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Abstract. B.Y. Chen [3] established a sharp inequality for the warping
function of a warped product submanifold in a Riemannian space form in terms
of the squared mean curvature. For a survey on warped product submanifolds
we refer to [4].
In [8], we established a similar relationship between the warping function f

(intrinsic structure) and the squared mean curvature and the holomorphic
sectional curvature (extrinsic structures) for warped product submanifolds
M1 ×f M2 in any complex space form.
In the present paper, we investigate warped product submanifolds in quater-
nion space forms M̃m(4c). We obtain several estimates of the mean curvature
in terms of the warping function, whether c < 0, c = 0 and c > 0, respectively.
Equality cases are considered and certain examples are given.
As applications, we derive obstructions to minimal warped product submani-
folds in quaternion space forms. As an example, the non-existence of minimal
proper warped product submanifolds M1 ×f M2 in the m-dimensional quater-
nion Euclidean space Qm with M1 compact is proved.
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Introduction

The notion of warped product plays some important role in differential ge-
ometry as well as in physics [3]. For instance, the best relativistic model of the
Schwarzschild space-time that describes the out space around a massive star
or a black hole is given as a warped product.

One of the most important problems in the theory of submanifolds is the
immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean
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space (or, more generally, in a space form). According to a well-known theorem
of Nash, every Riemannian manifold can be isometrically immersed in some
Euclidean spaces with suficiently high codimension.

Nash’s theorem implies, in particular, that every warped product M1×fM2

can be immersed as a Riemannian submanifold in a certain Euclidean space.
Moreover, many important submanifolds in real, complex and quaternion space
forms are expressed as warped products.

Every Riemannian manifold of constant curvature c can be locally expressed
as a warped product whose warping function satisfies ∆f = cf . For example,
Sn(1) is locally isometric to (0, π) ×cos t S

n−1(1), En is locally isometric to
(0,∞) ×x S

n−1(1) and Hn(−1) is locally isometric to R ×ex En−1 (see [4]).

1. Preliminaries

Let M
m

be a 4m-dimensional Riemannian manifold with metric g. M
m

is
called a quaternion Kaehlerian manifold if there exists a 3-dimensional vector
space E of tensors of type (1, 1) with local basis of almost Hermitian structures
φ1, φ2 and φ3, such that
(i) φ1φ2 = −φ2φ1 = φ3, φ2φ3 = −φ3φ2 = φ1, φ3φ1 = −φ1φ3 = φ2,
(ii) for any local cross-section φ of E and any vector X tangent to M , ▽Xφ is
also a cross-section in E (where ▽ denotes the Riemannian connection in M)
or, equivalently, there exist local 1-forms p, q, r such that

▽Xφ1 = r(X)φ2 − q(X)φ3,

▽Xφ2 = −r(X)φ1 + p(X)φ3,

▽Xφ3 = q(X)φ1 − p(X)φ2.

IfX is a unit vector inM , thenX, φ1X, φ2X and φ3X form an orthonormal
set on M and one denotes by Q(X) the 4-plane spanned by them. For any
orthonormal vectors X, Y on M , if Q(X) and Q(Y ) are orthogonal, the 2-plane
π(X,Y ) spanned by X, Y is called a totally real plane. Any 2-plane in Q(X) is
called a quaternionic plane. The sectional curvature of a quaternionic plane π
is called a quaternionic sectional curvature. A quaternion Kaehler manifold M
is a quaternion space form if its quaternionic sectional curvatures are constant.

It is well known that a quaternion Kaehlerian manifold M is a quaternion
space form M(c) if and only if its curvature tensor R has the following form
(see [6])
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R(X, Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y+ (1)

+g(φ1Y, Z)φ1X − g(φ1X,Z)φ1Y + 2g(X,φ1Y )φ1Z +

+g(φ2Y, Z)φ2X − g(φ2X,Z)φ2Y + 2g(X,φ2Y )φ2Z +

+g(φ3Y, Z)φ3X − g(φ3X,Z)φ3Y + 2g(X,φ3Y )φ3Z},

for vectors X, Y, Z tangent to M .
A submanifold M of a quaternion Kaehler manifold M is called quaternion

(resp. totally real) submanifold if each tangent space of M is carried into itself
(resp. the normal space) by each section in E.

The curvature tensor R of M is related to the curvature tensor R of M by
the Gauss equation

R(X, Y, Z,W ) = R(X, Y, Z,W ) − g(h(X,Z), h(Y,W )) + g(h(X,W ), h(Y, Z)),
(2)

where h is the second fundamental form of M .

Definition [1]. A submanifold M of a quaternion Kaehler manifold M is
called a quaternion CR-submanifold if there exist two orthogonal complementry
distributions D and D⊥ such that D is invariant under quaternion structures,
that is, φi(Dx) ⊆ Dx, i = 1, 2, 3,∀x ∈ M , and D⊥ is totally real, that is,
φi(D

⊥

x ) ⊆ T⊥

x M , i = 1, 2, 3,∀i = 1, 2, 3.

A submanifold M of a quaternion Kaehler manifold M is a quaternion
submanifold (resp. totally real submanifold) if dim D⊥ = 0 (resp. dim D = 0).

For any vector field X tangent to M , we put

φiX = PiX + FiX, i = 1, 2, 3. (3)

where PiX (resp. FiX) denotes tangential (resp. normal) component of φiX.
Let M be an n-dimensional submanifold in a quaternion space form M(c).

Let ∇ be the Riemannian connection of M , h the second fundamental form
and R the Riemann curvature tensor of M .
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Let p ∈M and let {e1, ..., en, ..., e4m} be an orthonormal basis of the tangent
space TpM , such that e1, ..., en are tangent to M at p. One denotes by H the
mean curvature vector, that is

H(p) =
1

n

n∑

i=1

h(ei, ei). (4)

For a differentiable function f on M , the Laplacian ∆f of f is defined by

∆f =
n∑

j=1

{(∇ej
ej)f − ejejf}. (5)

We recall the following result of Chen for later use.

Lemma 1. [2]. Let n ≥ 2 and a1, ..., an, b real numbers such that

(
n∑

i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = ... = an.

Let M be a quaternion CR-submanifold of a quaternion space form M(c).
Then from Gauss equation one derives

R(X,Y, Z,W ) =
c

4
{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )+

+
3∑

i=1

[g(PiY, Z)g(PiX,W ) − g(PiX,Z)g(PiY,W ) + 2g(X,PiY )g(PiZ,W )]}

+g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )).

for any vector fields X,Y, Z,W tangent to M .

2. Warped product submanifolds

Chen established a sharp relationship between the warping function f of a
warped product M1 ×f M2 isometrically immersed in a real space form M̃(c)
and the squared mean curvature ‖H‖2 (see [3]). In [8], we gave a correspond-
ing relationship between the warping function f (intrinsic structure) and the
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squared mean curvature and the holomorphic sectional curvature (extrinsic
structures) for warped product submanifolds M1 ×f M2 in any complex space
form.

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive
differentiable function on M1. The warped product of M1 and M2 is the Rie-
mannian manifold

M1 ×f M2 = (M1 ×M2, g),

where g = g1 + f 2g2 (see, for instance, [3]).
Let x : M1 ×f M2 →M(c) be an isometric immersion of a warped product

M1 ×f M2 into a quaternion space form M(c). We denote by h the second
fundamental form of x and Hi = 1

ni
tracehi, where trace hi is the trace of h

restricted to Mi and ni = dimMi (i = 1, 2). The vector fields Hi are called
partial mean curvatures.

For a warped product M1×f M2, we denote by D1 and D2 the distributions
given by the vectors tangent to leaves and fibres, respectively. Thus, D1 is
obtained from the tangent vectors of M1 via the horizontal lift and D2 by
tangent vectors of M2 via the vertical lift.

Let M1 ×f M2 be a warped product submanifold into a quaternion space
form M(c).

Since M1 ×f M2 is a warped product, it is known that

∇XZ = ∇ZX =
1

f
(Xf)Z, (6)

for any vector fields X,Z tangent to M1,M2, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature

K(X ∧ Z) of the plane section spanned by X and Z is given by

K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX,Z) =
1

f
{(∇XX)f −X2f}. (7)

Using the above Lemma and the Gauss equation (see [9]), one gets the
following.

Lemma 2. Let x : M1 ×f M2 → M(c) be an isometric immersion of an
n-dimensional warped product into a 4m-dimensional quaternion space form
M(c). Then
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n2
∆f

f
≤
n2

4
‖H‖2 + n1n2

c

4
+ 3

c

4

3∑

α=1

n1∑

i=1

n∑

s=n1+1

g2(Pαei, es), (8)

where ∆ is the Laplacian operator of M1.

We distinguish the following cases:

Theorem 1. Let x : M1 ×f M2 →M(c) be an isometric immersion of an
n-dimensional warped product into a 4m-dimensional quaternion space form
M(c) with c < 0. Then

∆f

f
≤

n2

4n2

‖H‖2 + n1
c

4
.

Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion, n1H1 = n2H2 and φkD1 ⊥ D2, for any k = 1, 2, 3.

As applications, one derives certain obstructions to the existence of minimal
warped product submanifolds in quaternion hyperbolic space.

Corollary 1.1. If f is a harmonic function on M1, then the warped
product M1 ×f M2 does not admit any isometric minimal immersion into a
quaternion hyperbolic space.

Corollary 1.2. There do not exist minimal warped product submanifolds
in a quaternion hyperbolic space with M1 compact.

Theorem 2. Let x : M1 ×f M2 → M(c) be an isometric immersion of
an n-dimensional warped product into a 4m-dimensional flat quaternion space
form. Then

∆f

f
≤

n2

4n2

‖H‖2.

Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion and n1H1 = n2H2.

Corollary 2.1. If f is an eigenfunction of Laplacian on M1 with cor-
responding eigenvalue λ > 0, then the warped product M1 ×f M2 does not
admit any isometric minimal immersion into a quaternion hyperbolic space or
a quaternion Euclidean space.
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A warped product is said to be proper if the warping function is non-
constant.

Corollary 2.2. There do not exist minimal proper warped product sub-
manifold in the quaternion Euclidean space Qm with M1 compact.

Theorem 3. Let x : M1 ×f M2 →M(c) be an isometric immersion of an
n-dimensional warped product into a 4m-dimensional quaternion space form
M(c) with c > 0. Then

∆f

f
≤

n2

4n2

‖H‖2 + n1
c

4
+ 3

c

4
min{

n1

n2

, 1}.

Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion, n1H1 = n2H2 and φkD1 ⊥ D2, for any k = 1, 2, 3.

Also, Lemma 2 implies another inequality for certain submanifolds (in par-
ticular quaternion CR-submanifolds) in quaternion space forms with c > 0.

Theorem 4. Let x : M1 ×f M2 →M(c) be an isometric immersion of an
n-dimensional warped product into a 4m-dimensional quaternion space form
M(c) with c > 0, such that φkD1 ⊥ D2, for any k = 1, 2, 3. Then

∆f

f
≤

n2

4n2

‖H‖2 + n1
c

4
.

Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion and n1H1 = n2H2.

Next, we will give some examples which satisfy identically the equality case
of the inequality given in Theorem 4.

Example 1. Let ψ : Sn → S4n+3 be an immersion defined by

ψ(x1, ..., xn+1) = (x1, 0, 0, 0, x2, 0, 0, 0, ..., xn+1, 0, 0, 0),

and π : S4n+3 → P n(Q) the Hopf submersion.
Then π ◦ ψ : Sn → P n(Q) satisfies the equality case.

Example 2. On Sn1+n2 let consider the spherical coordinates u1, ..., un1+n2

and on Sn1 the function

f(u1, ...un) = cosu1... cosun1
,
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(f is an eigenfunction of ∆).
Then Sn1+n2 = Sn1 ×f S

n2.
Let ψ : Sn1+n2 → S4(n1+n2)+3 be the above standard immersion and π the

Hopf submersion π : S4(n1+n2)+3 → P n1+n2(Q).
Then π ◦ ψ : Sn1+n2 → P n1+n2(Q) satisfies the equality case.
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