wherein each span comprises one subsequence of teX 
ture data from each data array in said group, arranged 
in order of increasing third level of subsampling, 
Wherein each of said one subsequences of teXture data 

comprises teXture data from a corresponding array, TlA(R)=Base+GO 
With the same coordinate in said ?rst direction as said 

span, said teXture data being arranged in said one 

particular level (du,dv) of subsampling With tWo 

dimensional coordinate address (u,v) is stored at memory 

address TLA(R), Where 

subsequence in order of coordinate value in said second GU = GOU + u 

direction, 
Wherein each of said subsequences is assigned to said at GV : GOV + v 

least one span in order of increasing third level of ML _ 

subsampling and order of increasing coordinate in said 15 GOU : Z 2‘ if du # 0 
second direction. IIMbdHH 

12. The method of claim 11 Wherein said texture data of 0 if d” = 0 

an array of said ?rst portion of data arrays With a particular 

level d of subsampling With tWo-dimensional coordinate 
. 21' if dv ¢ 0 

address (u,v) is stored at memory address TLA(M), where 20 GOV = jIMLidM 

ML 

TLAM) : Base + LO + GO 

LO=2ML’d-v+u . . . 

Where Base is a base address in WhlCh a ?rst teXture data 

ii 4‘. if d i 0 25 corresponding to coordinates (u=0, v=0) in said ?rst array of 

G0 = [:MLid+1 , level (du=0,dv=0) are stored, and i an j are integer indexes. 

0’ if d = 0 14. The method of claim 1, Wherein said ?rst portion and 

said second portion of said data arrays are stored, such that 

Where Base is a base address in Which a ?rst teXture data 30 a ?rst level and a next level of subsampling may be retrieved 

corresponding to coordinates (u=0,v=0) in said ?rst array of utilizing Same base addre55~ 

level d=0 are stored, and 

i is an integer index. * * * * * 


