
©
 2

0
1

2
 b

e
i
P

ro
f.

 D
r.

 U
w

e
 K

a
s
te

n
s

1. Introduction
Domain-Specific Knowledge

GSS-1.1

A task: „Implement a program to store collections of words, that describe animals“

Categories of knowledge required to carry out a task:

General: knowledge applicable to a wide variety of tasks
e.g. English words; program in C

Domain-specific: knowledge applicable to all tasks of this type
e.g. group word in sets;
implement arbitrary numbers of sets of strings in C

Task-specific: knowledge about the particular task at hand
e.g. sets of words to characterize animals

A domain-specific language is used to describe the particular task

A domain-specific generator creates a C program that stores the
particular set of strings.

©
 2

0
0

7
 b

e
i
P

ro
f.

 D
r.

 U
w

e
 K

a
s
te

n
s

Example for a Domain-Specific Generator
GSS-1.2

colors{red blue green}

bugs{ant spider fly moth bee}

verbs{crawl walk run fly}

int number_of_sets = 3;

char *name_of_set[] = {
"colors",
"bugs",
"verbs"};

int size_of_set[] = {
3,
5,
4};

char *set_of_colors[] = {
"red",
"blue",
"green"};

char *set_of_bugs[] = {
"ant",
"spider",
"fly",
"moth",
"bee"};

char *set_of_verbs[] = {
"crawl",
"walk",
"run",
"fly"};

char **values_of_set[] = {
set_of_colors,
set_of_bugs,
set_of_verbs};

Input: collection of words: Output: C header file:

• simple domain-specific description

• errors easier to detect in the domain-specific
description

• a number of tasks of the same kind

• constraints on representation using general
knowledge require a more complex and detailed
description (implementation)

• consistency conditions in the representation
using general knowledge are difficult to check

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

The Generator Principle

Application generator: the most effective reuse method
[Ch. W. Kruger: Software Reuse]

narrow, specific application domain completely understood
Implementation automatically generated

Abstractions on a high level transformed into executable software
(using domain knowledge)

User understands Generator expert understands
abstractions of the application domain implementation methods

wide cognitive distance
generator makes expert knowledge available

Examples: Data base report generator
GUI generator
Parser generator

GSS-1.3

Task description Generator Implementation

©
 2

0
1
0
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Domain-Specific Languages for Generators
GSS-1.4

Task description Generator Implementation

Generator: transforms a specification language
into an executable program or/and into data,
applies domain-specific methods and techniques

Domain-specific languages (DSL)

Domains outside of informatics
Robot control
Stock exchange
Control of production lines
Music scores

Software engineering domains
Data base reports
User interfaces
Test descriptions
Representation of data structures (XML)

Language implementation as domain
Scanner specified by regular expressions
Parser specified by a context-free grammar
Language implementation specified for Eli

Some GSS Projects

Party organization
Soccer teams
Tutorial organization
Shopping lists
Train tracks layout

LED descriptions to VHDL
SimpleUML to XMI
Rule-based XML transformation

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Reuse of Products
GSS-1.5

Product What is reused?

Library of functions Implementation

Module, component Code

generic module Planned variants of code

Software architecture Design

Framework Design and code

Design pattern Strategy for design and construction

Generator Knowledge, how to construct
implementations from descriptions

Construction process Knowledge, how to use and
combine tools to build software

Ch. W. Kruger: Software Reuse, ACM Computing Surveys, 24(2), 1992

R. Prieto-Diaz: Status Report: Software reusability, IEEE Software, 10(3), 1993

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Organisation of Reuse
GSS-1.6

How

ad hoc

planned

automatic

Products

• Code is copied and modified

• adaptation of OO classes
incrementally in sub-classes

• oo libraries, frameworks

• Specialization of classes

• Generators,
intelligent development
environments

Consequences

• no a priori costs

• very dangerous for
maintanance

• high a priori costs

• effective reuse

• high a priori costs

• very effective reuse

• wide cognitive distance

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Roles of Provider and Reuser
GSS-1.7

Provider and reuser are on the
same level of experience:

• The same person, group of
persons, profession

• Provider assumes
his own level of understanding
for the reuser

• Examples: reuse of code,
design patterns

Provider is an expert,
reusers are amateurs:

• Reuse bridges a wide cognitive distance

• Expert knowledge is made available for
non-experts

• Application domain has to be
completely understood by the expert;
that knowledge is then encapsulated

• Requires domain-specific notions on a
high level

• Examples: Generators, frameworks,
intelligent development environments

Reusable products are

• Constructed and prepared for being reused. Role: provider

• Reused for a particular application. Role: reuser

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Project: Structure Generator (Lect. Ch. 8, Book Ch. 7)

GSS-1.8

Generator implements described record structures
useful tool in software construction

Set of record
descriptions

Structur C++ class
generator declarations

Customer (addr: Address;

account: int;)

Address (name: String;

zip: int;

city: String;)

import String from "util.h"

#include "util.h"

typedef class Customer_Cl *Customer;

typedef class Address_Cl *Address;

class Customer_Cl {

private:

Address addr_fld;

int account_fld;

public:

Customer_Cl

(Address addr, int account)

{ addr_fld=addr;

account_fld=account; }

...

};

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Task Decomposition for the Implementation of
Domain-Specific Languages

Corresponds to task decomposition for
frontends of compilers for programming languages (no machine code generation)
source-to-source transformation

GSS-1.9

Structuring

Translation

Syntactic analysis

Transformation

Semantic analysis

Scanning

Conversion

Parsing

Tree construction

Name analysis

Property analysis

Data mapping

Action mapping

Lexical analysis

[W. M. Waite, L. R. Carter: Compiler Construction, Harper Collins College Publisher, 1993]

©
 2

0
1
2
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Design and Specification of a DSL
GSS-1.9a

S
tr

u
c

tu
ri

n
g

T
ra

n
s

la
ti

o
n

Syntactic analysis

Transformation

Semantic analysis

Design the notation of tokens

Design the structure of descriptions

Design binding rules for names and
properties of entities.

Design the translation into target code.

Specify it by text patterns and their intantiation

Lexical analysis
Specify them by regular expressions

Specify it by a context-free grammar

Specify them by an attribute grammar

Customer (addr: Address;

account: int;)

Address (name: String;

zip: int;

city: String;)

import String from "util.h"

©
 2

0
1
2
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Task Decomposition for the Structure Generator
GSS-1.10

S
tr

u
c

tu
ri

n
g

T
ra

n
s

la
ti

o
n

Syntactic analysis

Transformation

Semantic analysis

Recognize the symbols of the description

Store and encode identifiers

Recognize the structure of the description

Represent the structure by a tree

Bind names to structures and fields

Store properties and check them

Generate class declarations with

constructors and access methods

Lexical analysis

Customer (addr: Address;

account: int;)

Address (name: String;

zip: int;

city: String;)

import String from "util.h"

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Eli Generates a Structure Generator
GSS-1.11

Set of record
descriptions

Structure C++ class
generator declarations

Generator Implementation

.

Generator Implementation

Generator Implementation

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

Task Decomposition Determines the Architecture of the Generator
GSS-1.12

Lexical

analysis

Trans-

formation

Source text Symbol sequence Structure tree Attr. structure tree Target text

Input processing
Scanning

Conversion

Symbol coding Parsing
Tree construction

Name analysis

Property analysis

Definition table
Text generation

Semantic

analysis

Syntactic

analysis

[1, 1] Ident: 12

[2, 3] open

[2, 4] Ident: 13

[2, 8] colon

[2,10] Ident: 14

Customer

(addr: Address;

 account: int;

)

Fields

Field Field

FieldName FieldName

TypeName TypeName

Fields

Field Field

FieldName FieldName

TypeName TypeName

isField isField

class Customer_Cl

{ private:

Address addr_fld;

int account_fld;

}

Attribute computation in the tree

Specialized tools solve specific sub-tasks for creating of the product:

©
 2

0
0
7
 b

e
i

P
ro

f.
 D

r.
 U

w
e
 K

a
s
te

n
s

The Eli System
GSS-1.13

• Framework for language implementation

• Suitable for any kind of textual language:
domain-specific languages,
programming languages

• state-of-the-art compiler technique

• Based on the (complete)
task decomposition (cf. GSS-1.9)

• Automatic construction process

• Used for many practical projects world wide

• Developed, extended, and maintained since1989 by
William M. Waite (University of Colorado at Boulder),
Uwe Kastens (University of Paderborn), and
Antony M. Sloane (Macquarie University, Sydney)

• Freely available via Internet from
http://eli-project.sourceforge.net

©
 2

0
0

7
 b

e
i
P

ro
f.

 D
r.

 U
w

e
 K

a
s
te

n
s

Hints for Using Eli
GSS-1.14

1. Start Eli:
/comp/eli/current/bin/eli [-c cacheLocation][-r]

Without -c a cache is used/created in directory ~/.ODIN. -r resets the cache

2. Cache:
Eli stores all intermediate products in cache, a tree of directories and files.
Instead of recomputing a product, Eli reuses it from the cache.
The cache contains only derived data; can be recomputed at any time.

3. Eli Documentation:
Guide for New Eli Users: Introduction including a little tutorial
Products and Parameters and Quick Reference Card: Description of Eli commands
Translation Tasks: Conceptual description of central phases of language implementation.
Reference Manuals, Tools and Libraries in Eli, Tutorials

4. Eli Commands:
A common form: Specification : Product > Target e.g.
Wrapper.fw : exe > .

from the specification derive the executable and store it in the current directory
Wrapper.fw : exe : warning >

from ... derive the executable, derive the warnings produced and show them

5. Eli Specifications: A set of files of specific file types.

6. Literate Programming: FunnelWeb files comprise specifications and their documentation

