
Educated guesses and equality judgements:
using search engines and pairwise match for

external plagiarism detection
Notebook for PAN at CLEF 2012

Lee Gillam, Neil Newbold, Neil Cooke

Department of Computing, University of Surrey, UK

{l.gillam, n.newbold, n.cooke}@surrey.ac.uk

Abstract. This paper describes the approaches taken to the two subtasks of

Candidate Document Retrieval and Detailed Comparison, in the Plagiarism

Detection track at PAN 12. For the first of these, we describe how we used a

combination of frequency and a variation of a contrastive corpus measure to

select keywords with which to make queries to the ChatNoir search system; for

the second, we provide an overview of how we re-used software that had

previously featured in PAN 11. We comment specifically on how effective both

approaches were, and what steps we might take to improve if the competition

remains substantially similar next time.

1 Introduction

The PAN activity first appeared in 2007 as an International Workshop on

Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection, and

subsequently evolved its name to Uncovering Plagiarism, Authorship, and Social

Software Misuse1. The first competitive activity in PAN occurred in 2009, separated

into an external task that involved checking document content against a collection,

and an intrinsic component apparently looking at writing style changes within a

document and which seems to have migrated into the authorship task. External

detection is consistent with what many would typically think of as plagiarism

detection – finding sources that match parts of the content of a particular document -

and it is this task with which we are largely concerned in this paper.

The external detection part of the plagiarism task remained relatively consistent

from 2009 to 2011, treating a collection of (a few) tens of thousands of documents in

almost equal quantities of suspicious documents that may contain plagiarized material

and source documents from whence the this material may have been taken. It was

useful first to construct some kind of index of the set of source documents, and then to

use this to respond to queries generated from the suspicious documents. For example,

the n-gram based approach of Grozea and Popescu 2011 would seem to suggest an

1 Presumably the N of PAN now comes from the conjunction.

inverted index keyed on n-gram2, with initial result ranking according to the number

of matches in each source document and a threshold above which further analysis is

undertaken. Clearly, for such n-gram based approaches, the size of the index will

depend on the value for N and the extent of overlapping; the speed of match will

depend on how many n-grams are selected from the suspicious document. With the

number of overlapping n-grams that could be created from just one document, and

subsequent analytical steps, it is easy to understand why various researchers would

want to make use of high performance clusters to undertake such tasks.

In contrast to these previous iterations of PAN, in 2012 the plagiarism detection

tasks seem to be encouraging a search-engine-first keyword-based approach, with

subsequent checking. Here, the subsequent checking could be undertaken

interactively, in reducing the quantity being checked once a “hit” is obtained, or by

constructing a sub-index of all the retrieved material or, as seems to be implied, by

pairwise checking (Elsayed, Lin and Oard, 2008). Part of the rationale for this shift

seems to be the difficulty that previous participants have had in processing the

relatively small (GB) collections of data, which would make scaling to larger (TB)

collections quite onerous. There is already a multitude of online resources that claim

to detect plagiarism and are built above common search engines. But such systems

seem to operate best when extended phrases are used. Of course, extended phrases

come at additional cost to the search engine provider creating a tension between

accuracy and utility. This also presents a very different problem: where previously an

exhaustive match could be made within the entire collection, exhaustive match now

depends on the ability to make the search engine return a set of results from its index

that are useful for this purpose. The simplest way to cater for an exhaustive match is

to make more queries until the gain achieved is suitably diminished. The costs of

undertaking such a task are therefore devolved into the costs of search, and each

query-response-retrieval will take some time, and the cost of match with this resulting

subset (and subsequent cycles of these two as required). But if the former fails

(recall=0), the latter is not possible.

In this paper, we outline the approach taken at the University of Surrey to these

two tasks of Candidate Document Retrieval and Detailed Comparison in the

Plagiarism Detection track at PAN 12. In section 2, we describe how we use a

combination of frequency and a contrastive corpus measure to select keywords with

which to make queries to the ChatNoir search system and discuss the results obtained,

which show high values for recall offering good scope for the match phase. In section

3, we provide an overview of how we re-used software that had previously featured in

PAN 11 and comment on several simple optimizations that would have reduced quite

significantly the time taken for our comparisons. We decided against optimization as

this would have moved us away from our goal of developing a scalable indexing

system. Section 4 concludes the paper with considerations for future work, including

how we envisage processing the entire ClueWeb collection for full-document search

and the initial steps we have made towards this.

2 However, their paper does not readily mention the value of N used for their competitive effort

(the associated presentation suggests N=2,3 .. 16). Without such information it’s not readily

possible to estimate the size of their index or challenge in building it.

2 Candidate Document Retrieval

Candidate Document Retrieval involves creating a set of queries for a text that

might be useful in retrieving other texts from a search engine that offer matches to

that text. The extent to which an individual text retrieved in such offers a match to the

original can only be known through subsequent processing. In this case, the search

engine is Chatnoir, developed by the Webis Group at Bauhaus-Universität Weimar,

which indexes the ClueWeb09 collected in January and February 2009 and

comprising of some 1,040,809,705 web pages in 10 languages (25 TB of

uncompressed data)3.

In formulating our approach, we explored the extent to which several extant text

analysis components of the System Quirk toolset could offer something for such a

task. We considered how to make use of n-grams (here we might include term-

bearing, but also collocation patterns and concordances), frequency analysis,

contrastive corpus analysis, and indicative text summarization, all of which are

variously offered through the applications Ferret, ColloQator, KonTEXT and Summ-

it.

Our initial efforts suggested little gain from indicative summarization, although

this will be worth exploring again now that our approach produces a reasonable

return. And since we were unable to identify how phrases could be used with

Chatnoir, this seemed to enforce an approach based entirely on locating keywords.

Furthermore, initial tests with Chatnoir showed some unexpected outcomes. Consider,

for example, the text with ClueWeb ID 255104308; this is the first response to a

query comprising the two words flushmate and gpf, and contains four instances of the

first word and two of the second in about 500 words. The whole text is part of a

product catalogue with numerous outbound links and just one contiguous paragraph

of text that contains neither of these terms. The second result contains 36 instances

(30 and 6 respectively) in about 600 words. Moreover, the first term appears sooner in

the second document than in the first. The ratios and positions seem unusual,

suggesting either that word count might be being produced after removing data such

as prices (formed of numbers and punctuation), or there is an unclear interplay

between the ranking function (BM25) and the term proximity approach, about which

it is not possible to find details of how bucket sizes are produced for Chatnoir. Having

observed this, and given the likely passage-based formulation of the document set, it

was considered that extracting terms at document-level would be doubly unlikely to

obtain good results, and so subsequent efforts would work on smaller fragments to see

if proximity could be exploited.

Core to our approach is enhanced weirdness (ew, eqn.1), obtained by squaring

the relative frequency in our scaled weirdness equation (e.g. Gillam, Tariq and

Ahmad, 2005). Scaled weirdness has been used variously as a contrast between

relative frequencies in general and specialist language to flag terms; here its purpose

is to generate sets of search terms which have a lower likelihood of appearing in

general text and therefore would be expected to occur in fewer documents in an index.

3 See: http://lemurproject.org/clueweb09.php/ [accessed, 14/8/2012]

2

2

)1(SLGL

SLGL

Nf

fN
ew

+

=

(1)

where fSL is the frequency of a word in the (split) text, fGL is its frequency in the 100m

tokens of the British National Corpus (BNC), and NSL and NGL are the token counts of

the (split) text and the BNC respectively. This is used in the approach briefly outlined

below:

For each suspicious text, T:

1. Split to sub-texts S by number of lines l.

2. For each sub-text in S, generate queries Q by:

a. Rank by ew.

b. Select the top 10 terms, and re-rank by frequency

c. top frequency-ranked word paired with the next m words

3. Retrieve texts for each query in Q.

Consider the first text in the test collection (004 – Table 1) without line splitting

applied, and ranked by ew to obtain the top 10 terms (2a, above) . The table

demonstrates how this promotes certain terms that are both highly frequent and

unusual (toilet and toilets), which by weirdness values alone would not feature in this

table; a frequency of 4 is sufficient for caulk to feature, showing the bias towards

weirdness. Re-ranking list by frequency would select toilet for pairing with the others,

and the first query of toilet and toilets (2c) to use to retrieve texts (3).

Term fSL fSL / NSL w Ew

gpf 9 0.001403 140401.2 196.9161

flushmate 5 0.000779 78000.65 60.77657

toilet 161 0.02509 1590.64 39.90853

caulk 4 0.000623 62400.52 38.897

actuator 8 0.001247 31200.26 38.897

flange 20 0.003117 10064.6 31.36855

shims 6 0.000935 31200.26 29.17275

toilets 64 0.009974 2021.069 20.15715

inducer 8 0.001247 13866.78 17.28756

composting 13 0.002026 7511.173 15.21665

Table 1: Enhanced weirdness applied to suspicious document 004 in the test collection

Our competition run used l=25 (lines), m=4. Creating the queries takes just 4

minutes for the entire set of 32 test texts. Processing is readily automated via a set of

(Linux) shell scripts that make use of split and KonTEXT, and formulate the queries

to Chatnoir, obtain responses in JSON, process the JSON to obtain the required

LongID, retrieve the texts, and pass them to the pairwise matching. For this last part,

we use our own pairwise comparison approach, outlined in the next section, to select

resources to submit for evaluation.

For suspicious-text-004 from the test collection, we craft 90 queries which retrieve

some 729 files. 21 of these files contain matches of various sizes, and with a degree of

duplication (see Table 2). We report all matches.

ID su_offset su_length so_offset so_length Notes on duplicates

82916556 315

12584

36534

5665

1412

330

1149

7725

6583

4923

1367

340

Contained:

340124840 (622+1326);

82916586 (1868+337)

82916557 3711 8204 10 6193 Significant overlap: 655702818,

926517445, 1037219213,

1082516754, 1234439206,

1283114388 (all 4924+3705);

512814224, 1337033767

(4933+3641)

Contained:

456806343 (4933+3135)

32718446 17202 1040 632 1499

811900 19134

7285 3034 7233 Exact:

811901, 811902

102839362 30070

6472 10 8732 Contained:

476400740, 601432982

(30301+4339)

74735759 37035 431 5752 438

Table 2: Detections applied to suspicious document 004 in the test collection. Results

are reported by start position in each text (offset) and length of detection (length), with

prefixes indicating whether this was in the suspicious (su_) or source document (so_).

The suspicious file is 37472 characters. Of note in these results:

1. Overlap and duplication can be significant

2. Large overlap between first segment of 82916556 and the result for 82916557.

3. Large undetected segment from 11915 to 17202

Using this approach, we achieved the highest values for recall (0.5567) of

downloaded and retrieved sources amongst the competitors when including near-

duplicates(see Table 3), though a near-duplicate is as yet undefined.

Reported Sources Downloaded Sources Retrieved Sources

Precision Recall Precision Recall Precision Recall

0.6266 0.2493 0.0182 0.5567 0.0182 0.5567

Table 3: Precision and recall values for our approach; 0.5567 was the highest recall

value achieved in the task..

However, these results are not necessarily a reliable indication of performance – a

second (unreported) attempt was made to see whether a variation to l and m might

improve performance; quantities of downloads likely reflects the extra work done

here, and is also likely to be a factor in what otherwise appears to be an under-

reporting of sources that constrained our precision at 0.2493 (against a possible

0.2775).

3 Detailed Comparison

In Cooke et al (2011) we described various aspects of our system as used for the

external plagiarism detection task, which we stated could process the entire PAN11

collection within relatively short timescales, and which was still able to produce a

reasonable degree of matching performance (4th place, with PlagDet=0.2467329,

Recall=0.1500480, Precision=0.7106536, Granularity=1.0058894). We also stated

that we were unable to disclose too many details about the approach due to a patent

application that was in progress. The patent was since filed in the US (US13/307,428,

filed 30th November 2011), but we are waiting for the review of that filing before

disclosing the simple method used at its core.

What we can state at this time is that we do not:

1. remove stopwords per se since we consider them to be an important part of

the signature of the text (our approach to one part of the authorship

attribution task builds out our consideration of this importance, albeit in a

rather different way).

2. use methods of encryption or hashing in order to create same-length keys for

the data

3. break the text into large numbers of short character-based or word-based n-

grams.

Indeed, we consider that such approaches have a relatively high computational cost

which rapidly become prohibitive when dealing with large volumes of data (e.g. if we

were attempting to deal directly with the ClueWeb09 data).

Our approach uses the same parameters and values as for PAN11. Parameters that

we could tune were:

• Minimum detection run length (RR) – to remove segments less than 50

words

• Maximum Stitch distance (SS) – to address granularity in joining segments

• Minimum cosine score (CS) – to verify segment similarity.

We kept the value of these parameters consistent with those used in PAN11 for

comparison purposes, and since our previous parameter sweeps had not demonstrated

much by way of gain across a range of values. The values used were: RR=50

(minimum suggested length of plagiarism); SS=900, CS=0.75.

Our approach to translated texts merely made use of a post run adjustment by

character ratio of the source to the translation via a shell script run subsequent to

matching to modify the character positions in the XML results.

The software was constructed in a relatively ad hoc manner previously, using a

combination of shell scripts, Python and C++ code. We only put effort into forming

this into batch programs, which leaves a large number of inherent overheads in the

interfacing of components – e.g. launching a shell to launch Python code that in turn

loads in a shared object file and coverts calls from Python to C++ for its operation,

and then runs other separate components, for example, for our stitching approach and

cosine matching – each of which involves another intermediary file-based

communication. Added to this processing cost, our first pass search usually derives

matches from large collections and builds up an index from this and the cosine

matching reopens those files implicated in order to undertake verification. So where

this is a match, the files are being processed twice. Comparing pairs in the training

corpus took, on average, 7.8 seconds but are reported at 9.4 seconds for the test

corpus on an apparently more capable system. Since many plagiarism detection

systems in previous years had reported relatively slow processing of large collections,

we did not perceive a need to optimize our code for speed although clearly there is

plenty of scope for this and we would expect at least half the processing time to be

necessary. We also make no attempt to use threads or multiple cores to achieve better

throughput.

The software was provided, under licence, to the organizers for evaluation

purposes. The Zip file containing the program occupies around 240kb, and requires

python 2.7.1. It was built for a 64-bit Ubuntu platform and appears to have been

usable by the organizers without requiring modifications to the build.

Performance results from the training corpus are shown below (Table 4). We did

not produce results for ‘05_translation’, as this was being handled differently in the

test phase.

Test Plagdet

Score

Recall Precision Granularity

01_no_plagiarism 1.0 1.0 1.0 1.0

02_no_obfuscation 0.92530 0.90449 0.94709 1.0

03_artificial_low 0.09837 0.05374 0.93852 1.04688

04_artificial_high 0.01508 0.00867 0.96822 1.20313

06_simulated_paraphrase 0.11229 0.05956 0.97960 1.0

Table 4: Performance results for the training corpus. Note that we have yet to fully

address the problem of obfuscation, hence low values in recall.

Our competition results were largely as expected. We achieved the highest

precision, and 5
th

 best granularity, but low recall (Table 5).

Detailed Comparison Task

Rank PlagDet Precision Recall Granularity
Runtime*

[Seconds/Pair]

9 0.3088109 0.8984268 0.1903951 1.0243572 9.4009198

Table 5: Performance results for the training corpus. Note that we have yet to fully

address the problem of obfuscation, hence low values in recall.

4 Conclusions and Future Work

In contrast to these previous iterations of PAN, the 2012 external plagiarism detection

tasks seem to be encouraging a search-engine-first keyword-based approach, with

subsequent checking. The ability to undertake match, then, depends on the educated

guesses made of suitable queries that will impel the search engine to offer up the right

documents. It is not possible to recover from bad guesses, only to keep guessing in the

hope that something will be found. Whilst the approach to crafting the guesses can be

made systematic, obtaining results depends on the extent of pollution/noise contained

by the search engine – i.e. the number of results that would be produced ahead of the

results sought in each case. It is quite possible, also, that constraints within the search

system or the implementation itself would prevent a specific text being returned for a

particular query. In addition, it could be quite possible to produce good pairwise

match results in relatively short time without really performing pairwise match – e.g.

using a bag of words or n-gram approach when sentences are within a few words

length of each other, but as previous PANs have shown, not being able to readily

scale such an approach.

Our results have shown that we have a decent strategy for educated guesses, but

that our pairwise matching suffers under obfuscation. We could readily reduce the

number of queries required by dropping the need to query for segments already

covered by results; on the other hand, we should look to formulate more queries for

an unmatched segment. For Pairwise matching, and for our approach in general, we

need to begin handling obfuscation. However, such approaches are not really in our

preferred direction of travel, which is towards full-document (private) search. And

having obtained ClueWeb09 dataset, and formed an approach for this which we

believe will readily scale, hope to be able to report on this at the next PAN.

Acknowledgements

The authors gratefully acknowledge the prior contributions of Peter Wrobel and

Henry Cooke to the formulation of the codebase used for this task. This work has

been supported in part by the EPSRC and JISC (EP/I034408/1), and we are very

grateful to Amazon Web Services (AWS) for providing a supporting grant for this

research and for competition use of both EC2 and EBS services.

We also gratefully acknowledge the invaluable efforts of the PAN12 organizers in

crafting and managing the tasks.

References

Cooke, N., Gillam, L., Wrobel, P., Cooke, H. and Al-Obaidli, F., 2011, A high

performance plagiarism detection system. Proc. of the 3rd PAN workshop.

Elsayed, T., Lin, J. & Oard, D.W., 2008, Pairwise document similarity in large

collections with MapReduce. Proc. 46th Annual Meeting of the Association for

Computational Linguistics on Human Language Technologies: Short Papers, pp265-

268

Gillam, L., Tariq, M. and Ahmad, K., 2005, Terminology and the Construction of

Ontology. Terminology 11(1), pp55-81. John Benjamins Publishing Company. ISSN

0929-9971; E-ISSN 1569-9994

