
AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Document Title AUTOSAR BSW & RTE Con-
formance Test Specification
Part 4: Execution Constraints

Document Owner AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 284

Document Classification Auxiliary

Document Version 1.2.0
Document Status Final
Part of Release 4.0

Revision 2

Document Change History
Date Version Changed by Change Description
14.04.2011 1.2.0 AUTOSAR

Administration
 Deletion/update of outdated chap-

ters

 Add chapter about CT process

 Add chapter about test CT function-
alities & TTCN-3 organization.

 Update process with RTE and OS
specificities

 CTA accreditation replaced by CTA
self assessment.

30.11.2009 1.1.0 AUTOSAR
Administration

 Typos in section 3.2.1.2 corrected

 Unnecessary information in section
 1.1.1 deleted

 Legal disclaimer revised
23.06.2008

1.0.1 AUTOSAR
Administration

Legal disclaimer revised

14.11.2007 1.0.0 AUTOSAR
Administration

Initial Release

1 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference mod-
els, "use cases", and/or references to exemplary technical solutions, devices, proc-
esses or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR confor-
mance of products actually implementing such exemplary items, imply that intellec-
tual property rights covering such exemplary items are licensed under the same rules
as applicable to the AUTOSAR Standard.

2 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Table of Contents

1 Overview of the document... 5

1.1 Purpose, Scope and Target Audience.. 5
1.1.1 Purpose and Scope... 5
1.1.2 Target Audience.. 5

1.2 Acronyms and Abbreviations.. 6
1.3 Referenced Documents.. 6

2 CT process .. 8
2.1 Process overview ... 9
2.2 CT process artifacts ... 11

2.2.1 CTSpec ... 11
2.2.2 Specification of static and dynamic tests (PDF) 11
2.2.3 Specification of dynamic tests (TTCN-3)... 11
2.2.4 Fixed configuration set .. 11
2.2.5 ARXML ECU Configuration... 12
2.2.6 RTE Generator.. 12
2.2.7 ICS .. 12
2.2.8 Vendor specific parameters .. 12
2.2.9 BSWM *.c / *.h .. 13

2.3 Actions ... 13
2.3.1 CTS implementation.. 13
2.3.2 CTS adaptation ... 13
2.3.3 CT Execution... 13
2.3.4 Result evaluation... 14
2.3.5 Configuration set definition.. 14
2.3.6 Module configuration generation ... 15
2.3.7 Configuration & ARXML Selection .. 15
2.3.8 RTE Generation .. 15

3 Dynamic tests.. 16
3.1 Generic TTCN-3 Test System Architecture .. 16
3.2 Specification of the Test System Architecture .. 17

3.2.1 The TTCN-3 Test Architecture for AUTOSAR Conformance Tests..... 17
3.2.2 Possible Test Setups .. 19

3.3 Design Overview of the Test Adapter... 22
3.3.1 Integration with Execution Environment .. 22
3.3.2 Communication Means ... 23
3.3.3 SUT Adapter ... 23
3.3.4 Target Adapter .. 24

3.4 Functional Specification of the Target Adapter... 25
3.4.1 Generic Functional Requirements... 25
3.4.2 Specific Functional Requirements... 27

4 Dynamic test organization (TTCN-3 files dependencies)................................... 29
4.1 Common TTCN-3 files.. 29
4.2 Module specific TTCN-3 files ... 30
4.3 TTCN-3 Files Import Dependencies ... 30
4.4 Interaction between the TTCN-3 Scripts .. 40

5 Dynamic test patterns.. 41

3 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5.1 Network Stub.. 41

5.1.1 How it works.. 41
5.1.2 When to use it ... 42
5.1.3 Implementation notes.. 42
5.1.4 Consequences .. 46
5.1.5 CAN Network Stub .. 46
5.1.6 CAN Transceiver Network Stub .. 49
5.1.7 LIN Network Stub .. 50
5.1.8 LIN Transceiver Network Stub .. 54
5.1.9 FlexRay Network Stub .. 55
5.1.10 Also known as ... 61
5.1.11 Related patterns.. 61
5.1.12 FlexRay Transceiver Network Stub... 61

5.2 Memory accessor ... 62
5.2.1 How it works.. 62
5.2.2 When to use it ... 62
5.2.3 Implementation notes.. 63
5.2.4 Consequences .. 64
5.2.5 Example .. 64
5.2.6 Specification of methods ... 66
5.2.7 Also known as ... 71
5.2.8 Related patterns.. 71

5.3 Average Neighbor .. 71
5.3.1 How it works.. 71
5.3.2 When to use it ... 72
5.3.3 Implementation Notes ... 72
5.3.4 Consequences .. 73
5.3.5 Examples .. 73
5.3.6 Also known as ... 74

5.4 Important Notes.. 74
5.4.1 Specification for configuration parameter field “Type” 74
5.4.2 Order and values of enumeration literals .. 74
5.4.3 Handling configurable interfaces ... 76
5.4.4 Handling of DET stub .. 77
5.4.5 Pointer handling .. 77
5.4.6 Handling array types ... 78
5.4.7 External stubs used in conformance test specification........................ 79
5.4.8 Order of test steps for synchronous APIs.. 79

4 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

1 Overview of the document

This document is part of the process specifications for AUTOSAR BSW conformance
testing. It describes the execution environment for the AUTOSAR BSW Conformance
Test Specifications (CTSpecs) and its constraints. The objective is to provide the
technical foundation and all information that allows the development and realization
of a test infrastructure that is suitable for executing the AUTOSAR CTSpecs.

The overall CTSpec creation process is described in [4] and the methodology for its
realization in [3].

The first part of this document (Chapters 2 and 3.2) describes the generic TTCN-3
test system architecture and its application to AUTOSAR. It further classifies the two
possible test setups for AUTOSAR BSW conformance testing.

The second part (Chapters 3.3 and 3.4) contains the design overview for the Test
Adapters and in particular the functional specification of the “target adapter”. The lat-
ter one makes the BSW module under test accessible for conformance testing. With-
in this functional specification, generic API functions to be provided by the target
adapter are defined as well.

1.1 Purpose, Scope and Target Audience

1.1.1 Purpose and Scope

The main focus of this document is to mention all aspects that are related to enable
the execution of the AUTOSAR conformance tests

 In a simulation environment (“Class A”) or

 Against a real embedded system running the BSW module implementation
(“Class B”)

For a detailed definition of these classes of test setups, see Chapter 3.2.2.

It is not within the scope of this document to describe the process of properly execut-
ing the AUTOSAR conformance tests with the objective of officially certifying confor-
mance of the BSW module under test. This certification process requires definitions
of work steps and artifacts that go beyond the definitions in this document.

1.1.2 Target Audience

This document set is intended to be used by any and all companies, groups and indi-
viduals engaged in the implementation of the execution environment for the AUTO-
SAR conformance tests. This document is the basic specification of this implementa-
tion. The content is applicable to both, the validation execution environment and the
execution environment for conformance testing real BSW module implementations.

5 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

In order to completely understand this document, the documents [3] and [4] should
have been read first.

1.2 Acronyms and Abbreviations

Abbreviation Description
API Application Program Interface
ATS Abstract Test Suite
BSW Basic Software
BSWM BSW module
BSWMD BSWM Description
BSWMDT BSWMD Template
CC Conformance Class
CD Coder/Decoder (TTCN-3 – see Part 4)
CH Component Handling (TTCN-3 – see Part 4)
CTA Conformance Test Agency
CTSpec Conformance Test Specification
CTS Conformance Test Suite
CTSystem Conformance Test System
ECU Electronic Control Unit
ETS Executable Test Suite
FCC Functional Conformance Class
ICC Implementation Cluster Conformance Class
ICS Implementation Conformance Statement
IP Intellectual Property
PA Platform Adapter (TTCN-3 – see Part 4)
PS Product Supplier
RTE Run Time Environment
SA System Adapter (TTCN-3 – see Part 4)
SID Service IDentifier
SUT System Under Test
SW-C Software Component
SWS Software Specification
TE TTCN-3 Executable (TTCN-3 – see Part 4)
TM Test Manager (TTCN-3 – see Part 4)
TRI TTCN-3 Runtime Interface (TTCN-3 – see Part 4)
TTCN-3 Testing and Test Control Notation, version 3

1.3 Referenced Documents

[1] TTCN-3 specifications:
http://www.ttcn-3.org/StandardSuite.htm (accessed 20th of June, 2007)

[2] AUTOSAR BSW & RTE Conformance Test Specification Part 1: Background

AUTOSAR_PD_BSWCTSpecBackground.pdf

6 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

http://www.ttcn-3.org/StandardSuite.htm

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

[3] AUTOSAR BSW & RTE Conformance Test Specification Part 2: Process Over-

view
AUTOSAR_PD_BSWCTSpecProcessOverview.pdf

[4] AUTOSAR BSW & RTE Conformance Test Specification Part 3: Creation & Va-

lidation
AUTOSAR_PD_BSWCTSpecCreationValidation.pdf

[5] Specification of BSW Module Description Template

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[6] General configuration and test parameters used for validating conformance
tests
AUTOSAR_CTCF_General.pdf

[7] Conformance Test Process Definition Path A-C

AUTOSAR_PD_CTProcessDefinitionPathAToC.pdf

7 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

2 CT process

The following process is provided as hint, to understand how to get a conformance
test result from a BSW module to test and its associated CTSpec.
Responsibilities can be adapted regarding contract between Product Supplier and
CTA.
Due to RTE specificities, a RTE CT Process is provided for better understanding.

Legend for next processes

8 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

2.1 Process overview

Figure 1 – CT process overview – except RTE

9 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 2 – RTE specific CT process overview

10 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

2.2 CT process artifacts

2.2.1 CTSpec

CTSpec are delivered in different standard ZIP files:

 AUTOSAR_CTSP_<BSWM>

Contains the Specification of static and dynamic tests (PDF), the Specification
of dynamic tests (TTCN-3) specific to the module and the Fixed configuration
set (adding ARXML ECU Configuration for RTE).

 AUTOSAR_CTSP_General

Contains the Specification of dynamic tests (TTCN-3) generic to all modules.

Auxiliary documents are available for information:

 AUTOSAR_CTCF_<BSWM>

Contains an overview of the configuration parameters (values and constraints)
used to define Fixed configuration set.

 AUTOSAR_CTCF_General

Contains the CTCF General document [6] defining rules for configuration ad-
aptation.

2.2.2 Specification of static and dynamic tests (PDF)

Test cases are organized in two main categories:

 static test cases: configuration inspection, source code inspection and API
check;

 dynamic test cases: tests on specified behaviors. Are also specified in
TTCN-3 formal language (see Specification of dynamic tests (TTCN-3) arti-
fact).

2.2.3 Specification of dynamic tests (TTCN-3)

Implementation in TTCN-3 language of the dynamic tests specifications.
These are Abstract Test Suites to be made executable.

2.2.4 Fixed configuration set

Fixed configuration set have been defined to test every BSWM with a correct cover-
age.
These files provide values to BSWM’s parameters –defined in the SWS document-
as well as CT parameters, which are specified by the test suites.

11 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

They are used to configure both the module under test and the test suite and are
provided in a XML format.
Only parameters relevant to CT process appear in these files and are given a value.
Other mandatory parameters should be added during Configuration set definition or
Configuration & ARXML Selection action to get complete configurations.

For RTE, each Fixed configuration set is delivered along with an ARXML ECU Con-
figuration.

2.2.5 ARXML ECU Configuration

These artifacts are specific to RTE CT process.

RTE ARXML ECU Configuration files describe AUTOSAR software level configura-
tion (SW-Components).
Along with the Fixed configuration set for RTE, they are used to generate the “RTE
under test” form the RTE Generator.
Values should not be modified, as conformance test cases for RTE require specific
configurations to be executed.
Information such as OS task mapping that is important for CT can be found in the
Fixed configuration set of the RTE.

2.2.6 RTE Generator

This artifact is specific to RTE CT process.

The CTSpec of RTE does not check conformance of the RTE Generator, but of gen-
erated RTEs.
Due to RTE specificities, RTE Generator will be used to generate “RTEs under test”
as expected by RTE CTSpec.

2.2.7 ICS

The ICS restricts the specifications covered by the module under test, like minimized
parameter’s range or not implemented API.
The format is a subset of the AUTOSAR BSWMDT (see [5]).
It is used to adapt the Fixed configuration set, and so to adapt the generic confor-
mance tests (ATS), to the specific implementation under test.

2.2.8 Vendor specific parameters

List of parameters defined by the Product Supplier to configure his own BSWM.
These parameters are not specified by AUTOSAR and so are not taken into account
by the CTSpec, but they are required by Configuration set definition and
Configuration & ARXML Selection actions to correctly configure/generate the module
under test.

12 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

2.2.9 BSWM *.c / *.h

The module under test, as implemented by the Product Supplier or generated by the
RTE Generator implemented by the Product Supplier.

2.3 Actions

Actions 2.3.1 to 2.3.4 are applicable to all modules.
Actions 2.3.5 to 2.3.6 are applicable to all modules but RTE.
Actions 2.3.7 to 2.3.8 are applicable to RTE only.

2.3.1 CTS implementation

The objective here is to build an executable test suite from the abstract test suite
provided by AUTOSAR.
Two different activities are related to this action:

 Automation of static test cases: it is up to the CTA to automate a maximum of
static test cases;

 Dynamic tests specifications are provided in TTCN-3 language. Implementa-
tion of standard TTCN-3 environment has to be designed and build by the
CTA.
Details are provided in chapter 3. Information about abstract test suite struc-
ture is given in chapter 4. Information about Functionality of all stubs defined
by CT process is given in chapter 5.

2.3.2 CTS adaptation

Test suite has to be adapted to the configuration sets, output of Configuration set
definition action.
CTA has to derive from each configuration sets a TTCN-3 configuration file which will
be used to configure the executable dynamic test cases. The format of such configu-
ration files is out of AUTOSAR scope (specific to each TTCN-3 tool).
CTA also has to adapt static test cases consequently, like inhibiting test cases cover-
ing requirements out of module under test scope.

Output for this action is one configured CTS for each configuration set.

2.3.3 CT Execution

With respect to AUTOSAR criteria and to the commitments of the CTA self assess-
ment [7], CTA has to execute the configured CTS on its corresponding configured
BSWM.

 Static tests

o Source Code Inspection: executed on BSWM’s header files (generic
and configuration specific).

13 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

o Configuration inspection: executed on ICS to ensure it is a subset of

AUTOSAR complete BSWMD.

o Operation signature tests: executed on BSW module, to check proto-
types of APIs it provides and to check prototypes of APIs it requires.

 Dynamic tests: executed in class A or class B on the configured BSWM.

2.3.4 Result evaluation

With respect to AUTOSAR criteria and to the commitments of the CTA self assess-
ment [7], the compliance of the BSWM under test is deduced from results of CT Exe-
cution action.
Conformance declaration or attestation can be established during this action.

2.3.5 Configuration set definition

This action does not apply to RTE CT process.

Fixed configuration set provided within a CTSpec have been defined taking into ac-
count the whole SWS. As Product Supplier can limit the scope of its module (see ICS
artifact), Fixed configuration set have to be adapted to the specific module under test
regarding ICS by applying adapting rules [6]. Missing parameters, like Vendor spe-
cific parameters, have to be provided within the configuration.

For example, in the EEPROM Driver specification, EepDefaultMode’s range is {ME-
MIF_MODE_FAST ; MEMIF_MODE_SLOW}.
If the ICS states that the module under test only supports the mode ME-
MIF_MODE_SLOW, Fixed configuration set in which EepDefaultMode is set to ME-
MIF_MODE_FAST have to be adapted consequently.

There are 2 outputs for this action:

 ARXML files to configure the BSW (input for Select applicable Fixed configura-
tion set regarding ICS;

 Add missing parameters (AUTOSAR parameters that are not required by test
suite and vendor specific parameters) to selected configurations.

 Module configuration generation action) including BSWM parameters and
vendor specific parameter (not CT parameters);

 Files to configure the test suite, including BSW parameters and CT parame-
ters (not vendor specific parameters).

Exception

Operating System is a special case as test cases require specific configuration to be
executed.

14 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Values of OS Fixed configuration set should not be modified. For OS specifically, in
this Configuration set definition action you have to

 Select applicable Fixed configuration set regarding ICS;

 Add missing parameters (AUTOSAR parameters that are not required by test
suite and vendor specific parameters) to selected configurations.

2.3.6 Module configuration generation

This action does not apply to RTE CT process.

The output from this action is a set of configuration files for each configuration sets
created by Configuration set definition action.
They will be compiled and then linked with the BSWM’s “generic” source files to get
one configured BSWM for each configuration set.

2.3.7 Configuration & ARXML Selection

This action is specific to RTE CT process.

RTE is a special case as test cases require specific configuration to be executed.

Values of RTE Fixed configuration set and ARXML ECU Configuration should not be
modified. In this Configuration & ARXML Selection action you have to

 Select applicable Fixed configuration set and ARXML ECU Configuration re-
garding ICS;

 Add missing parameters (AUTOSAR parameters that are not required by test
suite and vendor specific parameters) to selected configurations.

2.3.8 RTE Generation

This action is specific to RTE CT process.

Using configuration and ARXML files selected for CT during the Configuration &
ARXML Selection action, RTEs will be generated to be test objects.

15 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

3 Dynamic tests

3.1 Generic TTCN-3 Test System Architecture

Figure 3 shows the generic architecture of a TTCN-3 based test system as defined in
the TTCN-3 standard [1]. A series of TTCN-3 test cases is commonly referred to as a
TTCN-3 test suite.

)+./ (0./+, *.+-

(*)

)&

"
%

"
#

(! '!

)$

Figure 3 – TTCN-3 test system overview

An executable TTCN-3 test suite is thus made up of the following parts1 (see Figure
3 and [1] for more details):

 SUT (System Under Test): The system that is tested.

 TE (TTCN-3 Executable): Contains the compiled TTCN-3 test cases and han-
dles the execution of the test cases’ statements.

 SA (SUT Adapter): Implements the interface between the TE and the SUT. It
handles the sending and reception of all messages or procedure/function in-
vocations between the TE and the SUT.

 PA (Platform Adapter): Realizes platform dependent functions, such as timers
and TTCN-3 external functions.

 CD (Coder/Decoder): Transforms between TTCN-3 abstract data types used
in the TE and concrete data types of the SUT.

1
 The abbreviations used for these parts are the same as in the TTCN-3 standardization documents.

16 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 TM (Test Management): Controls the execution order of test cases in a test
suite, logs all events from the TE, and implements the user interface of the
test system.

 CH (Component Handling): Handles the creation, distribution and termination
of TTCN-3 test components used in a test case.

The parts TM and CH are in general implemented and provided by the TTCN-3 tool-
ing. When designing a TTCN-3 test system for a specific test job (such as AUTOSAR
BSW conformance testing), the parts SA, PA and CD need to be specified. For AU-
TOSAR BSW conformance testing, the TE part is automatically generated by compil-
ing the TTCN-3 test cases from the CTSpecs, and the SUT part is identical to the
BSW module under test.

3.2 Specification of the Test System Architecture

3.2.1 The TTCN-3 Test Architecture for AUTOSAR Conformance Tests

3.2.1.1 Test Management

When executing conformance tests against an AUTOSAR BSW module under test,
the user interacts with the TM as it implements the user interface. For execution of
the CTSpecs, the user requires TM functionality on selecting and loading TTCN-3
files, and on selecting and executing the “control part” of TTCN-3 modules.

The logging and reporting functionality is of course also a crucial part of the TM as it
delivers the results of the test execution and provides further information that is re-
quired when errors have occurred and need to be found.

However, TM functionality is generally implemented by the various TTCN-3 tools.
Thus, the actual way of user interaction with the TM is tool specific.

3.2.1.2 Component Handling

A TTCN-3 test case contains at least one test component which resembles a self-
contained thread that executes test steps. Complex test cases usually employ multi-
ple test components that can potentially run on different software environments or
hardware devices.

For AUTOSAR BSW conformance testing, test cases make use of multiple test com-
ponents but they all run on the same software and hardware environment: the Tester
PC.

Component Handling is a functionality provided by the TTCN-3 tool. Since for AU-
TOSAR BSW conformance testing, test components do not need to be distributed
onto several software and hardware environments, the basic CH functionality pro-

17 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

vided by all TTCN-3 tools is sufficient. Since this basic CH functionality is usually hid-
den from the user, no further specification on CH is required.

3.2.1.3 TTCN-3 Executable

The TE is the compiled and ready-to-be-executed form of TTCN-3 test cases. Build-
ing the TE from the TTCN-3 test cases is usually a core functionality of TTCN-3 test
systems. The handling of this build process is tool specific.

Since the execution behavior of the CTSpec is highly dependent on the configuration
parameters, the TE has to be specifically generated for a set of configuration pa-
rameters. That is, for a new set of configuration parameters, the TTCN-3 Config Mod-
ule has to be generated (see [3]) and added to the CTSpec which is then re-compiled
to generate a new TE.

3.2.1.4 System Under Test

For AUTOSAR BSW conformance testing, the SUT refers to the BSW module under
test. Since the SUT is also highly configured by configuration parameters, a genera-
tion/compilation process is usually required to obtain the SUT for a specific configura-
tion set.

The SUT is executed within an environment provided by the target platform. Prior to
execution of the SUT, the BSW module has to be integrated into the software envi-
ronment of the target platform. This includes in particular the

 integration of the SUT with the “target adapter” (see Chapter 3.3.1);

 correct linking with called functions as well as callback functions.

3.2.1.5 Platform Adapter

The PA provides platform specific services to the TE with regard to timers and exter-
nal functions.

For conformance testing of AUTOSAR BSW modules with no real-time behavior, the
accuracy of the standard real-time clock of the Tester PC can be regarded as suffi-
cient. Thus, the standard timer functionality of the PA commonly provided by TTCN-3
tools is used.

TTCN-3 external functions are functions that can be invoked from the test cases but
are implemented in a programming language other than TTCN-3 (e.g. Java, C). The
PA realizes the invocation and return of TTCN-3 external functions. They can be
helpful in case when special functionality is required by a test case (e.g. fast calcula-
tion of a CRC). If an AUTOSAR BSW CTSpec makes use of TTCN-3 external func-
tions, the external function has to be carefully specified and should be easily port-
able.

18 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

3.2.1.6 Coder/Decoder

The CD is responsible for converting data between their abstract representation in
the test cases and their concrete representation in the SUT.

In AUTOSAR BSW, basic data types (e.g. signed und unsigned integers of various
bit width), enumeration types, pointers and structures based on the aforementioned
types are used.

Conversion of the basic data types is simple and might involve a conversion between
little-endian and big-endian representation of data.

Within the C source of BSW modules, enumeration values are mapped to unsigned
integer values. For TTCN-3 conformance test cases, AUTOSAR enumeration types
are also mapped to unsigned integer. This means, that the CD can handle enumera-
tion types as unsigned integer resulting in the simple conversion described above.

Pointers are in general handled transparently by the test cases. That means, the
whole pointer value (i.e. the memory address), regardless of its bit width, is handled
by a conformance test cases when invoking or receiving APIs of a BSW module con-
taining pointer parameters or pointer return values. However, the test case cannot
directly evaluate these pointer values. It has to use specific target adapter functions
to process and evaluate pointer values when necessary.

3.2.1.7 SUT Adapter

The SA connects the TE with the SUT. It transforms the communication operations
(i.e. stimulation and observation activities) from within a TTCN-3 test case into ap-
propriate operations towards the SUT.

3.2.2 Possible Test Setups

For conformance testing of AUTOSAR BSW modules, two different basic test setups
are possible which have been identified and described in Chapter 5 of [2] and are
referred to as “Class A” test setup and “Class B” test setup. The CTSpec is imple-
mented and applicable to both test setups.

3.2.2.1 Class A Test Setup

With the Class A test setup, the BSW module under test (i.e. the SUT) is executed
within a simulation environment on a PC which is (for the sake of simplicity) in gen-
eral the same PC that executes the conformance test cases. With this type of test
setup, hardware related functionality can often not be tested unless the simulation
environment also provides a simulation of the hardware that is interfacing with the
SUT.

However, providing a simulation of a hardware component and correctly interfacing it
with the SUT usually involves high efforts and might often be abandoned in favor for
the Class B test setup with real hardware.

19 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Therefore, Class A test setups are primarily expected to be used for BSW modules
that have interfaces to other software modules only and do not interface with hard-
ware components. For those types of BSW modules, Class A tests provide the pos-
sibility to execute conformance tests without the hassle of setting up and handling an
embedded target system with its required hardware components.

3.2.2.2 Class B Test Setup

Class B test setups require the execution of the BSW module under test on the em-
bedded target system. In general, this type of test setup promises more reliable re-
sults on conformance of a BSW module since the BSW module is executed under
conditions that are potentially very close to those of the later production use.

Figure 4 shows the Class B test setup consisting of the test system made up of its
different parts, the target platform with the target adapter and the communication
means between test system and target platform.

However, the separation between test system and target platform (i.e. an embedded
system) introduces additional complexity:

 A communication means and scheme between test system and target platform
is required.

 A “SUT adapter” (or “upper test adapter”) on the Test PC side is required. It is
used to give the test case execution access to the communication means.

 A “target adapter” (or “lower test adapter”) that provides this communication
functionality on the target system side and interacts with the BSW module is
required.

 Both “SUT adapter” and “target adapter” need to be properly configured with
respect to the properties of the communication means and the SUT.

Figure 4 – Class B test setup

20 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

3.2.2.3 Class A vs. Class B from the view point of the CTSpec

The conformance test cases should be as much as possible independent from the
type of test setup that is chosen for execution of the tests. In this way, the CTSpecs
can be used at a wide range of the development process (e.g. Class A test setup
during an early development stage when the module is developed within a PC based
simulation environment).

Meeting this objective is very well supported by the TTCN-3 concept of “test adapt-
ers” which can be regarded as an “intermediate layer” between the test case execu-
tion and the SUT. The purpose of the test adapter is to provide the test cases with an
“abstract” test interface. This concept is intended to be used for abstraction issues
as, in this case, to abstract as much as possible from the type of test setup being
used (Class A or Class B).

The following sections discuss the most relevant aspects of the CTSpec with regard
to their handling and realization by a Class A or Class B test setup

3.2.2.3.1 Software APIs

Within the conformance test cases, the APIs of the BSW modules that interface with
other software components are handled in the same way for Class A and Class B
test setups.

For Class A test setups, it is the responsibility of the test adapter integrated with the
simulated execution environment for the BSW module to correctly forward API calls,
callbacks and their parameters to the BSW module.

For Class B test setups, the test adapter together with the target adapter has to real-
ize the forwarding of API calls, callbacks and their parameters. This functional re-
quirement on the target adapter is described in more detail in Chapter 3.4.1.

3.2.2.3.2 Hardware interfaces

With a Class B test setup, the BSW module interfaces with hardware (mostly hard-
ware driver modules), for example, by directly accessing specific memory registers
and with the help of interrupt routines. These mechanisms are hardware specific and
internal to the BSW implementation.

When the same BSW module implementation is to be executed in a simulation envi-
ronment for Class A tests, the same mechanisms for hardware interaction need to be
provided by the simulation environment.

Since currently, hardware interfaces of BSW modules are not directly relevant for
conformance testing, the issues associated with handling these interfaces for Class A
and Class B test setups are not further analyzed within this document.

3.2.2.3.3 Test Adapters

For both Class A and Class B test setups, the test adapters need to be implemented
specifically for the components of the test environment. In Chapter 3.3, functional
requirements on the test adapters are given. However, it is not in scope of this doc-
ument to present a detailed design or an implementation specification for these adap-
ters.

 For Class A test setups, the design and implementation of the test adapters
mainly depends on the interfaces and properties of the simulation environ-
ment.

21 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 For Class B test setups, the design and implementation of the SUT adapter
and the target adapter mainly depend on the communication means

3.3 Design Overview of the Test Adapter

As already described in Chapter 3.2.2 and depicted in Figure 4, the test adapters
consist of both the SUT adapter and the target adapter.

3.3.1 Integration with Execution Environment

Figure 5 – Integration interfaces for SUT adapter and target adapter

As shown in Figure 5, the SUT adapter and target adapter need both to be integrated
with their execution environments:

 SUT adapter:

o The integration with the test execution is realized by implementing the
“TTCN-3 Runtime Interface” (TRI). The TRI is specified in [1]. Imple-
menting the TRI involves implementing TRI functions to be used by the
test execution and making use of TRI functions that are provided by the
test execution. How the SUT adapter and the test execution are actu-
ally “linked” together is tool specific.

o The integration with the communication interface needs to be done in a
direct way (i.e. compiled and linked together). In general, the SUT
adapter implements directly the communication functions (e.g. socket

22 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

functions for TCP/IP communication). Alternatively, an implementer
specific communication API can be used here.

 Target adapter:

o The integration with the BSW module needs to be done directly using
the API specified for the BSW module. That means, the software struc-
ture of the target adapter must implement direct calls to API functions of
the BSW module and must provide function stubs to be called as API
call-backs by the BSW module.

o The integration with the communication interface is the same as for the
SUT adapter.

3.3.2 Communication Means

The communication means consists of both the hardware realizing the data transfer
(i.e. Ethernet adapters and cabling) and the software/protocols that provides the
communication services (e.g. Ethernet driver, TCP/IP protocol).

With respect to AUTOSAR BSW conformance testing, the main purpose of the com-
munication means that interconnects the SUT adapter with the target adapter is to
efficiently transmit

 function calls and their parameters (if defined),

 function returns with return value (if defined)

in both directions.

The following “quality of service” for this communication means is required:

 Communication events (i.e. function calls and function returns) must not get
lost during transmission.

 The content of communication events must not be altered.

 Reordering of communication events must not happen.

 Delay and jitter for transmission of communication events must be magnitudes
of order smaller than the smallest time-out value in the BSW module or in the
CTSpec.

How the communication means is realized is implementer specific and out of scope
of AUTOSAR standards.

3.3.3 SUT Adapter

The main functionality of the SUT adapter is to forward communication events (i.e.
function calls and function returns) between test execution and target adapter by
making use of the communication means. In order to realize an efficient communica-
tion, this forwarding functionality usually involves encoding and decoding of the func-
tion names, their parameters and the possible return value. This main functionality is
illustrated in Figure 6.

23 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 6 – Overview on the main functionality of the SUT adapter

The encoding/decoding strategy and scheme is implementer specific and out of
scope of AUTOSAR standards.

3.3.4 Target Adapter

The target adapter must be able to apply the encoding/decoding scheme that the
SUT adapter uses to correctly convert communication events received from the SUT
adapter into appropriate function calls or function returns towards the BSW module
and vice versa.

In addition to that, the target adapter must implement the following active functional-
ity:

 Custom test functions (“target adapter functions”) that the test cases might use
(e.g. for interacting directly with the memory of the target system).

 Automatic cyclic invocation of the main function of the BSW module (can be
activated/deactivated by target adapter functions)

Figure 7 gives an overview on the main functionality of the target adapter. The target
adapter functionality is specified in more detail in the following chapter.

24 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

…

Figure 7 – Overview on the main functionality of the target adapter

3.4 Functional Specification of the Target Adapter

The target adapter (TA) refers to the lower part of the test adapter and runs on the
target platform (Class B tests only). Therefore, it is usually specifically implemented
for the target hardware.

It also may contain custom functions for testing certain BSW module functionalities.

Prior to the execution of the BSW conformance tests, the test personnel have to inte-
grate the TA on the target platform. An overview on the integration issues has been
given in Chapter 3.3.1.

3.4.1 Generic Functional Requirements

The target adapter has to provide the basic functionality described in the following
sections.

3.4.1.1 Invocation of API Calls at the SUT

During test case execution, the SUT is stimulated by invocation of its APIs.

25 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The test executable sends an API invocation together with optional arguments to the
target adapter which then calls the API with the optional arguments at the BSW mod-
ule. After execution of the API call, it returns with an optional return value (depending
on the specification of the API). When the API call returns, the target adapter sends
the appropriate notification to the test executable together with the optional return
value.

3.4.1.2 Reception of API Calls from the SUT

During test integration, the test integrator has to make sure that the invocation of
APIs belonging to other modules and called by the SUT is redirected to the target
adapter.

When the test case is executed, the SUT may invoke these APIs belonging to other
modules but provided by the target adapter. Upon reception of an API invocation
from the SUT, the target adapter forwards the API invocation together with optional
arguments to the test executable. The test case receives this API invocation and re-
acts to it according to the implemented test steps. This reaction usually involves
sending of a reply notification to the target adapter indicating the return of the API
invocation with optional return values.

3.4.1.3 Invocation of Callbacks towards the SUT

The BSW module under test may provide callbacks to other modules, e.g. for notifi-
cation purposes.

For conformance testing, these callbacks are issued by the test case. Since call-
backs towards the SUT behave exactly like APIs provided by the SUT, the same me-
chanism as described in Section 3.4.1.1 applies for callbacks towards the SUT.

3.4.1.4 Reception of Callbacks from the SUT

The BSW module under test may invoke callbacks towards other modules.

Again, the callbacks provided by other modules behave exactly like APIs provided by
other modules and invoked by the SUT. Therefore, the same mechanism as de-
scribed in Section 3.4.1.2 applies for callbacks invoked by the SUT towards other
modules.

3.4.1.5 Reception of Error Reports

During test case execution, development errors and/or diagnostic events may occur
within the BSW module under test. These errors and events are received by the tar-
get adapter and forwarded to the test executable where they are logged and a proper
action (e.g., the setting of test verdict “fail”) is concluded from them.

26 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The mechanisms for error and event reporting by the SUT make use of the APIs
Det_ReportError() and Dem_ReportErrorStatus() provided by the modules

“Development Error Tracer (DET)” and “Diagnostic Event Manager (DEM)”, respec-
tively.

For conformance testing, the target adapter provides these two APIs to the SUT in-
stead of the real DET and DEM. When the SUT invokes one of these two APIs to-
gether with the arguments describing the error or event, the target adapter forwards
the API invocation to the test executable. The test executable is then able to log the
error or diagnostic event and to react appropriately on it.

3.4.2 Specific Functional Requirements

3.4.2.1 Pattern Form

This document describes solutions to problems that recur during the specification
and implementation of AUTOSAR conformance tests for various BSW modules. Be-
cause of the recurring nature of the problems and solutions this document describes
them in the form of patterns.

The patterns are described using a consistent format. Each pattern is divided into
sections according to the following template:

 Pattern name (required):
The pattern's name conveys the essence of the pattern succinctly. A good
name is vital, because it will become part of the vocabulary.

 Abstraction level (required):
The range of scale and abstraction of pattern:

o Test Architecture
o Test Implementation

 Intent (required):
A short problem statement followed by a sketch and a summary.

 Also known as (optional):
Other well-known names for the pattern, if any.

 How it works (required):
This section describes the essence of how the pattern is structured (the solu-
tion to the problem) and what it is about.

 When to use it (required):
This section describes the circumstances (the problem, the driving forces, and
the context) which must be considered using the pattern.

 Implementation notes (required):
This section describes the nuts and bolts of how to implement the pattern for

o validation runs on simulating modules and running on development ma-
chines only during the CTSpec creation Action

o test runs on production modules implemented in C and running on de-
velopment machines or ECUs during the CTSpec application action

27 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 and how to use the pattern in test specifications (TTCN-3).

 Consequences (required):
What are the trade-offs and results of using the pattern? What aspect of test
system’s structure does it let one vary independently?

 Examples (required):
The test systems of which modules apply this pattern.

 Related patterns (optional):
What design patterns are closely related to this one? What are the important
differences?

 References (optional):
References to related documents, e.g. to AUTOSAR CTSpec Execution Con-
straints.

Structures and functions are illustrated with UML diagrams, like component dia-
grams, sequence diagrams and deployment diagrams, and code snippets (TTCN-3
or C).

3.4.2.2 Patterns List

Pattern name Intent

Network Stub -
 5.1

How to control and observe the network side of
SUTs with a network interface?

Memory accessor -
 5.2

How to control and observe the effect of opera-
tions of SUTs on the main memory?

Average Neighbor -
 5.3

How to replace Bsw modules and distribute test
functionality that drives or stubs the SUT?

Note:

Apart from the above listed patterns, this document also contains a section “Impor-
tant Notes”. This section contains the important points that need to be considered
while using the conformance test specifications.

28 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

4 Dynamic test organization (TTCN-3 files dependencies)

4.1 Common TTCN-3 files

Custom Tooling generated common TTCN-3 files

 <Msn>_config_types.ttcn

This file contains configuration types for a BSW module <Msn>. This is a tool
generated file. This file is generated from the AUTOSAR CTSPEC Meta mod-
el.

 <Msn>_config_parameters_default.ttcn

This file contains configuration parameters default value for a BSW module
<Msn>. This is a tool generated file. This file is generated from the AUTOSAR
CTSPEC Meta model.

 <Msn>_api_types.ttcn

This file contains API types for a BSW module <Msn>. This is a tool generated
file. This file is generated from the AUTOSAR BSW UML model.

 <Msn>_api.ttcn

This file contains declaration of APIs for a BSW module <Msn>. This shall be
a tool generated file. This file is generated from the AUTOSAR BSW CTSPEC
UML model.

 All_modules_generic_types.ttcn

This file contains Standard and ComStack API Types.

Manually prepared common TTCN-3 file

 Common_base_functions.ttcn

This file contains the API definitions of the commonly used functions across
the modules.

 Dem_stub.ttcn

This file provides the functionality of the DEM stub.

 Det_stub.ttcn

This file provides the functionality of the DET stub.

 EcuM_stub.ttcn

This file provides the functionality of the EcuM stub.

 Log_module.ttcn

This file provides the functions for log messages.

 Test_strategy.ttcn

29 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

This file provides the test strategy for the module. The verdict of a test compo-
nent (PTC and, at the end of a test case i.e. MTC) is automatically calculated
and logged when a test component terminates.

 Validation_module.ttcn

This file provides the validation for parameters and sets the verdict of a test
case.

Note:

1. Tool generated and manually prepared common TTCN-3 files contain the in-
formation (configurations, types, etc.) for all AUTOSAR BSW modules (which
are present in the CTSpec Meta model).

2. For a particular BSW module <Msn>_api_types.ttcn and <Msn>_api.ttcn im-
plies the specific module and neighboring module API and API types. Exam-
ple: If Flash Driver is the module under test, then <Msn>_api_types.ttcn im-
plies Fls_api_types.ttcn, Fee_api_types.ttcn, Det_api_types.ttcn and
<Msn>_api.ttcn implies Fls_api.ttcn, Fee_api.ttcn, Det_api.ttcn.

4.2 Module specific TTCN-3 files

Manually prepared module specific TTCN-3 files

 <Msn>_api_functions.ttcn

 <Msn>_test_suite.ttcn

 <Msn>_*_test_cases.ttcn

 <Msn>_*_base_functions.ttcn

 <Msn>_test_architecture.ttcn

 <Msn>_stub_signatures.ttcn

 <Msn>_*_stub.ttcn

 <Msn>_config_functions.ttcn

 <Msn>_pc_*_functions.ttcn

 <Msn>_test_api_functions.ttcn

 <Msn>_iterator_*_functions.ttcn

Tool generated module specific TTCN-3 files
AUTOSAR_<Msn>_Ecuc_<n>.par

4.3 TTCN-3 Files Import Dependencies

Definitions of one TTCN-3 module (file) can be used in other TTCN-3 module (file) by
using “import” statements.

CTSpecs of each AUTOSAR BSW module is implemented in more than one file,
hence each TTCN-3 file may import other module (s) (i.e. definition from other file)

30 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

e.g. If a test case in the file “<msn>_*_test_cases.ttcn” uses a utility function defined
in the file “<msn>_*_base_functions.ttcn”, then the TTCN-3 module in the file
“<msn>_*_test_cases.ttcn” will import the module defined in the file
“<msn>_*_base_functions.ttcn”.

One sample of import is given below:
module IcuNotificationTestCases
{
 …
 import from IcuBaseFunctions all;
 …
}

Dependencies of each TTCN-3 file with other TTCN-3 files i.e. for every TTCN-3 file,
the other modules (files) that are imported are provided in Figure 8 to Figure 25.

Note: File names are used instead of module names in diagrams for easy under-
standing. The difference between file name and module name is, in module name
title case is used instead of underscores (as in file names).

e.g. File name: Icu_notification_test_cases.ttcn ;
TTCN-3 module name inside the file will be: IcuNotiifcationTestCases

31 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 8: <Msn>_*_test_cases.ttcn

32 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 9: <Msn>_*_base_functions.ttcn

33 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 10: <Msn>_*_stub.ttcn

Figure 11: <Msn>_api_functions.ttcn

34 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 12: <Msn>_test_suite.ttcn

Figure 13: <Msn>_test_architecture.ttcn

Figure 14: <Msn>_stub_signatures.ttcn

35 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 15: <Msn>_config_functions.ttcn

Figure 16: <Msn>_pc_*_functions.ttcn

36 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 17: <Msn>_test_api_functions.ttcn

Figure 18: <Msn>_iterator_*_functions.ttcn

Figure 19: AUTOSAR_<Msn>_Ecuc_<n>.par

37 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 20: <Msn>_config_parameters_default.ttcn

Figure 21: <Msn>_api.ttcn

Figure 22: Dem_stub.ttcn

38 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 23: Det_stub.ttcn

Figure 24: EcuM_stub.ttcn

Figure 25: Validation_module.ttcn

39 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Notes:

 The files All_modules_generic_types.ttcn and <Msn>_config_types.ttcn do not
have any dependencies with other files

 The files <Msn>_config_types.ttcn, <Msn>_config_parameters_default.ttcn
and AUTOSAR_<Msn>_Ecuc_<n>.par are not implemented (used) in any of
the AUTOSAR BSW modules

 In files <Msn>_*_test_cases.ttcn and <Msn>_*_base_functions.ttcn importing
of <Msn>_*_stub.ttcn and <Msn>_stub_signatures.ttcn is optional. Stubs and
stub signatures will be imported by other file only if other file uses stub func-
tions

In files <Msn>_*_test_cases.ttcn and <Msn>_pc_*_functions.ttcn importing of
<Msn>_iterator_*.ttcn is optional. Iterator will be imported by other file only if other file
uses iterator functions

4.4 Interaction between the TTCN-3 Scripts

 Test Suite will invoke the test cases implemented in the file
“<msn>_*_test_cases.ttcn”

 Test case may invoke base functions defined in the file
<msn>_*_base_functions.ttcn and/or the stub APIs defined in the file
<msn>_*_stub.ttcn

 Mapping and Unmapping of the ports are defined in the base functions

 Default Altstep behavior is defined in the base functions for catching unex-
pected messages and as guard against waiting infinitely for responses from
the SUT

 The neighboring modules APIs/callbacks are implemented as Parallel Test
Components (PTCs) in the file(s) <msn>_*_stub.ttcn

 Within the test cases or base functions (that are invoked from the test cases),
the behavior of the PTCs will be started and stopped as required by the test
cases

 Test cases and base functions are part of Main Test Component (MTC)

To check whether SUT has invoked neighboring module’s APIs/callbacks, MTC
will use user defined stub functions that are implemented in PTCs

40 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5 Dynamic test patterns

5.1 Network Stub

How to control and observe the network sid
 of a module with a network interface?

S
y
s
te

m

A
d

a
p

te
r

A
d

a
p

te
r

Figure 26: Network Stub overview

5.1.1 How it works

When a module is a network driver it can be tested when the behavior of the network
hardware which the module is controlling can be observed and stimuli can be in-
duced. Hence the test components need to be put into the position to send and re-
ceive messages on the same network that the module under test is connected to.

The network Stub will provide this functionality to the test components. Its interface is
published to the test components in a similar way the SUTs interfaces are published
(see Figure 26). This interface is specific to the network technology which is tested
but not specific to a specific hardware or vendor. The test components will use this
interface provided by the network Stub to induce message, read messages from the

41 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

network or trigger or observe other technology specific effects (e.g. bus off events). It
can thus be considered to be a part of the System Adapter or Platform Adapter.

5.1.2 When to use it

Whenever the module under test is controlling hardware that can be observed using
a well defined and standardized hardware interface this pattern should be applied.
This well standardized interface is the connection between the network driver and the
network Stub in Figure 26. Hardware related functionality is in general not supported
in the conformance test. Hence, this pattern is only to be applied for network tech-
nologies which are an exception from that rule.

5.1.3 Implementation notes

The interface that the network Stub provides to the test components needs to be de-
fined in a formal way (lower box provided interface in Figure 26). The TTCN-3 API is
standardized along with the tests themselves. The system or platform adapter needs
to implement this interface in a proprietary way and provide the functionality to the
test components. The network Stub establishes an independent procedural synchro-
nous interface to access the network. The implementation of this interface can be
accomplished for example using third party libraries or proprietary software modules.

The validation environment will implement this behavior as part of the simulation. The
network technology will be simulated internally to the simulation; therefore no real
network exists during validation. In a real test setup, the same functionality needs to
be provided using a real network for testing.

The test case can use the stub to send messages and will expect to receive the iden-
tical message using the AUTOSAR API of the network module. Coarsely a test case
could look like this:

testcase TC_NETWORKXYZ_0001() runs on MTCXYZ {

 setverdict(none);

 int param1a = 1;

 octetstring param2a = “0xFFFAAA444111”;

 // send data to SUT on network using the Stub

 NetworkStubName_sendMsg(param1a, param2a);

 // receive data on the SUT

 NetworkAPI_receive(param1b, param2b);

 // compare data

 if (param1a == param1b && param2a == param2b) {

 // received data was matching sent data

42 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 setverdict(pass);

 }

 else {

 // data was not transmitted correctly

 setverdict(fail);

 }

}

This listing also illustrates why it is sensible to have the Network Stub use procedural
interfaces. Once the call to the stub returns the MTC can be certain that the message
is actually transmitted and on the network.

For the TTCN-3 side the signatures provided should enable the test to send and re-
ceive messages on the network. Hence they should be similar to

signature NetworkStubName_sendMsg (in type1 param1,

 in type2 param2) exception (Std_ExceptionType_);

signature NetworkStubName_getLastReceivedMsg (out type1 pa-

ram1,

 out type2 param2) exception (Std_ExceptionType_);

Where param1 and param2 are describing the message itself.

The implementation of the Network Stub which would need to be done as part of the
implementation of the test system and could look similar to this pseudo code:

void NetworkStubName_sendMsg (type1* param1, type2* param2) {

 Message msg = processMessageParameters(param1, param2);

 sendMessageOntoNetwork(msg);

}

43 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 27: Class-B scenario deployment view of the Network Stub

The above figure shows a possible deployment of the network Stub in a Class-B test
scenario. The host system itself will execute the test components and contain one
part of the system adapter which ensures the interfacing of SUT and test compo-
nents. The system adapter then connects the test system to the target ECU where
the SUT itself is running.

On this ECU the network driver module interfaces with the network hardware and
thus allows the SUT to transmit and receive messages on the network. The network
itself ensures the connection to the network Stub. Here a real physical network con-
nection will be used.

The network Stub itself can be deployed either on the host system or on a separate
ECU. There the network Stub receives and transmits information to and from the
network that the SUT is connected to.

44 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The interface of the network Stub and the test system itself is very similar to the inter-
face between test system and SUT. The system adapter allows the test components
to access the functionality of the network Stub. If the network Stub is collocated with
the test components on the host system the system adapter will not need to cross a
machine boundary which would be the case where the network Stub is located on a
separate ECU.

Main Test
Component

O p e n
T
T
C
N
p ro c e s s

<< PI>>
Provided Ops

<<PI>>

Required Ops

<<SUT >>
Network Driver

<<Adapter>>
Network Stub

<< PI>>
Provided Ops

Simulated Network

Connection

J a v a
Vi r t
u
al
Ma c h i n
e
p ro c e s s

<<TC>>
NetworkDriver Test

<< PI>>
Provided Ops

<<PI>>
Required Ops

Generated TTCN -3
Signatures of official

AUTOSAR APIs

<< PI>>

Generated System
 Adapter and API

classes

Simulation of the Stub

.Implemented in

Simulated Module

. Implemented in

Generated System
 Adapter and API

classes

Generated TTCN -3
Signatures of official

AUTOSAR APIs

Provided Ops

Figure 28: Validation scenario deployment diagram of the Network Stub

The figure above shows the same setup but in the validation scenario. Here the
module under test consists of a simulation of a BSW module that runs in the same
virtual machine with the Network Stub. The connection of the Network Stub and the
BSW Module here is not the real network technology but this connection itself is si-
mulated.

To the test system there is no difference as the system adapter along with the gener-
ated interfaces in TTCN-3 handles the connection to the simulation.

45 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5.1.4 Consequences

The network Stub pattern allows testing hardware specific modules without requiring
test components that are specific to one particular hardware implementation. The
pattern harnesses the fact that network technologies specify a standardized interface
on the network level which is also relatively easy to access. This interface is ac-
cessed in an arbitrary and proprietary way but the communicated information is stan-
dardized. This is then used by the test component for testing.

5.1.5 CAN Network Stub

CAN Network stub (CanStub) uses the following interfaces for the CanStub (repre-
sentation in TTCN-3) which allows the test components to access a CAN network
that is connected to SUT which itself interacts with this CAN network

a) signature TestCanNet_SendCanDataFrame(
 in integer CanControllerId,

 in Can_IdType_ CanId, in integer SduLength,

 in octetstring Sdu)

 exception (Std_ExceptionType_);

b) signature TestCanNet_GetLastReceivedCanDataFrame(
 in integer CanControllerId, in Can_IdType_ CanId,

 out integer SduLength, out octetstring Sdu) return boo-

lean

 exception (Std_ExceptionType_);

c) signature TestCanNet_SendRemoteFrame(
 in integer CanControllerId,

 in Can_IdType_ CanId, in integer SduLength)

 exception (Std_ExceptionType_);

d) signature TestCanNet_Clear(in integer ControllerId)
 exception (Std_ExceptionType_);

5.1.5.1 TestCanNet_SendCanDataFrame

TestCanNet_SendCanDataFrame Function Name

TestCanNet_SendCanDataFrame(
 in integer CanControllerId,
 in Can_IdType_ CanId, in integer SduLength, Syntax
 in octetstring Sdu)

46 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

CanControllerId – ID of the controller to which the CAN
frame should be sent

Parameters In CanId – CAN frame ID
SduLength – Length of the CAN frame
Sdu – CAN frame payload data bytes

Parameters Out -

Return Value -

Description:

The method TestCanNet_SendCanDataFrame is used by the test case to send a
data frame onto a CAN bus to which the SUT is connected. The test component will
provide all the necessary information to the module, like the ID of the controller on
which the SUT should receive the message. Also all necessary information to con-
struct the message like Can_Id, PduLength and the actual payload are provided to
the test component by the CanStub. The CanStub will use that information to trans-
mit the CAN frame and only after the transmission of the CAN frame return to the test
synchronously.

Example:

 var octetstring v_Data := ‘1122334455667788’O;
 TestCanNet_SendCanDataFrame(0, 100, 8, v_Data);

This will send a CAN frame from the network stub to the controller “0” in the SUT,
with CAN ID = 100, CAN frame data length = 8 and CAN frame data bytes =
0x1122334455667788, where CAN frame data byte[0] = 0x11.

5.1.5.2 TestCanNet_GetLastReceivedCanDataFrame

Function Name TestCanNet_GetLastReceivedCanDataFrame

TestCanNet_GetLastReceivedCanDataFrame(
 in integer CanControllerId,
 in Can_IdType_ CanId, out integer SduLength, Syntax
 out octetstring Sdu)

CanControllerId – ID of the controller from which the
CAN frame should be received Parameters In
CanId – CAN frame ID

Parameters Out
SduLength – Length of the CAN frame
Sdu – CAN frame payload data bytes

Return Value
boolean
True – if frame is received successfully by the CanStub
False – if frame is not received or if the frame is re-

47 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

ceived with errors by the CanStub

Description:

The method TestCanNet_GetLastReceivedCanDataFrame is used by the test case
to get the previously received CAN frame by the CanStub.

The CanStub continuously reads messages from each CAN bus to which it is con-
nected and stores the last received message. It allows the test component to read
the last message that was received on any of the available CAN busses.

The CAN network stub shall update the out parameters for the latest received CAN
frame from the controller “CanControllerId” and with CAN ID “CanId“:

Sdu - received CAN frame data bytes
SduLength – Number of data bytes received

The return value indicates whether a message has been received without any errors.

Example:

 var octetstring v_Data := ‘AABBCCDD’O;

 TestCanNet_GetLastReceivedCanDataFrame(1, 200, 4, v_Data);

This means that the latest CAN frame received (by the CanStub) for the CAN ID
“200” on the controller “1” is having “4” bytes length with data bytes = 0xAABBCCDD,
where CAN frame data byte[0] = 0xAA.

5.1.5.3 TestCanNet_SendRemoteFrame

TestCanNet_SendRemoteFrame Function Name

TestCanNet_SendRemoteFrame (in integer CanControl-
lerId,

Syntax
 in Can_IdType_ CanId, in integer SduLength)

CanControllerId – ID of the controller for which the re-
mote CAN frame should be initiated
CanId – CAN frame ID

Parameters In

SduLength – Length of the CAN frame

Parameters Out -

Return Value -

Description:

The method TestCanNet_SendRemoteFrame is used by the test case to send a re-
mote CAN frame from CanStub to SUT for the CAN ID “CanId”.

48 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

After receiving this call, the CanStub should send a remote CAN frame on to the con-
troller = “CanControllerId” on the SUT, with CAN ID = “CanId” and DLC = “Sdu-
Length”

Example:

TestCanNet_SendRemoteFrame(1, 300, 6);

This will send a remote CAN frame from the network stub to the controller “1” in the
SUT, with CAN ID = 300, CAN frame data length = 6.

5.1.5.4 TestCanNet_Clear

Function Name TestCanNet_Clear

TestCanNet_Clear(in integer CanControllerId)
Syntax

CanControllerId – ID of the controller for which the pre-
viously stored information to be cleared.

Parameters In

- Parameters Out

Return Value -

Description:

The method TestCanNet_Clear is for administrative purposes only and allows the
test to clear all messages that might be stored in the CanStub for a particular control-
ler (CanControllerId).

After receiving this call, the CanStub should clear all the messages that are stored in
the CanStub for the controller “CanControllerId“

Example:

TestCanNet_Clear(0);

This will clear the stored messages (in the CanStub) for the controller “0”.

e.g. The call TestCanNet_GetLastReceivedCanDataFrame will return “False” imme-
diately after this call.

5.1.6 CAN Transceiver Network Stub

CAN Transceiver Network stub (CanTrcvStub) uses the following interface for the
CanTrcvStub (representation in TTCN-3) which allows the test components to send a
wakeup pattern on a required channel by CanTrcvStub:

49 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

signature TestCanTrcvNet_SendWakeUpPattern(in integer CanNet-

work)

 exception (Std_ExceptionType_);

TestCanTrcvNet_SendWakeUpPattern Function Name

TestCanTrcvNet_SendWakeUpPattern(in integer Can-
Network) Syntax

CanNetwork – CAN Transceiver channel on which the
wakeup pattern should be sent Parameters In

Parameters Out -

Return Value -

Description:

The method TestCanTrcvNet_SendWakeUpPattern is used by the test case to send
a wakeup pattern on a requested CAN Transceiver network (CanNetwork) by the
CanTrcvStub.

After receiving this call CanTrcvStub shall send a wakeup pattern on the requested
network. E.g. to trigger a wakeup the CanTrcvStub can initiate a CAN frame trans-
mission from the CanTrcvStub.

Example:

TestCanTrcvNet_SendWakeUpPattern(1);

This will send a wakeup pattern from CanTrcvStub to the Transceiver network ”1” on
SUT

5.1.7 LIN Network Stub

LIN Network stub (LinStub) uses the following interfaces for the LinStub (representa-
tion in TTCN-3) which allows the test components to access a LIN network that is
connected to SUT which itself interacts with this LIN network :

a) signature TestLinNet_SetUpResponse(in integer Channel,
 in Lin_PduType_ pduInfoPtr, in octetstring Sdu)

 exception (Std_ExceptionType_);

b) signature TestLinNet_GetLastFrame(in integer Channel,
 out Lin_PduType_ pduInfoPtr, out octetstring Sdu)

 return boolean

 exception (Std_ExceptionType_);

50 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

c) signature TestLinNet_SendWakeupPulse(in integer Channel)

 exception (Std_ExceptionType_);

Note: In the above signatures a) and b), parameter pduInfoPtr.SduPtr is not used.
Instead “Sdu” of type octetstring is used.

By using octetstring, LinStub need not use the memory accessor stub to read the LIN
frame data, since the LIN frame data is directly available in the function call through
the parameter “Sdu”.

5.1.7.1 TestLinNet_SetUpResponse

TestLinNet_SetUpResponse Function Name

TestLinNet_SetUpResponse (in integer Channel,
 in Lin_PduType_ pduInfoPtr, in octetstring Sdu) Syntax

Channel – LIN channel on which the LIN frame re-
sponse should be sent
pduInfoPtr – PDU containing the PID, checksum model,
response type, Data Length

Parameters In

Sdu – LIN frame data

Parameters Out -

Return Value -

Description:

The method TestLinNet_SetUpResponse is used by the test case to setup a re-
sponse for particular LIN frame (specified through the parameters pduInfoPtr and
Sdu).).

The test case provides the necessary information for which the LinStub should be
respond to a LIN frame header. By receiving this call LinStub shall store the informa-
tion locally and respond to the LIN header (received from SUT) for the PID = pduIn-
foPtr.Pid with response data provided Sdu and appropriate check sum byte.

Example:

Test case (TTCN-3):

var Lin_PduType_ v_PduInfoPtr;

/* Set Data */

var octectstring v_Sdu := ‘1122334455667788’O;

/* Set PID = 128 */

v_PduInfoPtr.Pid := 128;

51 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

/* Set Data length = 8 */

v_PduInfoPtr.DI := 8;

/* Set check sum model is classic checksum */

v_PduInfoPtr.Cs := LIN_CLASSIC_CS;

/* Set frame direction is slave response frame */

v_PduInfoPtr.Drc := LIN_SLAVE_RESPONSE;

/* Initiate a call to LinStub to set up the response */

pt_TestLinNet.call(TestLinNet_SetUpResponse:{0, v_PduInfoPtr,

v_Sdu},

 nowait);

LinStub:

Setp1: Read the frame details: Pid, DI, Cs and Drc from pduIn-

foPtr and store them locally

Step2: Read the data bytes from the Sdu and store the data lo-

cally

Step3: Return to test system

Step4: LinStub receives a LIN frame header on channel “0” with

Pid = 128.

Step5: LinStub responds to the header with 0x1122334455667788

and check sum byte = the check sum calculated based on the

checksum model pduInfoPtr.Cs

5.1.7.2 TestLinNet_GetLastFrame

TestLinNet_GetLastFrame Function Name

TestLinNet_GetLastFrame (in integer Channel,
 out Lin_PduType_ pduInfoPtr, out octetstring Sdu) Syntax

Parameters In
Channel – LIN channel on which the LIN frame re-
sponse was received

Parameters Out
pduInfoPtr – PDU containing the PID, checksum model,
response type, Data Length
Sdu - LIN frame data

Return Value

boolean
True – if frame is received successfully by the LinStub
False – if frame is not received or if the frame is re-
ceived with errors by the LinStub

Description:

The method TestLinNet_GetLastFrame is used by the test case to get the previously
received LIN frame by the LinStub.

52 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The LinStub continuously reads messages from each LIN bus to which it is con-
nected and stores the last received message. It allows the test component to read
the last message that was received on any of the available LIN busses.

The LinStub shall update the out parameters for the latest received LIN frame from
the channel “Channel”

The return value indicates whether a message has been received without any errors.

Example:

/* The below variables are initialized by LinStub (representa-

tion in “C” language) */

pduInfoPtr.Pid = 3;

pduInfoPtr.Drc = LIN_MASTER_RESPONSE;

pduInfoPtr.DI = 8;

pduInfoPtr.Cs = LIN_CLASSIC_CS;

Sdu = 0x1122334455667788;

TestLinNet_GetLastFrame(0, pduInfoPtr, Sdu);

This means LinStub was received a LIN frame with PID =3, 8 data bytes with
0x1122334455667788 and checksum byte that was calculated using classic check
sum model

LinStub:

Setp1: Receive the LIN frame from the bus and store the re-

ceived frame information (Pid, data bytes , length, checksum

model, etc.)

Step2: If a call to TestLinNet_GetLastFrame is received from the test case,

then do the following:
a. Prepare pduInfoPtr using the information from Step1.
 pduInfoPtr.Pid = The PID received

 pduInfoPtr.DI = number of data bytes received

 Sdu = received data bytes on the network

 ...

b: Return to test system

5.1.7.3 TestLinNet_SendWakeupPulse

TestLinNet_SendWakeupPulse Function Name

TestLinNet_SendWakeupPulse (in integer Channel)
Syntax

Channel – LIN channel on which the wakeup pulse
should be sent Parameters In

Parameters Out -

Return Value -

53 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Description:

The method TestLinNet_SendWakeupPulse is used by the test case to send a wa-
keup pulse on a requested LIN channel (Channel) by the LinStub.

After receiving this call LinStub shall send a wakeup pulse on the requested channel.
The wakeup pulse should be according to the LIN2.x protocol specifications (i.e. a
dominant pulse of > 250us and <5ms).

Example:

TestLinNet_SendWakeupPulse(1);

This will send a wakeup pulse from LinStub to the LIN channel ”1” on SUT

(Hint: Sync break can be used as wakeup pulse, i.e. LinStub can send a sync break
for the call TestLinNet_SendWakeupPulse)

5.1.8 LIN Transceiver Network Stub

LIN Transceiver Network stub (LinTrcvStub) uses the following interface for the
LinTrcvStub (representation in TTCN-3) which allows the test components to send a
wakeup pattern on a required channel by LinTrcvStub:

signature TestLinTrcvNet_SendWakeUpPattern(in integer LinNet-

work)

 exception (Std_ExceptionType_);

TestLinTrcvNet_SendWakeUpPattern Function Name

TestLinTrcvNet_SendWakeUpPattern(in integer Lin-
Network) Syntax

LinNetwork – LIN Transceiver channel on which the wa-
keup pattern should be sent Parameters In

Parameters Out -

Return Value -

Description:

The method TestLinTrcvNet_SendWakeUpPattern is used by the test case to send a
wakeup pulse on a requested LIN Transceiver network (LinNetwork) by the
LinTrcvStub.

After receiving this call LinTrcvStub shall send a wakeup pulse on the requested
network. The wakeup pulse should be according to the LIN2.x protocol specifications
(i.e. a dominant pulse of > 250us and <5ms).

Example:

54 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

TestLinTrcvNet_SendWakeUpPattern(1);

This will send a wakeup pulse from LinTrcvStub to the Transceiver network ”1” on
SUT
(Hint: Sync break can be used as wakeup pulse, i.e. LinTrcvStub can send a sync
break for the call TestLinNet_SendWakeupPulse)

5.1.9 FlexRay Network Stub

FlexRay Network stub (FrStub) uses the following interfaces for the FrStub (repre-
sentation in TTCN-3) which allows the test components to access a FlexRay network
that is connected to SUT which itself interacts with this FlexRay network

a) signature TestFrNet_TransmitFrame(in integer FrCtrlIdx,
 in Fr_ChannelType_ FrChnlIdx,

 in integer FrLpduIdx,

 in integer FrLSduLength,

 in octetstring Sdu)

 exception (Std_ExceptionType_);

b) signature TestFrNet_ReceiveWakeup(in integer FrCtrlIdx,
 in Fr_ChannelType_ FrChnlIdx,

 out CTFr_WakeupStatusType_ FrWakeupStatus)

 exception (Std_ExceptionType_);

c) signature TestFrNet_GetTransmittedData(in integer
FrCtrlIdx,

 in Fr_ChannelType_ FrChnlIdx,

 in integer FrLpduIdx,

 out integer FrSduLength,

 out octetstring Sdu)

 exception (Std_ExceptionType_);

d) signature TestFrIH_CheckDisableAbsoluteTimerIRQ(
 in charstring VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

e) signature TestFrIH_CheckCancelAbsoluteTimer(in charstring
VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset)

 return Std_ReturnType_

55 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 exception (Std_ExceptionType_);

f) signature TestFrIH_CheckAckAbsoluteTimerIRQ(in charstring
VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset,

 out boolean FrStatusPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

g) signature TestFrIH_CheckTransmitTxLpdu(in charstring VP,
 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset,

 in integer FrLpduIdx,

 in integer FrSduLength,

 in octetstring Sdu)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

h) signature TestFrIH_CheckSetAbsoluteTimer(in charstring
VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset,

 out integer FrCyclePtr,

 out integer FrOffsetPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

i) signature TestFrIH_CheckReceiveRxLpdu(in charstring VP,
 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset,

 in integer FrLpduIdx,

 in octetstring Sdu,

 out Fr_RxLPduStatusType_ FrLPduStatusPtr,

 out integer FrSduLengthPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

j) signature TestFrIH_CheckPrepareLpdu(in charstring VP,
 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

56 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 in integer FrOffset,

 in integer FrLpduIdx,

 in integer FrSduLength,

 in octetstring Sdu,

 out Fr_RxLPduStatusType_ FrLPduStatusPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

k) signature TestFrIH_CheckGetGlobalTime(in charstring VP,
 in integer FrCtrlIdx,

 out integer FrCyclePtr,

 out integer FrOffsetPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

l) signature TestFrIH_CheckGetAbsoluteTimerIRQStatus(
 in charstring VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset,

 out boolean FrStatusPtr)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

m) signature TestFrIH_CheckEnableAbsoluteTimerIRQ(
 in charstring VP,

 in integer FrCtrlIdx,

 in integer FrAbsTimerIdx,

 in integer FrCycle,

 in integer FrOffset)

 return Std_ReturnType_

 exception (Std_ExceptionType_);

5.1.9.1 TestFrNet_TransmitFrame

TestFrNet_TransmitFrame Function Name

TestFrNet_TransmitFrame (in integer FrCtrlIdx,
 in Fr_ChannelType_ FrChnlIdx,
 in integer FrLpduIdx, Syntax
 in integer FrLSduLength,
 in octetstring Sdu)
FrCtrlIdx – The Controller on which the FlexRay frame to
be transmitted by FrStub

Parameters In
FrChnlIdx – FlexRay Channel (A or B or AB)
FrLpduIdx – <<>>
FrLSduLength – Number data bytes in the FlexRay
frame

57 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Sdu – FlexRay frame payload data

Parameters Out -

Return Value -

Description:

The method TestFrNet_TransmitFrame is used by the test case to send a FlexRay
frame from FrStub to the SUT

The test case provides the necessary information for which the FrStub should send a
FlexRay frame. By receiving this call FrStub shall send a FlexRay frame with the data
in “Sdu” on the channel “FrChnlIdx” of the controller “FrCtrlIdx” of the SUT

Example:

Test case (TTCN-3):
/* Allocate 10 bytes memory */

var PointerAddr_ v_SduPtr:=

pt_TestMemoryAccess.call(TestMemoryAccess_Allocate:{8},

nowait);

/* Write 10 bytes data into the memory v_SduPtr */

pt_TestMemoryAccess.call(TestMemoryAccess_Write:{ v_SduPtr, 8,

 ‘112233445566778899AA’O}, nowait);

pt_TestFrNet.call(TestFrNet_TransmitFrame:{0, FR_CHANNEL_A, 1,

10, v_SduPtr}, nowait);

FrStub:
Step1: Read the data from the pointer v_SduPtr using memory

accessor stub (i.e. Data[] = TestMemoryAccess_Read(v_SduPt,

10))

Step2: Send a FlexRay frame on the Channel “A” of the control-

ler “0” with the data read in Step1

Step3: return to test system

5.1.9.2 TestFrNet_ReceiveWakeup

Function Name TestFrNet_ReceiveWakeup

58 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

signature TestFrNet_ReceiveWakeup(
 in integer FrCtrlIdx,

Syntax
 in Fr_ChannelType_ FrChnlIdx,
 out CTFr_WakeupStatusType_ FrWakeupStatus)

Parameters In
FrCtrlIdx – The Controller on which the FlexRay frame to
be transmitted by FrStub
FrChnlIdx – FlexRay Channel (A or B or AB)

Parameters Out

FrWakeupStatus
WAKEUP_TRANSMITTED – If a wakeup was received
by FrStub
WAKEUP_NOT_TRANSMITTED – If a wakeup was not
received by FrStub

Return Value -

Description:

The method TestFrNet_ReceiveWakeup is used by the test case to know whether a
wakeup was received by FrStub from the SUT

The FrStub continuously checks if a wakeup was received from SUT. And stores the
information on which controller and on which channel the wakeup was received.

Upon reception of the call TestFrNet_ReceiveWakeup, the FrStub looks into the
stored wakeup information and updates the out parameter accordingly.

Example:

TestFrNet_ReceiveWakeup(0, FR_CHANNEL_B, WAKEUP_TRANSMITTED);

This means FrStub was received a wakeup from Channel “B” of Controller “0”

5.1.9.3 TestFrNet_GetTransmittedData

TestFrNet_GetTransmittedData Function Name

TestFrNet_GetTransmittedData(in integer FrCtrlIdx,
 in Fr_ChannelType_ FrChnlIdx,
 in integer FrLpduIdx, Syntax
 out integer FrSduLength,
 out octectstring Sdu)
FrCtrlIdx – The Controller on which the FlexRay frame to
be transmitted by FrStub

Parameters In
FrChnlIdx – FlexRay Channel (A or B or AB)
FrLpduIdx – <<>>
FrLSduPtr – Pointer points to FlexRay frame payload
data that was received by FrStub (this parameter acts
as a out parameter in “C” language environment. Here

59 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

the representation is based on the TTCN-3 language)

Parameters Out

FrSduLength – Number of data bytes received in the
FlexRay frame
Sdu – FlexRay frame payload data that was received by
FrStub

Return Value -

Description:

The method TestFrNet_GetTransmittedData is used by the test case to get the last
received FlexRay frame by the FrStub from the SUT on a requested channel and
controller

FlexRay stub receives the FlexRay frames from the SUT and stores the received
frame information in the local buffers. When the test case asks for the received
frames (through TestFrNet_GetTransmittedData) FrStub provides the stored informa-
tion

The FrStub shall update the out parameters for the latest received FlexRay frame
from the controller “FrCtrlIdx” and the channel “FrChnlIdx“:

Sdu – The received FlexRay frame data bytes

FrSduLength – Number of data bytes received

Example:

/* The below variables are initialized by FrStub upon recep-

tion of a FlexRay frame */

var octetstring v_Sdu := ‘112233445566778899AA’O;

var integer FrSduLength := 10;

/* v_Sdu contains the data and FrSduLength contains the length

of the data */

TestFrNet_GetTransmittedData(0, FR_CHANNEL_B, 0, FrSduLength,

v_Sdu);

This means FrStub was received a FlexRay frame of 10 bytes with
0x112233445566778899AA, on the controller “0”, and the channel “B”

FrStub:
Setp1: Receive the FlexRay frame from the bus and store the

received frame information (data bytes, length, controller,

channel,...)

Step2: If a call to TestFrNet_GetTransmittedData is received

from the test case, then do the following:

60 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

a. Copy the data bytes from the local storage (in Step1) to

the “Sdu”.

b. Set FrSduLength equal to the length stored in Step1.

c. Return to test system

5.1.9.4 FlexRay Interrupt Handler services

FlexRay driver uses the interrupt handlers (signature d to m in the section 2.7) to test
the timer related functionality. The details of the Interrupt handles are given in detail
in the Appendix of FlexRay driver conformance test specification.

5.1.10 Also known as

The network Stub implementations are also known as TestCanNet, TestLinNet,
TestFrNet, TestCanTrcvNet, TestLinTrcvNet and TestFrTrcvNet.

5.1.11 Related patterns

As usually data to be transmitted over the network is provided to the SUT using
pointers, the memory accessor pattern in most cases needs to be used together with
the network Stub pattern.

5.1.12 FlexRay Transceiver Network Stub

FlexRay Transceiver Network stub (FrTrcvStub) uses the following interface for the
FrTrcvStub (representation in TTCN-3) which allows the test components to send a
wakeup pattern on a required channel by FrTrcvStub:

signature TestFrTrcvNet_SendWakeUpPattern(in integer

FrTrcvIdx)

 exception (Std_ExceptionType_);

TestFrTrcvNet_SendWakeUpPattern Function Name

TestFrTrcvNet_SendWakeUpPattern(in integer
FrTrcvIdx) Syntax

FrTrcvIdx – FlexRay Transceiver channel on which the
wakeup pattern should be sent Parameters In

Parameters Out -

Return Value -

Description:

61 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The method TestFrTrcvNet_SendWakeUpPattern is used by the test case to send a
wakeup pattern on a requested FlexRay Transceiver (FrTrcvIdx) by the FrTrcvStub.

After receiving this call FrTrcvStub shall send a wakeup pattern on the requested
transceiver. The wakeup pattern is the FlexRay wakeup frame according to the
FlexRay protocol specifications.

Example:

TestFrTrcvNet_SendWakeUpPattern(1);

This will send a wakeup pattern from FrTrcvStub to the Transceiver ”1” on SUT

5.2 Memory accessor

How to read and write memory cells when the interface of the module under test re-
quire pointer to memory areas as a parameter or when a module behavior can be
observed only by observing changes in memory areas controlled by the module?

<<PI>>
Provided

Operations

<<PI>>
Required

Operations

<<SUT>>
Memory Related Module

<<Adapter>>
Memory Accessor

<<PI>>
Provided

Operations

<<TC>>

Module Test

Legend:

A B - A implements B

A B - A uses B

<<TC>> - Test components

<<PI>> - Procedural interface
<<Adapter>> - Platform or SystemAdapter

functionality

Figure 29: Memory accessor overview

5.2.1 How it works

The memory accessor provides functionality to the test components to allocate, read,
modify and compare memory on the target. By calling the signatures of the memory
access, represented in Figure 29 by the right-most box called “Provided Operations”,
there is a standardized and defined way of transferring binary data between the test
and the target’s memory. How the data is stored may depend on the specific target in
use.

5.2.2 When to use it

The pattern should be applied when the module under test has an API (in Figure 29
represented by the left two light-blue boxed called “Provided Operations” and “Re-
quired Operations”) that requires the use of a pointer. Such a pointer needs to point

62 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

to a memory location that is valid and that contains the anticipated content. The
AUTOSAR API defines whether the allocation of such memory might either a task of
the module under test or might be required by the user which during conformance
testing would be the test component.

Figure 30: Sample application of the memory accessor

Test components use the memory accessor to allocate valid memory areas, to pre-
pare these memory areas with content that serves the purpose of the test so that it
finally is passed to the module under test. The compare and read methods can be
used to check whether the module under test has carried out anticipated changes in
memory areas.

5.2.3 Implementation notes

The interface that the memory accessor provides to the tests (right-most light-blue
box marked “Provided Operations” in Figure 29 above) needs to be defined in a for-
mal way. The TTCN-3 API is standardized along with the tests themselves. The sys-
tem adapter needs to implement this interface in a platform specific way and provide
the functionality to the test components.

The validation environment will implement this behavior as part of the simulation.
Memory itself will be simulated internally to the simulation. In a real test setup, the
same functionality needs to be provided that access the memory of the specific target
in use. Most likely the memory access will therefore need to be reimplemented for
each different target platform.

63 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

<<PI>>
Provided Ops

<<PI>>
Required Ops

<<SUT>>

Memory Related Module

<<Adapter>>

Memory Accessor

<<PI>>

Provided Ops

T
a
rg

e
t

s
p
e

c
if
ic

M

e
m

o
ry

 A
c
c
e

s
s

<<TC>>

Module Test

<<PI>>

Provided Ops

<<PI>>

Required Ops

<<PI>>
Provided Ops

H
o
s
t
S

y
s
te

m
 o

r

s
e
p
a
ra

te
 E

C
U

H
o

s
t
S

y
s
te

m

Figure 31: Deployment diagram of the memory accessor in a class-B scenario

5.2.4 Consequences

The memory accessor pattern allows the tests to fulfill the preconditions which are
necessary to access AUTOSAR APIs that require the use of pointers. The test can
prepare memory locations to which the pointers are pointing and can inspect them.
This allows the test components to test memory related behavior.

5.2.5 Example

Since there is only one application of this pattern that serves all modules, the one
example provided here will be the only application of this pattern.

The major methods of the memory access are the TestMemoryAccess_Allocate,
TestMemoryAccess_Read and TestMemoryAccess_Write methods. Using these
APIs the tests can allocate memory on the target. Additionally it can read from mem-
ory on the target and can write to memory on the target that might either be allocated
by the test component itself or by the module under test. It can be seen that the bi-
nary data is mapped to the TTCN-3 binary data type octetstring.

signature TestMemoryAccess_Allocate(in integer size)

 return PointerAddr_

 exception (Std_ExceptionType_);

signature TestMemoryAccess_Write(in PointerAddr_ destination,

 in integer size, in octetstring Value)

 exception (Std_ExceptionType_);

signature TestMemoryAccess_Read(in PointerAddr_ source,

64 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 in integer size) return octetstring

 exception (Std_ExceptionType_);

To make the tests more efficient the following two methods allow the test component
to copy or compare memory on the target directly. While both functionalities can be
carried out internally in the test component, the test of some modules might require
the interaction with the module by using large memory sections, for example large
network messages in the case of network modules or large chunks of memory in the
case of memory drivers. By using the below methods, the test component can copy
large amounts of data between two memory locations on the target. Additionally the
comparison of two areas in memory can be carried out.

signature TestMemoryAccess_Copy (in PointerAddr_ Destination,

 in PointerAddr_ Source, in integer Size)

 exception (Std_ExceptionType_);

signature TestMemoryAccess_Compare (in PointerAddr_ Loca-

tion1,

 in PointerAddr_ Location2, in integer Size) return boolean

 exception (Std_ExceptionType_);

To free the previously allocated memory the function TestMemoryAccess_Deallocate
is used. This function will free all the previously allocated memory
signature TestMemoryAccess_Deallocate()

 exception (Std_ExceptionType_);

For illustration, one method of the validation simulation implementation is shown:

/* uint8 – unsignedshortint */

/* Let us assume target usable RAM locations: 0x100000 to

0x10FFFF */

#define RAM_START_ADDRESS (volatile uint8 *)0x100000

#define RAM_END_ADDRESS (volatile uint8 *)0x10FFFF

#define NULL_PTR (volatile uint8 *)0x000000

uint8 *Ptr; /* Global variable */

/* During start up */

Ptr = RAM_START_ADDRESS;

uint8 * TestMemoryAccess_Allocate(int numberOfBytes)
{

 Ptr + = numberOfBytes;

if(Ptr > RAM_END_ADDRESS)
{

 return NULL_PTR;

}

else

{

 return Ptr;

}

}

65 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

/* Free the previously allocated memory */

void TestMemoryAccess_Deallocate()

{

 Ptr = RAM_START_ADDRESS;

}

5.2.6 Specification of methods

5.2.6.1 Allocate target memory

TestMemoryAccess_Allocate Function Name

TestMemoryAccess_Allocate (in integer size) returns
uint8*

Syntax

size – Target memory block size in bytes Parameters In

Parameters Out -

Return Value
PointerAddr_ - Handle to allocated target memory block

If the allocation fails, NULL is returned.

Description:

The function TestMemoryAccess_Allocate allocates a chunk of memory on the target.
The return value is a handle to be used with APIs.
No assumptions should be made about target addresses.

Example:

/* allocate chunk of 10 bytes */

PointerAddr_ hMem1 = TestMemoryAccess_Allocate(10);

if(hMem1 != NULL) { /* use other TestMemoryAccess APIs */ }

5.2.6.2 Allocate target memory at a specific location

TestMemoryAccess_AllocateSpecfic Function Name

TestMemoryAccess_AllocateSpecfic(in PointerAddr_
location, in integer size)

Syntax

size – Target memory block size in bytes
location – The exact location of the memory where
pointer has to be created

Parameters In

66 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

 - Parameters Out

Return Value -

Description:

The function TestMemoryAccess_AllocateSpecfic allocates a chunk of memory on
the target at a specified memory location.

Example:

/* Allocate chunk of 10 bytes with start address 1000 */

PointerAddr_ hMem1 = TestMemoryAccess_AllocateSpecfic(1000,

10);

This will allocate a memory location with start address “1000” and size “10” bytes (i.e.
memory location from 1000 to 1010)

5.2.6.3 Compare target memory

TestMemoryAccess_Compare Function Name

TestMemoryAccess_Compare (in PointerAddr_ loca-
tion1, in PointerAddr_ location2, in integer size) returns
boolean

Syntax

PointerAddr_ location1 – Handle to memory location 1
PointerAddr_ location2 – Handle to memory location 2 Parameters In
size – Size of chunk to be compared in bytes

 - Parameters Out

Return Value
boolean – True if memory blocks match, False if at least
one byte mismatch.

Description:

The function TestMemoryAccess_Compare compares two target memory chunks up
to given size. The user of the API must ensure that compare size does not exceed
bounds of allocated memory chunks, represented by location 1 and 2.
The return value is true if the memory chunks match for at least compare size bytes.

Example:

/* allocate chunk 1 with 10 bytes */

PointerAddr_ hMem1 = TestMemoryAccess_Allocate(10);

/* fill chunk 1 with pattern */

/* allocate chunk 2 with 10 bytes */

PointerAddr_ hMem2 = TestMemoryAccess_Allocate(10);

67 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

/* fill chunk 2 with pattern */

/* compare 10 bytes of chunks */

if(TestMemoryAccess_Compare(hMem1, hMem2, 10)) { /* match */ }

5.2.6.4 Copy target memory

TestMemoryAccess_Copy Function Name

TestMemoryAccess_Copy (in PointerAddr_ destination,
in PointerAddr_ source, in integer size) returns void

Syntax

PointerAddr_ destination – Handle to destination mem-
ory location
PointerAddr_ source - Handle to source memory loca-
tion

Parameters In

size – Size of chunk to be copied in bytes

 - Parameters Out

Return Value -

Description:

The function TestMemoryAccess_Copy copies a target memory chunk to another
target memory chunk up to given size. The user must ensure that size does not ex-
ceed bounds of allocated memory chunks, represented by source and destination.

Example:

/* allocate source chunk with 10 bytes */

PointerAddr_ hSrc = TestMemoryAccess_Allocate(10);

/* fill source chunk with pattern */

/* allocate destination chunk with 10 bytes */

PointerAddr_ hDst = TestMemoryAccess_Allocate(10);

/* copy 10 bytes from hSrc to hDst */

TestMemoryAccess_Copy(hDst, hSrc, 10);

5.2.6.5 Read target memory

TestMemoryAccess_Read Function Name

Syntax
TestMemoryAccess_Read (in PointerAddr_ source, in
integer size) returns octetstring

68 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

PointerAddr_ source – Handle to source memory loca-
tion Parameters In
size – Size of chunk to be read in bytes

 - Parameters Out

octetstring - Pointer to memory block which contains the
bytes.

Return Value
If the read fails due to invalid parameters, NULL is re-
turned.

Description:

The function TestMemoryAccess_Read copies the contents of a target memory
chunk to local memory buffer. The user must ensure that size does not exceed
bounds of allocated memory chunk, represented by source.
It’s on behalf of the implementer, how the returned local memory/representation is to
be managed.

Example:

/* allocate source chunk with 10 bytes */

PointerAddr_* hSrc = TestMemoryAccess_Allocate(10);

/* fill source chunk with pattern */

/* read 10 bytes */

PointerAddr_ ptr = TestMemoryAccess_Read(hSrc, 10);

if(ptr != NULL) { /* access the bytes */ }

5.2.6.6 Write target memory

TestMemoryAccess_Write Function Name

TestMemoryAccess_Write (in PointerAddr_ destination,
in uint32 size, in octetstring byteblock) returns void

Syntax

PointerAddr_ source – Handle to destination memory
location

Parameters In
size – Size of chunk to be write in bytes
octetstring byteblock – pointer to byte block to read from

 - Parameters Out

Return Value -

Description:

69 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The function TestMemoryAccess_Write copies the contents of a local memory buffer
into a target memory chunk. The user must ensure that size does not exceed bounds
of allocated memory chunk, represented by destination and byteblock.
It’s on behalf of the implementer, how the returned local memory/representation is to
be managed.

Example:

/* allocate destination chunk with 10 bytes */

PointerAddr_ hDst = TestMemoryAccess_Allocate(10);

/* write 10 bytes pattern into destination block */

TestMemoryAccess_Write(hDst, 10, pattern);

5.2.6.7 De-allocate (free) target memory

TestMemoryAccess_Deallocate Function Name

TestMemoryAccess_Deallocate () Syntax

- Parameters In

Parameters Out -

Return Value -

Description:

The function TestMemoryAccess_Deallocate frees all the memory that was allocated
previously using either the function TestMemoryAccess_Allocate (AND / OR) Test-
MemoryAccess_AllocateSpecfic

Example:

/* allocate destination chunk with 10 bytes */

PointerAddr_ hDst = TestMemoryAccess_Allocate(10);

/* write 10 bytes pattern into destination block */

TestMemoryAccess_Write(hDst, 10, pattern);

/* allocate chunk of 10 bytes with start address 1000 */

PointerAddr_ hMem1 = TestMemoryAccess_AllocateSpecfic = (1000,

10);

/* De-allocate all the memory that was allocated earlier */

TestMemoryAccess_Deallocate();

70 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5.2.7 Also known as

TestMemoryAccess

5.2.8 Related patterns

The application of the network Stub pattern in most cases requires an application of
this pattern also as the data of message to be transmitted over a network is usually
supplied to the SUT using pointers.

5.3 Average Neighbor

How to provide interfaces to a module that expects neighboring modules
to be present in its environment?

Figure 32: Overview Average Neighbor

5.3.1 How it works

A module under test assumes neighboring modules to be present. Within its func-
tionality the module under test calls functions of these neighboring modules through-
out the course of the tests. Instead of the actual modules being present on the target,
the system adapter provides the functions of the neighboring modules, suspends the
execution of the module under test and relays the calls to the TTCN-3 test system
where test components handle the calls and respond. The responses are again re-
layed to the system adapter which resumes the execution of the module under test
and provides the results of the call to the same.

71 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5.3.2 When to use it

This pattern should be used whenever a neighboring module needs to be emulated
towards the module under test unless an application of one of the above patterns is
strictly required.

5.3.3 Implementation Notes

The signatures of the operations of all the AUTOSAR modules are specified in the
SWS documents. Along with these the signatures are also formally modeled in a so
called UML model. Due to the large number of AUTOSAR signatures the creation of
the above mentioned system adapter that allows the relay of function calls to TTCN-3
can be created using model based techniques.

The mapping of signatures, the notation and types in the UML model to the TTCN-3
language is done as part of the creation of the CTSpecs. The TTCN-3 signatures are
thus standardized along with the tests themselves.

72 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Figure 33: Comparison of API call with and without neighbor interaction

5.3.4 Consequences

The application of this pattern leads to test suites that do not only contain the tests
themselves but also provide all necessary functionality that is required by the module
under test. This leads to more convenient test suites for the CTAs as there is no
need for implementing any additional stubs.

5.3.5 Examples

These patterns are used for every module that has neighboring modules for which
none of the other patterns need to be applied. For the module CAN the following ex-
ample can be given: The All_Modules_Api.ttcn contains the generated AUTOSAR

<<SUT>>
Module with

main_function

<<TC>>
Module Test

<<TC>>
Average
Neighbor

Call of APIWithoutNeighborInteraction()

Return of APIWithoutNeighborInteraction()

Call of APIWithNeighborInteraction()

Call of NeighboringModuleAPI()

Return of NeighboringModuleAPI()

Return of APIWithNeighborInteraction()

73 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

APIs in the TTCN-3 notation. This API would be called by any higher layer module
that might require to call the module CAN, e.g. CanIf:

signature Can_CheckWakeup (in integer Controller)

 return Std_ReturnType_ exception (Std_ExceptionType_);

signature Can_EnableControllerInterrupts (in integer Control-

ler)

 exception (Std_ExceptionType_);

signature Can_Write (in integer Hth, in Can_PduType_ PduInfo

)

 return Can_ReturnType_ exception (Std_ExceptionType_);

5.3.6 Also known as

There is a large number of applications of this pattern. Hence there is no individual
name for each of its applications.

5.4 Important Notes

5.4.1 Specification for configuration parameter field “Type”

The AUTOSAR SWS documents use the representation “Reference to [...]” for the
“Type” field in the configuration section (usually Section 10 of AUTOSAR SWS).

e.g. CANIF636_Conf
Type: Reference to [CanController]

Hence the conformance test specification uses the same representation for the con-
figuration parameter types, what is used in AUTOSAR SWS documents.

In the conformance test specifications, if a parameter “Type” is specified as “Refer-
ence to [...]", then the exact type of the parameter could be EcucSym-
bolicNameReferenceDef (OR) EcucReferenceDef (OR) EcucChoiceReferenceDef
(OR) any other reference type which is specified in specification of ECU configura-
tion.

5.4.2 Order and values of enumeration literals

Background:

In general most of the cases AUTOSAR SWS documents do not specify the values
for the liters of enumeration type definitions. Hence the implementer is free to choose
values for enumeration literals.
e.g. Icu_ModeType has the definition {ICU_MODE_NORMAL, ICU_MODE_SLEEP}

74 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Possible implementations for Icu_ModeType:

(a)

typedef enum

{

 ICU_MODE_NORMAL = 0,

 ICU_MODE_SLEEP

} Icu_ModeType;

(b)

typedef enum

{

 ICU_MODE_SLEEP = 0,

 ICU_MODE_NORMAL

} Icu_ModeType;

Both implementations ((a) and (b)) are valid implementations, since the SWS docu-
ment do not specify the order and values of enum literals. In real scenario both im-
plementations ((a) and (b)) will work without any problems (since the module who is
defining Icu_ModeType (i.e. ICU Driver) and the module who is using the
Icu_ModeType both will use the same header file for the type Icu_ModeType).

However in the conformance tests, the test scripts will not use the “C” header file de-
fined by ICU Driver. Since the test scripts are written TTCN-3 language and resides
external to the target where ICU Driver is residing.

Hence there is mapping required between the enumeration definitions (i.e. order of
the enumeration literals and their values) in the BSW module implementation and the
enumeration definitions in the conformance test scripts.

5.4.2.1 Point to be considered while implementing adapters

The conformance test scripts define the enumeration literals in the same order that
appears in the AUTOSAR SWS document. The first literal in the enumeration type is
assigned with value “0” and the subsequent literal values are incremented by “1”.
e.g.
The type definition in the AUTOSAR SWS

Lin_FrameResponseType Name:
Enumeration Type:
LIN_MASTER_RESPONSEResponse is generated from this (mas-

ter) node

LIN_SLAVE_RESPONSE Response is generated from a remote
slave node

Range:

LIN_SLAVE_TO_SLAVE Response is generated from one slave
to another slave, for the master the re-
sponse will be anonymous, it does not
have to receive the response.

75 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

Description: This type is used to specify whether the frame processor is required
to transmit the response part of the LIN frame.

The definition in the conformance test scripts in TTCN-3:

 type enumerated Lin_FrameResponseType_

 {

 LIN_MASTER_RESPONSE (0),

 LIN_SLAVE_RESPONSE (1),

 LIN_SLAVE_TO_SLAVE (2)

 }

Hint: Each module <Msn> TTCN-3 type definitions will be available in the TTCN-3
scripts file <Msn>_api_types.ttcn (e.g. Lin_api_types.ttcn)

If a BSW implementer defined the enumeration literals of Lin_FrameResponseType
with different values (compared to that of above defined TTCN-3 implementation val-
ues), then the adapter shall handle the mapping of enumeration literal values from
BSW (SUT) to the TTCN-3 scripts and vice versa.

5.4.3 Handling configurable interfaces

AUTOSAR specifications uses configurable interface concept. That is the operation
name (either a part of the operation name or the complete operation name) can be
configurable using a configuration item. Implementation of configurable interface
would be possible in real BSW module implementation in “C” language (e.g. using
function pointers). However this is not possible to implement in the conformance test
scripts which are developed in TTCN-3 language. Hence the following method is
used to test the configurable interfaces.

SUT invokes the configurable interface with the name configured by the correspond-
ing configuration parameter. Test case always uses a predefined fixed interface
name for the configurable interfaces. The adapter translates the interface used in test
case to the interface used in SUT.

e.g.

Adapter NvM

< NvM_MultiBlockCallbackFunction>(

 uint8 ServiceId,

 NvM_RequestResultType JobResult)

Test
System
(PTC)

MultiBlockCallbackFunction_CFGIF(

 uint8 ServiceId,

 NvM_RequestResultType JobResult)

76 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

The details of the configurable interfaces handling of a BSW module is described in
the Section 3 of the respective conformance test specification document.

5.4.4 Handling of DET stub

Each BSW module might report the specified errors to DET during development
mode. The conformance tests are developed for the production mode BSW imple-
mentation. Hence the development errors are not expected by any test case in the
conformance tests. That means if a SUT reports an error to DET then it is considered
as a failure in the conformance tests. The main test component used for testing the
SUT will not read the information from DET stub to set the test verdict. The DET stub
used for the conformance tests will automatically set the test verdict as failure if the
DET stub receives an error.

5.4.5 Pointer handling

Conformance test scripts are developed using the TTCN-3 language. In TTCN-3 lan-
guage there is no concept of pointers. However the AUTOSAR specifications (SWS)
use the concept of pointers. Hence a special mechanism is required to handle the
pointers in conformance tests.
The following rules have been used while handling pointers in TTCN-3 files.

 If an AUTOSAR API parameter (of pointer type) is used to transfer the number
of data bytes, then the parameter type shall be represented as type integer in
TTCN-3 signatures. The value of the integer parameter shall be the address
location where data is placed (by test case) or where data shall be placed (by
SUT).

Example:
AUTOSAR Signature:
void IpduM_TriggerTransmit(PduIdType PdumTxPduId, uint8* SduPtr);

TTCN-3 Signature:
signature IpduM_TriggerTransmit(in PduIdType_ PdumTxPduId,
 in PointerAddr_ SduPtr) exception(Std_ExceptionType_);

In the above example, the SUT writes the data bytes to the location pointed by
"SduPtr". In TTCN-3 signature "uint8*" of AUTOSAR type is replaced with "Pointer-
Addr_" (which is of type integer (type integer PointerAddr_)). Hence the TTCN-3 test
system shall create a memory buffer location and provide the absolute address of the
memory location for the parameter "SduPtr".
E.g. A memory buffer with starting address 1000 is created in test case. Provide the
value 1000 for the parameter "SduPtr". SUT is assumed to provide the data starting
from the memory location 1000.

 If an AUTOSAR API parameter (of pointer type) is used as out parameter of a
simple or complex type, then the parameter type shall be represented same
as that of AUTOSAR parameter type (without pointer '*") in TTCN-3 signa-

77 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

tures. The value of the parameter shall contain the actual content of the simple
or complex type parameter (instead of pointer).

Example:
AUTOSAR Signature:
void IpduM_GetVersionInfo(Std_VersionInfoType* versioninfo);

TTCN-3 Signature:
signature IpduM_GetVersionInfo(out Std_VersionInfoType_ versioninfo)
 exception (Std_ExceptionType_);

In the above example, SUT will provide the pointer reference to version information
structure (record) through the parameter "versioninfo". However the TTCN-3 sees the
version information as "out" parameter containing the actual version information (up-
dated by SUT) instead of pointer address. The assumption here is system adapter
will receive the pointer from SUT and provide the content of pointer to TTCN-3 test
case.

 In module initialization API, AUTOSAR modules use a configuration pointer,
where the pointer represents one out of multiple configurations which is
loaded by the module under test. Location of such pointer will not be really
known to TTCN-3 test case. Basically the configuration pointer points to one
instance of multiple configuration container of the AUTOSAR module. In these
cases TTCN-3 test case shall pass the index (of type integer) of the multiple
configuration containers as parameter to module initialization operations. The
assumption here is system adapter will convert the index (given TTCN-3 test
case) to appropriate pointer (to SUT).

Example:
AUTOSAR Signature:
void IpduM_Init(IpduM_ConfigType* config);

TTCN-3 Signature:
signature IpduM_Init(in integer config) exception (Std_ExceptionType_);

The integer parameter in the TTCN-3 signature represents the index of multiple

5.4.6 Handling array types

AUTOSAR specification uses array type to represent an unsigned integer byte
stream. TTCN-3 language which is used to develop the conformance test scripts
does not have the equivalent feature. Hence a special mechanism is used to achieve
this feature.
Hence in TTCN-3 language “record of integer” shall be used to represent the array
type (which holds the integer values).

e.g. type record of integer Com_IpduGroupVector_;

78 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

5.4.7 External stubs used in conformance test specification

In the conformance tests some special cases it is not feasible to use TTCN-3 stubs
(e.g. Hardware dependency, function pointer handling, etc.). In such cases the con-
formance tests uses external stubs, these external stubs have to implement by CTA
in actual conformance testing (in Class B tests). This section lists the external stubs
used by conformance tests.(Note that this list excludes the external stubs which are
defined in the Section 2 and Section 3 of this document)
The following BSW module uses the external stubs:

 AUTOSAR COM

 DIO Driver

 AUTOSAR OS

 RTE

The details of the external stubs are documented in their respective conformance
test specification document.

5.4.8 Order of test steps for synchronous APIs

If an operation call to SUT leads a synchronous call to the neighboring module op-
eration within the SUT operation call then the following is apply:

Once the SUT operation is invoked from the test case, the control goes to SUT and
SUT starts executing the requested operation. During execution of the SUT opera-
tion, SUT invokes the neighboring module operation which will be captured and call
information is stored by the stub. Since the test case does not know how much time it
would take to SUT to complete the requested operation, the test case simply waits
for the reply (return) from the SUT Once the SUT is returned from the requested op-
eration then the test case reads the information (related to the SUT call of neighbor-
ing module operation) from the stub and sets the test verdict accordingly. Due to this
process, the test steps would look little different from the actual module execution

e.g. SUT = FrIf, neighboring module = FrTrcv
If test system invokes FrIf_EnableTransceiverBranch then FrIf will invoke the FrTrcv
operation FrTrcv_EnableTransceiverBranch and then FrIf returns to test system. This
will be tested with the below sequence of test steps:

01: Invoke FrIf_EnableTransceiverBranch(FrIfCtrlIdx, FrIfClusterChannel, CTFrIf-

BranchIdx)

02: Verification Point :

Condition: FrIf_EnableTransceiverBranch returns E_OK

if true: proceed

else: stop

03: Verification Point:

Condition: FrTrcv_EnableTransceiverBranch(FrTrcv_TrcvIdx ==
CTFrIfFrTrcvChannelRefIdx, FrTrcv_BranchIdx == CTFrIfFrTrcvBranchIdx) is
invoked

79 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

AUTOSAR BSW & RTE Conformance Test
Specification Part 4: Execution Constraints

 V1.2.0
R4.0 Rev 2

80 of 80 Document ID 284: AUTOSAR_PD_BSWCTSpecExecutionConstraints

- AUTOSAR Confidential -

if true: ...

else: stop

That is SUT operation is invoked then SUT operation return is verified and then it is
verified if whether the neighboring module operation was invoked by SUT.

