WARPED PRODUCT SUBMANIFOLDS IN QUATERNION SPACE FORMS

Adela Mihai ${ }^{1}$

Abstract

B.Y. Chen [3] established a sharp inequality for the warping function of a warped product submanifold in a Riemannian space form in terms of the squared mean curvature. For a survey on warped product submanifolds we refer to [4]. In [8], we established a similar relationship between the warping function f (intrinsic structure) and the squared mean curvature and the holomorphic sectional curvature (extrinsic structures) for warped product submanifolds $M_{1} \times_{f} M_{2}$ in any complex space form. In the present paper, we investigate warped product submanifolds in quaternion space forms $\widetilde{M}^{m}(4 c)$. We obtain several estimates of the mean curvature in terms of the warping function, whether $c<0, c=0$ and $c>0$, respectively. Equality cases are considered and certain examples are given. As applications, we derive obstructions to minimal warped product submanifolds in quaternion space forms. As an example, the non-existence of minimal proper warped product submanifolds $M_{1} \times{ }_{f} M_{2}$ in the m-dimensional quaternion Euclidean space \mathbf{Q}^{m} with M_{1} compact is proved.

2000 Mathematics Subject Classification: 53C40, 53C25, 53C42.

Introduction

The notion of warped product plays some important role in differential geometry as well as in physics [3]. For instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a massive star or a black hole is given as a warped product.

One of the most important problems in the theory of submanifolds is the immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean

[^0]space (or, more generally, in a space form). According to a well-known theorem of Nash, every Riemannian manifold can be isometrically immersed in some Euclidean spaces with suficiently high codimension.

Nash's theorem implies, in particular, that every warped product $M_{1} \times{ }_{f} M_{2}$ can be immersed as a Riemannian submanifold in a certain Euclidean space. Moreover, many important submanifolds in real, complex and quaternion space forms are expressed as warped products.

Every Riemannian manifold of constant curvature c can be locally expressed as a warped product whose warping function satisfies $\Delta f=c f$. For example, $S^{n}(1)$ is locally isometric to $(0, \pi) \times{ }_{\cos t} S^{n-1}(1), \mathbf{E}^{n}$ is locally isometric to $(0, \infty) \times{ }_{x} S^{n-1}(1)$ and $H^{n}(-1)$ is locally isometric to $\mathbf{R} \times{ }_{e^{x}} \mathbf{E}^{n-1}$ (see [4]).

1. Preliminaries

Let \bar{M}^{m} be a $4 m$-dimensional Riemannian manifold with metric $g . \bar{M}^{m}$ is called a quaternion Kaehlerian manifold if there exists a 3-dimensional vector space E of tensors of type $(1,1)$ with local basis of almost Hermitian structures ϕ_{1}, ϕ_{2} and ϕ_{3}, such that
(i) $\phi_{1} \phi_{2}=-\phi_{2} \phi_{1}=\phi_{3}, \phi_{2} \phi_{3}=-\phi_{3} \phi_{2}=\phi_{1}, \phi_{3} \phi_{1}=-\phi_{1} \phi_{3}=\phi_{2}$,
(ii) for any local cross-section ϕ of E and any vector X tangent to $\bar{M}, \bar{\nabla}_{X} \phi$ is also a cross-section in E (where $\bar{\nabla}$ denotes the Riemannian connection in \bar{M}) or, equivalently, there exist local 1-forms p, q, r such that

$$
\begin{gathered}
\bar{\nabla}_{X} \phi_{1}=r(X) \phi_{2}-q(X) \phi_{3}, \\
\bar{\nabla}_{X} \phi_{2}=-r(X) \phi_{1}+p(X) \phi_{3} \\
\bar{\nabla}_{X} \phi_{3}=q(X) \phi_{1}-p(X) \phi_{2}
\end{gathered}
$$

If X is a unit vector in \bar{M}, then $X, \phi_{1} X, \phi_{2} X$ and $\phi_{3} X$ form an orthonormal set on \bar{M} and one denotes by $Q(X)$ the 4-plane spanned by them. For any orthonormal vectors X, Y on \bar{M}, if $Q(X)$ and $Q(Y)$ are orthogonal, the 2-plane $\pi(X, Y)$ spanned by X, Y is called a totally real plane. Any 2-plane in $Q(X)$ is called a quaternionic plane. The sectional curvature of a quaternionic plane π is called a quaternionic sectional curvature. A quaternion Kaehler manifold \bar{M} is a quaternion space form if its quaternionic sectional curvatures are constant.

It is well known that a quaternion Kaehlerian manifold \bar{M} is a quaternion space form $\bar{M}(c)$ if and only if its curvature tensor \bar{R} has the following form (see [6])

$$
\begin{gather*}
\bar{R}(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+ \tag{1}\\
+\mathrm{g}\left(\phi_{1} Y, Z\right) \phi_{1} X-g\left(\phi_{1} X, Z\right) \phi_{1} Y+2 g\left(X, \phi_{1} Y\right) \phi_{1} Z+ \\
+\mathrm{g}\left(\phi_{2} Y, Z\right) \phi_{2} X-g\left(\phi_{2} X, Z\right) \phi_{2} Y+2 g\left(X, \phi_{2} Y\right) \phi_{2} Z+ \\
\left.+\mathrm{g}\left(\phi_{3} Y, Z\right) \phi_{3} X-g\left(\phi_{3} X, Z\right) \phi_{3} Y+2 g\left(X, \phi_{3} Y\right) \phi_{3} Z\right\}
\end{gather*}
$$

for vectors X, Y, Z tangent to \bar{M}.
A submanifold M of a quaternion Kaehler manifold \bar{M} is called quaternion (resp. totally real) submanifold if each tangent space of M is carried into itself (resp. the normal space) by each section in E.

The curvature tensor R of M is related to the curvature tensor \bar{R} of \bar{M} by the Gauss equation
$\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)-g(h(X, Z), h(Y, W))+g(h(X, W), h(Y, Z))$,
where h is the second fundamental form of M.
Definition [1]. A submanifold M of a quaternion Kaehler manifold \bar{M} is called a quaternion CR-submanifold if there exist two orthogonal complementry distributions D and D^{\perp} such that D is invariant under quaternion structures, that is, $\phi_{i}\left(D_{x}\right) \subseteq D_{x}, i=1,2,3, \forall x \in M$, and D^{\perp} is totally real, that is, $\phi_{i}\left(D_{x}^{\perp}\right) \subseteq T_{x}^{\perp} M, i=1,2,3, \forall i=1,2,3$.

A submanifold M of a quaternion Kaehler manifold \bar{M} is a quaternion submanifold (resp. totally real submanifold) if $\operatorname{dim} D^{\perp}=0($ resp. $\operatorname{dim} D=0)$.

For any vector field X tangent to M, we put

$$
\begin{equation*}
\phi_{i} X=P_{i} X+F_{i} X, \quad i=1,2,3 . \tag{3}
\end{equation*}
$$

where $P_{i} X$ (resp. $F_{i} X$) denotes tangential (resp. normal) component of $\phi_{i} X$.
Let M be an n-dimensional submanifold in a quaternion space form $\bar{M}(c)$. Let ∇ be the Riemannian connection of M, h the second fundamental form and R the Riemann curvature tensor of M.

Let $p \in M$ and let $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{4 m}\right\}$ be an orthonormal basis of the tangent space $T_{p} \bar{M}$, such that e_{1}, \ldots, e_{n} are tangent to M at p. One denotes by H the mean curvature vector, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{4}
\end{equation*}
$$

For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) f-e_{j} e_{j} f\right\} \tag{5}
\end{equation*}
$$

We recall the following result of Chen for later use.
Lemma 1. [2]. Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) .
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n} .
$$

Let M be a quaternion CR-submanifold of a quaternion space form $\bar{M}(c)$. Then from Gauss equation one derives

$$
\begin{gathered}
R(X, Y, Z, W)=\frac{c}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)+ \\
\left.+\sum_{i=1}^{3}\left[g\left(P_{i} Y, Z\right) g\left(P_{i} X, W\right)-g\left(P_{i} X, Z\right) g\left(P_{i} Y, W\right)+2 g\left(X, P_{i} Y\right) g\left(P_{i} Z, W\right)\right]\right\} \\
+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{gathered}
$$

for any vector fields X, Y, Z, W tangent to M.

2. Warped product submanifolds

Chen established a sharp relationship between the warping function f of a warped product $M_{1} \times_{f} M_{2}$ isometrically immersed in a real space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$ (see [3]). In [8], we gave a corresponding relationship between the warping function f (intrinsic structure) and the
squared mean curvature and the holomorphic sectional curvature (extrinsic structures) for warped product submanifolds $M_{1} \times{ }_{f} M_{2}$ in any complex space form.

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. The warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right)
$$

where $g=g_{1}+f^{2} g_{2}$ (see, for instance, [3]).
Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of a warped product $M_{1} \times_{f} M_{2}$ into a quaternion space form $\bar{M}(c)$. We denote by h the second fundamental form of x and $H_{i}=\frac{1}{n_{i}}$ trace h_{i}, where trace h_{i} is the trace of h restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$. The vector fields H_{i} are called partial mean curvatures.

For a warped product $M_{1} \times_{f} M_{2}$, we denote by \mathcal{D}_{1} and \mathcal{D}_{2} the distributions given by the vectors tangent to leaves and fibres, respectively. Thus, \mathcal{D}_{1} is obtained from the tangent vectors of M_{1} via the horizontal lift and \mathcal{D}_{2} by tangent vectors of M_{2} via the vertical lift.

Let $M_{1} \times{ }_{f} M_{2}$ be a warped product submanifold into a quaternion space form $\bar{M}(c)$.

Since $M_{1} \times_{f} M_{2}$ is a warped product, it is known that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z \tag{6}
\end{equation*}
$$

for any vector fields X, Z tangent to M_{1}, M_{2}, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} . \tag{7}
\end{equation*}
$$

Using the above Lemma and the Gauss equation (see [9]), one gets the following.

Lemma 2. Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional warped product into a $4 m$-dimensional quaternion space form $\bar{M}(c)$. Then

$$
\begin{equation*}
n_{2} \frac{\Delta f}{f} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \frac{c}{4}+3 \frac{c}{4} \sum_{\alpha=1}^{3} \sum_{i=1}^{n_{1}} \sum_{s=n_{1}+1}^{n} g^{2}\left(P_{\alpha} e_{i}, e_{s}\right) \tag{8}
\end{equation*}
$$

where Δ is the Laplacian operator of M_{1}.
We distinguish the following cases:
THEOREM 1. Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional warped product into a $4 m$-dimensional quaternion space form $\bar{M}(c)$ with $c<0$. Then

$$
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c}{4}
$$

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion, $n_{1} H_{1}=n_{2} H_{2}$ and $\phi_{k} \mathcal{D}_{1} \perp \mathcal{D}_{2}$, for any $k=1,2,3$.

As applications, one derives certain obstructions to the existence of minimal warped product submanifolds in quaternion hyperbolic space.

Corollary 1.1. If f is a harmonic function on M_{1}, then the warped product $M_{1} \times_{f} M_{2}$ does not admit any isometric minimal immersion into a quaternion hyperbolic space.

Corollary 1.2. There do not exist minimal warped product submanifolds in a quaternion hyperbolic space with M_{1} compact.

Theorem 2. Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional warped product into a $4 m$-dimensional flat quaternion space form. Then

$$
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}
$$

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$.

Corollary 2.1. If f is an eigenfunction of Laplacian on M_{1} with corresponding eigenvalue $\lambda>0$, then the warped product $M_{1} \times_{f} M_{2}$ does not admit any isometric minimal immersion into a quaternion hyperbolic space or a quaternion Euclidean space.

A warped product is said to be proper if the warping function is nonconstant.

Corollary 2.2. There do not exist minimal proper warped product submanifold in the quaternion Euclidean space \mathbf{Q}^{m} with M_{1} compact.

THEOREM 3. Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional warped product into a 4 -dimensional quaternion space form $\bar{M}(c)$ with $c>0$. Then

$$
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c}{4}+3 \frac{c}{4} \min \left\{\frac{n_{1}}{n_{2}}, 1\right\}
$$

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion, $n_{1} H_{1}=n_{2} H_{2}$ and $\phi_{k} \mathcal{D}_{1} \perp \mathcal{D}_{2}$, for any $k=1,2,3$.

Also, Lemma 2 implies another inequality for certain submanifolds (in particular quaternion CR-submanifolds) in quaternion space forms with $c>0$.

THEOREM 4. Let $x: M_{1} \times_{f} M_{2} \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional warped product into a 4 -dimensional quaternion space form $\bar{M}(c)$ with $c>0$, such that $\phi_{k} \mathcal{D}_{1} \perp \mathcal{D}_{2}$, for any $k=1,2,3$. Then

$$
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c}{4}
$$

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$.

Next, we will give some examples which satisfy identically the equality case of the inequality given in Theorem 4.

Example 1. Let $\psi: S^{n} \rightarrow S^{4 n+3}$ be an immersion defined by

$$
\psi\left(x^{1}, \ldots, x^{n+1}\right)=\left(x^{1}, 0,0,0, x^{2}, 0,0,0, \ldots, x^{n+1}, 0,0,0\right)
$$

and $\pi: S^{4 n+3} \rightarrow P^{n}(\mathbf{Q})$ the Hopf submersion.
Then $\pi \circ \psi: S^{n} \rightarrow P^{n}(\mathbf{Q})$ satisfies the equality case.
Example 2. On $S^{n_{1}+n_{2}}$ let consider the spherical coordinates $u_{1}, \ldots, u_{n_{1}+n_{2}}$ and on $S^{n_{1}}$ the function

$$
f\left(u_{1}, \ldots u_{n}\right)=\cos u_{1} \ldots \cos u_{n_{1}},
$$

(f is an eigenfunction of Δ).
Then $S^{n_{1}+n_{2}}=S^{n_{1}} \times_{f} S^{n_{2}}$.
Let $\psi: S^{n_{1}+n_{2}} \rightarrow S^{4\left(n_{1}+n_{2}\right)+3}$ be the above standard immersion and π the Hopf submersion $\pi: S^{4\left(n_{1}+n_{2}\right)+3} \rightarrow P^{n_{1}+n_{2}}(\mathbf{Q})$.

Then $\pi \circ \psi: S^{n_{1}+n_{2}} \rightarrow P^{n_{1}+n_{2}}(\mathbf{Q})$ satisfies the equality case.

References

[1] M. Barros, B.Y. Chen and F. Urbano, Quaternion CR-submanifold of quaternion manifold. Kodai Math. J., 4 (1981), 399-417.
[2] B.Y. Chen, Some pinching and classification theorems for minimal submanifolds. Arch. Math., 60 (1993), 568-578.
[3] B.Y. Chen, On isometric minimal immersions from warped products into real space forms. Proc. Edinburgh Math. Soc., 45 (2002), 579-587.
[4] B.Y. Chen, Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math., 28 (2002), 125-156.
[5] B. Y. Chen, A general optimal inequality for warped products in complex projective spaces and its applications. Proc. Japan Acad. Ser. A Math. Sci., 79 (2003), 89-94.
[6] S. Ishihara, Quaternion Kählerian manifolds. J. Differential Geometry, 9 (1974), 483-500.
[7] K. Matsumoto and I. Mihai, Warped product submanifolds in Sasakian space forms. SUT J. Math., 38 (2002), 135-144.
[8] A. Mihai, Warped product submanifolds in complex space forms. Acta Sci. Math. Szeged, 70 (2004), 419-427.
[9] A. Mihai, it Warped product submanifolds in quaternion space forms, Rev. Roum. Math. Pures Appl. 50 (2005), 283-291.
[10] S. Nölker, Isometric immersions of warped products. Differential Geom. Appl., 6 (1996), 1-30.
[11] K. Yano and M. Kon, Structures on Manifolds. World Scientific, Singapore, 1984.

Adela Mihai
Faculty of Mathematics
University of Bucharest
Str. Academiei 14, 010014 Bucharest, Romania
email:adela@math.math.unibuc.ro

[^0]: ${ }^{1}$ Supported by the CNCSIS grant 886 / 2005.

