ON 14-DIMENSIONAL QUADRATIC FORMS, THEIR SPINORS, AND THE DIFFERENCE OF TWO OCTONION ALGEBRAS

MARKUS ROST

This text originates from an E-mail to in May 1994. It has been revised on September 18, 1996 and March 9, 1999 (but still may contain some inaccuracies).

Let me give a short report on some thoughts on low dimensional quadratic forms. "low" means here up to dimension 14 .

1. Introduction.

One may start with the following: Consider a quadratic form q of dimension d and with trivial e^{1} - and e^{2}-invariants. Then q comes from a torsor $\tilde{q} \in H^{1}(\operatorname{Spin}(d))$. Consider a fundamental spinor representation S of $\operatorname{Spin}(d)$ and let $S(\tilde{q})$ be the corresponding "twisted" representation.

It turns out that if d is smaller or equal to 14 , then the dimension of S is smaller than the dimension of the group $\operatorname{Spin}(d)$. These dimensions are "exceptional" in this sense. The significance is as follows: If you take any nontrivial vector $s \in S(\tilde{q})$, it will have a nontrivial isotropy group, and one may hope that this gives an interesting reduction of the torsor $\tilde{q} \in H^{1}(\operatorname{Spin}(d))$ to H^{1} of a subgroup of $\operatorname{Spin}(d)$.

This is indeed the case: The isotropy group of a generic spinor $s \in S$ has the 1-component

- $G_{2} \times G_{2}($ for $d=14)$,
- $\mathrm{SL}(6)$ (for $d=12$),
- semi-direct product of an additive group with $\operatorname{Spin}(7)$ (for $d=10$),
- $\operatorname{Spin}(7)($ for $d=8,9)$,
- G_{2} (for $d=7$).

Moreover if $d=10$, then the (1-component of the) isotropy group of a generic vector in $S \oplus S$, (i.e., the intersection of the isotropy group of two generic s) is G_{2}.

Let me note that for $d=9$ the embedding of the isotropy group $\operatorname{Spin}(7) \rightarrow$ $\operatorname{Spin}(9)$ is not the usual one: it is in $\operatorname{Spin}(8)$ twisted by a triality, so that the center of $\operatorname{Spin}(7)$ does not map to the center of $\operatorname{Spin}(9)$. Similarly for $\operatorname{Spin}(7) \rightarrow \operatorname{Spin}(10)$ in the case $d=10$.

The computations (together with computations of the normalizers, e.g., in the 14-dimensional case the normalizer is $\left.\left(G_{2} \times G_{2}\right) \rtimes \mu_{8}\right)$ yield the following:

- for a 14-dimensional form q in I^{3} there is a quadratic extension $L=F(\sqrt{a})$ and a 3 -fold Pfister form p over L, such that q is the trace of $\sqrt{a} p^{\prime}$, where p^{\prime} is the pure subform of p. (This was not known to me before and I don't know any other proof than the one described below.)
- a 12 -dimensional form in I^{3} is the trace of a 6 -dimensional hermitian form with trivial determinant. (A known fact.)

[^0]- a 10-dimensional form in I^{3} is isotropic. (A well-known fact.)
- etc.

I will discuss here only the cases $d=10,14$. The case $d=12$ is of different nature and will not be considered.

2. A construction of "THE difference of two composition algebras"

The goal of the following considerations is to give a certain description of the (64dimensional) spinor representation of $\operatorname{Spin}(14)$. The advantage of this description is, that it makes it easy to determine the dimension of the main orbit and to compute its isotropy group.

I assume $\operatorname{char}(F) \neq 2$, or even $\operatorname{char}(F)=0$.
Let C be a composition algebra over a field F with norm form N and unit e and let

$$
C=e F \oplus V
$$

be the orthogonal decomposition.
Let D be another composition algebra over F with norm form M and unit f and let

$$
D=f F \oplus W
$$

be the orthogonal decomposition.
Put

$$
R=C \otimes D
$$

and

$$
L=\Lambda^{2}(V \oplus W)=\Lambda^{2} V \oplus \bigwedge^{2} W \oplus V \otimes W
$$

I define a map

$$
\Theta: L \longrightarrow \operatorname{End}(R)
$$

by the following formulas:

$$
\begin{aligned}
\Theta(v \wedge \bar{v})(c \otimes d) & =[v \cdot(\bar{v} \cdot c)-\bar{v} \cdot(v \cdot c)] \otimes d \\
\Theta(w \wedge \bar{w})(c \otimes d) & =c \otimes[w \cdot(\bar{w} \cdot d)-\bar{w} \cdot(w \cdot d)] \\
\Theta(v \wedge w)(c \otimes d) & =(v \cdot c) \otimes(w \cdot d)
\end{aligned}
$$

Here $x \cdot y$ is the product in the composition algebras.
Lemma 1. The map Θ is injective and its image is a Lie subalgebra.
Proof. This follows from standard rules for composition algebras.
Let

$$
p: V \longrightarrow F, \quad p(v)=N(v)
$$

be the restriction of N. I identify $\bigwedge^{2} V$ with the Lie algebra so (p). (In the natural way as subspaces of the even Clifford algebra of p.)

Let

$$
J: \bigwedge^{2} V \longrightarrow V, \quad J(v \wedge w)=v \cdot w-w \cdot v
$$

- Suppose $\operatorname{dim} C=4$. Then C is a quaternion algebra and J is bijective.
- Suppose $\operatorname{dim} C=8$. Then C is a octonion algebra. In this case J is surjective and its kernel is the Lie algebra of G_{2}.

Let

$$
q: W \longrightarrow F, \quad q(v)=M(v)
$$

be the restriction of M. I identify $\bigwedge^{2} W$ with the Lie algebra so (q).
Let

$$
U=V \oplus W
$$

and consider the quadratic form

$$
\begin{gathered}
{[p-q]: U \longrightarrow F} \\
{[p-q](v, w)=p(v)-q(w)}
\end{gathered}
$$

Note that $L=\bigwedge^{2} U$. I identify L with the Lie algebra of $\operatorname{so}([p-q])$. In this way the inclusion

$$
\bigwedge^{2} V \oplus \bigwedge^{2} W \longrightarrow L
$$

is identified with the inclusion

$$
\operatorname{so}(p) \oplus \operatorname{so}(q) \longrightarrow \operatorname{so}([p-q]) .
$$

Lemma 2. With these identifications (with the Lie algebra structures eventually altered by a scalar factor), the map Θ is a homomorphism of Lie algebras.

Proof. By carefully comparing both Lie brackets.

3. The main orbit

We have now established R as $\operatorname{Spin}([p-q])$-module. The tangent space of the $\operatorname{Spin}([p-q])$-orbit of some vector r of R is $\Theta(L)(r)$.

We now assume that $\operatorname{dim} C, \operatorname{dim} D$ are equal to 4 or to 8 . This means that the maps J are in both cases surjective.

Let us consider the specific element $r=e \otimes f$. One finds for the tangent space of the orbit through r :

$$
\Theta(L)(e \otimes f)=e \otimes W \oplus V \otimes f \oplus V \otimes W .
$$

This is a subspace of codimension 1, transversal to r. So, if we extend the group by scalar multiplication, we see that the orbit of r is open. Therefore r generates a generic line and the orbit of r has codimension 1 .

Let us compute the Lie algebra of the isotropy group of r. This is the sum of the Lie algebras of the isotropy groups of e and f. These are the kernels of the maps J on so $(p)=\bigwedge^{2} V$, and on $\operatorname{so}(q)=\bigwedge^{2} W$. These are trivial if C, D have dimension 4 and are the Lie algebras of G_{2} if C, D have dimension 8 .

Since the main orbit has codimension 1 it follows that there is an invariant form

$$
\psi: R \longrightarrow F
$$

on R such that the varieties

$$
\{\psi=\text { nonzero constant }\}
$$

are the main orbits.

4. On the case $\operatorname{dim} C=\operatorname{dim} D=8$

Consider the above construction for split C and D of dimension 8. Then we are given a representation

$$
\operatorname{split-} \operatorname{Spin}(14) \rightarrow \operatorname{End}(R)
$$

Now given a 14-dimensional quadratic form $h: X \longrightarrow F$ with trivial e^{1} - and e^{2}-invariants, we may twist this representation to a representation

$$
\operatorname{Spin}(h) \longrightarrow \operatorname{End}(R)
$$

leaving invariant a certain form $\rho: R \longrightarrow F$, with ρ the twist of ψ.
If you take a vector r in R such that $\rho(r)$ is nontrivial, then there comes along a decomposition $X=Y \oplus Z$, such that h restricted to Y and h restricted to Z are similar to the pure subform of 8 -dimensional composition algebras C and D, respectively. Moreover $R=C \otimes D$.

Well, this is not quite true: The decomposition $X=Y \oplus Z$ might be defined only after passing to a quadratic extension E / F, whose Galois group interchanges the two factors. In fact, there are elements in the normalizer of $G_{2} \times G_{2}$ which interchange the two factors.

To make this more precise we compute the normalizer of $G_{2} \times G_{2}$:
Lemma 3. The normalizer of $G_{2} \times G_{2}$ in $\operatorname{Spin}(7,7)$ is $\left(G_{2} \times G_{2}\right) \rtimes \mu_{8}$. Here a generator $\omega \in \mu_{8}$ acts on $G_{2} \times G_{2}$ via $(g, h) \mapsto(h, g)$.

Proof. Every automorphism of G_{2} is inner and $G_{2} \rightarrow$ GL(7) is an irreducible representation. Therefore the normalizer of $G_{2} \times G_{2}$ in GL(14) is

$$
\left(\left(G_{2} \times \mathbf{G}_{\mathrm{m}}\right) \times\left(G_{2} \times \mathbf{G}_{\mathrm{m}}\right)\right) \rtimes \mathbf{Z} / 2
$$

Intersecting this group with $\mathrm{SO}(7,7)$ yields the normalizer of $G_{2} \times G_{2}$ in $\mathrm{SO}(7,7)$:

$$
\left(G_{2} \times G_{2}\right) \rtimes \mu_{4}
$$

where μ_{4} is considered as a subgroup of $\mathrm{SO}(7,7)$ via

$$
\zeta \mapsto \tau(\zeta):=\zeta\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The extension $\mu_{2} \rightarrow \operatorname{Spin}(7,7) \rightarrow \mathrm{SO}(7,7)$ is nontrivial on the subgroup $\tau\left(\mu_{4}\right) \subset$ $\mathrm{SO}(7,7)$, whence the claim.

To be more specific, we describe μ_{8} as a subgroup of $\operatorname{Spin}(7,7)$ explicitly. Let $v_{1}, \ldots, v_{7}, w_{1}, \ldots, w_{7}$ be an orthogonal basis with $\left\langle v_{i}, v_{i}\right\rangle=1$ and $\left\langle w_{i}, w_{i}\right\rangle=-1$. Consider the element

$$
\omega=\prod_{i=1}^{7}\left(\frac{1+\zeta v_{i} w_{i}}{\sqrt{2}}\right) \in \operatorname{Spin}(7,7) \subset C_{0}(7,7)
$$

where ζ is a primitive 4 -th root of unity. Then ω is of order 8 and its image in $\mathrm{SO}(7,7)$ is $\tau(\zeta)$.

One concludes that the map

$$
H^{1}\left(F,\left(G_{2} \times G_{2}\right) \rtimes \mu_{8}\right) \rightarrow H^{1}(F, \operatorname{Spin}(7,7))
$$

is surjective.
This gives the mentioned result on 14-dimensional quadratic forms.
5. On the cases $\operatorname{dim} D=4, \operatorname{dim} C=4,8$.
5.1. The case $\operatorname{dim} C=8$ and $\operatorname{dim} D=4$. Here the isotropy group is G_{2} with normalizer $G_{2} \times \operatorname{Spin}(3) \cdot \mu_{4}$.

The associativity of D shows that the group action is compatible with the right D-module structure of $R=C \otimes D$. Moreover $R=S \oplus S$, where S is a fundamental spinor representation of $\operatorname{Spin}([p-q])$.

Suppose that D is split, $D=\operatorname{End}(K)$ where K is a 2 -dimensional vector space. Then S is the tensor product over D of R with K so that $S=C \otimes K$. A computation similar as above shows that the $\operatorname{Spin}([p-q])$-group action on S has a dense orbit.
5.2. The case $\operatorname{dim} C=\operatorname{dim} D=4$. Here the isotropy group is trivial. If $\operatorname{dim} D=$ $\operatorname{dim} C=4$, then R is an algebra and the group action is given by multiplication from the left with $\operatorname{Spin}([p-q])=\operatorname{SL}(R)$. In this case the form ψ is the reduced norm on R.

NWF I - Mathematik, Universität Regensburg, D-93040 Regensburg, Germany
E-mail address: markus.rost@mathematik.uni-regensburg.de
URL: http://www.physik.uni-regensburg.de/~rom03516

[^0]: Date: March 9, 1999.

