
Master Thesis

Supporting the Modeling of Business
Processes Using Semi-Automated Web
Service Composition Techniques

Jan Schaffner

Supervisors
Prof. Dr. Mathias Weske, Hasso-Plattner-Institute, Potsdam, Germany
Dipl.-Inform. Cafer Tosun, SAP Labs, Palo Alto, USA
Dipl.-Inform. Harald Meyer, Hasso-Plattner-Institute, Potsdam, Germany

December 22, 2006

Abstract

When creating service compositions from a very large number of atomic service
operations, it is inherently difficult for modelers to discover suitable operations for
their specific goals. Automated service composition claims to solve this problem, yet,
it will only work when complete and correct ontologies along with service descriptions
are in place.

In this thesis, we present a semi-automated modeling environment for Web service
compositions. At every step in the process of creating the composition, the en-
vironment suggests a number of relevant Web services the modeler. Furthermore,
the environment summarizes the problems that would prevent the composed service
from being invocable. The environment is also able to insert composed services into
the composition at suitable places, so that the atomic services of the inserted com-
position produce data artifacts that are missing in the parent service composition.

The main contributions of this thesis are the definition of three mixed initiative
features for semi-automated composition based on a rigorous formal model, an in-
dustry scenario underpinning the usefulness of these features, and a prototypical
implementation demonstrating their applicability.

Our results show that this mixed initiative approach significantly alleviates the cre-
ation of composed services. We validated our implementation with the help of SAP,
the leading vendor of business applications, using their processes and their service
repository, which spans across multiple functional areas of enterprise computing.

iv

Zusammenfassung

Bei der Dienstkomposition mit einer großen Anzahl von Basisoperationen fällt es
dem Modellierer häufig schwer, die passenden Operationen für sein konkretes Ziel
auszuwählen. Die automatische Dienstkomposition stellt eine Lösung für dieses
Problem dar, jedoch funktioniert diese ausschließlich, wenn vollständiges und kor-
rekt spezifiziertes Domänenwissen in Form von Ontologien sowie semantische Dien-
stbeschreibungen verfügbar sind.

In dieser Arbeit wird eine Modellierungsumgebung für die semi-automatische Kom-
position von Web Services vorgestellt. Diese Umgebung schlägt dem Modellierer
in jedem Schritt der Erstellung der Dienstkomposition relevante Web Services vor.
Weiterhin werden die Probleme zusammengefasst, welche die Ausführung der zu
erstellenden Dienstkomposition verhindern würden. Der Editor ist außerdem in
der Lage, Teilkompositionen an passenden Stellen in eine Dienstkomposition der-
art einzufügen, dass die Operationen der Teilkomposition fehlende Datenartefakte
der übergeordneten Komposition bereitstellen.

Die wesentlichen Beiträge dieser Arbeit sind die Definition der drei “mixed initia-
tive” Eigenschaften von semi-automatischer Dienstkomposition auf der Basis eines
formalen Modells. Zudem wird die Nützlichkeit dieser Eigenschaften durch ein
Anwendungsszenario aus der Industrie belegt. Die praktische Anwendbarkeit des
vorgestellten Ansatzes wird durch eine prototypische Implementierung einer Model-
lierungsumgebung gezeigt, welche die “mixed initiative” Eigenschaften unterstützt.

Die Ergebnisse der Arbeit zeigen, dass der vorgestellte Ansatz die manuelle Erstel-
lung von Dienstkompositionen deutlich vereinfacht. Die Implementierung wurde
zusammen mit SAP, dem führenden Anbieter betriebswirtschaftlicher Anwendun-
gen, validiert. Als Ausgangsbasis für die Validierung wurden die Geschäftsprozesse
und das Service Repository von SAP herangezogen, das sich über verschiedenste
funktionale Bereiche betriebswirtschaftlicher Software erstreckt.

vi

Acknowledgements

I would like to thank Prof. Dr. Mathias Weske for supervising this work. I would also
like to thank Harald Meyer for the many insightful conversations and hints during
the course of writing this thesis.

I also wish to thank Dr. Vishal Sikka for the opportunity to carry out the necessary
research in his group at SAP Labs in Palo Alto. In particular, I would like to thank
Cafer Tosun for his ongoing support of this work. Furthermore, I would like to
thank Heinz Roggenkemper, Natalia Shmoilova, Shuyuan Chen and Prof. Dr. Hasso
Plattner for inspiring discussions.

I would also like to thank my parents for their support and encouragement and Julia
for her enormous understanding and patience.

viii

Contents

1 Introduction 1

1.1 Preliminary Definitions . 2

1.1.1 Service . 2

1.1.2 Service-Oriented Architectures 3

1.1.3 Web Service Composition . 3

1.1.4 Ontologies . 4

1.2 Goals and Structure . 5

2 Business Process Management 7

2.1 BPM in General . 7

2.2 BPM at SAP . 8

2.2.1 Modeling tools . 8

2.2.2 Enterprise SOA . 10

2.2.3 Conceptual foundations of Enterprise SOA 12

3 State of the Art in Semantic Descriptions and Semi-Automated

Composition 15

3.1 Semantic Descriptions . 15

3.1.1 OWL-S . 15

3.1.2 WSMO . 17

3.1.3 SWSF . 19

3.1.4 WSDL-S . 20

3.1.5 SAWSDL . 21

3.1.6 Evaluation . 21

3.2 Semi-Automated Composition . 26

x Contents

3.2.1 Web Service Composer . 26

3.2.2 Composition Analysis Tool . 27

3.2.3 PASSAT . 28

3.2.4 IRS-III . 29

3.2.5 SSDC . 30

4 A Motivating Scenario for Semi-Automated Composition 31

4.1 Scenario Overview . 32

4.1.1 Employee services . 32

4.1.2 Manager services . 34

4.2 Scenario Specification . 35

4.2.1 Ontology . 36

4.2.2 Service Operations . 38

5 Mixed Initiative Features for Semi-Automated Composition 41

5.1 A Formal Model for Service Compositions and Capabilities 42

5.1.1 Service Compositions and Ontologies 42

5.1.2 The Class of Information-Providing Services 44

5.1.3 The Class of World-Altering Services 46

5.2 Filter Inappropriate Services . 47

5.2.1 Business Scenario . 48

5.2.2 Formal Description . 50

5.2.3 Possible Extensions . 51

5.3 Check Validity . 52

5.3.1 Business Scenario . 53

5.3.2 Formal Description . 53

5.3.3 Possible Extensions . 56

5.4 Suggest Partial Plans . 58

5.4.1 Business Scenario . 58

5.4.2 Formal Description . 59

5.4.3 Possible Extensions . 61

Contents xi

6 Evaluation of Related Work in Semi-Automated Service Composi-

tion 63

6.1 Evaluation According to the Mixed Initiative Features 63

6.1.1 Support for Filter Inappropriate Services 63

6.1.2 Support for Suggest Partial Plans 65

6.1.3 Support for Check Validity . 65

6.2 Evaluation According to Additional Criteria 66

7 Designing a Semi-Automated Composition System 69

7.1 Requirements Analysis . 69

7.2 Architectural Considerations . 71

7.3 Realization of Filter Inappropriate Services 72

7.3.1 The method findInvocableServicesOrdered 74

7.3.2 The method findNearlyInvocableServices 77

7.4 Realization of Check Validity . 78

7.4.1 Detecting Unsatisfied Inputs 79

7.4.2 Detecting Irrelevant Operations 81

7.4.3 Detecting Potentially Redundant Operations 83

7.5 Realization of Suggest Partial Plans 84

8 Introducing Semi-Automated Composition at SAP 87

9 Conclusion 93

9.1 Contributions . 94

9.2 Future Work . 94

A Leave Request Scenario Specification 97

A.1 Leave Request Domain Ontology . 97

A.2 Leave Request Enterprise Service Operations 100

A.2.1 Read Leave Request Configuration by Employee 100

A.2.2 Read Employee Time Account 100

A.2.3 Find Leave Request by Employee 101

A.2.4 Find Leave Request Allowed Approver by Employee 102

xii Contents

A.2.5 Check Create Leave Request 103

A.2.6 Create Leave Request . 103

A.2.7 Find Leave Request by ID . 104

A.2.8 Find Reporting Employee by Employee 104

A.2.9 Check Approve Leave Request 105

A.2.10 Approve Leave Request . 106

A.2.11 Check Reject Leave Request 107

A.2.12 Reject Leave Request . 107

Bibliography 109

List of Figures

1.1 Roles in the Service-Oriented Architecture 3

2.1 The BPM lifecycle (from [68]) . 8

2.2 Types of business processes supported by SAP systems 11

2.3 Enterprise SOA Metamodel . 12

3.1 Top level of the OWL-S service ontology 16

4.1 Leave Request Scenario . 33

4.2 Concepts in the leave request domain ontology 37

4.3 Relations in the leave request domain ontology 38

5.1 Mixed initiative features . 41

5.2 A sample service composition graph according to definition 5.1. . . . 44

5.3 The leave request scenario from an employee perspective 48

5.4 Screenshot of the modeling tool . 49

5.5 Agenda summarizing problems in a composition 53

5.6 Two disconnected parts of a service composition 59

7.1 The environment of the semi-automated service composer 72

7.2 Interactions among the different components of the semi-automated
composer . 73

7.3 Different kinds of service operations 74

7.4 Example illustrating the concepts ‘match distance’ and ‘total match
distance’ . 76

8.1 The PIC Governance Process . 88

xiv List of Figures

List of Tables

3.1 Evaluation of OWL-S, WSMO, SWSF, WSDL-S and SAWSDL 22

6.1 Mixed initiative features supported by existing semi-automated com-
position environments . 64

6.2 Evaluation of existing approaches for semi-automated composition . . 67

xvi List of Tables

Listings

4.1 The concept ‘person’ and its subconcepts 36

4.2 A bag of ‘employee’ concepts . 37

4.3 The relation ‘hasRequestor’ . 38

4.4 Precondition and assumption of the ‘Check Reject Leave Request’
operation . 39

4.5 Postcondition and effect of the ‘Find Leave Request Allowed Approver
by Employee’ operation . 39

4.6 Declaration of a shared variable . 40

4.7 A nonfunctional property of a service operation 40

7.1 Java interface of ‘Filter Inappropriate Services’ 73

7.2 Compute ordered list of invocable service operations 75

7.3 Compute list of nearly invocable service operations 78

7.4 Detecting unsatisfied inputs in the service composition 79

7.5 Recursive traversion of the composition graph 80

7.6 Recursive traversion of the composition graph in the special case of
an OR-join . 81

7.7 Detecting irrelevant operations in the service composition 82

7.8 Detecting potentially redundant operations in the service composition 83

7.9 Recursive traversion of the composition graph for detecting poten-
tially redundant operations . 84

A.1 The leave request domain ontology 97

A.2 WSML specification of ‘Read Leave Request Configuration by Em-
ployee’ . 100

A.3 WSML specification of ‘Read Employee Time Account’ 100

A.4 WSML specification of ‘Find Leave Request by Employee’ 101

A.5 WSML specification of ‘Find Leave Request Allowed Approver by
Employee’ . 102

xviii Listings

A.6 WSML specification of ‘Check Create Leave Request’ 103

A.7 WSML specification of ‘Create Leave Request’ 103

A.8 WSML specification of ‘Find Leave Request by ID’ 104

A.9 WSML specification of ‘Find Reporting Employee by Employee’ . . . 104

A.10 WSML specification of ‘Check Approve Leave Request’ 105

A.11 WSML specification of ‘Approve Leave Request’ 106

A.12 WSML specification of ‘Check Reject Leave Request’ 107

A.13 WSML specification of ‘Reject Leave Request’ 107

1. Introduction

Industry has recognized business process management systems (BPMS) [68] as a
way to realize their strategic focus on business processes [46]. At the same time,
Web services have been evolving as a promising approach to provide value added
functionality across organizational borders. They can greatly ease the integration
of distributed software systems. Standards like XLANG [64] or the Web Services
Business Process Execution Language (WS-BPEL [19]) allow using Web services as
a means to realize business processes. In doing so, the actual Web service operations
represent activities in business processes. Due to the technologies underlying Web
services ([25, 49, 11]), business processes that are composed of Web services can
involve multiple business parties in a transparent manner. According to Forrester
Research [23], many currently available BPMSs are service-oriented and offer one
way to implement composite applications in service-oriented environments. Business
processes can be modeled as compositions of Web service operations. In general,
these compositions are created manually: A process expert creates a static process
model which can be translated into an executable language, i.e. WS-BPEL, and,
then, be enacted. Yet, the manual creation of Web service compositions presents a
very complex task, which is due to the following problems:

At design time, modelers have to anticipate all possible cases that shall be handled
by the process they are creating: All imaginable alternative paths in the execution
of the process flow have be thought of and specified. Also, all failures that could
possibly arise during execution must be considered. The modelers have to interpret
the names, interfaces and - if applicable - textual descriptions of the services they
use in the composition in order to understand their capabilities and nonfunctional
properties. That is a prerequisite for the delicate task of correctly defining both the
control and data flow among the service operations. Due to this complexity, it seems
likely that the modeler introduces errors into the service composition. Handcrafted
service compositions are rarely optimal as they contain tradeoffs. They are likely
to become complex and hard to change, and prove, thus, difficult and expensive to
maintain.

2 1. Introduction

In recent years, the above mentioned reasons have served as a rationale to automate
the creation of the Web service compositions ([71, 51, 60, 8]). Academia has pro-
posed systems that automatically create executable plans for each individual case
at runtime. This opposes the idea of creating composed services that cover as many
cases as possible. The plans are produced in a fully automated fashion, based on
domain knowledge, i.e. ontologies [24], and semantic service descriptions.

While automated planners are able to reduce complexity, inflexibility and error-
proneness akin to the creation of composed services, several drawbacks can be iden-
tified: Automated planning relies on the availability of complete formal representa-
tions of the domain knowledge and the individual cases that need to be resolved, i.e.
their initial state and goal state need to be formally encoded.

The task of formally specifying a domain in sufficient fidelity, so that it can be used
for automated planning presents a huge challenge. Especially for complex domains
we can legitimately assume that complete ontologies will not be available in the
near future. Incomplete domain knowledge, however, will often result in a situation
that an automated planner fails to produce a plan. Erroneous domain knowledge,
moreover, can result in situations where a planner finds wrong plans. In contrast,
human planners can draw upon their experience with a specific domain when they
create a composed service. This experience will often compensate for missing or
erroneous ontologies.

Moreover, the fact that fully automated service composition methods do not require
a human being in the loop poses an organizational and juridical impediment: In
business reality it is required that concrete persons are responsible for a particu-
lar business process. This has lowered industry acceptance of automated planning
techniques, thus, slowing down the transition from research to industry.

The goal of this thesis is to show that the techniques of automated planning can
be used to alleviate the manual creation of business processes by a human planner.
The incorporation of the matchmaking technologies as used by automated planners
into a semi-automated modeling tool for creating enterprise service compositions has
several advantages: On the one hand, the problems of complexity, inflexibility and
error-proneness akin to service composition can be reduced or even eliminated by the
aid of new ‘mixed initiative features’, which can be built on top of current Semantic
Web [9] technologies. On the other hand, modelers can rely on their experience in
the creation of business processes. They can use that knowledge to compensate for
the lack of fully-fledged ontologies. This can help solve the problem of planning with
incomplete information faced by fully automated planning environments.

1.1 Preliminary Definitions

The purpose of this section is to clarify basic concepts that will frequently be referred
to throughout this thesis.

1.1.1 Service

The term ‘service’ is often used with various meanings. In general, a service is
referred to as an abstract set of functionality. Laures [38] introduces a technology-

1.1. Preliminary Definitions 3

oriented service layer model to classify the various ambiguous meanings of this term.
The term ‘service’ as used in this thesis resides on the Web services layer of this model.
By service we understand a software component that exposes different operations
via an interface specified in the Web Services Description Language (WSDL [13]).
A service can contain multiple operations on the WSDL level. The terms ‘service’
and ‘service operations’, however, are often used synonymously when referring to
an operation on the WSDL level. According to Martin [42], there are two classes
of Web services. They can be information-providing, e.g. providing flight schedules,
world-altering, e.g. placing a booking for a particular flight, or both.

1.1.2 Service-Oriented Architectures

Service-Oriented Architecture (SOA) has evolved as an architectural style in soft-
ware engineering. SOA is an abstract notion defining an interaction scheme for
three loosely coupled entities in the role of either the ‘service provider’, the ‘service
requestor’ or the ‘service registry’ (see figure 1.1).

The service provider offers services and descriptions of the provided functionality.
These descriptions can be published in a service registry. A service requestor can
browse the service registry for service descriptions in order to find service providers
offering the demanded service. The service requestor then directly invokes the de-
manded service at the service provider. All these entities are loosely coupled com-

Figure 1.1: Roles in the Service-Oriented Architecture

puter programs which act on the orders of their respective owners.

Web services are the most prominent implementation of a service-oriented architec-
ture. Interfaces are described in the Web Services Description Language (WSDL)
[13]. Message exchange between service providers and requestors is built on stan-
dards like SOAP [25], HTTP [49] and XML[11]. To support the role of the service
registry, the Universal Description, Discovery and Integration (UDDI) [10] standard
has been developed.

1.1.3 Web Service Composition

In order to overcome the aforementioned problems, different proposals have been put
forward to enhance the conventional Web services stack with a layer that contains
process descriptions. Sun, SAP, Intalio and BEA jointly proposed the Web Services
Choreography Interface (WSCI [5]). The underlying idea here is to create process

4 1. Introduction

definitions using the Business Process Management Language (BPML), from which
a WSCI specification can then be derived.

However, the approach proposed by IBM, Microsoft and, again, BEA, the so-called
Business Process Execution Language for Web Services (BPEL4WS) has succesfully
outpaced WSCI. BPEL4WS reflects in many ways the proposals of the same vendors,
such as WSFL and XLANG. BPEL4WS is now maintained by the OASIS group
and filed under the name ‘WS-BPEL’ [19]. The WS-BPEL approach will be briefly
described in the following.

WS-BPEL is an XML based language that allows for modeling the behavior of Web
services in a business process interaction. It provides the necessary control structures
to express these interactions. These control structures are similar to those of common
process modeling notations. They include Sequence, Switch to support conditions,
Pick to support events, While to support loops and Flow to support parallel threads
of execution.

WS-BPEL is used to model the behavior of both executable and abstract processes.
An abstract process describes the publicly visible interaction protocol between the
parties involved by specifying their message exchange. As the interaction is described
from the perspective of a single participating service, abstract WS-BPEL specifica-
tions do not encode ‘choreographies’. The executable process focuses on one specific
party and essentially models a private workflow. A workflow engine is necessary
to enact WS-BPEL specifications based on that workflow. The executable process
contains everything which was left undetermined in the abstract process, such as
branching conditions, data assignments, and data transfer rules [4]. The executable
part of a WS-BPEL specification is also referred to as the ‘orchestration’ of the
composition.

Throughout this thesis, the terms ‘service composition’ and ‘business process’ will
repeatedly be used synonymously. The same applies to the terms ‘service operation’
and ‘activity’.

1.1.4 Ontologies

According to Gruber [24], an ontology is ‘a formal explicit specification of a shared
conceptualization’. Ontologies describe such sets of common terms with taxonomic
hierarchies of concepts, as well as their relationships among each other. They de-
scribe conceptual dependencies and form common vocabularies that can be shared
and agreed upon. The concept of ontologies was developed in Artificial Intelligence
as a means to share and reuse knowledge. Ontologies define formal semantics for
information which can be processed by a computer. These semantics are real-world
semantics in that their contents have a meaning to humans even though they are
machine-processable.

The Semantic Web [9] uses ontologies as a key enabling technology to overcome the
limitations of syntactic interface descriptions, i.e., WSDL. Syntactic descriptions of
Web service interfaces are not sufficient when computer programs, ‘agents’, are to
reason about the capabilities of Web services. In the context of an online book shop,

1.2. Goals and Structure 5

for instance, a Web service operation can return an ISBN number. A human knows
how to interpret ISBN numbers, but to a computer they mean nothing more than
strings. Therefore, a layer containing semantic descriptions has to be added on top
of the syntactic description of Web services. These semantic descriptions define a
vocabulary for the specific domains, e.g. for the book market.

1.2 Goals and Structure

The purpose of this thesis is to investigate the usefulness of semi-automated service
composition as a methodology for modeling business processes. Therefore, the mixed
initiative functionality that is characteristic for semi-automated composition is to
be identified and defined.

The goals of this thesis are as follows:

• The practical applicability of semi-automated service composition is to be
demonstrated using a scenario from business reality.

• Semi-automated composition builds upon semantic descriptions of Web ser-
vices. Therefore, the state of the art in formal semantic service descriptions is
to be presented and evaluated.

• While semi-automated service composition is a currently heavily researched
topic ([52, 59, 34, 27, 53]), there is no overview of existing approaches available,
nor do we have a common understanding of the functionality that is character-
istic for semi-automated composition. Therefore, a detailed of related work in
the field of semi-automated composition is to be presented.

• As the main contribution of this thesis, three mixed initiative features for
semi-automated service composition are to be elaborated. As a first feature,
the editor should be able to show all available services that could possibly
follow the currently selected activity, i.e. a service, in a business process. As a
second feature, the editor should be capable of suggesting sequences of services
that connect two activities in a business process, and as a third feature, the
modeling tool should check the validity of the semantics of the business process.
Here, a business process is considered valid if the activities in the process do
not have open information requirements and are not redundant.

• A formal model for service compositions is to be introduced, followed by formal
definitions of the proposed mixed initiative functionality.

• To demonstrate the feasibility and the industrial relevance of the presented
approach, a prototypical implementation in the context of SAP’s Enterprise
SOA is to be developed and discussed.

• Specific algorithms for the realization of the three mixed initiative features are
to be developed.

6 1. Introduction

The thesis is organized as follows: Chapter 2 provides a general overview of the field
of Business Process Management (BPM) as well as a summary of SAP’s efforts in
this field. It will be discussed what BPM technologies are currently offered or used
by SAP. We will also discuss the main concepts of Enterprise SOA and the related
efforts to develop a business process platform. Chapter 3 summarizes the state of
the art in semantic descriptions and semi-automated service composition. Various
possibilities to semantically specify services are presented, discussed and evaluated.
Related efforts in the field of semi-automated composition are also discussed. In
chapter 4, we present a scenario, which was created on the basis of an SAP product.
This business scenario will, then, be used in chapter 5 to introduce the three mixed
initiative features. We introduce a rigorous formal model on which these features,
as well as possible extensions, are defined. Chapter 6 gives a detailed evaluation
of the related work in semi-automated composition that is presented in chapter 3
according to the mixed initiative features and additional criteria. This leads to a set
of requirements for a semi-automated modeling environment which is discussed in
chapter 7. Architectural considerations for the realization of semi-automated mod-
eling environment are then discussed on the basis of our prototypical realization.
Then, the necessary algorithms for the realization of all the three mixed initiative
features are developed and discussed. Chapter 8, finally, describes how the presented
approach for semi-automated composition could be introduced at SAP. We describe
at what points their service-enabling process should be adapted so that a methodol-
ogy for creating the necessary semantic specifications can be put in place. Chapter
9 concludes the thesis.

2. Business Process Management

The purpose of this chapter is to give a brief overview of Business Process Manage-
ment (BPM) and what this term comprises. We will describe how SAP has been
adopting BPM so far. Therefore, an overview of the methods used within SAP to
model business processes will be given. Furthermore, this chapter will introduce
Enterprise SOA as SAP’s strategy to position the company on the BPM market as
well as the key concepts of Enterprise SOA as a basis for the following chapters.

2.1 BPM in General

As a wider trend in IT systems in general, we observe that software systems have be-
come more and more process-aware, in the sense that process logic is separated from
application logic. This separation leads to an enhanced flexibility in responding to
changes of the business (process) requirements of applications. As the business pro-
cess is made explicit, it can be changed without redesigning the application. Business
Process Management systems facilitate this decoupling of process and application
logic. Their purpose is to support business processes in a company either fully or in
parts with the aid of software. According to van der Aalst, ter Hofstede and Weske,
a Business Process Management system is ‘a generic software system that is driven
by explicit process designs to enact and manage operational business processes’ [68].

Business Process Management (BPM) is currently attracting much attention from
both academia and industry. BPM has its roots in workflow management, an area
that has emerged in the 1990ies. According to the Workflow Management Coalition
(WfMC), a workflow management system defines, manages and executes workflows
through the execution of software [30]. The order of execution of the involved activi-
ties is driven by a computer representation of the workflow logic. Workflows are, thus,
business processes that are being executed with the help of software systems. Work-
flow management systems provide support for three functional areas: First, they
allow for defining the process flow between the activities in the workflow. Second,
they manage the execution of workflow processes and ensure a proper sequencing of

8 2. Business Process Management

the participating activities. Third, they trigger the necessary interactions with hu-
man users and applications that are associated with the individual process steps. To
summarize, we can say that workflow management systems are primarily concerned
with the execution of activities in a predefined, but revisable order called workflow.

BPM in contrast addresses a broader scope than just the enactment of workflows.
It comprises methodologies, modeling techniques and tools to define, simulate and
validate process flows, as well as mechanisms for their enactment. Mechanisms for
monitoring business process during their execution and techniques for the analysis
of data that has been gathered during their execution (i.e., process mining) are also
in the scope of BPM. Such data can be used for diagnostic purposes and can serve as
a starting point for process optimization. Sub-disciplines of BPM such as Business
Process Analysis (BPA) and Business Activity Monitoring (BAM) have evolved to
focus on the diagnosis step of the BPM lifecycle. The BPM lifecycle, also showing
the overlapping of workflow management and BPM, is depicted in figure 2.1.

Figure 2.1: The BPM lifecycle (from [68])

2.2 BPM at SAP

The purpose of this section is to describe SAP’s approach towards BPM. We will,
therefore, discuss how processes are modeled today with the aid of SAP software.
This will lead to the motivation and introduction of Enterprise SOA, a new paradigm
for the reuse of functionality provided by SAP.

2.2.1 Modeling tools

SAP provides a multitude of different tools that can be used for service composition.
In the following, these tools will be briefly described. We will see that while all the
tools have different scopes, most can be used to integrate enterprise services into
processes to some extend.

2.2.1.1 Guided Procedures

Guided Procedures is a tool for frontend process orchestration, in the sense that
it aims at composing process flows out of user interfaces. Hence, it is scoped for
the creation of conversational and user-centric services, which are types of processes

2.2. BPM at SAP 9

that appear repeatedly in user interfaces. Basically, a Guided Procedure walks a user
through a series of steps that may occur across multiple applications. The user’s
progress throughout the progress is visualized. The steps can consist either of portal-
style user interfaces or Portable Document Format (PDF) forms which are filled out
directly in the browser. In both cases, the fields in the user interface are mapped
to database fields in an arbitrary SAP system. Besides the user interfaces (‘blocks’),
there is the notion of ‘callable objects’. This concept allows the execution of an
enterprise service as a backend function for the respective process step. Guided
Procedures are modeled with tools which are part of the Composite Application
Framework (CAF).

2.2.1.2 ccBPM

Cross-Component Business Process Management (ccBPM) is a tool that belongs to
SAP NetWeaver Exchange Infrastructure (XI). It is used for automating backend
processes, which are types of processes that require minimal or no user interven-
tion and, typically, take a long time to complete. When enacted, the processes are
regarded as ‘transactions’. The transactions run automatically and are driven by
events which are sent from other transactions via XI. ccBPM can route, map, and
process messages sent at high volumes, while it keeps track of the different trans-
actions. The transactions can span multiple applications. The actual activities in
the process models can be linked to XI interfaces. It is therefore possible to build
service compositions consisting of enterprise service operations using ccBPM. It is
possible to export such service compositions in the WS-BPEL [19] format.

2.2.1.3 Visual Composer

Visual Composer is a Web browser based modeling environment for user interfaces.
It is based on HTML, JavaScript and GML script, and is shipped together with
SAP NetWeaver. Visual Composer can currently be used for modeling user inter-
faces. In the next release of NetWeaver, however, it will be possible to model Web
service compositions representing business processes. The user interface modeling
capabilities will still remain in the product to allow for the easy creation of user
interfaces for supplying the Web service parameters. However, the process modeling
capabilities of Visual Composer are limited, as it will only support user-interface
driven processes. What’s more, the graphical modeling language is non-standard
and lacks the flexibility of languages which are specifically designed for modeling
business processes, e.g. the Business Process Modeling Notation [69] (BPMN). It
is also planned to enhance Visual Composer with the possibilities to create Guided
Procedures.

2.2.1.4 ARIS

The ARIS Business Designer from IDS Scheer is used to describe high-level struc-
tures of business processes. It is used for the model-driven process orchestration
of Enterprise SOA processes. At the highest level, the process is divided into pro-
cess components. The modeler has to model three different aspects of the process
that is being described: First, the landscape of process components is described in

10 2. Business Process Management

a so-called ‘integration scenario’. Second, the orchestration of the individual pro-
cess components is described by modeling how enterprise services are modeled on
top of business objects1. This step is called ‘process component modeling’. Third,
the choreography of the process components, i.e. their interactions is described in
‘component interaction modeling’. The process models created in ARIS are directly
executable, but are also used to explain a business process to other information
workers.

2.2.1.5 Composite Application Framework

For reasons of completeness, the Composite Application Framework (CAF) itself
could be considered a process modeling environment. In contrast to frontend and
backend process orchestration, the use of CAF without additional toolsets would re-
sult in a form of ‘code-level process orchestration’. The developer has the possibility
to build processes out of enterprise services by writing ABAP or Java code which
encodes the process flow among the consumed enterprise service operations. Such a
process can, then, again itself be exposed as a composite service. It is an interesting
fact that most of the compositions of enterprise services are built directly in CAF,
showing the need for a comprehensive modeling tool for that case. Encoding process
flow in low-level code is, obviously, a rather inflexible approach to create service
compositions.

2.2.1.6 Conclusion

We have described different tools that can be used to create compositions of enter-
prise services. All tools are maintained separately from each other and that there
is no common modeling methodology. The Business Process Modeling Notation
(BPMN) [69] as the emerging de-facto standard for high-level business process mod-
eling is incorporated in none of the tools presented. In contrast, BPMN has been
adopted by some of SAP’s competitors in the BPM market. It is used, for example,
in tools such as WebSphere Business Modeler from IBM and Intalio|Designer from
Intalio.

We have seen that none of the presented modeling tools provides the user with
guidance in assembling composite processes: In Guided Procedures, there is no
mechanism that helps the user to deal with the sheer complexity of available callable
objects. Guided Procedures is a completely static mechanism for manual service
composition. The same holds true for ARIS Business Developer. ccBPM is a manual
modeling tool which is intended for developers. It does not provide any mixed
initiative functionality to aid the user in the creation of service compositions. Visual
Composer cannot be used to build executable processes.

2.2.2 Enterprise SOA

SAP is a supplier of business applications which provide IT support for core busi-
ness processes within enterprises. Specifically, SAP today offers a suite of packaged
applications that mainly support traditional business processes which are usually

1The concept of ‘business objects’ will be explained in section 2.2.3

2.2. BPM at SAP 11

not subject to change. These packages form the mySAP Business Suite. The core
solutions within that suite comprise Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), Product Lifecycle Management (PLM), Supply
Chain Management (SCM) and Supplier Relationship Management (SRM).

These packaged applications can, of course, only encode best practices. As a result,
the customers must adhere to the procedures provided by the SAP applications.
If the SAP system has to be adapted to support specific processes in a company,
costly customization efforts are required. Therefore, differentiation through their
core business processes is difficult for the customers. Now, SAP has identified the
need to give their customers the flexibility to adapt the shipped business processes
to their specific needs and, also, to create new business processes which are of par-
ticular strategic importance. In doing so, the customers will be able to run business
processes that differentiate their company amongst others with the help of an SAP
system. As of today, business processes that are of strategic importance and are
subject to change are, mostly, still implemented in custom software development
efforts by the customer.

In order to allow for business process flexibility, the functionality provided by the
enterprise software systems must be broken down into fine-granular building blocks.
At the same time, the functionality must not be offered on a too fine-granular level
of abstraction so that the complexity resulting out of the number of available build-
ing blocks can still be handled. SAP plans to deliver their functionality as single
operations that reflect business process steps, instead of providing them through
monolithic software packages. These coarse-grained operation steps, which are called
enterprise services, are grouped around business processes. Enterprise services pro-
vide a meaningful business-level operation. They are intended to be understandable
by users without technical background, such as business analysts. Due to the fact
that the enterprise services will be exposed and accessed as Web services, this strat-
egy was named Enterprise SOA, strongly resembling the notion of Service-Oriented
Architectures (SOA).

Figure 2.2: Types of business processes supported by SAP systems

Figure 2.2 depicts the positioning of Enterprise SOA according to the types of busi-
ness processes that are to be supported: On the one hand, the mySAP suite supports

12 2. Business Process Management

business processes that are unlikely to be of strategic importance for a company, as
they deliver solutions for common business scenarios. These processes are also un-
likely to be changed very often, and a company does, thus, not need the flexibility
to change them. On the other hand, Enterprise SOA allows a company to create
business processes that differentiate a company from its competitors, i.e. strategic
processes. Enterprise SOA is also an enabler for processes that are frequently subject
to change and are thus required to be flexibly supported by IT. Besides delivering
the enterprise services, SAP will also provide the platform for enacting the business
processes. The current SAP NetWeaver platform will, consequently, evolve into a
complete BPMS. This BPM suite, marketed as the SAP Business Process Platform
(BPP), will allow the specification, enactment and monitoring of enterprise service
compositions.

2.2.3 Conceptual foundations of Enterprise SOA

SAP’s enterprise services are technically based on Web services. Specifically, WSDL
[13] is used for describing their interfaces and XML Schema (XSD) [6] for the rele-
vant data types. From a logical perspective, the so-called ‘business objects’ are seen
as the service providers of the enterprise services. Business objects are the primary
structuring elements within Enterprise SOA. They are units of application logic
which are grouped around entities that are fundamental for business applications.
Examples of business objects are ‘sales order’, ‘invoice’, ‘customer’ or ‘business part-
ner’. While the notion of an object in the object-oriented world refers to an instance
of a class, business objects in Enterprise SOA reside on the type-level. Thus, the
business object invoice represents the set of all invoice instances.

Figure 2.3: Enterprise SOA Metamodel

Figure 2.3 depicts the logical metamodel of Enterprise SOA. The business objects,
defined in the Enterprise Service Repository (ESR), are trees of business object nodes.
A business object node is structurally defined by a Global Data Type (GDT). In
other words, a business object is a structured set of GDTs. These are SAP-wide
defined and consolidated data types. They are compliant with current business data
integration standards. Specifically, the GDTs have been created according to the
Core Component Type Specification (CCTS) [15] modeling methodology, defined

2.2. BPM at SAP 13

by the UN/CEFACT council. The advantage of the CCTS methodology is that
it distinguishes between data types on a generic level (core components) and data
types for specific vertical industry. This distinction allows to have a generic data
type ‘sales order’, which can, for example, be extended specifically for the use in the
oil and gas industry. CCTS does not only distinguish different vertical industries,
but also supports business process, product classification, system capabilities and
geopolitical contexts. CCTS components in a specific context are referred to as
Business Information Entities (BIE). According to the Enterprise SOA metamodel,
it is possible to create complex business objects through composition. For example,
the business object sales order is composed out of sales order item business objects.
Associations between business objects are also possible. So, the business object node
buyer party of a sales order could be associated with the business object business
partner.

Business objects provide a set of ‘core services’ through which they can be accessed
by other business objects or services. Through standardized interface patterns, the
operations of the core services and their parameters can be derived. The ‘access’
pattern, for instance, defines the core operations create, retrieve, update and delete
(amongst other operations). Other interface patterns allow for querying a business
object for business object node data based on given selection criteria, executing an
action, handling transactional contexts and retrieving value sets. It is noteworthy
that all these different operations, provided through the interface patterns, result in
separate service operations on the WSDL level. On top of the core services, there are
‘compound services’ that provide a functionality on a higher level than it is delivered
through the interface patterns of the core services. Such services characteristically
act on multiple business objects which are semantically related. They are required
to invoke core services of the business objects that they use in order to provide their
functionality. Finally, the ‘enterprise services’ are a subset of the compound services.
According to [21], an enterprise service is a compound service which is used in the
execution of a business process step, having a significant meaning and impact for
the business of an enterprise.

14 2. Business Process Management

3. State of the Art in Semantic Descriptions

and Semi-Automated Composition

The purpose of this chapter is to present the state of the art in semi-automated
service composition. First, semantic descriptions for Web services will be discussed
as a preliminary technology. It will be discussed which kinds of semantic descriptions
and ontologies are necessary for enterprise services so that they can be used for a
semi-automated service composition. Second, we will investigate the most prevalent
approaches for capturing service semantics and provide an evaluation.

3.1 Semantic Descriptions

As we have seen in section 2.2.3, the interfaces of enterprise services are published
in the WSDL [13] format. This section deals with semantic descriptions that can be
applied to Web services in general. We will present the most important approaches to
modeling Web service semantics at the time of this writing, OWL-S, WSMO, SWSF,
WSDL-S and SAWSDL. These approaches will, then, be compared and evaluated
according to their usefulness in the context of this work.

3.1.1 OWL-S

The DARPA Agent Markup Language (DAML) Program, which was set up in Au-
gust 2000, has the purpose of developing a language and tools to facilitate the concept
of the Semantic Web. After the development of DAML+OIL in 2000 and DAML-S in
2001, the efforts of the program are, currently, centered on the development of OWL-
S. OWL-S is a framework for semantically describing Web services. It is based on
the Web Ontology Language (OWL), which was also developed by the DAML group.
OWL was developed as a vocabulary extension of RDF (the Resource Description
Framework) and was derived from the DAML+OIL Web Ontology Language. There
are three increasingly expressive sublanguages: OWL Lite, OWL DL and OWL Full.
OWL Lite has a limited expressiveness and was designed for beginners to create
simple ontologies. It was also designed for easy implementation, for only a limited

16 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

subset of the Web Ontology Language is available. OWL Full and OWL DL support
the same set of OWL language constructs. OWL DL is more restrictive concerning
the usage of these language constructs, i.e. it requires pairwise separation of classes,
properties, individuals and data values, as well as the usage of RDF elements in
OWL. It offers computational completeness and decidability. In OWL Full, all lan-
guage constructs can be used without restrictions and free mixing with RDF Schema,
but there are no computational garantuees [17]. Thus, the expressivenesses L of the
three sublanguages are related as follows:

L(OWL Lite) ≺ L(OWL DL) ≺ L(OWL Full)

An ‘OWL-S ontology’ consists of three main parts: The service profile, the pro-
cess model and the service grounding. It should be noted that the term ‘ontology’
is normally used to describe the concepts and the taxonomy to which a semantic
services description relates. In OWL-S terminology, however, the semantic service
description itself is called an ontology. The OWL-S ontology is depicted in figure
3.1.

Figure 3.1: Top level of the OWL-S service ontology

The profile describes ‘what a service does’ [42]. The data transformation which is
accomplished by the service is characterized by inputs and outputs ; the state of the
world before and after the execution of the service is described by its preconditions
and effects (if any). Abbreviated, this information is called the IOPEs of a service.
In general, OWL classes are used as parameter types for the inputs and outputs.
They are referred to by an URI which, usually, identifies an element in an ontology.
The preconditions and effects are described as logical formulae, which can be stated
in logic languages like KIF or DRS. This allows software agents to reason about
whether a service is appropriate for a specific task or not, given that the service
profile can be found in a registry the agent can access. Furthermore, the service
profile provides information about the organization providing the service, such as a
contact person and address. Also, a host of properties describing the features of a
service can be offered. Here, the category of the service is specified corresponding
to an arbitrary classification system as well as to a quality rating of the service and
a list of service parameters that can provide any information (e.g., the maximum
response time of the service).

The OWL-S process model specifies the ways in which a client can interact with the
service. OWL-S distinguishes atomic and composite processes: Atomic processes
expect one message and return one after they have been performed. Note that
these messages can have an arbitrary number of parameters. In contrast, composite

3.1. Semantic Descriptions 17

processes are stateful in such a way that the client has to interact with them several
times if the whole process is to be performed. For composite processes, it is necessary
to describe their decomposition through control structures like sequence, if-then-else,
split, etc., which are provided within OWL-S. The data flow between subsequent
steps of a composite service is also specified in the model.

If we consider the example of an online book store, there could be three atomic
processes, e.g. searching for an author, adding a book to the shopping cart or
paying for a book. The OWL-S process model would then allow us to state that
the whole process of shopping for books online is a sequence of the three atomic
processes.

The process model describes local parameters and allows expressing conditions for
outputs and effects which are grouped as ‘results’. This is necessary as services do
not always have exactly one result. In a buying process, for example, the effect would
be that the buyer’s credit card is charged and the ownership of the purchased items
is transferred to the buyer. This result must not occur in case the precondition that
the buyer must hold a valid credit card is not met. In this case, the process should
result in the output of an error message. The process model should be consistent
with the profile, because the client uses the process model to learn how to interact
with the service, after the service has been selected according to the transformations
described in the profile. If this is not the case, communication will be interrupted
at some point. Yet, OWL-S does not specify any constraints between profile and
process, so that any inconsistency between the two does not affect the validity of
the OWL expression [42].

The third element of an OWL-S ontology is the service grounding. Groundings
provide details on how the service can be accessed, such as protocol and message
formats. It can be seen as the linking pin between an abstract specification and a
concrete realization. In theory, any kind of grounding is conceivable, but, due to
industry adoption, OWL-S ontologies are usually grounded to WSDL-specifications.
Atomic processes in OWL-S and operations in WSDL overlap, as do inputs and
outputs in OWL-S and the message-part of WSDL. One has to provide a mapping
between operations in WSDL and atomic processes in OWL-S. It is possible to
provide an XSLT stylesheet for the grounding that specifies this mapping. Also, the
input and output parameters on the syntactical layer (the WSDL messages with
their XML Schema data types) must be mapped to inputs and outputs in the sense
of OWL-S, referencing the appropriate classes in an ontology. This can be achieved
by extending the WSDL elements types, message, operations and binding, which can
be done by the use of so-called WSDL extensibility elements without having to revise
the base WSDL specification.

3.1.2 WSMO

The Web Services Modeling Ontology (WSMO) [54], which is being developed by
the WSMO working group, constitutes another framework to conceptually model
Web service semantics. It is build upon and extends the Web Service Modeling
Framework (WSMF). WSMO distinguishes four top level elements: Ontologies are

18 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

used to share terminology, descriptions of services which are requested or provided,
goals that specify problems to be solved by the Web services and mediators that
somehow link the different WSMO elements. These elements are now to be discussed
in greater detail.

Ontologies have already been discussed as a main technology for the Semantic Web.
But how are ontologies represented in WSMO? First of all, they can be attributed
- like almost any other element in WSMO - with so-called nonfunctional properties.
Most of these properties are taken from the Dublin Core Metadata Element Set [12].
Ontologies in WSMO can be attributed with information about the publisher, owner,
their subject (usually expressed in keywords), their coverage, i.e. their temporal or
regional scope, and much more. A promising concept is the idea that ontologies can
directly import other ontologies, supporting modularization is the näıve approach
for handling complexity. If such an import raises any conflicts between the elements
of the different ontologies, WSMF ontology mediators can be used to resolve them
by aligning the imported ontology in a suitable fashion. The actual entities constitut-
ing an ontology are called ‘concepts’ in WSMO. Concepts can have attributes with
names and types. They are ordered according to a hierarchy of ‘superconcepts’ and
‘subconcepts’, which strongly resembles the notion of classes in OWL. While there
are several language constructs in OWL by which relations between classes can be
described (disjointWith, inverseOf), all interdependencies in WSMO are represented
with either the ‘relation’ or the ‘function’ construct. These constructs directly sup-
port axiom logical expressions, by which elements and their constituent parts can be
modeled in a formal and unambiguous manner. Like the ontology descriptions, all
logical expression must be stated in the Web Service Modeling Language (WSML)
[16] which is developed and maintained separately from WSMO by the WSML work-
ing group. Similar to OWL-S, WSML provides multiple language flavors to maintain
different levels of expressiveness. Besides the WSML flavors stated in the following
equation, there is also WSML-DL which builds on top of WSML-Core and compares to
OWL-DL.

L(WSML-Core) ≺ L(WSML-Flight) ≺ L(WSML-Rule) ≺ L(WSML-Full)

The actual service definition is manifested in the webService-part of the WSMO
specification. This section describes the capability of a service and its interface.
In WSMO, a Web service defines one and only one capability. WSMO describes
capabilities through pre- and postconditions, assumptions and effects, each of which
are expressed with logical formulae. Pre- and postconditions model the information
space of the Web service before and after its execution, whereas assumptions and
effects describe the world state. When all preconditions and assumptions of a Web
service are met, its execution implies that the respective postconditions and effects
become valid. In contrast to OWL-S, the informational state of a Web service is
explicitly modeled in WSMO by assumptions and postconditions. OWL-S limits
itself to describing the transformation of inputs into outputs statically in terms of
concepts contained in the used ontology. Besides the capability of a Web service,
the WSMO service definition also describes its interface: The choreography and the

3.1. Semantic Descriptions 19

orchestration are specified as state machines with guarded transitions, opposing the
workflow-based approach observed in OWL-S. WSMO does not support composite
services.

WSMO introduces the concept of goals to represent the objectives of users when con-
sulting a Web service. Goals are, usually, subsets of Web service capabilities which
are of particular interest for the client (i.e., postconditions or effects). According to
Hutter, this reflects the so-called goal driven approach in AI planning [31]. WSMO
argues for the necessity of goals by stating that this approach was, naturally, more
focused on the client, as goals describe what a user can expect from a service rather
than what the service does.

The linking pin between the different constituents of a WSMO description are me-
diators. They resolve conflicts between ontologies, translate between outputs and
inputs of connected Web services, link capabilities to goals or declare goals as substi-
tutable by each other. Therefore, WSMO defines four different types of mediators,
namely ggMediators, ooMediators, wgMediators and wwMediators.

The messages used to interact with a Web service contain XML Schema-typed param-
eters. WSMO, in contrast, describes services on a conceptual level using ontologies.
Naturally, a mapping between the ontology concepts and XML schema is necessary.
WSMO proposes three possible approaches to realize this mapping. Their preferred
approach is to create mappings on the conceptual level [36]. Here, WSMO ontologies
are automatically created from XML Schema definition in an ad-hoc manner. These
are, then, linked to a WSMO ontology which conceptually describes the service us-
ing existing WSMO mediation tools. This results in a two-level rule set that can be
applied at runtime. A second way is to use XSLT to create a direct mapping between
the semantic- and the syntax level description of a service. As a third approach, a
direct mapping between the source XML data and the target WSMO ontology can
be established. Therefore, a mapping language which was specifically developed for
this purpose (e.g., WSDL-S [3] or SAWSDL [20]) is to be used.

3.1.3 SWSF

The National Institute of Standards and Technology (NIST), National Research
Council of Canada, SRI International, Stanford University, Toshiba Corporation,
and the University of Southampton propose Semantic Web Services Framework
(SWSF) [7] as a W3C member submission.

SWSF comprises two components: The Semantic Web Services Ontology (SWSO)
and the Semantic Web Services Language (SWSL). SWSO presents a conceptual
framework for describing Web service capabilities. It is based on an axiomatization
in first-order logic to describe the concepts in the ontology. SWSL is the first-order
logic language that underlies the SWSF approach. The authors describe it as a
general-purpose logical language that comes with certain additional features to make
the language usable in the context of Web services. SWSL comes in two sublanguages
of different expressiveness, namely SWSL-FOL and SWSL-Rules. SWSL-FOL is a
first-order logic, while SWSL-Rule is a fully-fledged logic programming language.

20 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

According to [7], nearly all elements of the syntax are common to both SWSL-FOL
and SWSL-Rule. SWSL-Rule is more expressive than SWSL-FOL.

L(SWSL-FOL) ≺ L(SWSL-Rules)

The focus of SWSF is put more strongly on providing an ontology with a well-defined
theoretical semantic than on providing an executable specification. The authors state
that according to their experience, most AI reasoning is done by special-purpose
reasoners and do not further discuss eventual decidability problems when reasoners
are to exploit the specifications. SWSO also allows for modeling choreographies
and abstract process models. Therefore, a variety of control constraints are offered,
covering most of the basic workflow patterns. It is also possible to attribute services
with a predefined set of nonfunctional properties on the service level (i.e., it is not
possible to state nonfunctional properties for every operation that a service provides).

3.1.4 WSDL-S

IBM and the University of Georgia jointly propose Web Service Semantics - WSDL-
S [3]. The authors argue that prevalent proposals to enhance Web services with
semantics, such as OWL-S and WSMO, are not aligned with existing standards.
In contrast, WSDL-S proposes to enhance the commonly adopted WSDL standard,
whereas OWL-S and WSMO largely replace WSDL, as these frameworks include
their own service descriptions. These descriptions can be grounded to WSDL inter-
faces, but are designed independently of WSDL. The proposal of WSDL-S is, thus,
to include semantic annotations directly in WSDL, while referencing external ontolo-
gies. As ontologies are decoupled from the WSDL-S approach, it is possible to use
any arbitrary ontology description language. The proposed semantic annotations
to be added to WSDL compare strongly to the service profile in OWL-S: A service
is characterized by inputs, outputs, preconditions and effects, where these terms
carry the same semantics as the IOPEs described in section 3.1.1. In order to anno-
tate services with this information, WSDL-S makes use of the extensibility elements
of WSDL. WSDL-S only enhances the abstract part of the WSDL specifications,
namely types and operations. As far as the types section is concerned, two extension
elements are provided: The modelReference-attribute maps XML schema types to
concepts in a semantic model in a one-to-one manner. The schemaMapping-attribute
does the same, but describes one-to-many or many-to-one mappings. This compares
to the inputs and outputs in OWL-S service profiles. WSDL’s operations section is
extended by the modelReference-attribute as well as bytwo elements called precon-
ditions and effects. The latter ones either refer to the part of an external ontology
specifying the actual precondition or effect, or directly include expressions which
describe them. In the latter case, the formatting of the expressions depends on the
utilized language to model semantics. Additionally, WSDL-S proposes an extensibil-
ity element category by the aid of which Web services can be categorized according
to a taxonomy.

3.1. Semantic Descriptions 21

3.1.5 SAWSDL

The most recent approach to specify Web service semantics is Semantic Annotations
for Web Services Description Language (SAWSDL) [20]. The W3C founded the
SAWSDL working group in March 2006 with the intention to develop ‘a standard
solution for Web automation’ [65]. The SAWSDL working group is part of the Web
Services and Semantics (WS2) Project, financed by the European Commission’s IST
Programme (EC IST FP6).

The SAWSDL approach is conceptually similar to the WSDL-S approach, which
was presented above. SAWSDL solely builds on the extensibility elements in the
WSDL 2.0 specification. The idea is to directly annotate the abstract part of WSDL
interfaces with semantics. In detail, the proposal suggests the introduction of three
extensibility elements:

• A modelReference attribute to link a WSDL element (i.e., complex types,
elements and operations) to a concept in an ontology.

• A schemaMapping attribute to map XML Schema data types to concepts in
an ontology, capturing possible structural differences between a complex data
type in WSDL and a concept hierarchy in an ontology.

• A category element that allows to specify a service category according to an
arbitrary categorization scheme.

These are the same extensions that are proposed by WSDL-S, and they even carry
the same names. In contrast to WSDL-S, SAWSDL does not propose elements for
the specification of preconditions and effects.

3.1.6 Evaluation

Throughout the preceding paragraphs we have presented the most prevalent ap-
proaches towards semantic service descriptions by the time of this writing. They
are all very similar, as basic concepts seem to recur in all of the frameworks. Yet,
all have different scopes: While OWL-S, WSMO and SWSF are frameworks that
provide languages to model ontologies instead of limiting themselves to describing
services, WSDL-S and SAWSDL are agnostic of possibly utilizable languages. In
contrast, they put a stronger emphasis on the practical ease with which to deploy
descriptions, as their approach solely bases on extensibility elements of WSDL. How-
ever, these approches can be useful when WSDL specifications for services are already
available before the semantic descriptions are modeled. It is still possible to link the
annotated WSDL files to OWL-S or WSMO ontologies and to draw upon existing
reasoners for these languages.

Still, WSDL-S and SAWSDL cover a rather small scope, which makes them difficult
to compare to OWL-S, WSMO or SWSF: Many distinctive features depend on the
ontology language and the larger context of the framework. Table 3.1 introduces

22 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

O
W

L
-S

W
S
M

O
S
W

S
F

W
S
D

L
-S

a
n
d

S
A
W

S
D

L

N
u
m

b
er

of
in

terfaces
p
er

service
E
xactly

on
e

M
u
ltip

le
E
xactly

on
e

E
xactly

on
e

D
egrees

of
expressiven

ess
of

on
tology

lan
gu

age
3

layers
5

layers
2

layers
N

/A

L
an

gu
ages

for
logical

ex-
pression

s
S
W

R
L
,
D

R
S
,
K

IF
W

S
M

L
S
W

S
L

N
/A

F
u
n
ction

al
service

d
escrip

-
tion

C
ap

ab
ility-d

riven
G

oal-d
riven

C
ap

ab
ility-d

riven
C
ap

ab
ility-d

riven

P
resen

ce
of

n
on

fu
n
ction

al
prop

erties
P
resen

t
in

profi
le

P
resen

t
in

all
elem

en
ts

P
resen

t
in

service
d
escrip

tor
N

ot
presen

t

F
orm

at
of

n
on

fu
n
ction

al
prop

erties
N

on
-stan

d
ard

P
artially

stan
d
ard

ized
N

on
-stan

d
ard

N
/A

M
o
d
elin

g
of

com
p
osite

ser-
vices

W
orkfl

ow
-like

N
ot

ad
d
ressed

W
orkfl

ow
-like

N
/A

M
atu

rity
level

M
ed

iu
m

L
ow

L
ow

L
ow

T
o
ol

su
p
p
ort

L
argely

availab
le

S
p
orad

ically
availab

le
S
p
orad

ically
availab

le
S
p
orad

ically
availab

le
S
u
p
p
ort

for
m

o
d
u
larization

S
im

p
le

on
tology

im
p
ort

M
ed

iated
on

tology
im

p
ort

S
im

p
le

on
tology

im
p
ort

N
/A

A
vailab

ility
of

pred
efi

n
ed

on
tologies

L
argely

availab
le

H
ard

ly
availab

le
H

ard
ly

availab
le

N
/A

A
vailab

le
reason

ers
M

an
y

/
m

atu
re

M
an

y
/

im
m

atu
re

F
ew

/
im

m
atu

re
N

/A

T
a
b
le

3
.1

:
E
valu

ation
of

O
W

L
-S

,
W

S
M

O
,
S
W

S
F
,
W

S
D

L
-S

an
d

S
A
W

S
D

L

3.1. Semantic Descriptions 23

distinction criteria for Semantic Web service frameworks by which approaches like
OWL-S, WSMO and SWSF can be compared.

In OWL-S, a service has exactly one service model, which means that there is exactly
one way to interact with it. The same holds true for SWSF, WSDL-S and SAWSDL,
as extensions of WSDL, also offer only one interface, i.e. the corresponding WSDL
specification. In WSMO, the choreography is part of the Web service interface, and
a service can have multiple interfaces. This can be seen as a clear advantage of
WSMO, as it allows for greater flexibility in the choreography of Web services.

OWL-S is based on the Web Ontology Language (OWL) which provides three dif-
ferent flavors with different degrees of expressiveness. Each of these is scoped to
provide the modeler with a reasonable tradeoff between ease of use and expressive-
ness. WSML features five different flavors, which is a larger number than the three
languages presented by OWL-S. SWSL comes in two different flavors. Still, the
advantage in terms of language flavors is questionable, as too much choice results
in higher complexity. The tradeoff with languages of a high expressiveness is that
decidability cannot always be guaranteed. The decidability depends largely on the
complexity of the domain model, so that neither of the languages has an advantage
here.

While OWL-S only enforces the use of OWL to specify the domain models, it leaves
the choice of the language used to express logical conditions to the user. OWL-S,
currently, supports the languages SWRL, DRS and KIF. WSMO restricts the user
to use WSML for stating logical expressions. SWSF, similarly, restricts the user to
use SWSL for that purpose.

In OWL-S, WSMO, SWSF and WSDL-S, the capabilities of a service are described
by the informational transformations and the change in the world state realized by
this service when executed. Only SAWSDL does not allow to model changes in the
world state that are incurred by services. WSMO argues that the user is particularly
interested in the state of the information space and the world after the execution of
a service. Thus, WSMO describes these as goals, which are a subset of the service
capabilities. In doing so, WSMO directly supports what is known as the ‘goal-driven’
approach in AI planning [31]. This can be helpful for matchmakers to determine the
suitability of a service for a specific task. In contrast, a WSMO goal is a subset of
a WSMO capability, which makes it redundant information. Therefore, the concept
of goals in WSMO seems to be questionable.

Nonfunctional properties of services can be expressed in OWL-S, WSMO and SWSF.
In WSMO, all constituents of an ontology can be attributed with nonfunctional prop-
erties. OWL-S only allows them in its service profile, and in SWSF they can only
be applied to the ‘service descriptor’ (which is similar to the OWL-S service profile).
The WSMO approach seems to allow for highest degree differentiation. Further-
more, WSMO proposes the use of accepted metadata standards (Dublin Core [12],
FOAF [18]) to present a service’s nonfunctional properties. OWL-S does not explic-
itly propose this, while the use of standard metadata formats is not ruled out. In
SWSF, the format of the nonfunctional properties must comply with the underly-

24 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

ing first-order logic axiomatization of SWSL. WSDL-S and SAWSDL do not, yet,
support nonfunctional properties.

Another difference between the frameworks arises in the way composite services are
modeled. OWL-S and SWSF enable the modeler to use well-known constructs from
the area of workflow management, whereas WSMO is, currently, not able to repre-
sent compositions. A service’s choreography can be described using state machines
with guarded transitions in WSMO. While WSDL-S and SAWSDL do not support
composite services at all, because they operate on the WSDL level of a service de-
scription, OWL-S seems to present the most convenient approach.

OWL-S is a more mature technology than WSMO, WSDL-S and SASWDL, which is
probably due to the fact that OWL-S has been developed for a longer time than the
others. This is also a result of its user acceptance and, thus, its practical appliances
which are also a source to feedback for the developers of OWL-S. Since OWL-S has
been available for a longer time, there is also more tooling around which complements
the framework, e.g. modeling tools for ontologies. Tool support is also increasing
for WSMO, while there are, currently, no tools available for SWSF.

WSMO addresses heterogeneity issues in service description directly by introducing
mediators to map between the different elements of a WSMO specification. OWL-S
treats this more like an architectural problem. As it is a likely scenario that ontolo-
gies will be developed by different parties (especially for complex domains), it is an
advantage that WSMO attempts to address the problem how different ontologies
that possibly overlap could be integrated.

Nowadays, most of the publicly available domain models are specified in OWL, as
a result of its development over a long time. Reusable ontologies for WSMO can
also be found on the net. Reusable domain models in SWSF are hardly available at
present.

The most important criterion for the evaluation of ontology languages is whether rea-
soning tools are available to make practical use of the ontologies. We will, therefore,
give a brief overview of the available reasoning support for the various languages.
As WSDL-S and SAWSDL are agnostic of the ontology that is used along with the
service descriptions, we exclude them from the discussion.

3.1.6.1 Reasoning support for OWL-S

A variety of automated planners and inference engines are available for OWL-S, some
of which have been under development for more than two years and can, thus, be
characterized as mature software.

• Racer [26] is a commercial OWL reasoner and inference server which has been
developed by Ralf Möller. Racer provides full support for OWL-Lite and al-
most full support for OWL-DL. The restrictions are that user-defined data
types and nominals, i.e. individuals in class expressions, are only approxi-
mated. Racer does not directly support service composition.

3.1. Semantic Descriptions 25

• OWL-S Matcher [32] has been developed by Michael C. Jäger and Stefan Tang
at the Technical University of Berlin. The matchmaker compares two descrip-
tions (one in form the service requester and another by the service provider)
and identifies different relations between the two descriptions (e.g., ‘match’ or
‘no match’). Service composition is also not directly supported.

• Semantic Tools for Web Services [2] is a set of Eclipse1 plug-ins for the semantic
matching and the composition of Web services. It is being developed by IBM
Research, as part of their Emerging Technologies Toolkit (ETTK).

• DAML-S Matchmaker [61], which has been developed by Katia Sycara at the
Carnegie Mellon University, provides matching of DAML-S profiles. The com-
position of services is not directly possible with this application.

• SHOP2 [60], which stands for Simple Hierarchical Ordered Planner, has been
developed by Evren Sirin at the University of Maryland. It uses a planning
algorithm based Hierarchical Task Networks to support the composition of
Web services.

3.1.6.2 Reasoning support for WSMO

Several reasoners for WSMO have been developed during 2005. In the year before,
no reasoners for WSMO were available.

• WSML Reasoner represents a reasoning environment that is based on the
WSML2 Reasoner Framework [28]. The framework allows for translating on-
tology descriptions from WSML Rule to predicates and rules. Additionally, it
provides a facade for easy integration of different reasoners, such as MINS [40]
and KAON2 [47].

• WSMX [14], which stands for Web Service Execution Environment, is currently
released as version 0.2. It is the reference implementation of WSMO and is
supposed to support both discovery and composition of Web services. WSMX
is being used and further developed by several EU projects, such as DIP, SEKT
and Knowledge Web.

• IRS-III [27], which is short for Internet Reasoning Service, is being developed
by the group of John Domingue at The Open University. IRS-III is a platform
where semantically described services can be registered and executed. These
services can, then, be discovered and composed in the platform.

• Adaptive Services Grid (ASG) [37] is an Integrated Project supported by the
Sixth Framework Programme of the European Commission. It comes with a
reasoning component that is based on the WSML2 Reasoner Framework. It
transforms WSML ontologies into the FLORA-2 [70] language. Additionally,
a planning component is availavle that creates service compositions using a
heuristic search algorithm and returns the result in WSML.

1See http://www.eclipse.org/

26 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

3.1.6.3 Reasoning support for SWSF

We see SWSO as a theoretical ontology which has no practical impact. The focus lies
more on providing a well-formed semantics for modeling ontologies than on having
executable specifications. However, one reasoner is available for SWSF at the time
of this writing: Vampire [62], which was developed by Xing Tan of the University of
Toronto, supports basic queries, such as checking ontology consistency. Web services
discovery and composition are not realized.

3.2 Semi-Automated Composition

The purpose of this section is to give an overview of current research efforts regard-
ing semi-automated service composition. Four approaches will be presented with
respect to their main characteristics. The evaluation of these approaches is, how-
ever, postponed to chapter 6. This separation of presentation and evaluation of
the work related to this thesis is necessary, because we, first, aim to introduce the
three mixed initiative features for semi-automated composition, before we evaluate
related approaches in this field. In doing so, the features can be considered in the
evaluation. Furthermore, the thorough evaluation of the related work in chapter 6
will add several aspects to the requirements for the realization of the work presented
in this thesis.

3.2.1 Web Service Composer

Sirin, Parsia and Hendler [59] present a prototypical implementation of a composer
for Web services. Their tool allows creating executable compositions of Web services
that are semantically specified with OWL-S [42].

The created service compositions can, in turn, be stored as OWL-S ‘process models’.
Process models are a part of OWL-S ontologies which are, normally, used to encode
the orchestration for a described service. Well-known control constructs from the
area of Workflow Management can be used within OWL-S process models. It is,
therefore, a suitable format for representing composed services.

The focus of their work lies on filtering the list of available services at each compo-
sition step and thus helping the user to select the appropriate services.

In order to create a composed service, the user follows a backward chaining approach.
He or she begins with selecting a Web service that has an output producing the
desired end result of the composition from a list of all available services. Next, the
user interface presents additional lists connected to each OWL input type of the
service producing the end result. In contrast to the first composition step, these
lists do not contain all available services: They contain only those services that
generate an output compliant to the particular input type they are connected to.
An output of a service A is compliant to an input of a service B if their types are
exactly the same or if the output of A subsumes the input of B, i.e. the input of B is
a specialization of the output of A. If a service is selected from the list of compliant
services, this service’s inputs must again be produced by selecting services producing

3.2. Semi-Automated Composition 27

compliant outputs. This is repeated until the user decides, at one point, to provide
the inputs that are not connected to a compliant service by entering them as input
values (or connecting them to compliant services that have no input parameters).

Creating the composed service by forward chaining (i.e., starting with the first activ-
ity in the process instead of the last one) is planned but, not implemented in their
prototype.

In addition to filtering on the compliance of the services in terms of their inputs and
outputs, the user can apply further filtering based on the nonfunctional properties
of the services. This only works for services that adhere to a specific OWL-S ‘service
profile’ (i.e., they implement the service profile). Once the user has selected a service
profile, the system renders an UI element which allows him or her to provide values
for the nonfunctional properties that are specified for the selected service profile.
The user can, then, apply the filter, thereby further restricting the set of services
that are presented for the current composition step.

Additional to its composing functionality, Web Service Composer can also execute
the composed services: The services that can be selected must be specified in OWL-
S and a grounding for WSDL must be provided. Therefore, the tool can invoke the
services in the composition and pass the data between the services according to the
user-specified control flow.

3.2.2 Composition Analysis Tool

Kim, Spraragen and Gil introduced CAT (Composition Analysis Tool) [34], a tool
which illustrates their approach to interactive workflow composition.

The focus of their work is to assist the user in the creation of computational work-
flows. The authors’ work is not directly related to service composition. However, we
can conceive a computational workflow as a service composition. The activities of
the workflow compare to service operations that realize data transformations.

The authors have developed their own knowledge base format, which they use to
semantically describe the components that can be used in a workflow and their input
and output parameters: ‘Component ontologies’ describe hierarchies of components,
from abstract-level components to executable components. An abstract component
represents a common set of features that applies to all components of that type.
‘Domain ontologies’ semantically specify the data types which can serve as inputs
and outputs of the components described in the component ontologies.

In CAT, the user can add components to the composition at any time. There is no
need for the user to follow either a strict backward or forward chaining composition.
The ‘end result’ of the composition can be specified by declaring outputs produced by
components as the end result (or as a part of it). Control flow in CAT is described
by explicitly linking inputs and outputs of different services together. Values of
input parameters can also be default values from the respective ontologies or values
entered by the user.

Instead of filtering the set of services that can be included in a composition, CAT
provides a list of errors and warnings that point out problems of the composition at

28 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

any point in the modeling process. More than that, CAT translates these warnings
into suggestions on what to do next. The idea is that consequently applying sug-
gestions will produce a ‘well-formed’ workflow as a result. The authors, therefore,
introduce a set of properties that must be satisfied by the composition in order to be
well-formed. These properties ensure that all components’ inputs are satisfied and
that all components produce outputs which serve as inputs for downstream services.
The latter ensures that the composition does not contain redundant activities.

Depending on whether these properties are satisfied or not, the ErrorScan algorithm
(which is also provided in [34]) determines which suggestions are presented to the
user. Possible suggestions include adding and removing components from the com-
positions or asking the user to put in values for input parameters of components
that are not produced by other components in the workflow.

CAT uses heuristics to determine the ordering of the suggestions, so that more recent
and more severe errors are displayed before warnings that do not necessarily have
to be resolved in order for the workflow to be well-formed. It is noteworthy that the
suggestions in CAT have the property of being corrective or additive: Applying a
suggestion never causes more errors than it resolves.

3.2.3 PASSAT

Myers et al. present PASSAT (Plan-Authoring System based on Sketches, Advice,
and Templates) [48], an interactive tool for constructing plans. PASSAT is not
directly concerned with the creation of composed services, but its concepts can be
mapped into the context of service composition.

PASSAT is based on hierarchical task networks (HTN) [63], while the model has
been extended to realize some concepts that are outlined below. In HTN planning,
a task network is a set of tasks (or service calls) that have to be carried out, as
well as constraints on the ordering of these tasks. Moreover, it consists of a set of
constraints that must be valid before the execution of the tasks and information
about how the tasks instantiate variables. Since the variables (partly) describe the
state of the world before and after the execution of a specific task, the constraints
on these variables can be used to express preconditions and effects.

The HTN based approach, naturally, imposes top-down plan refinement as the plan-
ning strategy the user must adhere to: The user can start by adding tasks to a plan
and refine them by applying matching HTN templates. A template consists of a set
of subtasks that replace the task being refined, as well as the preconditions and ef-
fects of applying individual tasks and the entire template. It is noteworthy that the
user has the possibility to override unmatched constraints when applying a template.
This is especially desirable when comprehensive domain knowledge, particularly a
collection of templates, cannot be provided. Task refinement is repeated until the
plan contains no activities that can be further expanded.

A core feature of PASSAT is its automated planning mode, which allows the user
to have the system expand all remaining tasks, applying the templates that are
currently available to the system.

3.2. Semi-Automated Composition 29

PASSAT also features an ‘advice’ mechanism that allows the user to specify high-
level policies for the overall plan being created. These policies are global constraints
that restrict the set of actions that the user can undertake when developing a plan.
However, they can be relaxed and overridden and need not necessarily be satisfied
to reach the overall goal. The automated planning mode also takes these policies
into account when it selects the templates for refining the open tasks.

Opposing the strict top-down refinement approach implied by the use of HTN net-
works, PASSAT provides a ‘plan sketch facility’: This allows the user to freely
arrange tasks that do not necessarily have to be fully specified and that can reside
on different layers of abstraction (regarding the template hierarchy). After the user
has outlined a plan sketch, the system tries to find possible expansions by apply-
ing matching templates. The user can, then, choose one of these expansions to be
included in the plan and return to the normal planning mode.

PASSAT also informs the user about open tasks and outstanding information re-
quirements in order for the plan to be completed. Therefore, it presents the user
with an agenda of actions such as ‘expand task’, ‘instantiate variable’ and ‘resolve
constraint’.

The system helps the user to choose from the applicable templates at a given com-
position step by keeping track of past user experience: A statistic about how often
a template has been applied in plan refinement is encoded in the templates.

3.2.4 IRS-III

Hakimpour et al. introduced Internet Reasoning Service (IRS) [27], a Semantic Web
Services framework. One of their implementations, IRS-III, includes a tool that sup-
ports a user-guided interactive composition approach by recommending component
Web services according to the composition context.

Their approach uses Web Services Modeling Ontology (WSMO) [54] as the language
to semantically describe the functionality of the Web services. In IRS-III, Web
services are represented by WSMO ‘goals’:

WSMO introduces the concept of goals to represent the objectives of users when
consulting a Web service. A goal is a subset of a Web service’s capability that is of
particular interest for the user, namely the service’s outputs and effects. According
to Hutter, this reflects the so-called goal driven approach in AI planning [31].

Similar to Web Service Composer, the user starts with adding the goal (i.e., a Web
service) that produces the desired end result of the composition. The first goal can
either be selected from a list containing all goals, or by searching for an appropriate
goal. The inputs of this goal must, then, be fed by other goals or values entered by
the user. As in Web Service Composer, the available goals at each composition step
are filtered: Only these goals that produce outputs that deliver the desired input for
the downstream goal can be selected.

The tool also features the execution of the composed services. During the execution,
the orchestration engine queries the user to provide values for the inputs that have
not been assigned a goal or a value at design time.

30 3. State of the Art in Semantic Descriptions and Semi-Automated Composition

In IRS-III, it is possible to introduce WSMO goal-to-goal mediators into the compo-
sition. This is necessary, when two goals are to be connected that have been specified
by different parties. In such cases, it cannot be ensured that the same ontologies
and, thus, the same semantic descriptions for the inputs and outputs were used by
the different parties. However, if two types in different ontologies describe the same
concept, the user can specify a mapping between them in a mediator.

The tool also allows if-then-else control operators to be added to the service compo-
sition.

3.2.5 SSDC

The last one of the approaches to be presented for semi-automated composition was
developed by SAP Research in collaboration with Carnegy Mellon University. Rao,
Dimitrov, Hofmann and Sadeh propose Smart Service Discovery and Composition
(SSDC) [53], an extension of SAP’s Guided Procedures that allows the modeler to
specify a set of typed variables that should be produced by a Guided Procedure2.
Their tool, then, builds a sequence out of a set of blocks, which have been annotated
with metadata to link their input and output data types to an ontology. While the
authors refer to their extension of Guided Procedures as a semi-automated approach,
the described mechanism is, in fact, a typical example for automatic composition,
except that the modeler has a user interface for specifying the ‘goal’ of the compo-
sition. While it was initially planned to continue the project in order to develop a
true semi-automated approach, the project was discontinued.

2See section 2.2.1.1 for a short overview of Guided Procedures

4. A Motivating Scenario for

Semi-Automated Composition

As SAP’s Business Process Platform (BPP) is still under development, there are,
currently, no core business processes which are fully supported in the form of end-
to-end enterprise service compositions. However, the scenario used to motivate the
functionality proposed in this thesis should be as close as possible to the final prod-
uct. It is to build upon a set of services that resemble the enterprise services to be
shipped with BPP in order to ensure its practical relevance. The scenario is taken
from a recent SAP product: Duet1, which is jointly developed by Microsoft and
SAP, is the first application which completely builds upon enterprise services. Duet
is an extension of Microsoft Outlook which provides integration with mySAP ERP.
In doing so, a small number of day-to-day activities conducted by business users
can be carried out completely inside Outlook. Duet comprises four sub-applications,
namely ‘Budget Monitoring’, ‘Time Management’, ‘Leave Management’, and ‘Orga-
nization Management’. The main benefit is that the user has no longer to manually
synchronize the data in Outlook E-Mails and calendar items with transactions in the
mySAP ERP system. SAP has developed enterprise services to cover functionality
provided by the four Duet applications. While having been developed for Duet, the
services will later be reused for applications running on top of BPP.

The process flow among the enterprise services used in Duet is not explicitly sep-
arated from the application. To obtain a business process that is composed of
enterprise services, we analyzed a sub-application of Duet, namely the ‘Leave Man-
agement’ application. The typical actions carried out by the user in Outlook when
filing a leave request trigger certain enterprise service calls. Those have been ex-
tracted and composed into a business process ‘leave request’ which will be described
in section 4.1. Formal semantic descriptions, including an ontology describing the
leave request domain will be developed in section 4.2.

1See http://www.duet.com

32 4. A Motivating Scenario for Semi-Automated Composition

4.1 Scenario Overview

The leave request scenario consists of two parts: First, an employee files a leave
request. Second, his manager approves or denies that leave request. Therefore,
the two roles, ‘employee’ and ‘manager’, participate in the leave request process.
The complete scenario is depicted in figure 4.1 using the Business Process Modeling
Notation (BPMN) [69]. The tasks in the diagram correspond to enterprise service
operations. To describe what the services do, we extend the BPMN syntax so that
we can visualize WSMO service capabilities [54]: The inputs that a service consumes
and the conditions regarding these inputs make up the ‘precondition’. The outputs
of a service and the relation between input and output constitute its ‘postcondition’.
Dependencies on the real world, such as constraints that must be valid at the time a
service is executed, are encoded in the ‘assumption’. The changes in the real world
as a result of the execution of a service are encoded in the ‘effect’.

In the following, we will first describe the service operations which are invoked on
behalf of the employee; afterwards we will discuss the service operations used for the
manager role.

4.1.1 Employee services

Before an employee files a leave request, he or she will, typically, try to get an
overview of his time balance and suitable dates for the leave. Duet will collect this
information when the leave request application pane is opened in Microsoft Outlook.
Therefore, Duet will call the following four enterprise service operations in parallel:

• Read Employee Time Account This operation returns the current time
balance that is stored for a specific employee in the ERP system. The time
balance is composed of three time accounts, one for paid vacation, one for
overtime and one for sick leave. The current balance for each time account is
returned together with the amount of days that the employee is entitled for.
The operation takes an employee object and a key date as input. The employee
object uniquely refers to the employee on whose behalf the operation is invoked.
The key date represents the date for which the balances are returned. In the
case of Duet, this key date is the current date, i.e. the date of the day on
which the operation is called.

• Read Leave Request Configuration by Employee This operation outputs
the leave configuration for a specific employee as stored in the ERP system.
The leave configuration includes the types of leaves that this employee can
request, such as a full day leave, a half day leave, or sick leave. The operation
takes an employee object and a key date as input, exactly as Read Employee
Time Account does.

• Find Leave Request By Employee It may be the case that an employee
has recently filed other leave requests which have not been processed, yet.
This operation returns an employee’s pending leave requests so that he or she
can consider them together with the time balance. The operation takes an
employee object as input.

4.1. Scenario Overview 33

F
ig

u
re

4
.1

:
L
eave

R
eq

u
est

S
cen

ario

34 4. A Motivating Scenario for Semi-Automated Composition

• Find Leave Request Allowed Approver by Employee A leave request
must be approved by the line manager of the employee filing it. In some
cases, a different approver or no approval is required, for example, when a
person can authorize his or her own leave. This operation returns the employee
object corresponding to the allowed approver for the leave request. It takes an
employee object as input.

The information retrieved by the four service operations described above is visualized
in Duet and the employee can decide on a day or a period that is suitable for the
planned leave browsing his Outlook calendar. When a date or a period has been
chosen, the employee can file the leave request. This yields the sequential invocation
of the two following operations:

• Check Create Leave Request Before a leave request is created in the ERP
system, it has to be checked for plausibility. This operation takes the same
inputs as the operation that, actually, creates the leave request. Besides the
employee object the operation takes the leave period and the leave type as
inputs. The leave type can be either a full day leave, a half day leave, illness
with a certificate from a doctor or illness without certificate. When this oper-
ation is invoked, a leave request is created in the ERP system, followed by an
immediate roll-back. If the request can be created successfully, the plausibility
check returns a positive result. Otherwise, the result is negative.

• Employee Leave Request After the plausibility check has been successful,
this operation, finally, creates the leave request in the ERP system. Inputs are
an employee object, leave period and leave type. As a result, a leave request
is created.

4.1.2 Manager services

At this point, the leave request process is completed from the employee’s point
of view. If the newly created leave request requires approval, the process continues
from the perspective of the approving manager. Whether or not approval is required
essentially depends on the type of leave: Leaves which are due to illness are not to
be approved, they are only entered into the system.

The manager receives an e-mail when a leave request is pending to be approved by
him or her. When the manager opens the respective Duet action pane, the following
operation is called to retrieve information to be visualized in Duet about new leave
requests from the ERP system:

• Find Leave Request by ID This operation fetches a leave request from
the ERP system when it is called. It takes a leave request identifyer as input
and returns the complete leave request business object, which contains all the
details of the leave request.

4.2. Scenario Specification 35

To support his or her decision on whether or not to approve an employee’s leave
request, the manager can chose to get an overview of the absences of the employee’s
in the team that he or she supervises. If a team overview is requested, the following
three operations are sequentially invoked, otherwise, they are skipped:

• Find Reporting Employee by Employee This operation returns the list of
employees who are reporting to a manager. It takes a manger object as input
and returns a list of employee business objects.

• Read Employee Time Account This operation was already described above.
Here, the operation is used to obtain the time balances for all employees on
the team and is therefore repeated for each employee.

• Find Leave Request By Employee Similarly, this operation was already
discussed. The operation is used to retrieve pending leave requests from all
team members. The manager needs to be aware of pending requests, because
it can happen that other team members plan leaves for the same date as the
leave request under review, does.

Having reviewed the absence situation of the team, the manager can, then, take the
decision on whether to approve or reject the leave request. If the manager decides
to approve the leave request, the invocation of the two following services will be
yielded:

• Check Approve Leave Request Before a leave request is set to an ‘approved’
status in the ERP system, a plausibility check is conducted (similar to the
creation of the leave request). This operation takes a leave request object as
input. When this operation is invoked, the leave request is approved in the
ERP system, followed by an immediate roll-back. If the approval succeeded,
the plausibility check returns a positive result. Otherwise, the plausibility
check fails.

• Approve Leave Request After the plausibility check has been successful,
this operation, finally, sets the leave request to ‘approved’ in the ERP system.
It takes a leave request object as input, exactly as the preceding plausibility
check does.

The operations Check Reject Leave Request and Reject Leave Request func-
tion in the same way as the operations to approve the leave request do, except that
the goal is to reject the request.

4.2 Scenario Specification

Before (semi-)automated composition techniques can be applied, semantic service
descriptions must be available for the services from which compositions are to be
created. Before we illustrate typical semi-automated composition functionality in

36 4. A Motivating Scenario for Semi-Automated Composition

chapter 5 with the scenario services presented above, we will first develop semantic
descriptions for them throughout the remainder of this chapter. We will start with
formalizing the leave request domain in the form of an ontology. Afterwards, we will
semantically describe the service operations used in the presented scenario.

Based on the evaluation of languages for semantic Web service specification, pre-
sented in section 3.1.6, we chose WSMO [54] for semantically describing the domain
and the service operations.

4.2.1 Ontology

In order to allow reasoning in a specific domain, an ontology for that domain must
be available. We have encoded the leave request domain in a WSMO ontology. The
full ontology in WSML [16] is listed in appendix A.1. In the following, the key ideas
that have been applied to develop the ontology will be briefly described.

4.2.1.1 Concepts

The concepts in the ontology are derived from the SAP Global Data Types (GDTs)
[58] which are used for the parameters of the scenario services. However, we did
not create an ontology for the complete GDT catalog, because this is not within the
scope of this work. Instead, the presented scenario ontology contains only concepts
which refer to GDTs that are used in the leave request scenario. The concepts that
are part of the created ontology are depicted in figure 4.2, visualizing the subclassing
among the various concepts.

In the process flow depicted in figure 4.1, the two roles, ‘employee’ and ‘manager’, are
introduced. These roles are also represented as concepts in the ontology. More specif-
ically, the ontology contains a concept Person, which has a subconcept Employee,
which itself has a subconcept Manager. This is realized using the subConceptOf op-
erator in WSML, as depicted in listing 4.1. The concepts Employee and Manager

correspond to the business objects ‘employeee’ and ‘manager’ as specified in the
GDT catalog.

1 concept Person
FirstName ofType s t r i n g

3 LastName ofType s t r i n g

5 concept Employee subConceptOf Person
EmployeeID ofType (1 1) i n t e g e r

7

concept Manager subConceptOf Employee

Listing 4.1: The concept ‘person’ and its subconcepts

The ontology contains a number of enumeration types, e.g. LeaveRequestState,
TimeAccountType and Result. The chosen language dialect of WSML for the spec-
ification of the ontology, WSML-Flight, does, however, not support enumeration
types. The possible values of the enumeration types have, therefore, been realized
as subconcepts of the enumeration types in the ontology.

4.2. Scenario Specification 37

Figure 4.2: Concepts in the leave request domain ontology

WSML-Flight does also not provide for a list type. However, some of the service
operations consume or produce lists of a specific data types when the are invoked, as
opposed to producing a single value of a type. For the concepts that would usually
require a list type, we have created so-called ‘bag’ concepts to work around this
problem. A bag concept has an attribute which is typed as the contained concept
with a minimum multiplicity of one.

concept EmployeeBag
2 membersEMP ofType (1 ∗) Employee

Listing 4.2: A bag of ‘employee’ concepts

Listing 4.2 shows an example of a bag type. An EmployeeBag concept is defined
which has an attribute typed as the Employee concept (see listing 4.1). This attribute
can be used to store one ore more instances of the concept Employee.

4.2.1.2 Relations

The ontology contains the relations depicted in figure 4.3. Relations are defined
among an arbitrary number of concepts in the ontology. They express constraints
on concrete instances of concepts, which take part in a relation.

Listing 4.3 shows how relations are specified in WSML, using the relation has-

Requestor as an example: An instance of this relation assigns an instance of the
concept Employee to an instance of the concept LeaveRequest.

38 4. A Motivating Scenario for Semi-Automated Composition

Figure 4.3: Relations in the leave request domain ontology

relation hasRequestor (ofType LeaveRequest , ofType Employee)

Listing 4.3: The relation ‘hasRequestor’

4.2.2 Service Operations

While the capabilities of the service operations used in the leave request scenario
were already described in natural language in section 4.1, a formal description of
the capabilities is a necessary prerequisite for semi-automated service composition.
In the following, we will describe the main ideas that have been employed to create
the semantic service specifications in WSML using examples. The complete service
descriptions in WSML are listed in appendix A.2. In WSMO, a capability of a Web
service may contain a precondition, a postcondition, an assumption, an effect as
well as nonfunctional properties and shared variables. These elements are discussed
briefly using the leave request scenario services as an example.

4.2.2.1 Preconditions and Assumptions

In WSMO, preconditions and assumptions express the state that has to be satisfied
so that the described operation can be invoked. The precondition lists the infor-
mation artifacts, i.e. the input parameters, that must be available at the point in
time when the described service is to be invoked. These information artifacts are de-
scribed using the concepts that have been specified in an ontology. The assumption
lists a number of conditions regarding the input parameters. This is done using the
relations that have also been specified in an ontology. Listing 4.4 shows excerpts of
the precondition and the assumption of the Check Reject Leave Request operation.
The precondition states that two facts must be available for the operation to be
invocable. One fact is an instance of the concept LeaveRequest, the other fact is an
instance of the concept LeaveRequestCreatedState. What’s more, the second fact

4.2. Scenario Specification 39

must have an attribute ‘state’ which has the value ‘requestedState’. The assumption
states that the two facts, described in the precondition, participate in the relation
hasLeaveRequestState. This expresses that the state, described by the second fact,
belongs exactly to the leave request described by the first fact.

1 precondition

definedBy

3 ? l r q memberOf dO#LeaveRequest
and ? s t a t e memberOf LeaveRequestCreatedState

5 and ? s t a t e [s t a t e hasValue ‘ r eques tedState ’] .
assumption

7 definedBy

dO#hasLeaveRequestState (? l rq , ? s t a t e) .

Listing 4.4: Precondition and assumption of the ‘Check Reject Leave Request’ operation

4.2.2.2 Postconditions and Effects

Postconditions and effects are used to model the point in time after a service has
been invoked. More precisely, they describe the information state and the state of
the world after the invocation. Listing 4.5 shows an excerpt of the postcondition and
the effect of the Find Leave Request Allowed Approver by Employee operation. The
service returns the line manager of a given employee. Therefore, the postcondition
states that the service produces a fact that is an instance of the concept Manager.
The effect states that the person corresponding to the produced fact is, in the real
world, the line manager of the person described by the fact that the service consumes,
which is not shown in the listing.

postcondition

2 definedBy

?mgr memberOf dO#Manager
4 ef fect

definedBy

6 dO#hasManager (?emp , ? mgr) .

Listing 4.5: Postcondition and effect of the ‘Find Leave Request Allowed Approver by Em-
ployee’ operation

4.2.2.3 Shared Variables

In order to use the same variables throughout multiple segments of a WSMO ca-
pability, the respective identifiers have to be added to the list of shared variables.
In the capability of the Find Leave Request Allowed Approver by Employee opera-
tion, for example, the variable ?mgr is used in both the precondition and the effect
and, actually, refers to the same fact in both occurences. The variable ?mgr must,
therefore, be declared as a shared variable. The precondition of Find Leave Request
Allowed Approver by Employee is not shown in listing 4.5. However, the precondi-
tion contains a fact ?emp which is also referred to in the effect of the capability and
must, consequently, also be added to the list of shared variables. This is shown in
listing 4.6.

40 4. A Motivating Scenario for Semi-Automated Composition

sharedVariables {?emp , ?mgr}

Listing 4.6: Declaration of a shared variable

4.2.2.4 Nonfunctional Properties

Noncuntional properties model characteristics of a service operation that are inde-
pendent of the data transformation or the change in the state of the world that a
service realizes. Nonfunctional properties are, for example, used in the semantic
descriptions of our scenario services to model the operations’ affilliations with enter-
prise services containing the operations. An example stating that the Find Leave
Request Allowed Approver by Employee operation belongs to the ‘Time & Leave
Management’ enterprise service is shown in listing 4.7. The nonfunctional property
EnterpriseService is realized as a concept in the ontology.

1 nfp

dO#Ente rp r i s eS e r v i c e hasValue ‘Time & Leave Management ’
3 endnfp

Listing 4.7: A nonfunctional property of a service operation

5. Mixed Initiative Features for

Semi-Automated Composition

In this chapter, we will describe three mixed initiative features which are characteris-
tic for semi-automated service composition. As depicted in figure 5.1, these features
can be seen as use cases for semi-automated composition environments that help
them to overcome the problems of complexity, inflexibility and error-proneness akin
to conventional service compositions, as described in chapter 1.

Figure 5.1: Mixed initiative features

To showcase how semi-automated composition techniques can ease the modeling of
a business process, we will work with the scenario that was presented in chapter 4.
The business process in the Leave Request Scenario will be constructed step by step,
which supports and motivates the introduction of the three mixed initiative features.

This chapter is organized as follows: First, section 5.1 will refresh our understanding
of how to semantically describe the capabilities of a service. We start with the
definition of a formal model for service compositions on which we build the formal
description of service capabilities used throughout this thesis. The mixed initiative
features will also build upon this formal model, when they are defined throughout
the remainder of this chapter. Each of the three features will first be motivated
with our business scenario from chapter 4. Then, each of the three mixed initiative
features will be described in detail.

42 5. Mixed Initiative Features for Semi-Automated Composition

5.1 A Formal Model for Service Compositions and Capabilities

As already stated in section 1.1.1, services can have capabilities that are information-
providing or world-altering (or both). The invocation of information-providing ser-
vices results in a change in the information state at a given point in time. In WSMO
terminology [54], the data transformation accomplished by a Web service operation
is described by the precondition and postcondition of an operation. Another
class of service capabilities are the so-called world-altering capabilities. As opposed
to information-providing capabilities, world-altering capabilities have an irreversible
effect on the state of the world. An example would be a payment service that has
the effect of charging a credit card when it is invoked. Similarly, there might be
certain assumptions about the state of the world that must be verified, before a
service can run. Reconsidering the leave request example, such an assumption could
be that the person trying to execute the operation that approves a leave request is
the line manager of the employee requesting the leave and is, therefore, authorized to
approve the request. Throughout the remainder of this thesis, we will use the terms
precondition, postcondition, assumption and effect to describe service capabilities.
We will, first, give a formal definition of the terms ‘service composition’ and ‘ontol-
ogy’ as the foundation for the definitions necessary to describe information-providing
and world-altering services.

5.1.1 Service Compositions and Ontologies

Usually, we regard business processes (or service compositions, respectively) as a
graph of activities (or service operations). These activities are in a partial order
that denotes the execution flow of the process. However, we can also look at a
service composition as a bipartite graph of states and transitions. In doing so, the
transitions denote the service operations. Before and after each transition there is a
state. We, then, think of the invocation of a service as a transition from one state
A to another state B. States capture the informational state and the state of the
world at a given point in a service composition. To capture the essential concepts
of process modeling, such as alternatives and parallelism, our graph representation
has to contain more than two node types, i.e. states and service operations. In the
following, a formal definition of the term ‘service composition’ will be given:

Definition 5.1 (Service composition) We define a service composition as a k-partite
graph

G := < V,E >

with k = 6, V = S ∪ OP ∪ AS ∪ AJ ∪ OS ∪ OJ ∪ LB ∪ LE.

The set of vertices V is partitioned as follows:

• S is the set of states

• OP is the set of service operations

• AS is the set of AND-splits

5.1. A Formal Model for Service Compositions and Capabilities 43

• AJ is the set of AND-joins

• OS is the set of OR-splits

• OJ is the set of OR-joins

• LB is the set of nodes representing the beginning of a loop

• LE is the set of nodes representing the end of a loop

Remark The distinction between inclusive and exclusive OR-semantics is not neces-
sary for the introduction of the mixed initiative features for semi-automated service
composition. The definition of a service composition is, therefore, limited to a notion
of OR-splits and OR-joins covering both OR facettes.

Remark To denote that an edge e connects two vertices v1 and v2, we write

v1
e
→ v2.

Remark If an edge e connects two vertices v1 and v2, then either v1 or v2 is a state.

∀e ∈ E with v1
e
→ v2 : v1 ∈ S ⊕ v2 ∈ S

Remark A state can have a maximum number of one incoming and one outgoing
edge:

|{e : v
e
→ s}| ≤ 1, v ∈ V, s ∈ S, ∀ e ∈ E

|{e : s
e
→ v}| ≤ 1, v ∈ V, s ∈ S, ∀ e ∈ E

Remark For every AND-split node, there is a corresponding AND-join node in the
service composition. The same holds true for OR-splits and OR-joins as well as for
nodes representing the beginning of a loop and nodes representing the end of a loop.

|AS| = |AJ |

|OS| = |OJ |

|LE| = |LB|

Remark The first vertex in a service composition is a state. It is labeled s0:

∃s0 ∈ S such that ∄v ∈ V with v
e
→ s0, e ∈ E

Remark The last vertex in a service composition is a state:

∃s ∈ S such that ∄v ∈ V with s
e
→ v, e ∈ E

Example Figure 5.2 depicts a sample service composition based on the formal model
defined in definition 5.1. All vertices and edges are annotated with the subset of V

or E they belong to.

44 5. Mixed Initiative Features for Semi-Automated Composition

Figure 5.2: A sample service composition graph according to definition 5.1.

Definition 5.2 (Ontology) An ontology Ω consists of concepts, attributes of the con-
cepts, and relations between the concepts. The set C ⊆ Ω contains all the concepts
ci that are specified in Ω. An ontology can also contain an arbitrary number of
n-ary relations between the concepts. The set R ⊆ Ω contains all the relations
ri ⊆ C × · · · × C that are specified in Ω.

Remark Other common definitions of the term ‘ontology’ [54, 42] also include the
notion of ‘individuals’. Individuals are instances of a concept that are specified
directly in an ontology. In our model, however, individuals as part of the ontology
are not necessary. They are, therefore, excluded from our definition of an ontology.
However, there are instances of concepts that are not pre-defined in an ontology.
These are called facts (see defnition 5.3).

Remark A concept c2 can be derived from another concept c1. In doing so, a hierarchy
of the concepts in the ontology is built. The function super : C → C returns the
superconcept of a given concept, i.e. the concept it is derived from. In contrast, the
function sub : C → P(C) returns the set of subconcepts of a given concept. P(C)
is the power set of C.

5.1.2 The Class of Information-Providing Services

Based on the above definitions, we will, now, introduce the concepts necessary to
enhance our model to capture the essence of information-providing services.

Definition 5.3 (Fact) A fact f ∈ F is an instance of a concept in Ω. The set F

contains all facts that exist in an environment. The function concept : F → C

returns the concept in Ω that a given fact is an instance of. There can be multiple
facts corresponding to the same concept in Ω.

Definition 5.4 (Constraint) A constraint co ∈ Rco is an instance of a relation in Ω.
A constraint coi ∈ Rco is an n-ary relation between facts. The set Rco contains
all the constraints coi ⊆ F × · · · × F that exist in an environment. The function
relation : Rco → R returns the relation in Ω that a given constraint is an instance
of. There can be multiple constraints corresponding to the same relation in Ω.

5.1. A Formal Model for Service Compositions and Capabilities 45

Definition 5.5 (Precondition) A precondition is the set of facts that a service opera-
tion consumes when it is invoked. The function pre : OP → P(F) returns the set
of facts that are contained in the precondition of a service operation. P(F) is the
power set of F .

Definition 5.6 (Postcondition) A postcondition is the set of facts that a service oper-
ation produces when it is invoked. The function post : OP → P(F) returns the set
of facts that are contained in the postcondition of a service operation. P(F) is the
power set of F .

Definition 5.7 (Information state) The information state inf(s) is the partition of a
state s containing the set of all postconditions of all service operations preceding s,
as well as the facts that are available in the initial state (s0) of the composition. The
set of facts ǫ(s) ⊆ inf(s) contains the facts that are made available by the execution
environment in state s. The function inf : S → P(F) returns the set of facts that
are contained in the information state partition of a state. It is recursively defined
as follows:

inf(si) =

ǫ(si) ∪ post(v) ∪ inf(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ OP

ǫ(si) ∪ inf(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ AS

ǫ(si) ∪ (
⋃

inf(sk)),∀k such that ∃d ∈ E with sk
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ AJ

ǫ(si) ∪ inf(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ OS

ǫ(si) ∪ (
⋂

inf(sk)),∀k such that ∃d ∈ E with sk
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ OJ

ǫ(si) ∪ inf(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ LB

ǫ(si) ∪ inf(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ LE

ǫ(s0) if si = s0

46 5. Mixed Initiative Features for Semi-Automated Composition

Remark The postconditions of all service operations between an AND-split and an
AND-join node are combined and are part of the information state partition of the
state after the AND-join node.

Remark The postconditions of all service operations between an OR-split and an
OR-join node are not combined. This is due to the fact that the decision which OR-
paths are executed (and, thus, which facts are actually available in the state after the
OR-join) is deferred to runtime. The information state partition of the state after
an OR-join is, therefore, reduced to a common denominator: The OR-path-wise
intersection of the facts produced as postconditions of the service operations.

Remark In our model, a loop does not affect the information state partition of a state.
During its first iteration, the information state partitions of the states between the
nodes representing the beginning and the end of the loop are the same as if the
loop was not present. From the second iteration on, it might be the case (for loops
spanning more than one service operation) that facts from postconditions in the last
iteration(s) have been produced. However, it is a runtime decision whether a loop
is iterated or not. Therefore, we neglect the influence of loops on the information
state, because our focus lies on design-time.

5.1.3 The Class of World-Altering Services

By elaborating the necessary definitions for the introduction of the information state
partition of a given state, we have covered the set of information-providing services.
In the following, we will extend our model to deal with services providing world-
altering capabilities.

Definition 5.8 (Assumption) An assumption is the set of constraints that must be
satisfied as a prerequisite for invoking a service operation. The function assump :
OP → P(Rco) returns the set of constraints that are contained in the assumption of
a service operation. P(Rco) is the power set of Rco.

Definition 5.9 (Effect) An effect is the set of constraints that is produced by the
invocation of a service operation. All constraints in this set are satisfied at the point
in time after a service operation is invoked. The function eff : OP → P(Rco)
returns the set of constraints that are contained in the effect of a service operation.
P(Rco) is the power set of Rco.

Definition 5.10 (World state) The world state world(s) is the partition of a state s

containing the set of all effects of all service operations preceding s, as well as the
constraints that are defined in the initial state (s0) of the composition. The set of
constraints γ(s) ⊆ world(s) contains the constraints that are made available by the
execution environment in state s. The function world : S → P(Rco) returns the
set of constraints that are contained in the world state partition of a state. It is
recursively defined as follows (analogous to definition 5.7):

5.2. Filter Inappropriate Services 47

world(si) =

γ(si) ∪ eff(v) ∪ world(si−1), with si−1 such that ∃d ∈ E

with si−1
d
→ v if ∃e ∈ E such that v

e
→ si, v ∈ OP

γ(si) ∪ world(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ AS

γ(si) ∪ (
⋃

world(sk)),∀k such that ∃d ∈ E with sk
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ AJ

γ(si) ∪ world(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ OS

γ(si) ∪ (
⋂

world(sk)),∀k such that ∃d ∈ E with sk
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ OJ

γ(si) ∪ world(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ LB

γ(si) ∪ world(si−1), with si−1 such that ∃d ∈ E with si−1
d
→ v

if ∃e ∈ E such that v
e
→ si, v ∈ LE

γ(s0) if si = s0

Remark For the definition of the world state partition of a state, AND-splits, AND-
joins, OR-splits, OR-joins, nodes representing the beginning of a loop and nodes
representing the end of a loop are treated in the same way as in definition 5.7.

5.2 Filter Inappropriate Services

The first mixed initiative that will be discussed is named ‘Filter Inappropriate Ser-
vices’. This feature addresses a major problem in creating composed services: The
number of activities that are available as building blocks for the composition might
be extremely high, depending on the domain. In the context of SAP, for example,
the Enterprise Service Repository, the central repository of enterprise services, con-
tains more than 12,000 core services and more than 240 compound services to date1.
Several hundred more are. currently, being examined for approval by the Process
Integration Council (PIC) at SAP. Another several hundred service operations for
industry specific solutions have not even been submitted for approval. The high

1Source: X8R, Software Component SAP BASIS 7.10 (as of Nov 1, 2006)

48 5. Mixed Initiative Features for Semi-Automated Composition

number of available service operations results from the fact that each business ob-
ject provides at least 10 service operations, which is due to the interface patterns
described in section 2.2.3. This leads to a complexity that is unmanageable for a
modeler of service compositions. Particularly when executable services are to be
realized with service compositions that are created by users with a non-technical
background, as envisioned in SAP’s long-term strategy, a modeling tool for creating
service compositions should support the user as far as possible. For the user cannot
oversee such a vast amount of available options as presented in the enterprise services
example, it is desirable to filter the set of available services. Such filtering can be
done based on semantic service descriptions.

5.2.1 Business Scenario

In order to illustrate the ‘Filter Inappropriate Services’ feature as well as the other
mixed initiative features, we will use the leave request scenario presented in chapter
4. While the whole process, depicted in figure 4.1, could be constructed by the aid
of the mixed initiative features, we limit ourselves to constructing the first part of
the leave request business process, up to the point where the employee creates the
leave request. This part of the process is depicted in figure 5.3.

Figure 5.3: The leave request scenario from an employee perspective

We have implemented a semi-automated business process orchestration tool that
realizes the three mixed initiative features. Our implementation serves as an example
for a semi-automated composition environment. The presented business scenario
outlines the activities that a modeler would carry out in this modeling environment,
which is in this case provided by our tool, to build the leave request process. The
realization of the mixed initiative features and the implementation of our tool will
be discussed in chapters 7 and 8.

When the leave request is to be created from scratch, the tool will first retrieve all
available Web services. The modeler starts by adding the role ‘employee’ to the
composition by selecting this role from a list of all available roles, e.g. ‘supplier’,
‘customer’, ‘manager’ or ‘sales representative’. Our tool, then, assumes the implicit
availability of a variable of the complex type ‘employee’, representing the person

5.2. Filter Inappropriate Services 49

who takes part in the business process in this role. The tool is, now, able to filter
the list of available service operations down to those that require an employee object
as an input. Our experiments have shown that filtering all services that would not
be invocable in the current step of the composition is too strict. The tool will,
therefore, also present service operations that are nearly invocable in the sense that
only one input data type is missing. Using this technique, we are able to retrieve
very reasonable suggestions from SAP’s service repository. The service operations are
logically grouped around so-called enterprise services. In our example, the modeler
would, therefore, then expand the ‘Time and Leave Management’ enterprise service
and select the first four operations from figure 5.3. As there are no dependencies
among the four activities, the user connects the operations using a parallel control
flow. Figure 5.4 gives an example of what this could look like in a semi-automated
modeling environment.

Figure 5.4: Screenshot of the modeling tool

At this point, the modeler is able to retrieve more service suggestions through the
filtering mechanism by clicking on the merge node of the parallel split. Our tool will,
then, present a list of service operations that are invocable or nearly invocable based
on the union of all postconditions of the services which are in the composition so far.
The postconditions, i.e. the output data types, of the operations are also depicted in
figure 4.1. Amongst other things, our tool will suggest the operation Check Create
Leave Request as a nearly invocable service. The modeler adds it to the composition
and creates a link between the merge node and the operation.

50 5. Mixed Initiative Features for Semi-Automated Composition

5.2.2 Formal Description

When creating composed services, users select services and add them to the compo-
sition. In a given state, it is possible to filter the selection according to semantic
descriptions: It is desirable that service operations that have preconditions and as-
sumptions that are not satisfied in a given state will be filtered. This filtering will
effectively reduce the number of choices presented to the user.

A filtered list should only contain service operations that are invocable in the current
state of the composition. Definition 5.11 gives a formalization of the semantics of
the term ‘invocable’. It builds upon the definitions of the previous sections.

Definition 5.11 (Invocable) A service operation o ∈ OP is invocable in state s ∈ S if

pre(o) ⊆ inf(s) ∪
⋃

f∈inf(s)

{ g ∈ F | ∃c ∈ C such that concept(f) = c

∧ concept(g) ∈ sub(c) }

∧ assump(o) ⊆ world(s).

Remark We write s |= o (‘s satisfies o’) to denote that service operation o is invocable
in state s.

Our experiments with the service repository of SAP show that the filtering of the
available services operations on the basis of invocability in a state is often too strict.
A filtering that is too strict can result in a situation where the number of invocable
services is very low or contains services that have already been included in the
composition. To provide more valuable service suggestions, a certain amount of
fuzzyness can be added to the filter. This can be done by assuming the availability
of facts that are not part of the information state partition of a state. In doing so,
the filtering will result in a list of ‘nearly invocable’ service operations. They are
only nearly invocable, because they have been discovered under the assumption that
additional facts were available in a given state. Definition 5.12 formally introduces
the concept of nearly invocable service operations.

Definition 5.12 (Nearly invocable) A service operation o ∈ OP is nearly invocable to
a degree k ∈ N in state s ∈ S if

∃f1 ∈ F ∧ ∃f2 ∈ F ∧ . . . ∧ ∃fk ∈ F such that
(

pre(o) ∈ inf(s)

∨ pre(o) ⊆
⋃

f∈inf(s)

{g ∈ F |∃c ∈ C such that concept(f) = c ∧ concept(g) ∈ sub(c)}

∨ pre(o) ⊆ {f1, . . . , fk}

∨ pre(o) ⊆ {g ∈ F |∃c ∈ C such that concept(f1) = c ∧ concept(g) ∈ sub(c)}

. . .

∨ pre(o) ⊆ {g ∈ F |∃c ∈ C such that concept(fk) = c ∧ concept(g) ∈ sub(c)}
)

∧ assump(o) ⊆ world(s).

5.2. Filter Inappropriate Services 51

In our experiments, we were able to retrieve very reasonable service suggestions with
k = 1. That means that adding only one fact to the state can significantly improve
the filtering.

5.2.3 Possible Extensions

While filtering based on the services’ capabilities restricts the set of presented ser-
vices to those which are invocable or nearly invocable in the current state, the set
can be further restricted by filtering based on the nonfunctional properties of the ser-
vices operations. Nonfunctional properties do not only offer a possibility to record
juridically relevant information such as a publisher’s name and address, but also
quality indicators for services. Such indicators can be measures that address the per-
formance (in terms of response time), error rate or robustness of a service, as well as
issues like scalability, reliability, geographical coverage, invocation cost, and many
more. When creating service compositions, the user may find himself or herself in
a situation where more than one available service offers the functionality that he or
she looks for at a specific point in the composition, i.e. a state in the composition.
At this point, the editor should allow the user to assign values to the nonfunctional
properties of the filtered services. These values are, then, evaluated by the semi-
automated composition environment. Only those services that both provide the
desired functionality and comply with the user-specified value of the nonfunctional
properties are presented for selection and remain in the filtered list. It should also
be possible for the user to specify weighted combinations of values of nonfunctional
properties to obtain a further filtering of the list. However, filtering on nonfunc-
tional properties implies a strong requirement for the semantic service specifications:
All the semantic descriptions of the services providing equivalent functionality must
contain the same set of nonfunctional properties. Otherwise, the filtering with non-
functional properties cannot be applied to all service operations that have the same
capabilities.

Another possibility to further enhance the filtering is to introduce an ordering of the
filtered list of (nearly) invocable services according to the ‘quality of match’ between
the information state and the precondition. Li and Horrocks [41] propose a classifi-
cation of the ‘goodness’ of a match which can be taken into account for ordering the
list of service suggestions. All the individual facts of a precondition of an operation
are matched against the information state partition of the current composition state.
If the concepts required in a precondition are contained in the current state (i.e.,
an ‘exact match’, see definition 5.13), the operation should be given a high ranking
in the list. In the second place, service operations with preconditions which are
satisfied by facts representing more specific concepts than those required by the op-
eration (i.e., a ‘plugin match’, see definition 5.14) should be shown. A list of plugin
matches can, furthermore, be ordered according to the individual match distances
between the required and the available concepts, which is also formally introduced
in definition 5.14.

52 5. Mixed Initiative Features for Semi-Automated Composition

Definition 5.13 (Exact Match) A fact that is part of the information state partition
of a state s ∈ S exactly matches a fact that is part of the precondition of a service
operation o ∈ OP if

∃f ∈ pre(o) ∧ ∃g ∈ inf(s) such that concept(f) = concept(g).

Definition 5.14 (Plugin Match) A plugin match exists if a fact f , which is part of the
precondition of a service operation, is matched by another fact h which is part of
the information state partition of s, where h is an instance of a subconcept of the
concept that f is an instance of.

∃f ∈ pre(o)

∧ ∃g ∈ inf(s) such that concept(f) 6= concept(g)

∧ ∃h ∈ inf(s) such that concept(f) = concept(h)

with concept(h) ⊆ sub(concept(g)).

Remark The match distance k denotes the number of indirections between the con-
cepts g and h in the ontology Ω. It can be formally defined using the function super

that was introduced in definition 5.2:

superk(concept(h)) = concept(g)

A third possibility to enhance the Filter Inappropriate Services feature is to order
the list of (nearly) invocable services according to a rating of how often the user
has selected the particular services. This extension does not, primarily, build upon
the use semantic service descriptions. It will, therefore, not be discussed here in
greater detail. However, it would be conceivable to realize a rating facility using
a nonfunctional property in the semantic service descriptions: Such an attribute
could track how often the modeler selects a service operation. The editor could
update these descriptions each time a service is selected, increasing the counter in
the nonfunctional property.

5.3 Check Validity

Since the human planner has full control over the modeling of the business process
in manual and semi-automated environments, he or she is likely to introduce errors
into the composition. It is, therefore, necessary to provide the possibility to check
the overall process validity. By validity we refer to the semantic validity of a process
as opposed to its syntactic validity. Syntactic properties for valid process models
include, for example, soundness, which is defined by van der Aalst in [66]. Syntactic
validity can be verified statically, i.e. by investigating the structure of the service
composition. Checking for soundness takes the dynamics of a composition into
account, for example, when checking whether or not activities are ‘live’ or the com-
position can terminate in all possible states. However, when semantic descriptions
for the activities of process are available, we are able to define correctness criteria for

5.3. Check Validity 53

processes on the semantic level. Corresponding validity checks that operate on such
correctness criteria could be triggered by the user at the end of the modeling process.
In a semi-automated composition environment, however, the semantic validation of
the process should be interwoven with the actual modeling of the process. The user
should be informed about problems with the composition in an unobtrusive way.

5.3.1 Business Scenario

In our business scenario, which is depicted in figure 5.3, the last step was that the
modeler added the nearly invocable operation Check Create Leave Request to the
composition. The tool highlights operations for which problems are tracked. As the
added operation is not invocable, but nearly invocable, one input type is missing.
The tool, therefore, marks the operation with a red border. This can also be seen
in figure 5.4, where two out of four activities are highlighted. By clicking on the
Check Create Leave Request operation, the user can open a panel showing the input
and output types of the operation as inferred from the pre- and postconditions. The
user can see that all input types of the operation are currently available in the
composition, except TimePointPeriod, which is also highlighted using red color in
this drill-down view. The user can also get an overview of all current problems of the
composition by looking at the agenda. An example of what such an agenda could
look like is depicted in figure 5.5.

Figure 5.5: Agenda summarizing problems in a composition

The missing parameter TimePointPeriod represents the date or period for which the
employee intends to request a leave. As our scenario has been taken from Duet, this
data is provided by Microsoft Outlook after the user selects a date from the calendar.
In our example, the modeler, therefore, creates a human activity that produces a
TimePointPeriod variable as an output. The modeler connects the human activity
with the Check Create Leave Request operation. The coloring of the operation and
the TimePointPeriod input type in the parameter view disappears and the issue is
removed from the agenda.

5.3.2 Formal Description

During the process of modeling a composed service using a semi-automated compo-
sition environment, the modeler can be supported by being provided with a list of
problems. These problems reflect the semantic validity of a service composition. The
semantic validity is based upon a set of correctness criteria which can be validated

54 5. Mixed Initiative Features for Semi-Automated Composition

at any point during the creation of a composed service. The work of Kim, Spraragen
and Gil [34] has inspired our correctness criteria for composed services.

As stated in definition 5.5, the precondition of a service operation consists of a
number of input types that this operation consumes when it is invoked. When
creating a service composition, the modeler has to ensure that all input types of
an operation are available before it is invoked. If a service composition contains an
activitiy with unsatisfied inputs, its execution will fail at the point when this activity
is to be invoked. Definition 5.15 formally introduces the notion of an unsatisfied
input.

Definition 5.15 (Unsatisfied input) A fact f ∈ F ⊆ Ω is an unsatisfied input of service
operation o ∈ OP if

f ∈ pre(o)

∧ f 6∈ inf(s)

∧ f 6∈
⋃

g∈inf(s)

{h ∈ F |∃c ∈ C such that concept(g) = c ∧ concept(h) ∈ sub(c)}

with s ∈ S ∧ e ∈ E such that s
e
→ o.

Besides input parameters that are consumed upon the invocation of a service oper-
ation, it might be the case that additional constraints must be met to successfully
invoke an operation. These constraint are defined in the assumption of a service op-
eration (see definition 5.8). Definition 5.16 formally introduces the term ‘unsatisfied
input’.

Definition 5.16 (Unsatisfied assumption) A constraint c ∈ C ⊆ Ω is an unsatisfied
assumption of service operation o ∈ OP if

c ∈ assump(o) ∧ c 6∈ world(s),

with s ∈ S ∧ e ∈ E such that s
e
→ o.

Particularly when constructing complex business processes, it can be difficult for the
modeler to determine whether all steps in this business process are actually necessary
for achieving the overall goal of the process. We say that an activity o is necessary for
achieving the overall goal (or ‘relevant’), if at least one output parameter produced
by o is used by another activity p in the process. There must also be a path from o

to p in the service composition, so that there is a data flow between both activities.
The described properties do not need to be fulfilled if o is the last activity in the
composition. Then, we assume that the activity is relevant. Definition 5.17 formally
introduces the term ‘relevance’.

5.3. Check Validity 55

Definition 5.17 (Relevance) A service operation o ∈ OP in a service composition is
relevant if

(

∃f ∈ post(o) such that

∃p ∈ OP with o
e∗

→ p

∧ (f ∈ pre(p) ∨ ∃g ∈ pre(p) such that superk(concept(f)) = concept(g))
)

∨ ∄q ∈ OP such that o
e∗

→ q.

Remark To denote that there is a path in a service composition connecting two
vertices, we write

v1
e∗

→ vn, v1, vn ∈ V, e∗ ⊆ E,

which is short for

v1
e1→ v2, v2

e2→ v3, . . . , vn−1
en−1

→ vn, with v1, . . . vn ∈ V, {e1, . . . , en−1} = e∗ ⊆ E.

It might be the case that a service composition contains activities that produce the
same output parameters. Such activities are potentially redundant. We speak of po-
tential redundance, because there are circumstances that justify the fact that more
than one activity produces an output parameter. However, it cannot be decided on
the basis of semantic descriptions whether the inclusion of multiple activities pro-
ducing equal postconditions is justified or not. Yet, it proves useful to inform the
modeler in case potential redundancies are detected. The modeler can, then, inves-
tigate the issue and resolve the problem or, in case the activities are not redundant,
flag the activities as explicitly not redundant. Definition 5.18 formally introduces
potential redundance.

Definition 5.18 (Potential redundance) A service operation o ∈ OP is potentially re-
dundant if

∃f ∈ post(o) such that

o
e∗
1→ s, e∗1 ⊆ E, s ∈ S

∧ ∃p ∈ OP with p
e∗
2→ s, e∗2 ⊆ E

∧ ∃g ∈ post(p) such that concept(f) = concept(g).

Remark While a service operation o is potentially redundant according to the above
definition, it might, in fact, not be redundant: It is well possible that several facts,
i.e. multiple instances of the same concept in the ontology, are required in a service
composition. Whether or not this is necessary depends on the process that is being
modeled. It cannot be decided by a semi-automated modeling envorinment at design
time.

56 5. Mixed Initiative Features for Semi-Automated Composition

Based on the above definitions, we are, now, able to define the correctness criteria
through which the semantic validity of a process can be decided. A definition of
our understanding of the term ‘semantic validity’, as it will be used throughout the
remainder of this thesis, is given in definition 5.19.

Definition 5.19 (Semantic validity) A service composition is semantically valid if

• it does not contain activities with unsatisfied inputs,

• it does not contain activities with unsatisfied assumptions,

• all activities in the composition are relevant, and

• it does not contain potentially redundant activities that have not been flagged
by the user as explicitly not redundant.

The criteria for the semantic validity of a process should be checked after every action
that the user undertakes in a semi-automated modeling environment. An agenda
summarizing activities which do not satisfy all of the above criteria and what criteria
they do not comply with should be kept. In doing so, the modeler has an overview
over the problems with a composed service and can, subsequently, work on resolving
them.

5.3.3 Possible Extensions

Keeping automatically track of the problems that exist regarding the activities in
a service composition in the form of an agenda is a valuable support for the mod-
eler. However, it is possible to provide additional support for the user by system-
atically searching for solutions to the problems on the agenda. In doing so, the
semi-automated composition environment is able to suggest actions to the modeler
that resolve the problems on the agenda.

In the following, we will describe possible actions for resolving problems that arise
from the correctness criteria above in the case that they are not met.

• Unsatisfied input: If the service composition contains an activity that has an
unsatisfied input, the semi-automated composition environment could suggest
to:

1. Create a link: The system can systematically traverse the service composi-
tion. Thereby, it can find out if there are any activities in the composition
that produce the fact that is required by the activity with the unsatisfied
input. The system can, then, suggest to create such a link that there is
a data flow from the activity found to the activity with the unsatisfied
input. In case there are multiple activities in the composition producing
the required fact, the system can, accordingly, provide multiple sugges-
tions, i.e. creating a link from each of the found activities to the activity
with the unsatisfied input. However, these suggestions can be prioritized

5.3. Check Validity 57

and ordered: If there is an activity in the composition that is not relevant
(according to definition 5.17), and if this activity produces the required
fact, then, the suggestion to create a link from this activity to the activity
with the unsatisfied input should be ranked first. Thus, two errors in the
composition can be resolved with one single action.

2. Insert a new activity: No activity that is currently included in the service
composition produces the fact that is required by the activity with the
unsatisfied input. Then, the system uses semantic discovery to query the
service repository for operations that produce the required fact as a post-
condition. If such operations can be found in the service repository, the
system suggests to include them before the activity with the unsatisfied
input and to create a link between both activities. In case the seman-
tic discovery process reveals more than one operation that produces the
required fact, the system will, accordingly, make more than one sugges-
tion. These suggestions can, then, be ordered in the following way: If the
new operations that are suggested to be included in the composition will
also yield unsatisfied inputs after the insertion, then, the suggested oper-
ations should be ranked on the basis of how many new problems of the
type ‘unsatisfied input’ will be created by the insertion of the operations.

• Unsatisfied assumption: If the service composition contains an activity that
has an unsatisfied assumption, the semi-automated composition environment
could suggest to:

1. Create a link: Analogously to the case where an activity has an unsatisfied
input, the system can traverse the service composition and find activities
that produce the required constraint as an effect.

2. Insert a new activity: Analogously to the case where an activity has an
unsatisfied input, the system can use semantic discovery to query the
service repository for operations that produce the required constraint as
an effect.

• Irrelevant activity: If the service composition contains an activity that is
not relevant, the semi-automated composition environment could suggest to:

1. Create a link: As described above when we discussed that creating a link
can resolve the problem of an unsatisfied input of an activity, creating a
link can also resolve the problem that an activity is not relevant: If there
is an activity in the composition that is not relevant, and if this activity
produces a fact required by another activity with unsatisfied inputs, then,
the system suggests to create a link between both activities.

2. Remove the activity: If there is no activity in the composition that re-
quires facts produced by the irrelevant activity, then, the inclusion of
this activity in the composition is not justified. The system, therefore,
suggests to remove this activity from the composition.

58 5. Mixed Initiative Features for Semi-Automated Composition

• Potential redundant activity: If the service composition contains an activ-
ity that is potentially redundant, the semi-automated composition environment
could suggest to:

1. Remove the activity: If the modeler agrees that an an activity is redun-
dant, it can be removed from the composition.

2. Flag activity as not redundant: As discussed in definition 5.18 there might
be the case that potential redundant activities are in fact not redundant.
If this is the case, the modeler can manually flag the activity as not
redundant and the problem is removed from the agenda.

5.4 Suggest Partial Plans

Users with various backgrounds and areas of expertise will apply different strategies
when modeling a composed service. Particularly when modeling business processes,
we can often identify parts of these processes which are more important than others,
i.e. parts capturing the essence of a business process. These key parts in a service
composition often comprise activities that reflect an area of expertise of the modeler.
A person modeling a composed service might, on the other hand, not have a clear
idea of what activities could be useful to wrap the key parts of the process to fit into a
larger context. An example can be found in the following, where the Suggest Partial
Plans mixed initiative feature will be motivated with our leave request example.

5.4.1 Business Scenario

The last step in our scenario was that the modeler resolved a problem with the
Check Create Leave Request operation. When the user clicks on the operation to
refresh the filtered list of available services, the tool will suggest the Create Leave
Request operation. This is the last activity in the leave request process from the
perspective of the user. However, the modeler might not be familiar with the fact
that a specific check operation needs to be invoked in order to create a leave request in
the system. It could have, therefore, been the case that the modeler directly selected
the Create Leave Request operation from the list of all available services after the
merge node depicted in figure 5.4. The modeler also creates the human activity
producing the TimePointPeriod and links it to the Create Leave Request operation.
Then, the modeler tries to create a link between the merge node of the parallel flow
and Create Leave Request. The tool will detect that the set of postconditions up
to the merge node does not satisfy the preconditions of Create Leave Request (the
type CheckCreateLeaveRequestResult is missing). The tool instantly queries the semi-
automated composition engine which detects that the insertion of the Check Create
Leave Request operation would satisfy this open information requirement. The user
is prompted whether or not the Check Create Leave Request should be inserted. The
modeler approves this suggestion and the composition is complete.

5.4. Suggest Partial Plans 59

5.4.2 Formal Description

Automated planners will always plan according to an algorithmic planning strategy,
such as for example progression (i.e., forward search) or regression (i.e., backward
search). Human planners will in contrast not always behave according to this schema
when they model composed services. Users might have a clear idea about some
specific activities that they want to include in the process, but possiblywithout a
global understanding how the whole will fit together as a process.

A possible user behavior is to start modeling the part of the composed service that he
or she is especially interested in, i.e. the modelers area of expertise. This is done by
adding the respective operations and creating links denoting data flow between these
operations. Then, they might continue with another key part of the composition,
which does not directly follow the part of the composition the user has modeled
first. This modeling strategy results in disconnected parts in a service composition
that are likely to contain activities with unsatisfied preconditions or assumptions.
In cases of this kind, it is desirable for the user to let the editor generate sub-
processes that connect different parts of the composition, thereby satisfying the
missing preconditions and assumptions.

Connecting two unrelated parts, i.e. a source part and a target part, in a composi-
tion constitutes a ‘planning problem’ in artificial intelligence. A planning problem
consists of an initial state, a goal and a domain [22, 1]. Using our formal model for
describing service compositions, the initial state sI ∈ S in a such planning problem
would be a state as decribed in definitions 5.7 and 5.10, i.e. a set of facts and con-
straints. The domain is specified by our ontology Ω and the semantic descriptions
of the operations in the service repository. The goal is a state sG ∈ S that consists
of the preconditions and the assumptions of the first activities of the target part in
the composition. The goal is formally described in definitions 5.20 and 5.21. Figure
5.6 gives an example of a service composition with two disconnected parts. It also
contains two states labeled sI and sG, visualizing the initial state and the goal if the
two parts were to be connected by a partial plan.

Figure 5.6: Two disconnected parts of a service composition

60 5. Mixed Initiative Features for Semi-Automated Composition

Definition 5.20 (Information state partition of the goal) The function infG : S → P(F)
returns the set of facts denoting the information state partition of a goal state sG.

infG(sG) =

pre(o)

if ∃e ∈ E such that sG
e
→ o, o ∈ OP

⋃

pre(oi), ∀oi such that ∃d ∈ E with v
d
→ oi

if ∃e ∈ E such that sG
e
→ v, v ∈ AS

⋂

pre(oi), ∀oi such that ∃d ∈ E with v
d
→ oi

if ∃e ∈ E such that sG
e
→ v, v ∈ OS

Remark For the sake of simplicity, we assume that the target part in the service
composition does not start with a JOIN node of any kind or a node representing the
beginning or end of a loop. The corresponding cases have, therefore, been ommitted
in the definition.

Definition 5.21 (World state partition of the goal) The function infG : S → P(C) re-
turns the set of constraints denoting the world state partition of a goal state sG.

worldG(sG) =

assump(o)

if ∃e ∈ E such that sG
e
→ o, o ∈ OP

⋃

assump(oi), ∀oi such that ∃d ∈ E with v
d
→ oi

if ∃e ∈ E such that sG
e
→ v, v ∈ AS

⋂

assump(oi), ∀oi such that ∃d ∈ E with v
d
→ oi

if ∃e ∈ E such that sG
e
→ v, v ∈ OS

Remark For this definition the same assumptions are made as for definition 5.20.

The semi-automated modeling environment will suggest the insertion of a partial
plan to connect the states sI and sG. Definition 5.22 formally introduces the notion
of a partial plan.

Definition 5.22 (Partial plan) A partial plan connecting two states sI and sG in a
service composition is defined as a service composition

C :=< V ′, E ′ >, with V ′ ⊆ V, E ′ ⊆ E.

The initial state sI is also the initial state s′0 of the partial plan C (sI = s′0). There
is a path connecting s′0 and sG, encompassing the actual partial plan:

s′0
e∗

→ sG, e∗ ⊆ E ′.

5.4. Suggest Partial Plans 61

The partial plans generated by the system should, of course, be editable by the user
of the semi-automated modeling environment.

5.4.3 Possible Extensions

When the semi-automated composition environment attempts to discover a partial
plan that connects two states sI and sG, there will often exist multiple partial plans
that have the desired properties, i.e. that produce the facts and constraints required
in sG. Then, the user has to select one of the alternative partial plans. A useful
extension of the Suggest Partial Plans mixed initiative feature would be to introduce
an ordering of these alternative partial plans when they are presented to the user
for selection. Such ordering could be realized in two ways:

It is possibible to base the ordering of the alternatives upon the evaluation of the
nonfunctional properties of the service operations in the partial plans. In doing so,
the user could specify an attribute, e.g. cost, invocation time, around which the
partial plans should be optimized. The optimization of a partial plan according
to a nonfunctional property can be done by adding a corresponding requirement to
the goal. The semi-automated composition engine can, then, use a planning strategy
that is able to produce globally optimized plans using nonfunctional properties. This
is done by providing aggregation functions for the different nonfunctional properties,
e.g. the aggregation function for a nonfunctional property specifying the cost of
the invocation of a service would be a basic add operation. This can also be done
on the basis of multiple nonfunctional properties, in case the user has specified a
weighting for the used combinations of nonfunctional properties. Various automated
Web service composition approaches that take nonfunctional properties into account
when producing a plan are available [29, 1, 33, 57, 43]. They could be used to realize
this extension of the Suggest Partial Plans mixed initiative feature.

Another possibility to order the list of alternative partial plans is to use ratings of
how often the user has selected the individual service operations in the alternative
partial plans. These ratings can be aggregated and normalized for each alternative
partial plan. This can be done by adding the rating values of all service operations
in a partial plan. The sum is, then, divided by the number of service operations
in the partial plan. This is done for each alternative partial plan. Similarly to the
rating-based extension proposed for the Filter Inappropriate Service mixed initiative
feature, the ordering of alternative partial plans does, in this case, not primarily build
upon the use semantic service descriptions. It can, however, be realized with the
use of a nonfunctional property in the semantic service descriptions that is used to
track how often the modeler selects a service operation. The values can, then, serve
as a basis for the rating.

62 5. Mixed Initiative Features for Semi-Automated Composition

6. Evaluation of Related Work in

Semi-Automated Service Composition

In the following, an evaluation of the semi-automated composition approaches pre-
sented in section 3.2 will be given based on the supported mixed initiative features
for semi-automated composition as well as additional criteria.

6.1 Evaluation According to the Mixed Initiative Features

Table 6.1 gives an overview of the mixed initiative features (as defined in chapter
5) that are supported by the semi-automated composition approaches presented in
section 3.2, and to which extent they support them.

6.1.1 Support for Filter Inappropriate Services

Web Service Composer filters the list of services that can be included in the com-
position at each composition step. This realizes the feature ‘Filter Inappropriate
Services’ that was presented in section 5.2. However, the realization of this feature
in Web Service Composer is restricted in two ways:

First, the tool only considers OWL-S inputs and outputs, i.e. the mere data trans-
formation that services realize. The assumptions that must be satisfied before the
invocation of the services and the effects that the executions of the services have on
the state of the world are not taken into account.

Second, the selection of appropriate services is done using a strict backward chaining
approach: The user starts with the last activity in the process that he or she is
creating. Then, the modeler has to select a service for every input of last service
in the process so that all inputs are satisfied. This is, then, repeated for the newly
added services until the composition is complete. This means in consequence that
the plans constructed with the tool are not always optimal. For example, when one
service operation delivers two outputs each of which satisfies a different input of

64 6. Evaluation of Related Work in Semi-Automated Service Composition

W
e
b

S
e
rv

ic
e

C
o
m

p
o
se

r

C
A
T

P
A

S
S
A
T

IR
S
-III

S
S
D

C

F
ilte

r
In

a
p
p
ro

p
ria

te

S
e
rv

ic
e
s

D
o
es

n
ot

con
sid

er
assu

m
p
tion

s
an

d
ef-

fects

N
/A

N
/A

D
o
es

n
ot

con
sid

er
assu

m
p
tion

s
an

d
ef-

fects

N
/A

E
xten

sion
s

F
ilterin

g
on

N
F
P
s,

ord
erin

g
by

d
egree

of
m

atch

N
/A

N
/A

N
/A

N
/A

S
u
g
g
e
st

P
a
rtia

l

P
la

n
s

N
/A

N
/A

H
T

N
tem

p
late

exp
an

sion
N

/A
P
ro

d
u
ces

com
p
lete

G
u
id

ed
P
ro

ced
u
res,

fu
lly

au
tom

atic
ap

proach
,

d
o
es

n
ot

con
sid

er
assu

m
p
tion

s
an

d
eff

ects
E
xten

sion
s

N
/A

N
/A

H
igh

-level
p
olicies

for
com

p
osition

N
/A

N
/A

C
h
e
c
k

V
a
lid

ity
N

/A
E
valu

ates
‘w

ell-form
ed

n
ess’

T
racks

op
en

in
form

ation
req

u
irem

en
ts

N
/A

N
/A

E
xten

sion
s

N
/A

S
u
ggests

fi
xes

(E
rrorS

can
)

P
rioritized

agen
d
a

N
/A

N
/A

T
a
b
le

6
.1

:
M

ixed
in

itiative
featu

res
su

p
p
orted

by
existin

g
sem

i-au
tom

ated
com

p
osition

en
viron

m
en

ts

6.1. Evaluation According to the Mixed Initiative Features 65

a downstream service, this services operation has to occur twice in the composed
service.

Web Service Composer supports two extensions of the feature ‘Filter Inappropriate
Services’ that were presented in section 5.2.3: First, the tool can further restrict the
set of filtered services according to user-specified values of nonfunctional properties
that are common to that set. Second, the list of filtered services which is presented
to the user is ordered according to the ‘goodness of match’ as defined by Li and
Horrocks [41]: Services that exactly produce a necessary input for a downstream
service, i.e. an exact match, are ranked higher than services that produce outputs
that subsume the necessary inputs.

IRS-III also supports the feature ‘Filter Inappropriate Services’. While this feature
in IRS-III has the same restrictions as Web Service Composer, none of the extensions
specified in section 5.2.3 is realized.

CAT, PASSAT and SSDC do not support the ‘Filter Inappropriate Services’ mixed
initiative feature.

6.1.2 Support for Suggest Partial Plans

PASSAT is the only tool of those included in this survey that partially supports the
‘Suggest Partial Plans’ mixed initiative feature. PASSAT is a tool for interactive
plan authoring based on HTN networks. The user can invoke an automated planning
mode to expand open tasks in the plan. This can be regarded as a specialization
of the ‘Suggest Partial Plans’ feature in the sense that partial plans can only be
generated from the current state to a state in which the composition is completed,
i.e. all tasks can be executed. However, this realization of the feature is restricted
in the way that the user must have completed the plan on a high level of modeling -
otherwise the task network cannot be expanded.

In chapter 5 we have described a possible extension of the ‘Suggest Partial Plans’
feature: If there is more than one alternative for a partial plan, a ranking of user-
specified nonfunctional properties should determine the order in which the alterna-
tives are presented to the user. In PASSAT, the user can specify high-level policies,
e.g. ‘maintain an overall cost total of less than $100’, which are also taken into
account when automated template expansion is performed. This can be seen as a re-
alization of that extension, as the alternative for a template expansion that conforms
best to the specified policies will be presented to the user.

6.1.3 Support for Check Validity

PASSAT also supports the ‘Check Validity’ feature, as it interleaves a checking
mechanism with the actual planning process: After each user action the system
updates an agenda showing open information requirements that must be satisfied
in order to have an executable plan. As an extension to this mechanism, PASSAT
orders the agenda according to user-specified criteria.

Another, more thorough realization of the ‘check validity’ feature can be found in
CAT. Here, the tool checks at each composition step if the composition complies with

66 6. Evaluation of Related Work in Semi-Automated Service Composition

a set of properties that describe the ‘well-formedness’ of the composition. In case
these properties are violated, the system, consequently, presents a list of warnings
and errors. As an extension of this feature, the authors present an algorithm that
presents the user with suitable suggestions for further steps based on the evaluation
of the well-formedness criteria.

Web Service Composer, IRS-III and SSDC do not support the ‘check validity’ mixed
intiative feature.

6.2 Evaluation According to Additional Criteria

The mixed initiative features supported by a semi-automated composition approach
are its most important characteristic. However, there are more criteria that allow
further distinction among such approaches. In the remainder of this section, these
criteria will be presented and applied to the semi-automated composition approaches
presented in section 3.2. Table 6.2 shows an evaluation of the presented approaches
according to these criteria.

An important criterion for the user who created composed services is the way in
which composed services can be modeled with the system he or she utilizes. As
human planners are likely to feel constrained when they are forced to adhere to an
algorithmic planning strategy, the tools should give the users maximum freedom in
modeling their compositions.

Web Service Composer and IRS-III impose a strict backward chaining planning
strategy on the user. The user has to start with the last activity in the composition,
i.e. the activity producing the desired end result. The inputs of this activity are,
then, recursively satisfied until the first activity in the composition, e.g. a user input,
is reached. Due to the strict backward chaining approach, only the last activities of
compositions created with Web Service Composer and IRS-III can determine the end
results, which is also problematic. In SSDC, the user has to specify the outputs of
the overall process, which are, then, translated into a goal and automated planning
is applied. The specification of a goal, however, is non-trivial and cannot be done
intuitively by the user.

Another criterion that is highly important for the user of a semi-automated composi-
tion tool is whether or not a graphical user interface is provided. Web Service Com-
poser, IRS-III and SSDC provide the user with a graphical user interface, while CAT
and PASSAT merely offer textual modeling environments. Especially for complex
compositions, the user can hardly oversee the causal relations among the activities.

Semi-automated service composition approaches rely on reasoning on domain knowl-
edge that is specified in ontologies. In order to support the maintainability of the
composed services that are created using semi-automated composition tools, stan-
dardized formats should be used for the ontologies. For the formal specification of
domain knowledge presents a tremendous challenge, organizations have to rely on
available ontologies that have been created by other parties as building blocks for
assembling their domain knowledge. Web Service Composer and IRS-III build upon
open formats such as OWL-S and WSMO. Furthermore, IRS-III allows the use of

6.2. Evaluation According to Additional Criteria 67

W
e
b

S
e
rv

ic
e

C
o
m

p
o
se

r

C
A
T

P
A

S
S
A
T

IR
S
-III

S
S
D

C

Im
p
o
se

d
p
la

n
n
in

g

stra
te

g
y

B
ackw

ard
ch

ain
in

g
N

on
e

T
op

-d
ow

n
refi

n
em

en
t

B
ackw

ard
ch

ain
in

g
G

rap
h
icalgoalsp

ec-
ifi

cation
M

o
d
e
lin

g
e
n
v
iro

n
m

e
n
t

G
rap

h
ical

T
extu

al
T
extu

al
G

rap
h
ical

G
rap

h
ical

K
n
o
w

le
d
g
e

b
a
se

O
W

L
-S

N
on

-stan
d
ard

N
on

-stan
d
ard

W
S
M

O
B
ased

on
O

W
L
-S

R
e
a
so

n
in

g
O

u
tp

u
t-in

p
u
t

su
b
su

m
p
tion

O
u
tp

u
t-in

p
u
t

su
b
su

m
p
tion

C
on

sid
ers

assu
m

p
tion

s
an

d
eff

ects

O
u
tp

u
t-in

p
u
t

su
b
-

su
m

p
tion

O
u
tp

u
t-in

p
u
t

su
b
-

su
m

p
tion

C
o
n
tro

l
c
o
n
stru

c
ts

N
ot

provid
ed

N
ot

provid
ed

N
ot

provid
ed

N
ot

provid
ed

,
If-

th
en

-else
con

stru
ct

S
eq

u
en

ce

C
o
m

p
o
sitio

n
s

a
re

e
x
e
c
u
ta

b
le

T
o
ol

acts
as

W
eb

service
clien

t
N

o
N

o
IR

S
-III

orch
estration

en
gin

e

S
A
P

N
etW

eaver

O
u
tp

u
t

fo
rm

a
t

O
W

L
-S

pro
cess

m
o
d
el

N
on

-stan
d
ard

N
on

-stan
d
ard

N
on

-stan
d
ard

N
on

-stan
d
ard

T
a
b
le

6
.2

:
E
valu

ation
of

existin
g

ap
proach

es
for

sem
i-au

tom
ated

com
p
osition

68 6. Evaluation of Related Work in Semi-Automated Service Composition

WSMO mediators in the compositions, which eases the process of integrating ontolo-
gies from different parties. SSDC extends OWL-S in a way that Guided Procedures
can easily be described. CAT and PASSAT, in contrast, are built upon proprietary
formats for encoding domain knowledge.

When service capabilities and functionality are specified in ontologies, the data trans-
formation effected by the invocation of a service can be specified as well as the change
in the state of the world that the invocation of a service implies. Four out of the five
semi-automated service composition tools presented in this survey only reason on
the pre- and postconditions of the services that can be included in the compositions,
i.e. the data transformation that the services effect. However, a large number of
possible applications, i.e. the set of computational workflows, can be described using
inputs and outputs only. PASSAT is the only approach among those presented here
that explicitly supports constraints on the state of the world.

When modeling composed services, we would naturally expect the possibility to
model control flow between the individual activities. Here again, four out of the
five presented tools do not provide control constructs other than ‘sequence’. This is
probably related to the fact that most tools reason only on the inputs and outputs of
the services that can be included in a composition: If preconditions and effects are
not considered, the control flow of a composition can implicitly be derived from the
data flow. PASSAT, being the only approach among those presented here supporting
preconditions and effects, lacks a notion of explicit control flow. IRS-III, though,
provides a basic if-then-else operator.

A semi-automated service composition tool should ensure that it is possible to exe-
cute the processes that can be modeled. This can be done either by directly provid-
ing the user with an execution environment or by exporting the compositions into
an executable format. Web Service Composer allows to directly execute composed
services by calling the individual services via the WSDL interface that is provided
in the groundings of the OWL-S ontologies used. Since the tool acts as the Web
service client for all calls, it does not support complex choreographies. IRS-III, on
the other hand, comes with an orchestration engine on which the composed services
can be enacted, allowing the user to specify choreographies that include more than
two parties. SSDC produces processes that are encoded as SAP Guided Procedures,
which can be deployed and executed on the SAP NetWeaver platform.

In addition to its Web service execution functionality, Web Service Composer is able
to store the composed services as OWL-S process models. Together with an OWL-S
grounding, the service compositions are also executable on platforms other than Web
Service Composer. CAT, PASSAT and IRS-III do not offer the possibility to export
composed services to any open format. The Guided Procedures produced by SSDC
are also not an open format, but can be re-used in a SAP NetWeaver environment,
at least. The de-facto standard format for executable service compositions is, how-
ever, WS-BPEL [19]. It is striking that none of the tools offers WS-BPEL export
functionality.

7. Designing a Semi-Automated

Composition System

In this chapter, we will describe the design of a semi-automated composer that is
based on the mixed initiative features for semi-automated composition. We will start
with developing the requirements for the composer in section 7.1. This motivates the
development of a new system as opposed to extending one of the existing approaches
for semi-automated composition. We will, then, describe how the mixed initiative
features, that have been introduced in chapter 5, can be realized on top of a reasoner
for semantic service descriptions.

7.1 Requirements Analysis

The purpose of this section is to outline the requirements for the semi-automated
composer that has to be developed as a part of this work. Since we cannot guarantee
to develop a complete set of requirements, we use the following approach to derive
the requirements for the composer:

First, the requirements should be based on the mixed initiative features for semi-
automated service composition that have been developed in chapter 5 of this thesis.
The composer should, thus, support all three presented mixed initiative features.
Chapter 5 also introduces possible extensions for each mixed initiative feature. The
composer should be designed in such a way that these extensions can easily be added
as optional requirements.

Second, the evaluation of existing semi-automated composition approaches in chap-
ter 6 are to serve as a source of requirements for the semi-automated composer.
Table 6.2 uses a set of distinctive criteria to compare the existing approaches. These
criteria are used to formulate the following requirements:

• No stipulation of a specific modeling strategy. When modeling a com-
posed service, the user should not be forced to adhere to any predefined strat-
egy. Some of the approaches presented for semi-automated composition force

70 7. Designing a Semi-Automated Composition System

the modeler to adhere to a strategy that is implied by the underlying realization.
This results in a situation where the modeler has to follow a backward-chaining
or strict top-down refinement approach, or has even to specify the goal of the
process in terms of information artifacts that are to be produced. The com-
poser that is to be developed should be an intuitive modeling environment and,
thus, not impose any specific modeling strategy.

• Provision of a graphical user interface. The creation of a service com-
position is a difficult task, because the modeler has to keep track of all the
dependencies existing between the individual operations in the composition.
The modeling must, therefore, be supported by a graphical user interface.

• Use of open standards for semantic markup. To ease the development
of the semantic descriptions of the services to be composed and to exploit
publically available ontologies and reasoning systems to the largest possible
extent, the semantic markup is to be based on an open standard. Considering
the results of the evaluation of the frameworks for semantic service descriptions
presented in section 3.1.6, either WSMO [54] or OWL-S [42] should be used.
This is due to the maturity and prevalence of these approaches, as well as the
availability of reasoners for both languages.

• Reasoning on complete service capabilities. To exploit the full potential
of semantic service descriptions, the composer should take assumptions and
effects into account when reasoning on the descriptions.

• Provision of adequate control constructs. The existing approaches for
semi-automated composition do not provide the user with an adequate set of
control constructs. This is possibly due to the fact that these approaches have
evolved from automated planning, where a large variety of control constructs
is not important. The modeling of business processes, though, does not make
sense without having control constructs available. Ideally, the composer that
is to be developed would support all the workflow patterns that have been
described by van der Aalst et al. in [67]. This would, however, be beyond the
scope of this work. The requirement for the composer is, therefore, to support
parallel and conditional flow as well as basic loops. This is also in line with
the formal model for service compositions presented in section 5.1, upon which
the mixed initiative features have been formally defined.

• Ability to export to a common process language. The composed services
should be re-usable in other environments. It should, thus, be possible to
export composed services into a common format for process descriptions. This
is useful when the composed services is to be executed by a BPMS, for example.
Here it would be optimal to use WS-BPEL [19], which is the de-facto standard
for executable process descriptions.

Based on the above requirements and the requirement that the semi-automated
service composer to be developed should support all three mixed initiative features,
it has to be discussed whether one of the existing approaches should be extended or

7.2. Architectural Considerations 71

if a new system should be developed. The evaluation of related work in chapter 6
has revealed that none of the presented semi-automated modeling tools is complete
in terms of functionality. None of the presented existing approaches covers all the
mixed initiative features that have been developed in chapter 5. The presented
approaches could hardly be extended in order to provide the missing functionality.
Furthermore, the requirements that have been derived from the evaluation in chapter
6 would make it very difficult to extend one approach in order to satify all of the
requirements. What’s more, the presented approaches are not publically licensed
and no sources are available. As the work presented in this thesis is done at SAP,
it would be possible to build upon the Smart Service Discovery and Composition
(SSDC) [53] project. However, among the approaches that were presented, SSDC is
the least complete in terms of supported mixed initiative features. Therefore, a new
semi-automated service composer will be developed.

7.2 Architectural Considerations

A new semi-automated service composer has to be designed based on the above re-
quirements. The mixed initiative features are quite similar to known applications
in the field of semantic service discovery [53, 61, 41, 32]. Such discovery mechanism
are, usually, built on top of a reasoner. It would, therefore, make sense to implement
the mixed initiative features as an extension of an existing reasoning environment.
The reasoner that has been developed in the ASG project [37] is publically licensed
under the GNU Lesser General Public License1. Furthermore, the reasoner works
with WSML [16] service descriptions and WSMO [54] ontologies, which are open
standards for semantic markups. It is, therefore, chosen as the reasoner that will
be extended in order to support the mixed initiative features. In its current imple-
mentation, however, the reasoner does not support assumptions and effects. Also,
disjunction in logical expressions is not supported. Yet, the interfaces of the rea-
soner include assumptions and effects and the reasoner is still under development.
In future versions of the reasoner, these features are likely to be supported. Another
reason underpinning the selection of the ASG reasoner is that a composition compo-
nent is available for this reasoner. As we will see in section 7.5, the ‘Suggest Partial
Plans’ mixed initiative feature can be realized on top of the composer.

Also based on the requirements that were defined above, it is necessary to provide
a graphical modeling environment that uses the functionality provided by the ex-
tended reasoning component. Based on the evaluation of the various modeling tools
used within SAP, which was presented in section 2.2.1, we have chosen Visual Com-
poser as the front-end for our mixed initiative functionality. This is because Visual
Composer in currently used as the prototyping environment for the Galaxy project,
where SAP bundles its efforts towards creating a fully-fledged business process en-
gine. One of these prototypes extends Visual Composer with the capability to model
business processes using BPMN. The fact that a graphical modeling language with
a rich set of control constructs was one of the criteria for semi-automated modeling

1See http://www.gnu.org/licenses/lgpl.html

72 7. Designing a Semi-Automated Composition System

environments discussed in section 6.2 further underpins the decision for Visual Com-
poser. Throughout the remainder of this chapter, we will focus on the realization of
the semi-automated composition component that is realized on top of the reasoner.

Figure 7.1: The environment of the semi-automated service composer

Figure 7.1 shows the environment of the semi-automated service composer using
the Fundamental Modeling Concepts (FMC) block diagram notation [35]. The user
accesses the front-end of the semi-automated service composer, which is realized in
Visual Composer. The service composer sends queries to the backend, with which
it exchanges serialized data in XML via HTTP. The backend consists of three main
components: The semi-automated composition component, the reasoner and the
planner. The functionality in terms of the mixed initiative features is provided by the
semi-automated composition component. The component contains the algorithms
that are used to realize the mixed initiative features. These algorithms are designed
in a way that they use the reasoner and the planner. A typical query of the semi-
automated composition component to the reasoner would, for example, be ‘does
a subsume b?’. Only the mixed initiative feature ‘Suggest Partial Plans’ uses the
planner. The other two mixed initiative features rely solely on the reasoner. The
dynamics among the components of the semi-automated service composer are also
depicted in figure 7.2 using the UML 2.0 Sequence Diagram notation [50].

Throughout the remainder of this chapter, it will be discussed how each of the three
mixed initiative features is realized. The mixed initiative features Filter Inappro-
priate Services and Suggest Partial Plans are realized solely in the semi-automated
composition component in the backend. The mixed initiative feature Check Validity
is realized partly in the Visual Composer front-end.

7.3 Realization of Filter Inappropriate Services

The semi-automated service composition component contains two methods that real-
ize the mixed initiative feature ‘Filter Inappropriate Services’, as shown in listing 7.1.
The method findInvocableServicesOrdered returns the list of service operations
that are invocable in the supplied state, according to definition 5.11. The method
findNearlyInvocableServices returns a list of service operations that are nearly
invocable in the supplied state, according to definition 5.12. The argument state

that is required by both methods is a set of facts inf(s) that are available in state
s (see also definition 5.7).

7.3. Realization of Filter Inappropriate Services 73

Figure 7.2: Interactions among the different components of the semi-automated composer

1 /∗∗
∗ Returns a list of all service operations that are invocable in the supplied state

3 ∗/
public Vector<ExecutableServiceOperation>

5 findInvocableServicesOrdered(State state , String role)

7 /∗∗
∗ Returns a list of all service operations that are nearly invocable

9 ∗ in the supplied state
∗/

11 public Vector<NearlyExecutableServiceOperation>

findNearlyInvocableServices(State state)

Listing 7.1: Java interface of ‘Filter Inappropriate Services’

Both invocable and nearly invocable service operations are represented by corre-
sponding classes. Figure 7.3 depicts the different kinds of service operations known
to the semi-automated composition component using UML class diagram notation
[50]. The abstract class ServiceOperation contains the basic attributes of the ser-
vice operations as well as getter and setter methods for these attributes. They are
the name of the operation, the service containing the operation, i.e. a port type on
the WSDL level or an enterprise service in the context of SAP, its pre- and postcondi-
tions, and the roles that the operation supports. These roles reflect a nonfunctional
property in the semantic descriptions of the operations specifying the roles for which
an operation has been designed. An operation might be designed for several roles;
therefore, there is also an attribute specifying the intended or default role of the
operation. A service operation can either be invocable, nearly invocable or not
invocable in a given state. The three classes InvocableServiceOperation, Near-
lyInvocableServiceOperation, and NonInvocableServiceOperation extend the

74 7. Designing a Semi-Automated Composition System

abstract class ServiceOperation. They contain additional attributes (along with
the respective getter and setter methods) that are specific to whether a service is
(nearly) invocable or not. In our current implementation, however, only the class
InvocableServiceOperation requires additional attributes.

Figure 7.3: Different kinds of service operations

7.3.1 The method findInvocableServicesOrdered

The first method returns a list of invocable service operations, i.e. a list of objects of
the class InvocableService. As described above, an invocable service operation has
several attributes: The pre- and postconditions, possible roles in which they can be
executed and a default role. In addition, an invocable service operation has one ore
more bindings. The binding of an invocable operation consists of facts (see definition
5.3) for all of its input parameters, i.e. the precondition. However, it might happen
that multiple available facts can satisfy a particular input parameter. Therefore, an
invocable operation has as many bindings as there are different combinations of facts
corresponding to the individual input types. All these bindings are stored with the
the invocable operation. Listing 7.2 presents our algorithm for finding and ranking

7.3. Realization of Filter Inappropriate Services 75

invocable services for a given state in pseudo code. The algorithm will be discussed
in the following.

findInvocableServicesOrdered(State state, String role) {
2 register state with reasoner;

retrieve list of registered operations from reasoner;
4 for each registered operation do {

if (operation is invocable) do {
6 compute total match distance for each binding;

store binding with lowest total match distance as default binding;
8 store all other bindings, preconditions and postconditions;

}
10 }

unregister state with reasoner;
12 compute weightings based on match distances;

for each invocable operation do {
14 if (NFP specifying an intended roles for the operation exists) do

if (NFP matches role) do

16 increase weighting by 1;
}

18 order operations by weighting;
return ordered list of operations;

20 }

Listing 7.2: Compute ordered list of invocable service operations

First, the information state that has been supplied by the frontend is passed to
the underlying reasoner. Then, a list of all service operations which are currently
registered at the reasoner is retrieved. This list is, then, iterated. The underlying
reasoner is queried for each registered operation to decide whether it is invocable
in the registered state or not. If the operation is invocable, the reasoner returns all
bindings in which the operation is invocable. Afterwards, the ‘total match distance’
is calculated for every binding of the operation (line 6). The total match distance
of a binding is the sum of the match distances (see definition 5.12) between the
facts in the supplied state and the precondition. The match distance is computed
based on the distance between a concept represented by a fact in the binding and
the corresponding fact in the preconditions of the operation.

An example is depicted in figure 7.4. We reconsider the operation Read Employee
Time Account that has been discussed in section 4.1. As a precondition, this oper-
ation consumes one parameter of the type Date and another parameter of the type
Employee. Our ontology consists of a concept Date, as well as of three concepts
Person, Employee and Manager, where Employee is a subconcept of Person, and
Manager is a subconcept of Employee. We assume a current state that contains three
facts: A fact ‘dat’ corresponding to the concept Date, a fact ‘emp’ corresponding to
the concept Employee, and a fact ‘mgr’ corresponding to the concept Manager. In
this state, the operation is invocable with two different bindings. The first binding
contains the facts ‘dat’ and ‘emp’. The match distance between the fact ‘emp’ and
the concept Employee is zero. The second binding contains the facts ‘dat’ and ‘mgr’.

76 7. Designing a Semi-Automated Composition System

Figure 7.4: Example illustrating the concepts ‘match distance’ and ‘total match distance’

The match distance between the fact ‘mgr’ and the concept Employee is one: While
‘mgt’ is not a direct instance of the concept Employee, it can be derived from it,
because Manager is is a subconcept of Employee. In both bindings exists a fact ‘dat’
corresponding to the type Date. This fact has a match distance of zero in both cases.
Hence, the total match distance, i.e. the sum of all match distances in a binding, of
the first binding is zero. The match distance of the second binding is one.

After the total match distance has been computed for all bindings of the current
operation in line 6 of listing 7.2, the default binding is selected. The default binding
is the binding of an operation that has the lowest total match distance. In the
above example, the first binding of the operation has a lower match distance than
the second one. Therefore, it is the default binding of the operation in this example.
The default binding is stored together with the other bindings and the pre- and
postconditions of the operation. After the iteration of the loop for each invocable
service, a list of invocable services in the supplied state has been built and the state
is unregistered with the reasoner. This list is now to be ordered according to the
relevance of the individual invocable operations for the user. This step is carried out
in line 12 of listing 7.2, and is realized using the following weighting algorithm:

Each invocable operation is assigned a weighting based on the total match distances
of its bindings: We, first, select the binding with the lowest match distance, i.e. the
default binding, for each operation. In doing so, we obtain the value of the lowest
total match distance for each operation. On the basis of this value, a weighting is
assigned to each operation. The operation with the highest value is assigned the

7.3. Realization of Filter Inappropriate Services 77

lowest weighting, i.e. zero; the operation with the second highest value is assigned
the weighting one, and so on. Our experiments have shown that situations in which
multiple operations have the same minimum match distance occur frequently. To
further differentiate the weighting, roles are taken into account: In the frontend of
the semi-automated composition environment, where the invocation of the method
findInvocableServicesOrdered is triggered, swimlanes are used to visualize the
role in which the operations residing within the lane are to be invoked at runtime.
This role is passed to the semi-automated composition component together with the
information state at the selected point in the composition when findInvocable-

ServicesOrdered is called. In the weighting algorithm, this role is compared to the
intended role of each invocable operation. An intended role is the role for which an
operation has been designed. For example, the operation Create Leave Request is
designed for the role ‘employee’. However, it is also invocable in the role ‘manager’,
because the roles correspond to concepts in the ontology and Manager is a subcon-
cept of Employee. The intended role is specified as a nonfunctional property that
is part of the semantic descriptions of the service operations. If the role supplied
by the frontend matches the intended role of an operation, the weighting of this
operation is increased.

7.3.2 The method findNearlyInvocableServices

The second method provided by our semi-automated composition component discov-
ers service operations that are nearly invocable to the degree k = 1 in a given state,
according to definition 5.12. An operation is nearly invocable to the degree k = 1,
if only one input parameter is not satisfied in the supplied stae. Listing 7.3 shows
the pseudo code of this method. In order to find operations missing just one input
type in order to be invocable, we traverse the ontology, add concept after concept to
the current state, and query the underlying reasoner for invocable operations in that
modified state. We assume that all nearly invocable service operations are equally
relevant. Consequently, there is no ranking among nearly invocable services. This
allows for an optimization of the traversion of the ontology: Not every concept has
to be added to the supplied state so that the reasoner can be queried to return
invocable operations. It is sufficient to perform these queries only for the most spe-
cific subconcepts of each traversed concept in the ontology. The notion of the most
specific subconcept is formally introduced in definition 7.1.

Definition 7.1 (Most specific subconcept) A concept can be seen as a node in the hi-
erarchichal structure of the concepts defined in the ontology. The most specific
subconcepts of a concept are the leave nodes in this hierarchy that are reachable
from the concept by traversing its subconcepts. If a concept does not have any
subconcepts, then, it is already a most specific subconcept. A concept that has
subconcepts can have one or more most specific subconcepts. The function mss

formally describes the notion of the most specific subconcept.

mss : C → C

mss(c) := d ∈ sub(c) such that sub(d) = ∅

78 7. Designing a Semi-Automated Composition System

Example Reconsidering the example from figure 7.4, Manager is the most specific
subconcept of Person.

The most specific subconcepts of a concept can be found using a recursive algorithm,
which is also shown in listing 7.3. After a most specific subconcept is added to
the state, the underlying reasoner will also discover the operations that would be
invocable if the superconcepts of the most specific subconcept were part of the
state. Using this optimization, the number of search operations performed against
the reasoner can be reduced. In our prototypical tool, the response time could be
improved significantly after the implementation of this optimization.

findNearlyInvocableServices(State state) {
2 operations = findInvocableServices(state);

for each concept in the ontology do {
4 if (concept is not marked as visited) do {

sc = findMostSpecificConcepts(c);
6 for each concept s in sc {

add s to state ;
8 register state with reasoner;

nOps = findInvocableServices(state);
10 add nOps − operations to result ;

deregister state with reasoner;
12 remove s from state;

mark s as visited ;
14 }

}
16 }

return list of nearly invocable operations (result);
18 }

20 Concept[] findMostSpecificConcepts(Concept c) {
if (c has subconcepts) do {

22 sc = new Concept[];
for each subconcept s of c

24 sc += findMostSpecificConcept(s);
return sc;

26 }
else return [c];

28 }

Listing 7.3: Compute list of nearly invocable service operations

7.4 Realization of Check Validity

For the realization of the mixed initiative feature Check Validity as defined in section
5.3.2, the backend component should, ideally, provide methods to find unsatisfied
inputs and assumptions of specific service operations in a composition as well as
irrelevant and redundant service operations. However, we chose to realize Check

7.4. Realization of Check Validity 79

Validity directly in the front-end, i.e. the modeling environment. This is because
the underlying WSML reasoner is - in its current version - unable to evaluate as-
sumptions and effects in semantic service descriptions. Therefore, only the pre- and
postconditions of the operations are taken into account for the realization of Check
Validity. The information about the required input parameters for the operations
in a composition, however, is known to the front-end. The operations currently in
the composition and the information on how they are linked to each other are also
known to the front-end. That means that all the necessary information to realize
Check Validity is available in the front-end. Furthermore, Check Validity is an in-
teractive feature that is supposed to visualize problems with the composition just
at the point in time when they arise, i.e. when the modeler changes the compo-
sition. Therefore, round-tripping with the backend is not desirable when it is not
absolutely necessary. By realizing this mixed initiative feature in the front-end, it
can be ensured that the system responds instantly to changes by the modeler. In
the following, the realization of Check Validity is presented in detail.

7.4.1 Detecting Unsatisfied Inputs

Information about operations that have unsatisfied inputs can be obtained by travers-
ing the graph representing the composition. Listing 7.4 lists the pseudo code for
detecting unsatisfied inputs of the operations in the composition. The algorithm
will be discussed in the following.

findUnsatisfiedInputs(CompositionGraph comp, Role role) {
2 for each operation op in comp do {

requiredInputs = preconditions of current operation op ;
4 availableTypes = {role};

links = links connected to incoming plugs of op ;
6 for each link in links do

recurseLink(link);
8 unsatisfiedInputs = requiredInputs − availableTypes;

if (unsatisfiedInputs != ∅)
10 store unsatisfiedInputs with current operation;

}
12 }

Listing 7.4: Detecting unsatisfied inputs in the service composition

The method findUnsatisfiedInputs builds a list of available types for every op-
eration in the composition. Referring to the model of a service composition as
introduced in definition 5.1, the list of available types for an operation consists of all
facts that are available in the state directly preceding the operation. The organiza-
tional role, in which an operation is invoked, is also in the list of available types of
an operation. As opposed to the formal, conceptual model of a service composition,
the implementation of the composition graph in the front-end does not explicitly
contain states. Instead, the lists of available types are computed by traversing the
composition graph. Possible node types in the composition graph are operations,
AND-splits and -joins, OR-splits and -joins, as well as nodes representing the be-
ginning or the end of a loop. The composition graph also contains a start node.

80 7. Designing a Semi-Automated Composition System

The nodes can be connected using links. Every node can have multiple incoming
and outgoing links, except for the start node, which cannot have incoming links.
findUnsatisfiedInputs carries out the following steps for each operation in the
composition: First, it is determined what inputs are required so that the operation
is invocable. Therefore, all the facts part of the precondition of the operation are
added to the list of required types. Second, the list of facts that are available at the
point of the composition exactly before operation is determined. Therefore, the role
of the operation is added to the list of available types. Then, the incoming links of
the operation are traversed, thereby adding the postconditions of all preceding oper-
ations to the state. This is done using a recursive algorithm which is implemented in
the method recurseLink (see listing 7.5). After the list of available types has been
built, it can be determined whether or not the operation has unsatisfied inputs by
examining the difference between the required inputs and the available types. This
is done in line 8 of listing 7.4. If there are unsatisfied inputs, they are, then, stored
and an event is generated that triggers the visualization of the problems.

recurseLink(Link link) {
2 currentNode = link.source;

if (currentNode == start node) do

4 return;
if (currentNode is a service operation) do

6 availableTypes += currentNode.postconditions;
links = incoming links of currentNode ;

8 if (currentNode is an OR−join) do {
availableTypesOR[] = new Array;

10 i = 0;
for each link in links do {

12 availableTypesOR[i] = ∅ ;
recurseOR(link, availableTypesOR[i]);

14 i++;
}

16 availableTypes += {availableTypesOR[0] ∪ · · · ∪ availableTypesOR[i]};
} else {

18 for each link in links do

recurseLink(link);
20 }

}

Listing 7.5: Recursive traversion of the composition graph

Listing 7.5 provides more detail on how the composition graph is traversed in order
to obtain the set of available facts. The method recurseLink takes a link con-
necting to nodes in the composition graph as an input. The method is called by
findUnsatisfiedInputs, which always supplies an incoming link of the current op-
eration as input (see line 5 of listing 7.4). Therefore, selecting the node connected
to the source of the supplied link (see line 2 of listing 7.5) always means selecting
the node in the composition graph that directly precedes the current node. In doing
so, the graph can be traversed from the current node backwards to the start node.
During this traversion, the list of available types for the current operation in the

7.4. Realization of Check Validity 81

calling findUnsatisfiedInputs method is built. This is done by adding the facts
in the postconditions of the traversed operation nodes to the list. In general, the set
of available types for an operation is the conjunction of the postconditions of the
preceding operations on the path between the operation and the start node. When
traversing OR-constructs, however, only the intersection of the postconditions of the
operations on the different paths between the OR-split and the OR-join is added to
the list. This satisfies a requirement from definition 5.7: Ideally, only the postcondi-
tions of the operations on the OR-path (or the OR-paths, in the case of an inclusive
OR-construct) that is selected at runtime should be added to the set of available
types. As our semi-automated composition approach is used at design-time, only
those facts are added to the set of available types that appear in at least one post-
condition on all paths of the OR-construct. This intersection of postcondition is
built using a separate recursive method, which is shown in listing 7.6.

1 recurseOR(Link link, Array availableTypesOR[i]) {
currentNode = link.source;

3 if (currentNode is an OR−split) do

return;
5 links = incoming links of currentNode ;

if (currentNode is an OR−join) do {
7 availableTypesNestedOR[] = new Array;

j = 0;
9 for each link in links do {

availableTypesNestedOR[j] = ∅ ;
11 recurseOR(link, availableTypesNestedOR[j]);

j++;
13 }

availableTypes +=
15 {availableTypesNestedOR[0] ∪ · · · ∪ availableTypesNestedOR[j]};

}
17 if (currentNode is a service operation) do

availableTypesOR[i] += currentNode.postconditions;
19 for each link in links do

recurseOR(link);
21 }

Listing 7.6: Recursive traversion of the composition graph in the special case of an OR-join

The method recurseOR is similar to recurseLink, except that recurseOR needs to
work with call-by-reference in order to deal with nested OR-constructs. A set of
available types is built for each path of an OR-construct. The intersection of the
available types is, then, first done for all paths of a nested OR-construct, which
might itself be on an alternative path of a parent OR-construct.

7.4.2 Detecting Irrelevant Operations

In order to detect operations in a service composition which are irrelevant according
to definition 5.17 the algorithm, shown in listing 7.7, has been constructed. Similar
to the algorithm detecting unsatisfied inputs, which has been described above, the
composition graph is recursively traversed for this detection.

82 7. Designing a Semi-Automated Composition System

1 findIrrelevantOperations(CompositionGraph comp) {
for each operation op in comp do {

3 isRelevant = true;
outLinks = links connected to outgoing plugs of op ;

5 for each link in outLinks do

if
(

(link.target 6=⊥) ∨ (link.target 6= end node)
)

do

7 isRelevant = false;
if (! isRelevant) do {

9 for each link in outLinks do {
isRelevant = recurseFw(post(op), link);

11 if (isRelevant) do

break;
13 }

}
15 if (! isRelevant) then mark op accordingly

}
17 }

19 boolean recurseFw(Fact[] pc, Link link) {
currNode = link.target;

21 if
(

(currNode =⊥) ∨ (currNode = end node)
)

do

return false;
23 outLinks = links connected to outgoing plugs of currNode ;

if
(

(currNode is an operation)
25 ∧ (an element of pc is also in post(currNode))

)

do

return true;
27 for each link in outLinks do {

isRelevant = recurseFw(pc, link);
29 if (isRelevant) do

break;
31 }

return isRelevant;
33 }

Listing 7.7: Detecting irrelevant operations in the service composition

Definition 5.17 requires that, at least, one fact in the postcondition of a service op-
eration must be present in a precondition of any other service that is reachable from
that operation. As this needs to be checked for each operation in the composition,
the algorithm begins with an iteration of all the operations. The only operation that
is allowed to violate the relevance property is the last operation in the composition,
which is always considered relevant. This exception is realized in line 6 of listing 7.7.
If the current operation is not the last operation in the composition, then all the
outgoing links of the operation are traversed using a recursive function (line 10).

The method recurseFw (also shown in listing 7.7) takes two parameters as inputs.
The first parameter is a list of facts, constituted by the postcondition of the operation
which is currently checked for relevance. The second parameter is an outgoing link
of the node in the graph that is currently under investigation. The first step of

7.4. Realization of Check Validity 83

recurseFw is, therefore, to check the target node of the supplied link. If the node
does not exist or if it is the end node of the composition, then, recurseFw will return
false (line 22). However, the operation under investigation might still be relevant,
as recurseFw is called for every outgoing link of the operation. If the target node
of the supplied link is an operation, the algorithm checks if a fact in this operation’s
precondition is also contained in the list of facts supplied to recurseFw, i.e. the
postcondition of the operation under investigation. If this is the case, the method
will return true (line 26), stating that the operation under investigation is relevant.
In all other cases, the outgoing links of the current node are recursively traversed
(line 28), until either an operation with a precondition containing a fact from the
supplied list is found or the end of the composition is reached.

7.4.3 Detecting Potentially Redundant Operations

The algorithm shown in listing 7.8 detects potentially redundant operations in a
composition, according to definition 5.18.

1 findPotentiallyRedundantOperations(CompositionGraph comp) {
for each operation op in comp do {

3 isPotentiallyRedudant = false;
outLinks = links connected to outgoing plugs of op ;

5 for each outLink in op.outLinks do {
nextNode = outLink.target;

7 while
(

(nextNode 6=⊥) ∨ (nextNode 6= end node)
)

do {
for each inLink in op.inLinks do {

9 if (inLink 6= outLink) {
isPotentiallyRedudant = recursePr(post(op), inLink);

11 if (isPotentiallyRedudant) do

break;
13 }

}
15 if (isPotentiallyRedudant) do

break;
17 }

}
19 if (isPotentiallyredundant) then mark op accordingly

}
21 }

Listing 7.8: Detecting potentially redundant operations in the service composition

Similar to the algorithms discussed above, the algorithm for the detection of po-
tentially redundant operations begins with an iteration of all operations. For each
operation, findPotentiallyRedundantOperations will traverse all nodes in the
composition graph which are on a path between the operation and the end node or
the last operation in the composition (line 7 of listing 7.8). For all traversed nodes
it is checked whether the node has other incoming links than the one through which
it was reached by the algorithm. If this is the case, a recursive function is called
for each link. This function determines whether there are any operations on the

84 7. Designing a Semi-Automated Composition System

path between the link to the start node that produce facts which are also contained
in the postcondition of the operation currently under investigation. The recursive
function is shown in listing 7.9. It is similar to the recursive methods which have
already been discussed, and will, therefore, not be explained here in further detail.
A problem with realizing findPotentiallyRedundantOperations in the presented
way is that the algorithm is likely to produce a high recursion depth. For future ver-
sions of our semi-automated composition engine, we will, therefore, investigate the
possibilities of using optimized, less computing-intensive techniques for traversing
the composition graph.

1 boolean recursePr(Fact[] pc, Link link) {
currentNode = link.source;

3 if (currentNode == start node) do

return false;
5 if

(

(currNode is an operation)
∧ (an element of pc is also in post(currNode))

)

do

7 return true;
links = incoming links of currentNode ;

9 for each link in outLinks do {
isPotentiallyRedundant = recursePr(pc, link);

11 if (isPotentiallyRedundant) do

break;
13 }

return isPotentiallyRedundant;
15 }

Listing 7.9: Recursive traversion of the composition graph for detecting potentially redundant
operations

7.5 Realization of Suggest Partial Plans

As opposed to the realization of the Check Validity mixed initiative feature, Suggest
Partial Plans is realized in the backend component. Suggest Partial Plans is the
only mixed initiative feature that uses the composer component depicted in figure
7.1 (see page 72). The composer has been developed as a part of the ASG project.
The planning algorithm that we use with the composer is the result of Harald Meyer’s
diploma thesis [43]. In the following, it will be discussed how the semi-automated
composition component builds on top of this composer to realize Suggest Partial
Plans.

In the formal introduction of this mixed initiative feature in section 5.4.2, we have
identified the initial state, a goal and a domain as the constituents of a planning
problem. The problem of suggesting partial plans to a user, i.e. connecting to
unrelated operations in the composition, can be translated into a planning problem:
The initial state contains all the available types of the source operation and the
facts in its postcondition. When discussing the realization of Check Validity, it has
already been described how the available types of an operation can be computed.
The algorithm is shown in listing 7.4. By adding the postconditions of the source

7.5. Realization of Suggest Partial Plans 85

operation for Suggest Partial Plans to its available types, the initial state of the
planning problem is complete. The goal of the planning problem corresponds to the
precondition of the target operation. The domain consists of the specified service
operations and the ontology, which are registered with both the reasoner and the
composer.

Given a concrete planning problem, the task of the composer is to produce a plan
leading from the initial state to the goal. In order to do so, the composer uses a
planning algorithm. A discussion of planning algorithms that could be used in this
context would be beyond the scope of this work. An overview of the most impotant
planning algorithms is given in [45]. The algorithm that is built into the composer
is an extended version of enforced hill-climbing as presented in [44]. The principle
of this algorithm will be briefly described in the following:

Enforced hill-climbing is a heuristic forward search algorithm in state space. Guided
by a goal distance heuristic, it starts with the initial state and consecutively selects
new services and reaches new states through the invocation of selected services until
the goal state is reached. In a state, the algorithm will, first, determine all invoca-
ble services. This discovery task is similar to the method findInvocableServices

from above, but does not incorporate a ranking of the invocable services. From these
invocable services new states are calculated using virtual invocation: Only the post-
conditions of the services are applied without actually invoking the service, leading
to new, virtual states. For these states, goal distance estimations are calculated us-
ing a heuristic. The first state with a lower goal distance estimation than the current
state is, then, selected as the new current state. If this state satisfies the goal state,
we have found a valid composition. Otherwise, we continue by determining the now
invocable services and the states reachable through their invocation until we have
reached the goal state. In [44], Meyer and Weske extended this algorithm to deal
with uncertainty and to compose parallel control flows.

86 7. Designing a Semi-Automated Composition System

8. Introducing Semi-Automated

Composition at SAP

The purpose of this chapter is to outline how the semi-automated composition ap-
proach presented in this thesis can be introduced at SAP, using their tools and service
repository. We will discuss a methodology SAP could employ to create semantic de-
scriptions for the services in the Enterprise Service Repository. The methodology
presented here departs from the process that SAP, currently, has in place to define
the services in the ESR. This process will, therefore, first be described. Afterwards,
we will discuss how this process can be adapted so that semantic specifications of
the services in the ESR are also produced as part of the process.

The so-called PIC Governance Process is depicted in figure 8.1, using the Business
Process Modeling Notation [69]. The roles participating in the process are the ‘in-
terface definition team’ and the ‘process integration council’ (PIC). The interface
definition team consists of participants from various backgrounds. SAP developers
and solution managers are part of it as well as external coaches and customers. This
is due to the fact that SAP concurrently pursues two ways of identifying potential
services for their platform. One way is that solution managers identify the function-
ality that should be supported by the software. A solution manager’s function is to
assess which SAP products best fit a customer’s needs in his specific business, and
they are therefore able to identify functionality required by customers on the level
of business process steps. The other way of identifying enterprise services is through
a community process that SAP has set up with certain customers, independent soft-
ware vendors (ISVs) and standardization bodies. The reason lies in SAP’s interest
in providing a set of enterprise services that is as complete as possible. Additionally,
the community process also enables the aforementioned stakeholders to develop their
own services for enactment on the SAP platform, thus, increasing the potential of
business process differentiation.

When a solution manager or the community suggests functionality for the SAP plat-
form, the PIC process begins. The functionality suggested at this stage is on the level
of compound services, i.e. services providing an added value from the perspective of

88 8. Introducing Semi-Automated Composition at SAP

F
ig

u
re

8
.1

:
T

h
e

P
IC

G
overn

an
ce

P
ro

cess

89

a business analyst. The first step, as depicted in figure 8.1, is the identification of
the high-level process components required. Process components are sets of business
objects that are grouped around a specific topic, such as ‘Time and Leave Manage-
ment’, for example. A textual description of the requested functionality together
with the list of involved process components, deployment units, i.e. sets of process
components representing the larger system components such as ‘accounting’, and
involved business objects are passed to the PIC council. The PIC council is an SAP-
wide governance body that has an overview of the available functionality as well as
the pending requests for functionality. The PIC council will stop the process if the
suggested functionality is redundant. While the PIC council decides on whether to
approve the PIC 01 stage of the request, the interface definition team carries out
the steps PIC 02 and PIC 03. The outcome of PIC 02 is the description of an inte-
gration scenario, showing which process components and deployment units interact
with each other on a higher-level. It can be seen as the choreography of the process
components and deployment units involved in the business process realizing the re-
quested functionality. PIC 03, then, results in the creation of a process component
interaction model, showing exactly what message types are used for communication
among the process components. It can be seen as the orchestration of the business
process that corresponds to the functionality requested. The deliverables of PIC
02 and PIC 03 are, then, reviewed by the PIC council and are subject to approval.
When the PIC council approves the PIC 01 stage of a request, the PIC 1 activity is
triggered. In PIC 1, the business objects contained in the process components are
designed if they do not already exist. This is done by specifying the business object
nodes, i.e. the attributes of the business object. In PIC 2 the business object nodes
are assigned to data types in the Global Data Type1 (GDT) catalog. The GDT
catalog contains all the data structures and basic data types that are allowed for use
with business object nodes. In case there is no element in the GDT catalog which
can be assigned to a business object node defined in PIC 1, the GDT catalog has to
be extended. This step is called GDT PIC. After the completion of PIC 2 and the
approval of PIC 03, the final step of the governance process, PIC 3, can be carried
out. In this step, the actions and queries for the new business objects are designed
according to the interface patterns for business objects. Furthermore, the interface
of the compound service realizing the requested functionality is defined. Afterwards,
the deliverables of all steps of the PIC process are stored in the ESR.

As a basis for semi-automated service composition, semantic descriptions of the
services that are to be composed must be available as well as an ontology that
specifies the concepts used in the semantic descriptions. In order to obtain these
artifacts, the methodology described in [39] can be applied. In order to do so, the
requirements for the used methodology have to be fulfilled. These requirements
are that there is sufficient guidance for the design decisions on service granularity,
the provision of a concise methodology to support collaboration from stakeholders
from different domains, and the provision of traceability from business models to
domain ontologies. The PIC Governance Process, described above, meets all those
requirements. Therefore, the methodology presented in [39] can be applied. The

1See also section 2.2.3

90 8. Introducing Semi-Automated Composition at SAP

methodology consists of four high-level steps, which will be described in the following.
It will also be described how these high-level steps could be implemented in the
context of Enterprise SOA.

1. Identify Service Compositions The first step of the applied methodology
for the creation of semantic descriptions is to identify the ‘service composi-
tions’ that are part of the application under development. The methodology
assumes that a so-called ‘semantic service application’ is the goal of the pro-
cess of specifying the domain knowledge and the semantic descriptions. Those
applications are realized using various service compositions, for which dynamic
bindings are, then, looked up at runtime. Since we do not aim at creating a
semantic service application in this sense, we can simplify this step. The iden-
tification of service composition is in our case, essentially, the identification
of the process components participating in a process as well as the process
component interaction model. These artifacts are available after the step PIC
03 of the governance process.

2. Design Domain Ontology The second step of the methodology is the cre-
ation of an ontology capturing all the domain knowledge which is required for
semantically specifying the services. In the context of SAP, the GDT catalog,
which was referred to above, is the central location where the data types used
in the service interfaces are kept. Building an ontology for the GDT catalog is,
however, a challenge. In its current version, it contains 984 data types. Cre-
ating a consistent ontology that captures all of those elements, while keeping
track of all possible relations among the data types, is cumbersome. Yet, it
is not necessary to model all the basic types which are described in the GDT.
When looking at the service interfaces of the business objects, we will see that
the data types are not used in an isolated fashion. In contrast, only aggregates
of elements in the GDT catalog are used. As the same aggregate structures
are used for all the business objects, it is sufficient to model the ontology on
the granularity of these aggregates. In doing so, the number of concepts in the
ontology is drastically reduced. The ontology should, initially, be created on
the basis of all the services which are PIC 03-approved at the point where the
ontology is to be built. Then, incremental changes to the ontology should only
occur at one single point in the PIC process, i.e. during the GDT PIC.

3. Service Landscaping The third step of the methodology used is the creation
of the semantic specifications of the services that are part of a semantic service
application. In our case, semantic specifications of the service operations pro-
vided by the business objects are to be created. As a prerequisite for this step,
it must be known what aggregates of the elements in the GDT catalog are used
for the business objects under development and what the interface of the ser-
vices provided by these business objects look like. The semantic specifications
can, therefore, not be created before PIC 3.

4. Derive Semantic Query Templates This step of the methodology is specific
to the semantic service applications-based approach that is presented by the

91

authors of the methodology. In our case, this step is not applicable, as we do
not aim to create applications in this sense, and it is, therefore, to be omitted.

The first step of the methodology does not require additional know how and the
artifacts that result from this step are produced anyway during the PIC process as
it is in place today at SAP. In order to carry out the second and the third steps,
i.e. building the GDT ontology and the semantic service descriptions, the skill
set of the interface definition team has to be extended. For the ontology and the
service description used in the semi-automated composition approach described in
this thesis, the Web Services Modeling Ontology (WSMO) [54] framework has been
used. Therefore, people who are trained how to create the necessary specifications in
WSMO by using logical formulae are required. Since the presented semi-automated
composition approach is restricted in the way that it does not take assumptions
and effects into account, the effort required for the creation of the ontology and the
semantic descriptions is dramatically reduced. The usage of aggregate structures as
a basis for the concepts in the ontology, as it was described above, further alleviates
the creation of the ontology. Therefore, a total number of between two and five
‘ontology engineers’, i.e. persons trained to create WSMO specifications, would be
sufficient in the context of SAP.

92 8. Introducing Semi-Automated Composition at SAP

9. Conclusion

In this thesis, we have presented a novel methodology for the modeling of business
processes using semi-automated composition of Web services. As a conceptual foun-
dation, three mixed initiative features for semi-automated composition have been
introduced, based on a formal model for service composition. We see these features
as the functionality that is characteristic for semi-automated composition. The
mixed initiative features for semi-automated composition are

• Filter Inappropriate Services, suggesting a number of relevant Web services to
the modeler at every step in the process of creating the composition,

• Check Validity, summarizing the problems that would prevent the composed
service from being invocable, and

• Suggest Partial Plans, inserting composed services into the composition at
suitable places.

The features have been derived from a scenario taken from a recent SAP product.

The scenario is described in chapter 4. When we formally defined the mixed initiative
features in chapter 5, we outlined the basic functionality to be covered by these
features, as well as extensions offering more advanced functionality. On the basis
of these mixed initiative features we were, then, able to compare the presented
approach to related efforts in the field of semi-automated composition. One result
of this evaluation, which is presented in chapter 6, is that our work is the only semi-
automated composition approach that is complete in terms of functionality, i.e. it
supports all three mixed initiative features. All the presented related approaches
in the field of semi-automated composition are proof-of-concept implementations for
very specific use cases. None of them could be extended in such a way that they would
support all three mixed initiative features. The approach developed in this thesis
has a broader scope and was designed to holistically cover the entire functionality
characteristic for semi-automated composition. From a usability point of view, our

94 9. Conclusion

prototypical implementation has clear advantages over the related works. We do
not impose any algorithmic planning strategy on the user. Instead, we provide a
graphical user interface in the form of a BPMN-based modeler for processes. The
related works either provide only a textual interface or force the user to adhere
to algorithmic planning strategies, such as backward chaining. Furthermore, none
of the related approaches offers control constructs for both choice and parallelism
for the modeling of service compositions. The approach presented here currently
provides choice, parallelism and loops, along with a clearly defined semantic of how
these constructs affect the proposed mixed initiative functionality. The ontology
format underlying a semi-automated composition approach is also important when
we acknowledge that the formal specification of domain knowledge is a very delicate
task. It might be necessary for organizations utilizing this kind of technology to
re-use ontologies that have been created by other parties. Our approach is based on
ontologies and semantic service descriptions in WSMO [54], an open format which
was recently submitted to the W3C for standardization. We were, therefore, able
to realize our prototypical implementation on top of a WSML reasoner and expect
to benefit from future advances in the field of reasoning on WSML specifications.
The choice of WSMO as the language used for specifying the ontology and the
semantic descriptions is based on the evaluation of respective languages in chapter
3. To realize the three mixed initiative features, we have developed algorithms on
top of the reasoning environment. These were described in chapter 7. Finally, we
have outlined how the presented approach can be deployed at SAP. In chapter 8 we,
therefore, described how the current process of developing the so-called enterprise
services must be extended in order to obtain the necessary semantic descriptions.

9.1 Contributions

The most important contributions of this work are the three mixed initiative fea-
tures, which we have derived from an industry scenario and, then, formally defined.
Furthermore, we have shown that it is possible to create a holistic semi-automated
modeling approach that supports all three mixed initiative features. We proposed
a number of algorithms that can be used to realize the mixed initiative features on
top of a reasoner. The goals that have been set out in section 1.2 have, therefore,
been reached.

So far, two scientific publications resulted from the work on this thesis: In [55], we
give an overview of current research findings in semi-automated service composition,
leading to the introduction of the mixed initiative features. In [56], we present the
central concepts of our realization of a service orchestration tool that supports all
three mixed initiative features.

9.2 Future Work

The prototypical implementation of the approach presented here supports, at the
moment, only reasoning on pre- and postconditions of Web services. Assumptions
and effects have, due to limitations of the underlying WSML reasoner in its current

9.2. Future Work 95

version, not been taken into account. While reasoning on assumptions and effects
in semi-automated environments is an open point and subject to further research
activities in this field, we were able to make helpful suggestions to the user only using
pre- and postconditions. It has to be verified whether the additional modeling efforts
that are necessary to correctly specify assumptions and effects, as described in section
4.2, are justified. It might as well be the case that the evaluation of assumptions and
effects in the reasoning process causes the semi-automated composition environment
to present fewer suggestions to the user, thereby, eliminating helpful hints on possible
next steps.

We enhanced our prototypical modeling tool with basic performance optimizations,
such as using asynchronous calls for complex queries to the backend to ensure a
non-blocking system behavior. However, our prototypical implementation could be
improved from a performance point of view. Optimization strategies for the semi-
automated composition process are, therefore, subject to further research. We will
investigate the possibilities to partition the ontology into multiple disjoint parts
in order to improve the response time of the system. In doing so, the reasoning
on the concepts in the ontology could be, accordingly, distributed across multiple
CPUs. Furthermore, we see a potential for performance improvements regarding
the algorithms that realize the mixed initiative features. Most of these algorithms,
particularly those traversing the composition graph, are currently realized using
recursion. As part of our future research activities, we will investigate to what
extent it is possible to find iterative algorithms solving these problems.

Another direction for future work is to identify quality metrics for the usefulness of
the suggestions that our system presents to the user. These metrics could, e.g. for the
Filter Inappropriate Services feature, depend on the number of service operations
in a given repository, as well as on specific queries and the number of suggested
operations for each query. The queries are, in this context, a given state of the
composition, as it is outlined in the modeling tool at a given point in time, along
with one of the methods realizing the mixed initiative features, described in chapter 7.
Another interesting experiment would be to deploy incomplete semantic descriptions
of the services in the repository in order to measure how this affects the quality of
the suggestions.

To increase the value of the presented semi-automated composition approach from
a modeler’s perspective, it would be conceivable to go further than only suggesting
individual service operations for inclusion in the process. In the case of SAP’s service
repository, for example, many operations are semantically coupled with others in
the sense that one operation is dependent on the other operation in order to be
invocable. To optimally assist the user in modeling service compositions, the system
could, therefore, suggest groups of services that are preconfigured with control flow
dependencies. This can be seen as an extension of both the Filter Inappropriate
Services and the Suggest Partial Plans mixed initiative feature. To improve the
suggestion on the level of the individual operations, it might also be useful to track
which operations the users select when creating a composition. The collected data
can, then, be used to improve the service suggestions. When a modeler selects an
operation A, for example, the system could suggest additional operations that other

96 9. Conclusion

users have also selected after they selected A. The same technique could be applied
to improve the suggestion of groups of operations, as described above.

Another goal of our future research activities is to investigate how the scope of
semi-automated composition can be broadened. We will aim to identify areas other
than service composition to which a semi-automated approach could be applied.
Such an area could, for example, be the semi-automated modeling of organizational
structures, which is also an important functionality of Business Process Management
Systems.

Our approach is targeted to support modelers of business processes at design time.
The execution of the service compositions was not covered in this work. An open
issue, therefore, remains to explore the different possibilities to ground our WSMO
specifications to WSDL interfaces. Our approach could, then, be integrated into
the next version of SAP’s Visual Composer, which will be able to model service
compositions and to deploy them to the NetWeaver platform.

The validation of our approach is currently based on our prototypical implementation
demonstrating its applicability in the software industry. While we have shown that
we are able to obtain reasonable support in the modeling of service compositions
using the service repository and a typical SAP business process, validation with end-
user is still an open point. It was planned to evaluate the modeling tool together
with some of SAP’s smaller partners. However, we have not yet been able to conduct
user-interviews to further validate our approach.

A. Leave Request Scenario Specification

A.1 Leave Request Domain Ontology

1 wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”
namespace { ”http://www.schaffner.cc/GDTLeaveReqDomain#”,

3 dO ”http://www.schaffner.cc/GDTLeaveReqDomain#”,
dc ”http://purl.org/dc/elements/1.1#”,

5 wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }

7 ontology ”http://www.schaffner.cc/GDTLeaveReqDomain.wsml”
nonFunctionalProperties

9 dc#title hasValue ”Leave Request Scenario Ontology”
dc#language hasValue ”en−US”

11 dc#contributor hasValue ”Jan Schaffner”
dc#format hasValue ”text/plain”

13 dc#date hasValue date(2006,6,23)
endNonFunctionalProperties

15

17 /∗ Concepts ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

19 concept LeaveConfig

21 concept LeaveType
ltype ofType string

23

concept LeaveTypeBag
25 membersLTB ofType (1 ∗) LeaveType

27 concept Result
result ofType string

29

concept TimePoint

98 A. Leave Request Scenario Specification

31 TypeCode ofType (1 1) integer
Date ofType (0 1) date

33 Time ofType (0 1) time

35 concept TimePointPeriod
start impliesType (1 1) TimePoint

37 end impliesType (1 1) TimePoint

39 concept LeaveRequest subConceptOf LeaveRequests
LeaveRequestID ofType (1 1) integer

41 LeavePeriod ofType (1 1) TimePointPeriod

43 concept Person
FirstName ofType string

45 LastName ofType string

47 concept Employee subConceptOf Person
EmployeeID ofType (1 1) integer

49

concept Manager subConceptOf Employee
51

concept EmployeeBag
53 membersEMP ofType (1 ∗) Employee

55 concept TimeAccountType
tatype ofType string

57

concept EmployeeTimeAccount subConceptOf EmployeeTimeBalance
59 Balance ofType (1 1) integer

61 concept LeaveRequestState
state ofType string

63

concept EmployeeTimeBalance
65 membersETA ofType (1 ∗) EmployeeTimeAccount

67 concept LeaveRequestBag
membersLRQ ofType (1 ∗) LeaveRequest

69

71 /∗ Relations ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

73 relation hasRequestor(ofType LeaveRequest, ofType Employee)

75 relation hasConfig(ofType LeaveRequest, ofType LeaveConfig)

77 relation hasLeaveType(ofType LeaveConfig, ofType LeaveType)

79 relation hasPeriod(ofType LeaveRequest, ofType TimePointPeriod)

A.1. Leave Request Domain Ontology 99

81 relation hasTimeAccountType(ofType EmployeeTimeAccount,
ofType TimeAccountType)

83

relation hasLeaveRequestState(ofType LeaveRequest,
85 ofType LeaveRequestState)

87 relation hasEmployeeTimeBalance(ofType Employee,
ofType EmployeeTimeBalance)

89

relation hasManager(ofType Employee, ofType Manager)
91

relation hasLeaveRequest(ofType Employee, ofType LeaveRequest)
93

95 /∗ Instances ∗/
/∗ −−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

97 instance fulldayType memberOf LeaveType
ltype hasValue ”fullday”

99

instance halfdayType memberOf LeaveType
101 ltype hasValue ”halfday”

103 instance illnesswithcertificateType memberOf LeaveType
ltype hasValue ”illnesswithcertificate ”

105

instance illnesswithoutcertificateType memberOf LeaveType
107 ltype hasValue ”illnesswithoutcertificate ”

109 instance requestedState memberOf LeaveRequestState
state hasValue ”requested”

111

instance approvedState memberOf LeaveRequestState
113 state hasValue ”approved”

115 instance declinedState memberOf LeaveRequestState
state hasValue ”declined”

117

instance okResult memberOf Result
119 result hasValue ”ok”

121 instance failedResult memberOf Result
result hasValue ”failed”

123

instance paidvacationType memberOf TimeAccountType
125 tatype hasValue ”paidvacation”

127 instance overtimeType memberOf TimeAccountType
tatype hasValue ”overtime”

100 A. Leave Request Scenario Specification

129

instance sickleaveType memberOf TimeAccountType
131 tatype hasValue ”sickleave”

A.2 Leave Request Enterprise Service Operations

In the following, the WSMO webService specifications of the service operations
used in the leave request scenario are listed.

A.2.1 Read Leave Request Configuration by Employee

1 webService ‘http://localhost:1080/LeaveRequest/
ReadLeaveRequestConfigurationByEmployee.wsml’

3 importsOntology ‘http://localhost:1080/LeaveRequest/
GDTLeaveReqDomain.wsml’

5 capability EmpLeaReqConByEmpCapability
nfp

7 dO#Role hasValue ‘EmployeeRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

9 endnfp

sharedVariables {?conf, ?ltype, ?members}
11 precondition

nfp

13 dc#description hasValue ‘Takes Employee, date as input.’
endnfp

15 definedBy

?emp memberOf dO#Employee
17 and ?date memberOf wsml#date.

postcondition

19 nfp

dc#description hasValue ‘Produces a LeaveConfig as
21 well as contained data structures as output.’

endnfp

23 definedBy

?conf memberOf dO#LeaveConfig
25 and ?allowedTypes memberOf dO#LeaveTypeBag

and ?allowedTypes[dO#membersLTB hasValue ?members].
27 effect

definedBy

29 forall ?ltype (?ltype memberOf ?members implies

dO#hasLeaveType(?conf,?ltype)).

A.2.2 Read Employee Time Account

webService ‘http://localhost:1080/LeaveRequest/ReadEmployeeTimeAccount.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpTimByEmpCapability

nfp

A.2. Leave Request Enterprise Service Operations 101

6 dO#Role hasValue ‘EmployeeRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?emp, ?bal, ?pvTimAcc, ?ovTimAcc, ?slTimAcc}
10 precondition

nfp

12 dc#description hasValue ‘Takes Employee, date as input.’
endnfp

14 definedBy

?emp memberOf dO#Employee
16 and ?date memberOf wsml#date.

postcondition

18 nfp

dc#description hasValue ‘Produces EmployeeTimeBalance as
20 well as contained data structures as output.’

endnfp

22 describedBy
?bal memberOf dO#EmployeeTimeBalance

24

and ?pvTimAcc memberOf dO#EmployeeTimeAccount
26 and ?pvTimAccTyp[dO#type hasValue ‘paid−vacation’]

memberOf dO#TimeAccountType
28 and ?bal[dO#membersETA hasValue ?pvTimAcc]

30 and ?otTimAcc memberOf dO#EmployeeTimeAccount
and ?otTimAccTyp[dO#type hasValue ‘overtime’]

32 memberOf dO#TimeAccountType
and ?bal[dO#membersETA hasValue ?otTimAcc]

34

and ?slTimAcc memberOf dO#EmployeeTimeAccount
36 and ?slTimAccTyp[dO#type hasValue ‘sick−leave’]

memberOf dO#TimeAccountType
38 and ?bal[dO#membersETA hasValue ?slTimAcc].

effect

40 definedBy

and dO#hasTimeAccountType(?pvTimAcc, ?pvTimAccTyp)
42 and dO#hasTimeAccountType(?otTimAcc, ?otTimAccTyp)

and dO#hasTimeAccountType(?slTimAcc, ?slTimAccTyp)
44 and dO#hasEmployeeTimeBalance(?emp, ?bal).

A.2.3 Find Leave Request by Employee

webService ‘http://localhost:1080/LeaveRequest/
2 FindLeaveRequestByEmployee.wsml’

importsOntology ‘http://localhost:1080/LeaveRequest/
4 GDTLeaveReqDomain.wsml’

capability EmpLeaReqByEmpCapability
6 nfp

dO#Role hasValue ‘ManagerRole’
8 dO#EnterpriseService hasValue ‘Time and Leave Management’

102 A. Leave Request Scenario Specification

endnfp

10 sharedVariables {?emp, ?lrq, ?lrqs, ?state}
precondition

12 nfp

dc#description hasValue ‘Takes an Employee as input.’
14 endnfp

definedBy

16 ?emp memberOf dO#Employee.
postcondition

18 nfp

dc#description hasValue ‘Produces a LeaveRequestBag as
20 output. Contains all LeaveRequests for Employee that

are in requestedState .’
22 endnfp

definedBy

24 ?lreqbag memberOf dO#LeaveRequestBag
and ?lreqbag[membersLRQ hasValue ?lrqs]

26 and ?state memberOf dO#LeaveRequestState
and ?state[state hasValue ‘requested’].

28 effect

definedBy

30 forall ?lrq (?lrq memberOf ?lrqs implies

(dO#hasLeaveRequest(?emp, ?lrq) and

32 dO#hasLeaveRequestState(?lrq, ?state))
).

A.2.4 Find Leave Request Allowed Approver by Employee

1 webService ‘http://localhost:1080/LeaveRequest/
FindLeaveRequestAllowedApproverByEmployee.wsml’

3 importsOntology ‘http://localhost:1080/LeaveRequest/
GDTLeaveReqDomain.wsml’

5 capability EmpLeaReqAllAppByEmpCapability
nfp

7 dO#Role hasValue ‘EmployeeRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

9 endnfp

sharedVariables {?emp, ?mgr}
11 precondition

nfp

13 dc#description hasValue ‘Takes Employee as input.’
endnfp

15 definedBy

?emp memberOf dO#Employee.
17 postcondition

nfp

19 dc#description hasValue ‘Produces Manager as output.’
endnfp

21 definedBy

?mgr memberOf dO#Manager

A.2. Leave Request Enterprise Service Operations 103

23 effect

definedBy

25 dO#hasManager(?emp,?mgr).

A.2.5 Check Create Leave Request

1 webService ‘http://localhost:1080/LeaveRequest/CheckCreateLeaveRequest.wsml’
importsOntology ‘http://localhost:1080/LeaveRequest/

3 GDTLeaveReqDomain.wsml’
capability EmpLeaReqCheCapability

5 nfp

dO#Role hasValue ‘EmployeeRole’
7 dO#EnterpriseService hasValue ‘Time and Leave Management’

endnfp

9 precondition

nfp

11 dc#description hasValue ‘Takes Employee, TimePointPeriod,
LeaveType as input.’

13 endnfp

definedBy

15 ?emp memberOf dO#Employee
and ?lperd memberOf dO#TimePointPeriod

17 and ?ltype memberOf dO#LeaveType.
postcondition

19 nfp

dc#description hasValue ‘Produces a Result with value
21 ‘ok’ as output.’

endnfp

23 definedBy

?res memberOf dO#CheckCreateLeaveRequestResult
25 and ?res[dO#result hasValue ‘ok’].

A.2.6 Create Leave Request

1 webService ‘http://localhost:1080/LeaveRequest/CreateLeaveRequest.wsml’
importsOntology ‘http://localhost:1080/LeaveRequest/

3 GDTLeaveReqDomain.wsml’
capability EmpLeaReqCapability

5 nfp

dO#Role hasValue ‘EmployeeRole’
7 dO#EnterpriseService hasValue ‘Time and Leave Management’

endnfp

9 sharedVariables {?lperd,?ltype,?emp,?lrq}
precondition

11 nfp

dc#description hasValue ‘Takes Employee, TimePointPeriod,
13 LeaveType as input.’

endnfp

15 definedBy

?emp memberOf dO#Employee

104 A. Leave Request Scenario Specification

17 and ?lperd memberOf dO#TimePointPeriod
and ?ltype memberOf dO#LeaveType

19 and ?result memberOf dO#CheckCreateLeaveRequestResult.
postcondition

21 nfp

dc#description hasValue ‘Produces LeaveRequest as well as
23 contained data structures as output. The newly created

LeaveRequest is set to requestedState .’
25 endnfp

definedBy

27 ?lrq memberOf dO#LeaveRequest
and ?lrq[dO#LeavePeriod hasValue ?lperd]

29 and ?lrqstate memberOf dO#LeaveRequestCreatedState
and ?lrqstate[state hasValue ‘requested’].

31 effect

definedBy

33 and dO#hasConfig(?lrq,?conf)
and dO#hasType(?conf,?ltype)

35 and dO#hasLeaveRequest(?emp,?lrq)
and dO#hasLeaveRequestState(?lrq,?lrqstate).

A.2.7 Find Leave Request by ID

webService ‘http://localhost:1080/LeaveRequest/FindLeaveRequestById.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpLeaReqByIdCapability

nfp

6 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?lrqid}
10 precondition

nfp

12 dc#description hasValue ‘Takes LeaveRequestID as input.’
endnfp

14 definedBy

?lrqid memberOf dO#LeaveRequestID.
16 postcondition

nfp

18 dc#description hasValue ‘Produces a LeaveRequest
as output.’

20 endnfp

definedBy

22 ?lrq memberOf dO#LeaveRequest
and ?lrq[LeaveRequestID hasValue ?lrqid].

A.2.8 Find Reporting Employee by Employee

1 webService ‘http://localhost:1080/LeaveRequest/

A.2. Leave Request Enterprise Service Operations 105

FindReportingEmployeeByEmployee.wsml’
3 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
5 capability RepEmpByEmpCapability

nfp

7 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

9 endnfp

sharedVariables {?mgr, ?emp, ?bagmmbers}
11 precondition

nfp

13 dc#description hasValue ‘Takes Manager as input.’
endnfp

15 definedBy

?mgr memberOf dO#Manager.
17 postcondition

definedBy

19 ?empbag memberOf dO#EmployeeBag
and ?empbag[dO#membersEMP hasValue ?bagmembers].

21 effect

nfp

23 dc#description hasValue ‘Produces a bag of Employees
as output.’

25 endnfp

definedBy

27 forall ?emp (?emp memberOf ?bagmembers
implies dO#hasManager(?emp,?mgr)).

A.2.9 Check Approve Leave Request

webService ‘http://localhost:1080/LeaveRequest/CheckApproveLeaveRequest.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpLeaReqAppCheCapability

nfp

6 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?lrq, ?conf, ?ltype}
10 precondition

nfp

12 dc#description hasValue ‘Takes LeaveRequest as input.’
endnfp

14 definedBy

?lrq memberOf dO#LeaveRequest
16 and ?conf memberOf dO#LeaveRequestConfig

and ?state memberOf LeaveRequestCreatedState
18 and ?state[state hasValue ‘requested’]

and ?ltype memberOf dO#LeaveType
20 and (?ltype[ltype hasValue ‘halfdayType’]

106 A. Leave Request Scenario Specification

or ?ltype[ltype hasValue ‘fulldayType’]).
22 assumption

definedBy

24 dO#hasConfig(?lrq,?conf)
and dO#hasLeaveRequestState(?lrq,?state)

26 and dO#hasLeaveType(?conf, ?ltype).
postcondition

28 nfp

dc#description hasValue ‘Produces a Result with value
30 ‘ok’ as output.’

endnfp

32 definedBy

?res memberOf dO#CheckApproveLeaveRequestResult
34 and ?res[dO#result hasValue ‘ok’].

A.2.10 Approve Leave Request

webService ‘http://localhost:1080/LeaveRequest/ApproveLeaveRequest.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpLeaReqAppCapability

nfp

6 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?lrq, ?conf, ?state}
10 precondition

nfp

12 dc#description hasValue ‘Takes LeaveRequest as input. LeaveRequest
must be in requestedState. LeaveRequestType must be halfdayType,

14 fulldayType. Sick leaves do not require approval .’
endnfp

16 definedBy

?lrq memberOf dO#LeaveRequest
18 and ?conf memberOf dO#LeaveRequestConfig

and ?res memberOf dO#CheckApproveLeaveRequestResult
20 and ?state memberOf LeaveRequestCreatedState

and ?state[state hasValue ‘requested’]
22 and ?ltype memberOf dO#LeaveType

and (?ltype[ltype hasValue ‘halfdayType’]
24 or ?ltype[ltype hasValue ‘fulldayType’]).

assumption

26 definedBy

dO#hasConfig(?lrq,?conf)
28 and dO#hasLeaveRequestState(?lrq,?state)

and dO#hasLeaveType(?conf, ?ltype).
30 postcondition

nfp

32 dc#description hasValue ‘After the execution the LeaveRequest
is in approvedState.’

A.2. Leave Request Enterprise Service Operations 107

34 endnfp

definedBy

36 ? lrqstate memberOf dO#LeaveRequestState
and dO#hasLeaveRequestApprovedState(?lrq,?lrqstate)

38 and ?lrqstate[state hasValue ‘approved’].

A.2.11 Check Reject Leave Request

webService ‘http://localhost:1080/LeaveRequest/CheckRejectLeaveRequest.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpLeaReqRejCheCapability

nfp

6 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?lrq, ?conf, ?state, ?ltype}
10 precondition

nfp

12 dc#description hasValue ‘Takes LeaveRequest as input.’
endnfp

14 definedBy

?lrq memberOf dO#LeaveRequest
16 and ?conf memberOf dO#LeaveRequestConfig

and ?state memberOf LeaveRequestCreatedState
18 and ?state[state hasValue ‘requestedState’]

and ?ltype memberOf dO#LeaveType
20 and (?ltype[ltype hasValue ‘halfdayType’]

or ?ltype[ltype hasValue ‘fulldayType’]).
22 assumption

definedBy

24 dO#hasConfig(?lrq, ?conf)
and dO#hasLeaveRequestState(?lrq, ?state)

26 and dO#hasLeaveType(?conf, ?ltype).
postcondition

28 nfp

dc#description hasValue ‘Produces a Result with value ‘ok’
30 as output.’

endnfp

32 definedBy

?res memberOf dO#CheckRejectLeaveRequestResult
34 and ?res[dO#result hasValue ‘ok’].

A.2.12 Reject Leave Request

webService ‘http://localhost:1080/LeaveRequest/RejectLeaveRequest.wsml’
2 importsOntology ‘http://localhost:1080/LeaveRequest/

GDTLeaveReqDomain.wsml’
4 capability EmpLeaReqRejCapability

nfp

108 A. Leave Request Scenario Specification

6 dO#Role hasValue ‘ManagerRole’
dO#EnterpriseService hasValue ‘Time and Leave Management’

8 endnfp

sharedVariables {?lrq, ?conf, ?state, ?ltype}
10 precondition

nfp

12 dc#description hasValue ‘Takes LeaveRequest as input.’
endnfp

14 definedBy

?lrq memberOf dO#LeaveRequest
16 and ?conf memberOf dO#LeaveRequestConfig

and ?res memberOf dO#CheckRejectLeaveRequestResult
18 and ?state memberOf LeaveRequestCreatedState

and ?state[state hasValue ‘requestedState’]
20 and ?ltype memberOf dO#LeaveType

and (?ltype[ltype hasValue ‘halfdayType’]
22 or ?ltype[ltype hasValue ‘fulldayType’]).

assumption

24 definedBy

dO#hasConfig(?lrq,?conf)
26 and dO#hasLeaveRequestState(?lrq, ?state)

and dO#hasLeaveType(?conf, ?ltype).
28 postcondition

30 effect

nfp

32 dc#description hasValue ‘After the execution the
LeaveRequest is in declinedState .’

34 endnfp

definedBy

36 ? lrqstate memberOf dO#LeaveRequestRejectedState
and dO#hasLeaveRequestState(?lrq, ?lrqstate)

38 and ?lrqstate[state hasValue ‘declined’].

Bibliography

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and
B. Srivastava. A Service Creation Environment Based on End to End Compo-
sition of Web Services. In WWW ’05: Proceedings of the 14th Cnternational
Conference on World Wide Web, pages 128–137, New York, NY, USA, 2005.
ACM Press.

[2] R. Akkiraju et al. Semantic Tools for Web Services, 2005. http://www.

alphaworks.ibm.com/tech/wssem.

[3] R. Akkiraju et al. Web Service Semantics - WSDL-S. Technical report, LSDIS
and the University of Georgia, Apr 2005. http://lsdis.cs.uga.edu/projects/
METEOR-S/WSDL-S/.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer,
2004.

[5] A. Arkin et al. Web Service Choreography Interface (WSCI) 1.0. Technical
report, World Wide Web Consortium (W3C), Aug 2002. http://www.w3.org/

TR/2002/NOTE-wsci-20020808.

[6] A. Arkin et al. XML Schema Part 0: Primer Second Edition. Technical report,
World Wide Web Consortium (W3C), Oct 2004. http://www.w3.org/TR/2004/

REC-xmlschema-0-20041028/.

[7] S. Battle et al. Semantic Web Services Framework (SWSF) Overview. Technical
report, World Wide Web Consortium (W3C), Sep 2005. http://www.w3.org/

Submission/2005/SUBM-SWSF-20050909/.

[8] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Composition of
Services with Nondeterministic Observable Behavior. In Proceedings of the 3rd
International Conference on Service Oriented Computing (ICSOC’05), volume
3826 of Lecture Notes in Computer Science, pages 520–526. Springer, 2005.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5), May 2001.

[10] T. Boubez, M. Hondo, C. Kurt, J. Rodriguez, and D. Rogers. UDDI Program-
mer’s API 1.0: UDDI Published Specification. Technical report, OASIS, Jun
2002. http://uddi.org/pubs/ProgrammersAPI-V1.01-Published-20020628.pdf.

110 Bibliography

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan. Extensible Markup Language (XML) 1.1. Technical report,
World Wide Web Consortium (W3C), Jun 2006. http://www.w3.org/TR/2003/

REC-soap12-part1-20030624/.

[12] R. Buddharaju et al. Dublin Core Metadata Element Set, Version 1.1: Reference
Description. Technical report, Dublin Core Metadata Initiative, Dec 2004. http:
//dublincore.org/documents/2004/12/20/dces/.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. Technical report, World Wide Web Consor-
tium (W3C, Mar 2001. http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[14] E. Cimpian, M. Moran, E. Oren, T. Vitvar, and M. Zaremba. D13.0v0.2
Overview and Scope of WSMX. Technical report, The ESSI WSMO working
group, Feb 2005. http://www.wsmo.org/TR/d13/d13.0/v0.2/20050208/.

[15] M. Crawford. Core Components Technical Specification. Technical report,
United Nations Economic Commission for Europe, Nov 2003. http://www.

unece.org/cefact/tmg/cefact_ccts_v2_01.pdf.

[16] J. de Bruijn and H. Lausen. Web Service Modeling Language (WSML).
Technical report, World Wide Web Consortium (W3C), Jun 2005. http:

//www.w3.org/Submission/2005/SUBM-WSML-20050603/.

[17] M. Dean and G. Schreiber. OWL Web Ontology Language Reference. Technical
report, World Wide Web Consortium (W3C), Feb 2004. http://www.w3.org/

TR/2004/REC-owl-ref-20040210/.

[18] E. Dumbill. XML Watch: Finding Friends with XML and RDF. Technical re-
port, IBM, Jun 2002. http://www-106.ibm.com/developerworks/xml/library/

x-foaf.html.

[19] D. C. Fallside and P. Walmsley. Web Services Business Process Execution Lan-
guage Version 2.0. Technical report, OASIS, Oct 2005. http://www.oasis-open.
org/apps/org/workgroup/wsbpel/.

[20] J. Farrell and H. Lausen. Semantic Annotations for WSDL. Technical report,
World Wide Web Consortium (W3C), Jun 2006. http://www.w3.org/2002/ws/

sawsdl/spec/.

[21] T. Fiedler, H. Meinert, and V. Wiechers. ESA Architecture Series 2006: Ser-
vices (Draft). XU Product Architecture Knowledge Transfer, SAP Internal /
Confidential, Feb 2006.

[22] Y. Gil. Description Logics and Planning. AI Magazine, 26(2):62–71, 2005.

[23] M. Gilpin and J. Hoppermann. SOA Energizes Business Processes. Tech Choices,
May 2006.

Bibliography 111

[24] T. R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[25] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. Technical report, World
Wide Web Consortium (W3C), Jun 2006. http://www.w3.org/TR/2003/

REC-soap12-part1-20030624/.

[26] V. Haarslev and R. Möller. Racer: A Core Inference Engine for the Seman-
tic Web. In Proceedings of the 2nd International Workshop on Evaluation of
Ontology-based Tools (EON2003), located at the 2nd International Semantic
Web Conference ISWC 2003, Sanibel Island, Florida, USA, October 20, pages
27–36, 2003.

[27] F. Hakimpour, D. Sell, L. Cabral, J. Domingue, and E. Motta. Semantic Web
Service Composition in IRS-III: The Structured Approach. In 7th IEEE Inter-
national Conference on E-Commerce Technology (CEC 2005), 19-22 July 2005,
München, Germany, pages 484–487. IEEE Computer Society, 2005.

[28] G. Hench et al. WSML 2 Reasoner Framework. http://dev1.deri.at/

wsml2reasoner/.

[29] J. Hündling and M. Weske. Modeling Quality of Services in Service Oriented
Environments. In Proceedings of the 1st International Symposium on Leveraging
Applications of Formal Methods (ISoLA 2004), pages 75–80, Paphos, Cyprus,
2004. Department of Computer Science, University of Cyprus.

[30] D. Hollingsworth. The Workflow Reference Model. Technical report, The Work-
flow Management Coalition, Jan 1995. http://www.wfmc.org/standards/docs/

tc003v11.pdf.

[31] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Al-
gorithmic Probability. Springer, Berlin, Germany, 2004.

[32] M. C. Jäger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs.
Ranked Matching for Service Descriptions Using OWL-S. In Kommunikation
in Verteilten Systemen (KiVS), 14. ITG/GI-Fachtagung Kommunikation in
Verteilten Systemen (KiVS 2005) Kaiserslautern, 28. Februar - 3. März 2005,
Informatik Aktuell, pages 91–102. Springer, 2005.

[33] M. C. Jäger, G. Rojec-Goldmann, and G. Muhl. QoS Aggregation for Web
Service Composition using Workflow Patterns. In EDOC ’04: Proceedings of the
Eighth International Conference on Enterprise Distributed Object Computing,
pages 149–159, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[34] J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistant for Interactive Work-
flow Composition. In IUI ’04: Proceedings of the 9th international conference
on Intelligent user interface, pages 125–131, New York, NY, USA, 2004. ACM
Press.

112 Bibliography

[35] A. Knöpfel, B. Gröne, and P. Tabeling. Fundamental Modeling Concepts: Ef-
fective Communication of IT Systems. Wiley and Sons Ltd., 2004.

[36] J. Kopecký et al. D24.2v0.1. WSMO Grounding. Technical report, The ESSI
WSMO working group, Jun 2005. http://www.wsmo.org/TR/d24/d24.2/v0.1/

20050611/.

[37] D. Kuropka and M. Weske. Die Adaptive Services Grid Plattform: Motivation,
Potential, Funktionsweise und Anwendungsszenarien. EMISA Forum, 26(1),
Jan 2006.

[38] G. Laures. Are Service-oriented Architectures the Panacea for a High-
Availability Challenge? In Proceedings 2nd International Service Availability
Forum (ISAS’05), Lecture Notes In Computer Science, Heidelberg, Germany,
Apr 2005. Springer.

[39] G. Laures, H. Meyer, and M. Breest. An Engineering Method for Semantic Ser-
vice Applications. In Proceedings of the 1st International Workshop on Design
of Service-Oriented Applications (WDSOA’05), pages 79–86, Amsterdam, The
Netherlands, 2005. IBM Research Division.

[40] H. Lausen, U. Keller, and D. Anicic. MINS Reasoner. http://dev1.deri.at/

mins/.

[41] L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Seman-
tic Web Technology. In Proceedings of the Twelfth International World Wide
Web Conference (WWW2003), 20-24 May, 2003, Budapest, Hungary. ACM,
2003.

[42] D. Martin et al. OWL-S: Semantic Markup for Web Services. Technical report,
The Defense Advanced Research Projects Agency (DARPA), Nov 2003. http:

//www.daml.org/services/.

[43] H. Meyer. Development and Realization of a Planning Component for Service
Composition (in German). Diplomarbeit, Institute of Computer Science, Uni-
versity of Potsdam, Potsdam, Germany, 2005.

[44] H. Meyer and M. Weske. Automated Service Composition using Heuristic
Search. In S. Dustdar, J. L. Fiadeiro, and A. Sheth, editors, Proceedings of
the Fourth International Conference on Business Process Management (BPM
2006), volume 4102 of Lecture Notes In Computer Science, pages 81–96, Heidel-
berg, Germany, 2006. Springer.

[45] N. Milanovic and M. Malek. Current solutions for Web service composition.
IEEE Internet Computing, 8(6):51–59, 2003.

[46] C. Moore. The Forrester WaveTM: Human-Centric Business Process Manage-
ment Suites, Q1 2006. Tech Choices, Feb 2006.

[47] B. Motik and U. Sattler. Practical DL Reasoning over Large ABoxes with
KAON2. FZI Karlsruhe, Germany, submitted for publication, 2006.

Bibliography 113

[48] K. L. Myers et al. PASSAT: A User-centric Planning Framework. In Proceedings
of the 3rd International NASA Workshop on Planning and Scheduling for Space,
Houston, TX, USA, 2002. AAAI.

[49] Network Working Group. Hypertext Transfer Protocol – HTTP/1.1. Technical
report, The Internet Engineering Task Force (IETF), Jun 1999. ftp://ftp.

isi.edu/in-notes/rfc2616.txt.

[50] Object Management Group (OMG). UML Superstructure Specification,
v2.0. Technical report, May 2004. http://www.omg.org/cgi-bin/doc?formal/

05-07-04.

[51] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning
and Monitoring Web Service Composition. Lecture Notes in Computer Science,
3192:106–115, Jan 2004.

[52] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Service
Composition. In Proceedings of the Eleventh International World Wide Web
Conference (WWW02), 7-11 May, 2002, Hawaii, USA. ACM, 2002.

[53] J. Rao, D. Dimitrov, P. Hofmann, and N. Sadeh. A Mixed Initiative Approach to
Semantic Web Service Discovery and Composition: SAP’s Guided Procedures
Framework. In Proceedings of the International Conference on Web Services
(ICWS’06), September 18-22, 2006, Chicago, USA. IEEE Computer Society,
2006.

[54] D. Roman, H. Lausen, and U. Keller. D2v1.2. Web Service Modeling Ontology
(WSMO). Technical report, The ESSI WSMO working group, Apr 2005. http:
//www.wsmo.org/TR/d2/v1.2/20050413/.

[55] J. Schaffner and H. Meyer. Mixed Initiative Use Cases For Semi-Automated
Service Composition: A Survey. In Proceedings of the International Workshop
on Service Oriented Software Engineering (IW-SOSE’06), located at ICSE’06,
Shanghai, China. ACM Press, New York, NY, USA, May 2006.

[56] J. Schaffner, H. Meyer, and C. Tosun. A Semi-automated Orchestration Tool
for Service-based Business Processes. In Proceedings of the 2nd International
Workshop on Engineering Service-Oriented Applications: Design and Compo-
sition (WESOA’06), located at ICSOC’06, Chicago, USA, Lecture Notes In
Computer Science, Heidelberg, Germany, Dec 2006. Springer. to appear.

[57] H. Schuschel and M. Weske. Automated Planning in a Service-Oriented Archi-
tecture. In Proceedings of the 3rd International Workshop on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, pages 75–80. IEEE Com-
puter Society, 2004.

[58] M. Seubert et al. Data Type Catalog - Definitions of Global Data Types and
Core Data Types. Interface Coaching Team, SAP Internal / Confidential, May
2006.

114 Bibliography

[59] E. Sirin, B. Parsia, and J. Hendler. Filtering and Selecting Semantic Web
Services with Interactive Composition Techniques. IEEE Intelligent Systems,
19:42–49, 2004.

[60] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web
Service Composition Using SHOP2. Journal of Web Semantics, 1(4):377–396,
2004.

[61] K. P. Sycara. Dynamic Discovery, Invocation and Composition of Semantic Web
Services. In Methods and Applications of Artificial Intelligence, Third Helenic
Conference on AI, SETN 2004, Samos, Greece, May 5-8, 2004, Proceedings,
volume 3025 of Lecture Notes in Computer Science, pages 3–12. Springer, 2004.

[62] X. Tan. Reasoning with SWSO Using Vampire. http://www.cs.toronto.edu/

~sheila/2542/w06/readings/xing_present.pdf, May 2006.

[63] A. Tate. Generating Project Networks. In Proceedings of the Fifth Joint Confer-
ence on Artificial Intelligence, Cambridge, MA, USA, pages 888–893. Morgan
Kaufmann Publishers, 1977.

[64] S. Thatte. XLANG. Technical report, Microsoft Corporation, 2001. http:

//www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm.

[65] The World Wide Web Consortium. W3C Renews Web Services Activity, Ex-
panding Work, Mar 2006. http://www.w3.org/2006/03/saws-pressrelease.

[66] W. van der Aalst and A. H. ter Hofstede. Verification of Workflow Nets. In
Proceedings of the 18th International Conference on Application and Theory
of Petri Nets (ICATPN’97), London, UK, Lecture Notes In Computer Science,
pages 407–426, Heidelberg, Germany, 1997. Springer.

[67] W. van der Aalst, A. H. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. Distributed Parallel Databases, 14(1):5–51, 2003.

[68] W. van der Aalst, A. H. ter Hofstede, and M. Weske. Business Process Man-
agement: A Survey. Lecture Notes in Computer Science, 2678:1–12, Jan 2003.

[69] S. A. White. Business Process Modeling Notation, Working Draft (1.0). Tech-
nical report, The Business Process Modeling Initiative, Aug 2003. http:

//www.bpmi.org/bpmi-downloads/BPMN-1-0_draft.zip.

[70] G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Represen-
tation and Inference Infrastructure for the Semantic Web. In On The Move
to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2003,
Catania, Sicily, Italy, November 3-7, 2003, volume 2888 of Lecture Notes in
Computer Science, pages 671–688. Springer, 2003.

[71] L. Zeng, B. Benatallah, H. Lei, A. H. H. Ngu, D. Flaxer, and H. Chang. Flexible
Composition of Enterprise Web Services. Electronic Markets, 13(2), 2003.

Erklärung

Ich versichere hiermit, dass ich die vorliegende Masterarbeit selbständig, ohne un-
zulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmit-
tel angefertigt habe. Aus fremden Quellen direkt oder indirekt übernommenen
Gedanken sind als solche kenntlich gemacht.

Potsdam, den 22. Dezember 2006

Jan Schaffner

