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TWO-VECTOR BUNDLES DEFINE A FORM OF ELLIPTIC COHOMOLOGY

NILS A. BAAS, BJØRN IAN DUNDAS, BIRGIT RICHTER AND JOHN ROGNES

Abstract. We prove that for well-behaved small rig categories R (also known as bimonoidal categories)
the algebraic K-theory space, K(HR), of the K-theory ring spectrum of R is equivalent to K(R) ≃
Z × |BGL(R)|+, where GL(R) is the monoidal category of weakly invertible matrices over R.

To achieve this, we solve the long-standing problem of group completing within the context of
rig categories. More precisely, we construct an additive group completion R̄ of R that retains the
multiplicative structure, i.e., that remains a rig category.

In particular, this proves the conjecture from [BDR] that K(ku) is the K-theory of the 2-category of
complex 2-vector spaces. Hence, the work of Christian Ausoni and the fourth author on K(ku) [AR, A]
shows that the theory of virtual 2-vector bundles as in [BDR, Theorem 4.10] qualifies as a form of
elliptic cohomology.

1. Introduction and main result

In telescopic complexity 0, 1 and∞ there are cohomology theories that possess a geometric definition:
de Rham cohomology of manifolds is given in terms of differential forms, cohomology classes in real
and complex K-theory are classes of virtual vector bundles, and complex cobordism has a geometric
definition per se. In order to understand phenomena of intermediate telescopic complexity, it is desirable
to have geometric interpretations for such cohomology theories as well.

In [BDR] it was conjectured that virtual 2-vector bundles provide a geometric interpretation of a
cohomology theory of telescopic complexity 2 which qualifies as a form of elliptic cohomology. More
precisely, it was conjectured that the algebraic K-theory of a commutative rig category R is equivalent
to the algebraic K-theory of the ring spectrum associated with R. The case of virtual 2-vector bundles
arises when R is the category of finite dimensional complex vector spaces, with ⊕ and ⊗C as sum and
multiplication. This, together with the analysis of the K-theory of complex topological K-theory due to
Ausoni and the fourth author, and the (now proven) Quillen–Lichtenbaum conjecture for the integers,
gives the desired relation to elliptic cohomology.

In this paper we prove the conjecture from [BDR].
Let R be a rig category (also known as a bimonoidal category), i.e., a category with two operations ⊕

and⊗ satisfying the axioms of a rig (ring without negative elements) up to coherent natural isomorphisms,
see Definitions 2.1 and 2.5 below for details. In analogy with Quillen’s definition of the algebraic K-
theory space K(A) = ΩB(

∐
nBGLn(A)) of a ring A, the algebraic K-theory of R was defined in [BDR]

as K(R) = ΩB(
∐
n |BGLn(R)|) where B and GLn are versions of the bar construction and the general

linear group appropriate for rig categories.
On the other hand, forgetting the multiplicative structure, R has an underlying symmetric monoidal

category, and so it makes sense to speak about its K-theory spectrum HR with respect to ⊕. The
K-theory spectrum construction HR is a direct extension of the usual Eilenberg–MacLane construction,
and can, since R is a rig category, be endowed with the structure of a strict ring spectrum, for instance
through the model given by Elmendorf and Mandell in [EM]. Hence, we may speak about its algebraic
K-theory space K(HR). We prove that, under certain mild restrictions on R, there is an equivalence

K(R) ≃ K(HR) .

In the special situation where R is a ring (i.e., R is discrete as a category and has negative elements),
this is the standard assertion that the K-theory of a ring is equivalent to the K-theory of its associated

Date: February 1, 2008.
2000 Mathematics Subject Classification. Primary 19D23, 55R65; Secondary 19L41, 18D10.
Key words and phrases. Algebraic K-theory, topological K-theory, 2-vector bundles, elliptic cohomology, bimonoidal

categories, bipermutative categories.
The first author would like to thank the Institute for Advanced Study, Princeton, for their hospitality and support

during his stay in the spring of 2007. Part of the work was done while the second author was on sabbatical at Stanford
University, whose hospitality and stimulating environment is gratefully acknowledged. The third author thanks the topology
group in Sheffield for stimulating discussions on the subject.

1



Eilenberg-MacLane spectrum. The key difficulty in establishing the equivalence above lies in proving
that the lack of negative elements makes no difference for algebraic K-theory, even for rig categories.

More precisely, we prove the following result:

Theorem 1.1. Let (R,⊕, 0R,⊗, 1R) be a small topological rig category satisfying the following condi-
tions:

(1) All morphisms in R are isomorphisms.
(2) For every object X ∈ R the translation functor X ⊕ (−) is faithful.

Then the algebraic K-theory space of R as a rig category,

K(R) = ΩB
( ∐

n>0

|BGLn(R)|
)
≃ Z× |BGL(R)|+ ,

is weakly equivalent to the algebraic K-theory space of the strict ring spectrum associated to R,

K(HR) = ΩB
( ∐

n>0

BGLn(HR)
)
≃ Z×BGL(HR)+ .

Addendum 1.2. We will prove that |BGL(R)| and BGL(HR) are weakly equivalent before applying
the plus construction.

The conditions (1) and (2) on R are not restrictive for the applications we have in mind, and are
associated with the fact that we at certain points have chosen to work with variants of the Grayson–
Quillen model for K-theory. Probably, the restrictions can be removed if one uses another technological
platform, such as Jardine’s model [Ja] or a variant of Segal’s construction we describe in the appendix. A
thorough discussion of such generalizations would lengthen the proofs, and so we refrain from exploring
these questions further until good applications demand this level of generality.

As stated, we permit R to be a topological rig category. To ensure that condition (2) is appropriate
in this enriched context, we assume that we apply the singular functor to get a simplicial rig category,
before entering it into Grayson’s machine.

Among those rig categories that satisfy the requirements of Theorem 1.1 are the following ‘standard’
ones, usually considered in the context of K-theory constructions.

• If R is the discrete category (having only identity morphisms) with objects the elements of a
ring with unit, R, then HR is the Eilenberg-MacLane spectrum HR.
• The sphere spectrum S is the algebraic K-theory spectrum of the small rig category of finite

sets E . The objects of E are the finite sets n = {1, . . . , n} with n > 0. Here the convention is
that 0 is the empty set. Morphisms from n to m are only non-trivial for n = m and in this case
they consist of the symmetric group on n letters. The algebraic K-theory of S is equivalent to
Waldhausen’s A-theory of a point A(∗) [W], and so gives information about diffeomorphisms of
high dimensional disks. Thus we obtain that

A(∗) ≃ K(S) ≃ K(E) ≃ Z× |BGL(E)|+ .

• For a ring A we consider the following small rig category of finitely generated free A-modules,
F(A). Objects of F(A) are the finitely generated free A-modules An for n > 0. The set of
morphisms from An to Am is empty unless n = m, and the morphisms from An to itself are
the A-module automorphisms of An, i.e., GLn(A). Our result allows us to identify the two-fold
iterated algebraic K-theory of A with Z× |BGL(F(A))|+.
• The case that started the project is the category of 2-vector spaces of Kapranov and Voevodsky

[KV], viewed as modules over the rig category V of complex (Hermitian) vector spaces. Here V
has objects Cn for n > 0, and the automorphism space of Cn is the unitary group U(n). This
identifies K(HV) = K(ku) with Z×|BGL(V)|+, which was called the K-theory of the 2-category
of complex 2-vector spaces in [BDR]. Ausoni’s calculations [A] show that K(kup) has telescopic
complexity 2 for every prime > 5, and thus qualifies as a form of elliptic cohomology.
• Replacing the complex numbers by the reals yields an identification of K(ko) with the K-theory

of the 2-category of real 2-vector spaces.
• Considering other subgroups of GLn(C) or GLn(R) as morphisms on a category with objects

n = {1, . . . , n} with n > 0 gives a large variety of K-theory spectra that are in the range of our
result. For a sample of such species have a look at [M2, pp. 161–167].

Here is an outline of the proof of Theorem 1.1. We want to replace R with a group complete model (a
ring category). The standard approaches, for instance Grayson–Quillen’s (−R)R [G1], yield models that
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are symmetric monoidal categories with respect to an additive structure, but which have no meaningful
multiplicative structure [Th2]. We will instead use an iteration of the Grayson–Quillen model to obtain
a cubical model, (−R)•R, which is a graded bimonoidal category, in a sense we make precise. A variant
of Thomason’s homotopy colimit turns this graded bimonoidal category into a group completion of R,
R̄, that still carries a bimonoidal structure. The full construction of R̄ takes up sections 2 to 6.

This model comes with a natural transformationR → R̄ of rig categories, which allows us to compare
the bar construction BGLn(R) with BGLn(R̄) and to prove that they become equivalent in the limit as
n goes to infinity. We do this by proving that the homotopy fibre B(∗, GL(R), GL(R̄)) of the map from
BGL(R) to BGL(R̄) is contractible. Here we only need the GL(R)-module structure of GL(R̄), which
allows us to replace R̄ by a group completion that is easier to handle. We compare weakly invertible
matrices over R̄ with those over HR̄, and obtain that |GLn(R̄)| ≃ GLn(HR̄). With these ingredients at
hand we can quite easily show that |BGL(R)| is equivalent to BGL(HR), which yields the comparison
of K(R) with K(HR).

The structure of the paper is as follows. We discuss graded versions of bipermutative and strictly
bimonoidal categories and their morphisms in section 2. In section 3 we identify an iterated version of
the Grayson–Quillen model as a bipermutative (resp. strictly bimonoidal) category that is graded over
the category I of finite sets and injective functions.

Thomason’s homotopy colimit of symmetric monoidal categories is defined in a non-unital (or zeroless)
setting. We extend this to the unital setting by constructing a derived version of it in section 4, and
in section 5 we show that the homotopy colimit of a graded bipermutative (resp. strictly bimonoidal)
category is almost a bipermutative (resp. strictly bimonoidal) category — it only lacks a zero. Section
6 describes how the results obtained so far combine to lead to a multiplicative group completion of
(symmetric) bimonoidal categories.

In section 7 we discuss the monoidal category GLn(R) of (weakly) invertible matrices over a strictly
bimonoidal category R, together with similar categories of matrices over various models for the group
completion of R, as well as the module structure over GLn(R) of these categories. Section 8 recalls
the definition of the bar construction of monoidal categories as in [BDR] and introduces a version with
coefficients in a module. We construct a contraction of this one-sided bar construction in the case relevant
to our proof (section 9) and show in section 10 that weakly invertible matrices do not distinguish between
a ring category, R̄, and its associated K-theory, HR̄. Finally, in section 11 we fit the pieces together
and prove the main theorem. In the appendix we sketch an alternative construction of a multiplicative
group completion device based on Segal’s approach to K-theory.

In contrast to K(HR), which is built in a two-stage process, the K-theory of the (strictly) bimonoidal
category R is built using both monoidal structures at once, so in this sense K(R) is a model that is
easier to understand and handle than K(HR).

A piece of notation: if C is any small category, then the expression X ∈ C is short for “X is an object
of C” and likewise for morphisms and diagrams.

2. Bipermutative and rig categories

For the definition of a permutative category see for instance [EM, 3.1] or [M1, §4]; compare also [ML,
XI.1]. Since our permutative categories are typically going to be the underlying additive symmetric
monoidal categories of categories with some further structure, we call the neutral element “zero” or
simply 0.

We consider lax and strict symmetric monoidal functors F between two permutative categories
(M,⊕, 0M, τM) and (N ,⊕, 0N , τN ). A lax symmetric monoidal functor is a functor F in the sense
of [ML, XI.2], i.e., there are morphisms

fa,a′ : F (a)⊕ F (a′)→ F (a⊕ a′)

for all objects a, a′ ∈M that are natural in a and a′, there is a morphism

n : 0N → F (0M),

and these structure maps fulfill coherence conditions which are spelled out in [ML, XI.2]; in particular

F (a)⊕ F (a′)
fa,a′ //

τN (F (a),F (a′))

��

F (a⊕ a′)

F (τM(a,a′))

��
F (a′)⊕ F (a)

fa′,a // F (a′ ⊕ a)

3



commutes for all a, a′ ∈M. Let Perm be the category of small permutative categories and lax symmetric
monoidal functors.

A strict symmetric monoidal functor has furthermore to satisfy that the morphisms fa,a′ and n are
identities, so that

F (a⊕ a′) = F (a)⊕ F (a′) and F (0M) = 0N

[ML, XI.2]. We denote the category of small permutative categories and strict symmetric monoidal
functors by Perm(Strict).

Since any symmetric monoidal category is naturally equivalent to a permutative category, we lose no
generality by only considering permutative categories. Note that we consider the unital situation, unless
explicitly stated otherwise.

Roughly speaking, a rig categoryR consists of a symmetric monoidal category (R,⊕, 0R, τR) together
with a functor R×R→ R called “multiplication” and denoted by ⊗ or ·. Note that the multiplication
is not a map of monoidal categories. The multiplication has a unit 1R ∈ R, multiplying by 0R is the
zero map, multiplying with 1R is the identity map, and the multiplication is (left and right) distributive
over ⊕ up to appropriate coherencies. If we pose the additional requirement that our rig categories are
commutative (up to coherent isomorphisms), then this coincides with what is often called a symmetric
bimonoidal category. Laplaza spelled out the coherence conditions in [L, pp. 31–35].

According to [M2, VI, Proposition 3.5] any commutative rig category is equivalent in the appropriate
sense to a “bipermutative category”, and a similar rigidification result holds for bimonoidal categories.
Our main theorem is equivalent to the statement with “commutative rig category” (resp. “rig category”)
replaced by “bipermutative category” (resp. “strictly bimonoidal category”) everywhere, and this is what
we prove. The reader will find the axioms for a bipermutative category in Definition 2.1 below as the
special case of a “0-graded bipermutative category” where 0 is the one-point category.

Otherwise one may for instance consult [EM, 3.6]. Note that we demand strict left distributivity. One
word of warning: in [M2, VI, Definition 3.3], May’s right distributivity law is precisely what we (and
[EM]) call the left distributivity law.

We will focus on the bipermutative case in the course of this paper and indicate what has to be
adjusted in the strictly bimonoidal case.

If R is a small rig category such that π0(R) is a ring (has additive inverses), then we call R a ring
category. Elmendorf and Mandell’s ring categories are not ring categories in our sense, but non-symmetric
rig categories. In the course of this paper we have to resolve rig categories simplicially. If R is a small
simplicial rig category such that π0(|R|) is a ring, then we call R a simplicial ring category (even though
it is not a simplicial object in the category of ring categories).

If R is a strictly bimonoidal category, a left R-module is a permutative categoryM together with a
multiplication R×M→M that is strictly associative and coherently distributive as spelled out in [EM,
9.1.1].

2.1. J-graded bipermutative categories and strictly bimonoidal categories. We want to addi-
tively group complete a rig category R, in such a way that the outcome still possesses a multiplicative
structure, i.e., so as to produce a ring category. There are constructions for additive group completions
of R, e.g. the Grayson–Quillen construction G(R) = (−R)R, but they are known to have bad multiplica-
tive behavior [Th2]. If we perform this group completion more than once, then there is no further change
up to homotopy equivalence. So we might alternatively consider the homotopy colimit of the iterated
group completions G(n)(R) = (−R)nR, and still just have group completed additively. However, such a
näıve homotopy colimit construction will not carry a decent multiplicative structure.

Precisely what is needed to ensure that the homotopy colimit retains multiplicative structure is that
the sequential diagram n 7→ G(n)(R) extends to a diagram indexed over the category I of finite sets and
injective functions, i.e., that the iterated G-construction produces an I-graded bipermutative category
or I-graded strictly bimonoidal category, in the sense soon to be defined.

In order to avoid setting up a huge machine for graded rig categories, we always assume that the input
to our machinery has been transformed to an equivalent bipermutative or strictly bimonoidal category
before we start.

Definition 2.1. Let (J,+, 0, cJ) be a small permutative category. A J-graded bipermutative category is
a functor X from J to the category Perm(Strict) of small permutative categories and strict symmetric
monoidal functors, together with the following data and subject to the following conditions, where we
denote the permutative structure of X(i) by (X(i),⊕, 0i, γ⊕).
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(1) A functor

⊗ : X(i)×X(j)→ X(i+ j),

i.e., for all (A,B) ∈ X(i) × X(j) there is an object A ⊗ B in X(i + j) and for any pair of
morphisms, f : A→ A′ and g : B → B′, there is a morphism f ⊗ g : A⊗B → A′ ⊗B′ satisfying
the usual requirements.

We require that for any pair of morphisms in J , ϕ : i→ k and ψ : j → ℓ, the following diagram
commutes:

X(i)×X(j)
⊗ //

X(ϕ)×X(ψ)

��

X(i+ j)

X(ϕ+ψ)

��
X(k)×X(ℓ)

⊗ // X(k + ℓ) .

(2) An object 1 ofX(0) such that the composition of the inclusion {1}×X(j)→ X(0)×X(j) followed
by ⊗ : X(0)×X(j)→ X(0 + j) = X(j) equals the projection isomorphism {1} ×X(j) ∼= X(j),
and likewise for the map from X(j)× {1}.

(3) Isomorphisms

γ⊗ = γ
A,B
⊗ : A⊗B −→ X(cj,iJ )(B ⊗A)

in X(i+ j), for all A ∈ X(i) and B ∈ X(j), such that

A⊗B

f⊗g

��

γ
A,B
⊗ // X(cj,iJ )(B ⊗A)

X(cj,iJ )(g⊗f)

��
A′ ⊗B′

γ
A′,B′

⊗ // X(cj,iJ )(B′ ⊗A′)

commutes and X(cj,iJ )(γB,A⊗ ) ◦ γA,B⊗ is equal to the identity on A⊗B:

A⊗B
idA⊗B //

γ
A,B
⊗ &&NNNNNNNNNNNN X(cj,iJ )X(ci,jJ )(A ⊗B)

X(cj,iJ )(B ⊗A) .

X(cj,iJ )(γB,A⊗ )

55kkkkkkkkkkkkkk

For ϕ and ψ as above we require that

X(ϕ+ ψ)(γA,B⊗ ) = γ
X(ϕ)(A),X(ψ)(B)
⊗ .

In other words, the multiplicative twist γ⊗ is natural in i and j.

In addition, γA,1⊗ and γ1,A
⊗ agree with the identity morphism on A for all objects A.

(4) The composition ⊗ is associative and the diagram

A⊗B ⊗ C
γ
A⊗B,C
⊗ //

id⊗γB,C

��

X(ck,i+jJ )(C ⊗A⊗B)

X(ck,i+jJ )(γC,A⊗id)

��
X(id + c

k,j
J )(A⊗ C ⊗B) X(ck,i+jJ )X(ci,kJ + id)(A ⊗ C ⊗B)

commutes for all objects (compare [ML, p. 254, (7a)]).
(5) For each i ∈ J the zero object 0i annihilates everything multiplicatively, i.e., {0i} × X(j) →

X(i)×X(j)→ X(i+ j) is the constant map to 0i+j . Here the first map is the inclusion and the
second is ⊗.
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(6) Left distributivity holds strictly, i.e.,

(X(i)×X(i))×X(j)
⊕×id //

∆

��

X(i)×X(j)

⊗

��

(X(i)×X(j))× (X(i)×X(j))

⊗×⊗

��
X(i+ j)×X(i+ j)

⊕ // X(i+ j)

commutes, where ⊕ is the monoidal structure and ∆ is the diagonal on X(j) combined with the
identity on X(i)×X(i) followed by a twist. We denote these instances of identities by dℓ.

(7) The right distributivity transformation, dr, is given in terms of dℓ and γ⊗ as

dr = γ⊗ ◦ dℓ ◦ (γ⊗ ⊕ γ⊗) .

(Here, we suppress the twist X(cJ) in the notation.) Thus, for all i and j and A ∈ X(i),
B,C ∈ X(j) the following diagram defines dr:

A⊗B ⊕A⊗ C

dr

��

γ
A,B
⊗ ⊕γA,C⊗ // X(cj,iJ )(B ⊗A)⊕X(cj,iJ )(C ⊗A)

A⊗ (B ⊕ C) X(cj,iJ )(B ⊗A⊕ C ⊗A)

X(cj,iJ )(dℓ)=X(cj,iJ )(id)=id

��
X(cj,iJ )X(ci,jJ )(A⊗ (B ⊕ C)) X(cj,iJ )((B ⊕ C)⊗A) .

X(cj,i
J

)(γB⊕C,A
⊗ )

oo

(8) The diagram

(A⊗B)⊕ (A⊗B′)
dr //

γ⊕

��

A⊗ (B ⊕B′)

id⊗γ⊕

��
(A⊗B′)⊕ (A⊗ B)

dr // A⊗ (B′ ⊕B)

commutes for all objects. The analogous diagram for dℓ also commutes.
Due to the definition of dr in terms of γ⊗ and the identity dℓ, it suffices to demand that

γ⊕ ◦ (γ⊗ ⊕ γ⊗) = (γ⊗ ⊕ γ⊗) ◦ γ⊕ and (γ⊕ ⊗ id) ◦ γ⊗ = γ⊗ ◦ (id⊗ γ⊕).
(9) The distributivity transformations are associative, i.e., the diagram

(A⊗B ⊗ C)⊕ (A⊗B ⊗ C′)

dr

��

dr

**UUUUUUUUUUUUUUUUU

A⊗ ((B ⊗ C)⊕ (B ⊗ C′))
id⊗dr // A⊗B ⊗ (C ⊕ C′)

commutes for all objects.
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(10) The following pentagon diagram commutes

(A⊗ (B ⊕B′))⊕ (A′ ⊗ (B ⊕B′))

dℓ

��=
==

==
==

==
==

==
==

==
=

(A⊗B)⊕ (A⊗B′)⊕ (A′ ⊗B)⊕ (A′ ⊗B′)

dr⊕dr
44iiiiiiiiiiiiiiii

id⊕γ⊕⊕id

��

(A⊕A′)⊗ (B ⊕B′)

(A⊗B)⊕ (A′ ⊗B)⊕ (A⊗B′)⊕ (A′ ⊗B′)

dℓ⊕dℓ **UUUUUUUUUUUUUUUU

((A⊕A′)⊗B)⊕ ((A⊕A′)⊗B′)

dr

@@������������������

for all objects A,A′ ∈ X(i) and B,B′ ∈ X(j).

Remark 2.2. Notice that in Definition 2.1, the condition (1) only says that we have a natural transfor-
mation

⊗ : X ×X ⇒ X ◦+

of functors J × J → Cat, and condition (3) demands a modification

X ×X
cCat +3

⊗

��

γ⊗
⇛

(X ×X) ◦ twJ

⊗

��
X ◦+ X ◦+ ◦ twJ

X(cJ )
ks

where cCat is the symmetric structure on Cat (with respect to product) and twJ is the interchange of
factors on J × J .

Remark 2.3. Note that for an A ∈ X(j) and σ an automorphism of j in J , σ will not give rise to an
automorphism of A in X(j) in general.

In the following we will denote a J-graded bipermutative category X : J → Perm(Strict) by X• if
the category J is clear from the context. For the one-point category J = 0, a J-graded bipermutative
category is the same as a bipermutative category. Thus every J-graded bipermutative category X•

comes with a bipermutative category X(0), and X• can be viewed as a functor J → X(0)-modules.

Example 2.4. We consider the small bipermutative category of finite sets, whose objects are the finite
sets of the form n = {1, . . . , n} for n > 0 and 0 = ∅, and whose morphisms are functions.

Disjoint union of sets gives rise to a permutative structure

n⊕m := n ⊔m

and we identify n⊔m with n + m. For functions f : n→ n′ and g : m→m′ we define f ⊕ g as the map
on the disjoint union f ⊔ g which we will denote by f + g. The additive twist c⊕ is given by the shuffle
maps

χ(n,m) : n + m −→m + n

with

χ(n,m)(i) =

{
m+ i for i 6 n

i− n for i > n.

Multiplication of sets is defined via

n⊗m := nm .

If we identify the element (i − 1) · m + j in nm with the pair (i, j) with i ∈ n and j ∈ m, then the
function f ⊗ g is given as

(i, j) 7→ (f(i), g(j)),

and the multiplicative twist

c⊗ : n⊗m −→m⊗ n

7



sends (i, j) to (j, i). The empty set is a strict unit for the addition and the set 1 is a strict unit for the
multiplication. Left distributivity is the identity and the right distributivity law is given by the resulting
permutation

dr = c⊗ ◦ dℓ ◦ (c⊗ ⊕ c⊗) .

For later reference we denote dr by ξ.
Considering only the subcategory of bijections, instead of arbitrary functions, results in the biper-

mutative category of finite sets E that we discussed in the introduction. Later, we will consider the
bipermutative category of finite sets and surjective functions.

Definition 2.5. A J-graded strictly bimonoidal category is a functor X : J → Perm(Strict) to the
category of permutative categories and strict symmetric monoidal functors, satisfying the conditions of
Definition 2.1, except that we do not require the existence of the natural isomorphism γ⊗, and the right
distributivity transformation dr is not given in terms of dℓ. Axiom (7) of Definition 2.1 has to be replaced
by the following condition.

(7’) The diagram

A⊗B ⊗ C ⊕A⊗B′ ⊗ C
dℓ //

dr

��

(A⊗B ⊕A⊗B′)⊗ C

dr⊗id

��
A⊗ (B ⊗ C ⊕B′ ⊗ C)

id⊗dℓ // A⊗ (B ⊕B′)⊗ C

commutes for all objects.

In the J-graded bipermutative case condition (7’) follows from the other axioms.

Definition 2.6. A lax morphism of bipermutative categories, g : X → Y , is a lax symmetric monoidal
functor from (X,⊕, 0X , c⊕) to (Y,⊕, 0Y , c⊕) together with a structure of a lax symmetric monoidal
functor from (X,⊗, 1X , c⊗) to (Y,⊗, 1Y , c⊗), that respects the distributivity laws.

We therefore have a binatural transformation η⊕ from (−⊕−) ◦ (g, g) to g ◦ (− ⊕−), i.e.,

η⊕ = η⊕(A,B) : g(A)⊕ g(B)→ g(A⊕B) for A,B ∈ X,

and a corresponding binatural transformation from (− ⊗−) ◦ (g, g) to g ◦ (−⊗−)

η⊗ = η⊗(A,B) : g(A)⊗ g(B)→ g(A⊗B) for A,B ∈ X,

and we require that these interact with c⊕ and c⊗ and that the following diagram (and the analogous
one for dr) commutes

g(A)⊗ g(B)⊕ g(A′)⊗ g(B)

η⊗⊕η⊗

��

dℓ=id
(g(A)⊕ g(A′))⊗ g(B)

η⊕⊗id// g(A⊕A′)⊗ g(B)

η⊗

��
g(A⊗B)⊕ g(A′ ⊗B)

η⊕
// g(A⊗B ⊕A′ ⊗B)

g(dℓ)=id
g((A⊕A′)⊗B)

for all objects A,A′, B ∈ X , i.e., we have

η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (η⊕ ⊗ id)

and
g(γ⊗ ◦ (γ⊗ ⊕ γ⊗)) ◦ η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (id⊗ η⊕) ◦ γ⊗ ◦ (γ⊗ ⊕ γ⊗) .

For a lax morphism of strictly bimonoidal categories we demand that g is lax monoidal with respect
to ⊗, lax symmetric monoidal with respect to ⊕ and that

g(dr) ◦ η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (id⊗ η⊕) ◦ dr and g(dℓ) ◦ η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (η⊕ ⊗ id) ◦ dℓ.

Definition 2.7. A lax morphism of J-graded bipermutative categories, g : X• → Y •, consists of a natural
transformation g from X• to Y • that is compatible with the bifunctors ⊕,⊗ and the units. In detail,
we require that there are transformations η⊕ from (− ⊕−) ◦ (g × g) to g ◦ (− ⊕−)

X(i)×X(j)
⊕ //

g(i)×g(j)

��

X(i+ j)

g(i+j)

��
Y (i)× Y (j)

⊕
//

η
i,j
⊕

3;pppppppppp

pppppppppp
Y (i+ j),
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and η⊗ from (− ⊗ −) ◦ (g, g) to g ◦ (− ⊗ −). These commute with γ⊕ and γ⊗ and they are binatural
with respect to i and j and morphisms in X(i), X(j).

The functor g respects the distributivity constraints in that it fulfills

η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (η⊕ ⊗ id)

and

g(dr) ◦ η⊕ ◦ (η⊗ ⊕ η⊗) = η⊗ ◦ (id⊗ η⊕) ◦ dr .

For a lax morphism of J-graded strictly bimonoidal categories there is no requirement on g concerning
the multiplicative twist γ⊗.

3. The Grayson–Quillen model as a graded bipermutative category

Let I be the skeleton of the category of finite sets and injective maps, i.e., objects are finite sets
n = {1, . . . , n} for n > 0 with the convention that 0 = ∅ and morphisms are injective functions of finite
sets. We define the sum of two objects n and m as n + m and use the twist maps χ(n,m) defined in
Example 2.4. Then (I,+,0, χ) is a permutative category.

We remodel the Grayson–Quillen model [G1] for the group completion of a permutative category
to suit our multiplicative needs. Our cubical model will avoid the problems with the multiplicative
structure. In the Grayson–Quillen model an element (A,B) should be thought of as A−B, because on
the level of π0 an element (A, 0) is inverse to (0, A). Then the näıve guess for how to multiply elements
is dictated by the rule that (A − B)(C − D) = (AC + BD) − (AD + BC). This, however, does not
lead to a decent multiplicative structure, because this product is not functorial. We will choose models
where a product of two elements in the Grayson–Quillen model will be a 2-dimensional cube, and thus
elements in a product are spread out in order to avoid the “phoniness” of the multiplication [Th2]. Since
our permutative structures are to be thought of as additive, we use expressions like (−M)M where
Grayson–Quillen would have writtenM−1M.

Definition 3.1. Let (M,⊕, 0M, τM) be a small permutative category. For n > 0, let (−M)nM be the
following permutative category. The objects are n-cubes of objects ofM, i.e., functions from the power
set of the set n = {1, . . . , n} to the set of objects ofM. We use the pointwise addition of cubes, i.e., we
define the sum of two n-cubes C and C′ by (C ⊕ C′)S = CS ⊕ C′

S for all S ⊂ n.
If ϕ : m → n ∈ I is a non-bijective injection and C an m-cube, we call the n-cube ϕ∗(C) with

ϕ∗(C)S = Cϕ−1(S) an elementary degenerate n-cube, and if f : C → C′ is an isomorphism of m-cubes
(i.e., for each S ⊂ m an isomorphism fS : CS → C′

S in M), the map ϕ∗(f) : ϕ∗(C) → ϕ∗(C
′) given by

ϕ∗(f)S = fϕ−1(S) is an elementary degenerate isomorphism. A degenerate n-cube is an n-cube of the
form in1∗(D1) ⊕ in2∗(D2) ⊕ · · · ⊕ inn∗(Dn) where ink : n− 1 → n is the injection missing k ∈ n. A
degenerate isomorphism is similarly an isomorphism of the form in1∗(f1)⊕ · · · ⊕ inn∗(fn).

A morphism in (−M)nM from C to C′ is an equivalence class of pairs (D,α) where D is a degenerate
n-cube and α is a collection of maps αS : CS ⊕DS → C′

S ∈M for all S ⊂ n. A pair (D,α) is equivalent
to a pair (D′, α′) if there is a degenerate isomorphism f : D → D′ such that the diagrams

CS ⊕DS

αS

$$IIIIIIIII

id⊕fS

��

C′
S

CS ⊕D′
S

α′
S

::vvvvvvvvv

commute for all S ⊂ n. We write [D,α] for this equivalence class. The composite

C
[D,α]
−−−−→ C′ [E,β]

−−−−→ C′′

is represented by

C ⊕
⊕

k ink∗(Dk ⊕ Ek) ∼= C ⊕D ⊕ E
α⊕id
−−−−→ C′ ⊕ E

β
−−−−→ C′′ .

We define 0n as the cube that has (0n)S = 0M ∈ M for all S ⊂ n. As M was permutative, the
addition of cubes defines permutative structures on the (−M)nM for all n > 0.

Definition 3.2. Let the Grayson–Quillen functor G : Perm→ Perm be defined by G(M) = (−M)M.
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Lemma 3.3. Let M be a small permutative category. Then there is a natural isomorphism between
(−M)nM and the n-th iterate G(n)(M) of the Grayson–Quillen functor, being the identity on objects. �

Consider the transformation in∗ : id→ G given by

M
a7→[a,0]
−−−−−→ G(M),

and the twist τ∗ : GG→ GG given by transposition of matrices: τ∗(C)S = Cτ−1S (where τ : 2→ 2 is the
twist) and τ∗[in1∗(x1)⊕ in2∗(x2), f ] = [in1∗(x2)⊕ in2∗(x1), τ∗f ].

Since (Gin∗)M = (τ∗in∗)GM : GM → GGM, these natural transformations give rise to a functor
G(−) from the category I of finite sets and injective functions to the endomorphism category of Perm by
sending n toM 7→ G(n)(M).

More concretely, if ϕ : m → n ∈ I, we define ϕ∗ : (−M)mM→ (−M)nM by sending an m-cube C
to the n-cube ϕ∗(C) given by ϕ∗(C)S := Cϕ−1(S). We define the effect of ϕ on a morphism [D,α] from
C to C′ in (−M)mM to be [ϕ∗(D), ϕ∗α] with (ϕ∗α)S = αϕ−1(S). There is a slight technicality: in order
for ϕ∗(D) to be written as a sum of elementary degenerate m-cubes in the prescribed order, one must
permute the summands and compose with the proper isomorphisms. This is taken care of by the other
viewpoint.

Definition 3.4. Let (−M)•M be the resulting functor I → Perm(Strict), taking n to (−M)nM and
ϕ to ϕ∗.

We are concerned with the homotopy properties of this construction.

Definition 3.5. Let Permnz be the category of small permutative categories without zero. This is a
category with a symmetric addition satisfying all the axioms for a permutative category except that
all mention of the zero object is skipped. Likewise, a morphism in Permnz is defined exactly as a lax
symmetric monoidal functor in Perm except that all mention of the zero object is skipped.

Definition 3.6. A weak equivalence of simplicial small categories is a functor C → D such that the
diagonal of the associated map of nerves NC → ND is a weak equivalence of simplicial sets.

A lax symmetric monoidal functor C → D is an unstable equivalence if it induces a weak equivalence
of simplicial sets NC → ND.

A lax symmetric monoidal functor C → D is a stable equivalence if it induces a stable equivalence
Spt C → SptD. Here Spt is any one of the (equivalent) group completion machines, for instance the
one in [Th3] and [Th4, 1.6]; in particular it is a functor from symmetric monoidal categories and lax
symmetric monoidal functors to connective spectra and spectrum maps.

A lax symmetric monoidal natural transformation X ⇒ X ′ of functors J → Permnz is an unstable
(resp. stable) equivalence if X(j)→ X ′(j) is an unstable (resp. stable) equivalence for each j ∈ J .

Lemma 3.7. Let (M,⊕, 0M, τM) be a small permutative category.

(1) If M is a groupoid (all morphisms in M are isomorphisms) and translation is faithful ( i.e., for
each pair a, b ∈ M the map M(a, a) 7→ M(a ⊕ b, a⊕ b) is injective), then M→ (−M)M is a
stable equivalence.

(2) For every ϕ : m→ n in I with m > 0 the induced map

ϕ∗ : (−M)mM→ (−M)nM

is an unstable equivalence.

Remark 3.8. In [G2, p. 166] Grayson proves a statement that is similar in spirit to our second claim.

Proof. The first claim is [G1, p. 228].
For the second claim, it suffices to show that (in∗)GM : GM → GGM is an equivalence. Consider

the map T : GGM→ GM sending A = [ a∅ a1
a2 a12

] to [a∅ ⊕ a12, a1 ⊕ a2], and a morphism represented by
[
f∅ f1
f2 f12

]
: [ a∅ a1

a2 a12
]⊕

[ x∅ x1
x∅ x1

]
⊕ [ y∅ y∅

y2 y2 ]→
[
b∅ b1
b2 b12

]
∈ M4

to the morphism represented by the pair

a∅ ⊕ a12 ⊕ x∅ ⊕ y∅ ⊕ x1 ⊕ y2 ∼= (a∅ ⊕ x∅ ⊕ y∅)⊕ (a12 ⊕ x1 ⊕ y2)
f∅⊕f12
−−−−−→ b∅ ⊕ b12,

a1 ⊕ a2 ⊕ x∅ ⊕ y∅ ⊕ x1 ⊕ y2 ∼= (a1 ⊕ x1 ⊕ y∅)⊕ (a2 ⊕ x∅ ⊕ y2)
f1⊕f2
−−−−→ b1 ⊕ b2 .
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Whereas T in∗ is the identity on GM, the composite in∗T sends [ a∅ a1
a2 a12

] to
[
a∅⊕a12 a1⊕a2

0 0

]
which is

connected to the identity by a chain of natural transformations

[
a∅⊕a12 a1⊕a2

0 0

]
hh

0 a12
0 a12

i

,id
i

//
[
a∅⊕a12 a1⊕a2⊕a12

0 a12

]

[
a∅ a1⊕a2

0 a12

]
[[ a12 a12

0 0 ],id]

OO

hh

a2 0
a2 0

i

,id
i

//
[
a∅⊕a2 a1⊕a2
a2 a12

]

[ a∅ a1
a2 a12

] .

[[ a2 a2
0 0 ],id]

OO

�

Proposition 3.9. Let (R,⊕, 0R, c⊕,⊗, 1R, c⊗) be a bipermutative category. Then the functor (−R)•R =
{n 7→ (−R)nR}n>0 is an I-graded bipermutative category.

Proof. In the following let f, g and h be the following morphisms: f = [X,α] : A→ A′ , i.e., α : A⊕X →
A′, g = [Y, β] : B → B′ and h = [Z, δ] : C → C′.

First we make the structure of (−R)•R as a functor into Perm(Strict) explicit. As for (−R)R, the
definition of the morphism f ⊕ g involves an additive twist:

f ⊕ g := [A⊕B ⊕X ⊕ Y
id⊕γ⊕⊕id //A⊕X ⊕B ⊕ Y

α⊕β //A′ ⊕B′ ] .

We consider the isomorphism γ⊕ : X ⊕ Y → Y ⊕X . The commutativity of the diagram

A⊕B ⊕X ⊕ Y

id⊕γ⊕⊕id

��

idA⊕B⊕γ⊕ // A⊕B ⊕ Y ⊕X
γ⊕⊕idY⊕X // B ⊕A⊕ Y ⊕X

id⊕γ⊕⊕id

��
A⊕X ⊕B ⊕ Y

α⊕β

��

γ
A⊕X,B⊕Y
⊕ // B ⊕ Y ⊕A⊕X

β⊕α

��
A′ ⊕B′

γ⊕ // B′ ⊕A′

shows that γ⊕ is natural. It is straightforward to show that the addition fulfills all requirements of a
permutative structure.

The multiplicative structure and its interplay with the additive structure are more subtle, and we will
give more details on that part of the proof.

First, we define ⊗ on objects. We use the natural inclusion i : n → n + m which sends x ∈ n to x
and the inclusion j : m→ n + m which maps y ∈m to n+ y. For a subset U ⊂ n + m we define

(A⊗B)U := Ai−1U ⊗Bj−1U

for all A ∈ (−R)nR and B ∈ (−R)mR.
We have to define ⊗ also on morphisms, so that it becomes a functor ⊗ : (−R)nR × (−R)mR →

(−R)n+mR. In addition we must show that it fulfills the naturality conditions of property (1) in
Definition 2.1.

We have to define the product f ⊗ g for morphisms in (−R)•R. The cube

A⊗ Y ⊕X ⊗B ⊕X ⊗ Y

is degenerate and we define f ⊗ g to be the equivalence class of

A⊗B⊕A⊗Y ⊕X⊗B⊕X ⊗Y
dr⊕dr−→ A⊗ (B⊕Y )⊕X⊗ (B⊕Y )

dℓ−→ (A⊕X)⊗ (B⊕Y )
α⊗β
−→ A′⊗B′ .

Note that this is equivalent to defining f ⊗ g as

A⊗B⊕X ⊗B⊕A⊗ Y ⊕X ⊗ Y
dℓ⊕dℓ−→ (A⊕X)⊗B⊕ (A⊕X)⊗ Y

dr−→ (A⊕X)⊗ (B⊕ Y )
α⊗β
−→ A′ ⊗B′

because dr ◦ (dℓ⊕dℓ)◦ (id⊕ c⊕⊕ id) = dℓ ◦ (dr⊕dr) holds in R and therefore the corresponding equation

dr ◦ (dℓ ⊕ dℓ) ◦ (id⊕ γ⊕ ⊕ id) = dℓ ◦ (dr ⊕ dr)

holds in (−R)•R.
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The naturality with respect to morphisms in I is straightforward: given injections ϕ : n → n′ and
ψ : m→m′, they give an injection on n + m, ϕ+ ψ. Then for every U ′ ⊂ n′ + m′

(ϕ+ ψ)∗(A⊗B)U ′ = (A⊗B)(ϕ+ψ)−1(U ′) = Ai−1(ϕ+ψ)−1(U ′) ⊗Bj−1(ϕ+ψ)−1(U ′)

= Aϕ−1(i′)−1(U ′) ⊗Bψ−1(j′)−1(U ′).

Here i′ : n′ →֒ n′ + m′ and j′ : m′ →֒ n′ + m′ are inclusions analogous to i and j. This is precisely the
value of ((ϕ∗A)⊗ (ψ∗B))U ′ .

We will check that
f ⊗ g = (id⊗ g) ◦ (f ⊗ id)

and
(f ′ ⊗ id) ◦ (f ⊗ id) = (f ′ ◦ f)⊗ id

for f ′ = [α′ : A′⊕X ′ → A′′]. Together with the properties f⊗g = (f⊗id)◦(id⊗g) and (id⊗g′)◦(id⊗g) =
id ⊗ (g′ ◦ g) for g′ = [β′ : B′ ⊕ Y ′ → B′′] which hold as well (but whose proof we leave to the reader),
this shows that ⊗ defines a bifunctor.

In the diagrams we will omit the tensor signs and just concatenate symbols and we write + for ⊕ to
ease notation.

Note that the representative we chose for the morphism f ⊗ id has source

AB +A0 +XB +X0 = AB +XB .

Consider the diagram

AB +AY +XB +XY
id+γ⊕+id //

dr+dr

��

AB +XB +AY +XY
id+id+dℓ //

dℓ+dℓ

��

AB +XB + (A+X)Y

id+id+α⊗id

��dℓ+idssggggggggggggggggggggg

A(B + Y ) +X(B + Y )

dℓ

��

(A+X)B + (A+X)Y

α⊗id+α⊗id

��drssggggggggggggggggggggg
id+α⊗id

++WWWWWWWWWWWWWWWWWWWWW
AB +XB +A′Y

dℓ+id

��
(A+X)(B + Y )

α⊗id

++WWWWWWWWWWWWWWWWWWWWW

α⊗β

��

A′B +A′Y

dr

��

(A+X)B +A′Y
α⊗id+id

oo

A′B′ A′(B + Y ) .
id⊗βoo

The left vertical composition corresponds to f ⊗ g whereas the right vertical composition (starting in
AB +XB +A′Y ) followed by the map at the bottom gives a representative for (id⊗ g) ◦ (f ⊗ id). The
map at the top is a map of the form id ⊕ ε with ε being an isomorphism and therefore the two maps
f ⊗ g and (id⊗ g) ◦ (f ⊗ id) are equivalent.

The second property is easier to see because the diagram describing (f ′ ◦f)⊗ id and (f ′⊗ id)◦ (f⊗ id)

AB +XB +X ′B

dℓ+id

��

id+dℓ // AB + (X +X ′)B

dℓ

��
(A+X)B +X ′B

f⊗id+id

��

dℓ // (A+X +X ′)B

(f+id)⊗id

��
A′B +X ′B

dℓ

��

dℓ // (A′ +X ′)B

f ′⊗id

��
(A′ +X ′)B

f ′⊗id // A′′B

visibly commutes.

As we assume that ⊗ is strictly associative in R, the multiplication of cubes is also strictly associative
on objects:

If A, B, C are cubes of sizes n,m and l, then

((A ⊗B)⊗ C)U = (Ai−1U ⊗Bj−1U )⊗ Ck−1U = Ai−1U ⊗ (Bj−1U ⊗ Ck−1U ) = (A⊗ (B ⊗ C))U .

Here, U is a subset of n + m + l and i, j, k denote the appropriate inclusions.
12



We have to show that ⊗ is strictly associative on morphisms in (−R)•R. The representative we chose
for the morphism (f ⊗ g)⊗ h has source

ABC +ABZ + (AY +XB +XY )C + (AY +XB +XY )Z

whereas the one for f ⊗ (g ⊗ h) has source

ABC +A(BZ + Y C + Y Z) +XBC +X(BZ + Y C + Y Z).

However, both morphisms pass via the object (A+X)(B+ Y )(C +Z), i.e., we can factor (f ⊗ g)⊗ h as

ABC +ABZ + (AY +XB +XY )C + (AY +XB +XY )Z
w1−→ (A+X)(B + Y )(C +Z)

α⊗β⊗δ
−→ A′B′C′

and f ⊗ (g ⊗ h) as

ABC +A(BZ + Y C + Y Z) +XBC +X(BZ + Y C + Y Z)
w2−→ (A+X)(B + Y )(C + Z)

α⊗β⊗δ
−→ A′B′C′

where w1, w2 are isomorphisms.
In order to see that w−1

2 ◦w1 is of the form id⊕ ε it is useful to compare the sources of the two maps
via

ABC +ABZ + (AY +XB +XY )C + (AY +XB +XY )Z

id+id+d−1
ℓ

+d−1
ℓ

��
ABC +ABZ +AY C +XBC +XY C +AY Z +XBZ +XY Z

id+id+σ

��
ABC +ABZ +AY C +AY Z +XBC +XBZ +XY C +XY Z

id+dr+id+dr
��

ABC +A(BZ + Y C + Y Z) +XBC +X(BZ + Y C + Y Z)

where σ is the appropriate permutation acting by permuting the summands. A diagram chase shows
that this map is w−1

2 ◦ w1 and therefore we obtain that

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h) .

Recall the shuffle permutation χ(n,m) : n + m → m + n from Example 2.4. For the multiplicative
twist transformation γ⊗ as in Definition 2.1 (3) we have to specify a natural isomorphism from A ⊗ B
to χ(m,n)∗(B ⊗ A) for every A ∈ (−R)nR and B ∈ (−R)mR. For U ⊂ n + m and U1 = i−1(U),
U2 = j−1(U) the isomorphism γ⊗ is the multiplicative twist

c⊗ : AU1 ⊗ BU2 → BU2 ⊗AU1 .

It is then obvious that γ⊗ ◦ γ⊗ = id. If A or B is the multiplicative unit, then each of the twist maps
c⊗ reduces to the identity map and thus γ⊗ is the identity. It is straightforward to check the remaining
properties of 2.1 (4) and we leave this to the reader.

In the following we will omit the maps χ(n,m) from the notation.
Consider again morphisms in (−R)•R, f and g as above. In the diagram

AB +XB +AY +XY
id+(γ⊗)⊕3

//

γ⊕4
⊗

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

dr◦(dℓ+dℓ)

vv

dℓ◦(γ⊗+γ⊗)◦(dℓ+dℓ)

''

AB +BX + Y A+ Y X

γ⊗+id+id+id

&&MMMMMMMMMMMMMMMMMMMMMMM

AB +AY +XB +XY

id+γ⊕+id

OO

dℓ◦(dr+dr)

��

BA+BX + Y A+ Y X

dℓ◦(dr+dr)

��
(A+X)(B + Y )

α⊗β

��

(B + Y )(A+X)

β⊗α

��

γ⊗
oo

A′B′
γ⊗ // B′A′
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the composition γ⊗ ◦ (f ⊗ g) is represented by the counterclockwise composition starting at AB +AY +
XB+XY and one representative for (g ⊗ f) ◦ γ⊗ runs clockwise starting at AB +BX + Y A+ Y X . As
dr is defined in terms of γ⊗ and dℓ we get that

dℓ ◦ (dr ⊕ dr) ◦ γ
⊕4
⊗ = dℓ ◦ (γ⊗ ⊕ γ⊗) ◦ (dℓ ⊕ dℓ)

and therefore the diagram commutes and the multiplicative twist is natural with respect to morphisms
in (−R)•R.

We have to prove that γ⊗ is natural with respect to maps in I. Given injections ϕ : n→ n′, ψ : m→m′

we have to show that (ϕ+ ψ)∗ applied to the isomorphism

γ⊗ : A⊗B → χ(m,n)∗(B ⊗A)

of (n+m)-cubes equals the isomorphism γ⊗ : ϕ∗A⊗ ψ∗B → χ(m′, n′)∗(ψ∗B ⊗ ϕ∗A) of (n′ +m′)-cubes.
Noting that (ϕ + ψ) ◦ χ(m,n) = χ(m′, n′) ◦ (ψ + ϕ), we find that at each subset U ⊂ n′ + m′ both
isomorphisms are equal to c⊗ applied to Aϕ−1(U1) ⊗Bψ−1(U2), where U1 = i−1(U) and U2 = j−1(U).

Obviously, tensoring with a zero cube annihilates everything.

We claim that the left distributivity isomorphism dℓ can be chosen to be the identity on (−R)•R and
we define dr as γ⊗ ◦ dℓ ◦ (γ⊗ ⊕ γ⊗) according to Definition 2.1 (7).

We already proved that the twist transformation γ⊗ is natural with respect to morphisms in I, hence
dr is natural.

Thus, for left distributivity we have to identify (A⊕B)⊗C with A⊗C⊕B⊗C for all A,B ∈ (−R)nR
and C ∈ (−R)mR. On every subset U ⊂ n + m the latter takes value

(A⊗ C)U ⊕ (B ⊗ C)U = (i∗A)U ⊗ (j∗C)U ⊕ (i∗B)U ⊗ (j∗C)U .

As R is supposed to be a bipermutative category, this term is equal to

((i∗A)U ⊕ (i∗B)U )⊗ (j∗C)U

which is precisely ((A⊕B)⊗ C)U . We also have to show that

(f ⊕ g)⊗ h = f ⊗ h⊕ g ⊗ h .

This follows from the commutativity of the following solid diagram (using cycle notation for permutations
of summands)

AC +AZ +BC +BZ +XC +XZ + Y C + Y Z

(3,5)(4,6)

��

(dℓ⊕id)◦(id⊕d⊕3
ℓ

)◦(2,3)(6,7)

**
(A+B)C + (A+B)Z + (X + Y )C + (X + Y )Z

dr⊕dr

��
AC +AZ +XC +XZ +BC +BZ + Y C + Y Z

d⊕4
r

��

(A+B)(C + Z) + (X + Y )(C + Z)

(id⊗δ)⊕2

��
A(C + Z) +X(C + Z) +B(C + Z) + Y (C + Z)

(id⊗δ)⊕4

��

(dℓ⊕dℓ)◦(2,3)

22

(A+B)C′ + (X + Y )C′

dℓ

��
AC′ +XC′ +BC′ + Y C′

dℓ⊕dℓ

��

(dℓ⊕dℓ)◦(2,3)

22

(A+B +X + Y )C′

(2,3)⊗id

��
(A+X)C′ + (B + Y )C′ dℓ //

(α⊗id)⊕β⊗id

��

(A+X +B + Y )C′

(α⊕β)⊗id

��
A′C′ +B′C′

dℓ // (A′ +B′)C′ .

The subdiagram at the bottom commutes because dℓ is natural in R and for the same reason the
subdiagram involving δ commutes. The diagram on the third level corresponds to (8) of Definition
2.1 for dℓ, and commutes by direct inspection. For the top subdiagram naturality of γ⊕ yields that
(2, 3) ◦ d⊕4

r = d⊕4
r ◦ (3, 5)(4, 6) and therefore (dℓ ⊕ dℓ) ◦ (2, 3) ◦ d⊕4

r ◦ (3, 5)(4, 6) = (dℓ ⊕ dℓ) ◦ d⊕4
r and the

commutativity of this subdiagram follows from the pentagon axiom for dr and dℓ.
14



What is left to check in Definition 2.1 are properties (8), (9) and (10). These follow from a direct
inspection we leave to the reader. �

Proposition 3.10. Let (R,⊕, 0R, c⊕,⊗, 1R) be a strictly bimonoidal category. Then the functor

(−R)•R = {n 7→ (−R)nR}

is an I-graded strictly bimonoidal category.

Proof. We have to define a right distributivity map dr, prove that it is natural and show that property
(7’) of Definition 2.5 holds.

We define dr to be the pointwise application of the right distributivity map dr of R. As property (7’)
holds in R, it also holds in (−R)•R.

Let f, g, h be morphisms in (−R)•R as in the proof of Proposition 3.9. Again, we use cycle notation
for the permutations induced by combinations of instances of γ⊕. For the naturality of dr we have to
show that the following solid diagram

AB +AC +AY +XB +XY +AZ +XC +XZ

(2,5,4,3)

��

(dr⊕id)◦(id⊕d3r)◦(4,5,7,6)

**
A(B + C) +A(Y + Z) +X(B + C) +X(Y + Z)

dr⊕dr

��
AB +AY +XB +XY + Y C + Y Z +XC +XZ

d⊕4
r

��

A(B + C + Y + Z) +X(B + C + Y + Z)

id⊗(2,3)⊕id⊗(2,3)

��
A(B + Y ) +X(B + Y ) +A(C + Z) +X(C + Z)

(id⊗β)⊕2⊕(id⊗δ)⊕2

��

(dr+dr)◦(2,3)//
A(B + Y + C + Z) +X(B + Y + C + Z)

(id⊗(β+δ))⊕2

��
AB′ +XB′ +AC′ +XC′

dℓ⊕dℓ

��

(dr+dr)◦(2,3) // A(B′ + C′) +X(B′ + C′)

dℓ

��
(A+X)B′ + (A+X)C′ dr //

(α⊗id)⊕2

��

(A+X)(B′ + C′)

α⊗id

��
A′B′ +A′C′

dr // A′(B′ + C′)

commutes.
The bottom square commutes because dr is natural in R and so does the square on the third layer.

The square on the fourth layer commutes because of the pentagon relation. For the top subdiagram note
that the equations

(2, 3) ◦ d⊕4
r = d⊕4

r ◦ (3, 5)(4, 6)
(id⊗ (2, 3))⊕2 ◦ (dr + dr) ◦ d⊕4

r = (dr + dr) ◦ d⊕4
r ◦ (2, 3)(6, 7)

hold: the first one follows from the naturality of γ⊕ and the second one is a consequence of property (8)
of Definition 2.1. Naturality then follows from the identities

(2, 3)(6, 7)(4, 5, 7, 6) = (2, 3)(5, 6, 4) = (3, 5)(4, 6)(2, 5, 4, 3)

in the symmetric group on 8 letters. �

4. Hocolim-lemmata

We briefly recall Thomason’s homotopy colimit construction in the case of a functor from a small
category J to the category Permnz.

The forgetful functor U : Perm→ Permnz has a left adjoint F : Permnz → Perm given by F (S) = S+,
the category obtained by adding a disjoint zero (called “+” to distinguish it from old zeros that might
live in S).
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4.1. The non-unital case. Let X : J → Permnz be a functor. An object in hocolimJ X is an expression
like n[(a1, X1), . . . , (an, Xn)] where n > 1 is a natural number, the ai are objects of J and the Xi are
objects of X(ai). A morphism from n[(a1, X1), . . . , (an, Xn)] to m[(b1, Y1), . . . , (bm, Ym)] consists of three
parts: a surjection ψ from the set {1, . . . , n} to {1, . . . ,m}, morphisms ℓi : ai → bψ(i) for 1 6 i 6 n and
morphisms ̺j in X(bj) from

⊕
ψ(i)=j X(ℓi)(Xi) to Yj . By abuse of notation, we will write (ψ, ℓi, ̺j) to

signify this morphism.
The category hocolimJ X is permutative (without a zero) if one defines the addition to be given by

concatenation (compare [Th3, p. 1632]).
As a matter of fact, if Permnz(Strict) is the subcategory of Permnz with all objects, but with strict

monoidal functors as morphisms, the universal property in [Th3, pp. 1632–1633] says that hocolimJ is
left adjoint to the composite functor Permnz(Strict) → Permnz → (Permnz)J , where the first functor is
the forgetful one and the second functor assigns the constant J-diagram (= functor from J). (Actually,
this is even true on the level of 2-categories.)

Let Cat denote the category of all small categories. Recall the free functor P : Cat→ Permnz(Strict)

with PC =
∐
n>0 Σ̃n ×Σn C

×n where Σ̃n is the translation category of the symmetric group Σn.

Lemma 4.1. The free functor P : Cat → Permnz(Strict) sends unstable equivalences to unstable equiv-
alences.

Proof. This follows from the natural isomorphism of nerves NPC ∼=
∐
n>0N Σ̃n ×Σn (NC)×n and the

fact that EΣn = N Σ̃n is a free Σn-space. �

Lemma 4.2. Let F : X → Y be an unstable (resp. stable) equivalence in (Permnz)J . Then

hocolimJ F : hocolimJ X → hocolimJ Y

is an unstable (resp. stable) equivalence. If X : J → Permnz is a constant functor and J is contractible,
then

X(j)→ hocolimJ X

is an unstable equivalence.
Let I be the category of finite sets and injections and m ∈ I. If X : I → Permnz is a functor such

that any ϕ : m→ n ∈ I is sent to an unstable (resp. stable) equivalence X(ϕ) : X(m)→ X(n), then the
canonical map X(m)→ hocolimI X is an unstable (resp. stable) equivalence.

Proof. The stable version follows from the main theorem 4.1 in [Th3] since homotopy colimits of spectra
preserve stable equivalences.

The unstable version follows from the proof of the main theorem 4.1 in [Th3]: if F : X → Y is an
unstable equivalence in (Permnz)J , then PF : PX → PY is also an unstable equivalence by Lemma
4.1. Furthermore, there is a natural isomorphism P hocolimJ

∼= hocolimJ P where the leftmost hocolim
is in Cat. The homotopy colimit in Cat preserves unstable equivalences, and hence hocolimJ PX →
hocolimJ PY is an unstable equivalence. If X is a diagram in Permnz(Strict), then X has a simplicial
resolution coming from the free-forgetful pair between Cat and Permnz(Strict). Thomason’s argument
[Th3, pp. 1641–1644] shows that the homotopy colimit respects this resolution and hence we get the
statement for diagrams in Permnz(Strict). We can then extend this to general functors to Permnz as in
[Th3, p. 1645].

The last statement is a weak version of Bökstedt’s Lemma [Bö, 9.1] which holds for homotopy colimits
in Cat since it holds for homotopy colimits in simplicial sets, and by the argument above using the
resolution by free permutative categories, it also holds in Permnz. �

4.2. The case with zero. We shall need a version of the homotopy colimit for permutative categories
with zero. Thomason comments that such a homotopy colimit with zero is not a homotopy functor, unless
the category is “well based”. Hence we must derive our functor to get a homotopy invariant version.
One option would be to use the free-forgetful pair to resolve everything in sight by free permutative
categories with zero, but since we shall be concerned with more delicate structure in our categories, we
choose a less drastic approach.

Recall the adjoint functor F : Permnz → Perm of the forgetful functor U given by F (S) = S+. Since
U and F are adjoints, we get a simplicial resolution (“monadic resolution”) Z as usual: if S ∈ Perm
and [q] ∈ ∆op then ZqS = (FU)q+1(S) with simplicial operations derived from the unit and counit of
the adjunction. The counit FU(S) → S induces a map Z(S) → S of simplicial symmetric monoidal
categories with zero.
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Lemma 4.3. If S ∈ Perm, then Z(S)→ S is an unstable equivalence.

Proof. The map of simplicial symmetric monoidal categories UZ(S) → US has an extra degeneracy
induced by id→ UF . Hence the map of nerves NZ(S)→ N(S) has an extra degeneracy, since the nerve
only depends on the underlying category, and so it is a weak equivalence. �

We will not define the categorical homotopy colimit on Perm, but in special cases (including all we
will need) it is given in terms of the ordinary homotopy colimit. The following is a formal consequence
of the universal property of the homotopy colimit.

Lemma 4.4. If J is any small category and X and Y are functors from J to the category Permnz, then
(hocolimJ X)+ is functorial in transformations f : X+ → Y+ of permutative categories with zero.

Proof. LetM be an object of Perm(Strict), which we can view as a constant functor UM from J to the
category Permnz. The universal property of the (permutative) homotopy colimit [Th3, pp. 1626–1627]
is that natural transformations of functors J → Permnz from X to UM correspond to strict maps from
hocolimJ X to UM.

Hence we get isomorphisms

(Perm)J (X+,M) ∼= (Permnz)J (X,UM) ∼= Permnz(Strict)(hocolimJ X,UM)(1)
∼= Perm(Strict)((hocolimJ X)+,M).

Even though we have not defined the homotopy colimit with zero, this shows that whatever its definition
is, its value on X+ is (hocolimJ X)+. More to the point, we get a map

(Perm)J (X+, Y+)→ (Perm)J(X+, (hocolimJ Y )+) ∼= Perm(Strict)((hocolimJ X)+, (hocolimJ Y )+)

where the first map comes via the isomorphism (1) from the identity on (hocolimJ Y )+ and the last one
is an instance of the isomorphism (1). This map gives the desired result. �

Let IsolPerm(Strict) denote the category of permutative categories with an isolated zero (i.e., in the
image of F ) and strict symmetric monoidal functors. Lemma 4.4 implies that the homotopy colimit
defines a functor:

Lemma 4.5. The assignment

FX 7→ hocolimu
J FX := F hocolimJ X

defines a functor hocolimu
J from the full subcategory of PermJ generated by the functors X : J → Perm

that factor through IsolPerm(Strict).

The proof of Lemma 4.4 shows that this homotopy colimit has a universal property similar to the
unbased homotopy colimit, and since the unbased homotopy colimit preserves (un)stable equivalences,
so does hocolimu.

This allows us to define a derived version of the homotopy colimit with zero.

Definition 4.6. The derived homotopy colimit

D hocolimJ : PermJ → IsolPerm(Strict)
∆op

is defined by

D hocolimJ X = hocolimu
J ZX = {[q] 7→ hocolimu

J (FU)q+1X} .

The construction deserves its name.

Lemma 4.7. Let X → Y be a stable (resp. unstable) equivalence in PermJ . Then ZqX → ZqY is a
stable (resp. unstable) equivalence for each q, and hence the induced map

D hocolimJ X → D hocolimJ Y

is a stable (resp. unstable) equivalence, too.
Let m be an object of the category I of finite sets and injections. If X : I → Perm is a functor such

that any ϕ : m→ n ∈ I is sent to an unstable (resp. stable) equivalence X(ϕ) : X(m)→ X(n), then the
canonical chain

X(m)
∼

←−−−− ZX(m) −−−−→ D hocolimI X

is a stable (resp. unstable) equivalence.
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5. The homotopy colimit of bipermutative categories

We are now ready for a key proposition:

Proposition 5.1. Let J be a permutative category, and let C• be a J-graded bipermutative category.
Then D hocolimJ C• is a simplicial bipermutative category, and

C0 ∼
←−−−− ZC0 −−−−→ D hocolimJ C•

are maps of simplicial bipermutative categories. The same statement holds when replacing “bipermuta-
tive” by “strictly bimonoidal”.

Furthermore, for each i ∈ J , the canonical maps

Ci
∼

←−−−− ZCi −−−−→ D hocolimJ C•

are maps of ZC0-modules.

Proof. If C• is a J-graded bipermutative category, then so is FUC•, and ZC• becomes a simplicial J-
graded bipermutative category. By Lemma 5.2 which we will prove below, we get that hocolimJ U(FU)qC•

becomes a zeroless bipermutative category for each q. Hence hocolimu
J ZqC

• = F hocolimJ U(FU)qC• is
a bipermutative category, and all the simplicial structure maps are maps of bipermutative categories.
Therefore D hocolimJ C

• becomes a simplicial bipermutative category. Likewise, for each q Lemma 5.2
below guarantees that

ZqC
0 → hocolimu

J ZqC
•

is a map of bipermutative categories and that

ZqC
i → hocolimu

J ZqC
•

is a map of ZqC0-modules, so we are done by functoriality. �

Lemma 5.2. Let J be a permutative category. If C• is a J-graded bipermutative category, then Thoma-
son’s homotopy colimit of permutative categories hocolimJ C• is a zeroless bipermutative category. The
natural map C0 → hocolimJ C• is a lax map of zeroless bipermutative categories. Furthermore, for each
i ∈ J , the canonical map

Ci −−−−→ hocolimJ C•

is a map of C0-modules.

If C• is a J-graded strictly bimonoidal category, then hocolimJ C• is a zeroless strictly bimonoidal category
with a lax map of zeroless strictly bimonoidal categories C0 → hocolimJ C•, and C0-module maps Ci →
hocolimJ C•.

Proof. Thomason showed that the homotopy colimit is a permutative category without zero. There is
an obvious twist map

τ⊕ : n[(x1, X1), . . . , (xn, Xn)]⊕m[(y1, Y1), . . . , (ym, Ym)]

→ m[(y1, Y1), . . . , (ym, Ym)]⊕ n[(x1, X1), . . . , (xn, Xn)]

that is given by (χ(n,m), id, id).
For convenience we introduce the following symbolic notation: let [X ] be shorthand notation for

n[(x1, X1), . . . , (xn, Xn)] and similarly [Y ] for m[(y1, Y1), . . . , (ym, Ym)]. Then we denote [X ] ⊕ [Y ] by[
X
Y

]
, which should be read as “first X then Y ”. The twist map τ⊕ is then symbolically given by

τ⊕ :

[
X

Y

]
∼=

[
Y

X

]
.

In order to distinguish the multiplicative structure of C• from the one on the homotopy colimit, we
denote the bifunctor ⊗ on C• by · or just by juxtaposition of objects. The multiplicative bifunctor ⊗ on
the homotopy colimit is then given by matrix multiplication. We define

n[(x1, X1), . . . , (xn, Xn)]⊗m[(y1, Y1), . . . , (ym, Ym)]

:= nm[(x1 + y1, X1Y1), . . . , (x1 + ym, X1Ym), . . . , (xn + y1, XnY1), . . . , (xn + ym, XnYm)] .

Again, we use shorthand notation for that and write

[XY ] := [X ]⊗ [Y ] .

The element 1 := 1[(0, 1)] is a unit for ⊗. With this structure (hocolimJ C•,⊗, 1) is a strict monoidal
category.
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We define the twist map τ⊗ for ⊗ as follows, as a composite of two morphisms. Let γ⊗ denote the
twist map for the multiplication in C•. First, we apply γ⊗ on every entry of the form XiYj . The triple
(id{1,...,nm}, c

xi,yj
J , γ⊗) defines a morphism

nm[(x1 + y1, X1Y1), . . . , (x1 + ym, X1Ym), . . . , (xn + y1, XnY1), . . . , (xn + ym, XnYm)]

→ nm[(y1 + x1, Y1X1), . . . , (ym + x1, YmX1), . . . , (y1 + xn, Y1Xn), . . . , (ym + xn, YmXn)]

where cJ is the twist in the permutative category J . (To be precise, γ⊗ maps XiYj to (c
yj ,xi
J )∗(YjXi),

whereas the third coordinate of the morphism should map (c
xi,yj
J )∗(XiYj) to YjXi, so γ⊗ is really an

abbreviation for (c
xi,yj
J )∗(γ⊗).)

Second, we postcompose these maps with the morphism given by (σn,m, idyj+xi , id), where σn,m ∈ Σnm
is the permutation that induces matrix transposition.

We write the composition τ⊗ = (σn,m, idyj+xi , id) ◦ (id{1,...,nm}, c
xi,yj
J , γ⊗) symbolically as

τ⊗ : [XY ] ∼= [Y X ] .

As matrix transposition squares to the identity, c
yj,xi
J ◦ c

xi,yj
J = id and γ2

⊗ = id, we obtain that τ2
⊗ = id.

If X is the multiplicative unit, then we have that σ1,m is the identity in Σm and c
0,yj
J is the identity as

well. Similarly one shows that τ⊗ gives the identity morphism if Y is the multiplicative unit. We leave
it to the reader to check the remaining properties of 2.1 (4).

Writing out ([X ] ⊗ [Y ]) ⊕ ([X ′] ⊗ [Y ]) and ([X ] ⊕ [X ′]) ⊗ Y we get the same object, and we define
left distributivity dℓ to be the identity map between these two expressions. The right distributivity dr
involves a reordering of elements. We have to have

dr : ([X ]⊗ [Y ])⊕ ([X ]⊗ [Y ′]) =

[
XY

XY ′

]
−→ [X ]⊗ ([Y ]⊕ [Y ′]) = [X ]

[
Y

Y ′

]
= [XY,XY ′] .

Here [XY,XY ′] is shorthand notation for

n(m+m′)[(x1 + y1, X1Y1), . . . , (x1 + y′m′ , X1Y
′
m′), . . . , (xn + y1, XnY1), . . . , (xn + y′m′ , XnY

′
m′)] .

The elements in the source occur in the ordering

(nm+ nm′)[(x1 + y1, X1Y1), . . . , (xn + ym, XnYm), (x1 + y′1, X1Y
′
1), . . . , (xn + y′m′ , XnY

′
m′)] ,

thus the source and the target do not agree, but they differ by a suitable permutation ξ ∈ Σnm+nm′ .
Thus we define dr as (ξ, id, id). Note that ξ is the right distributivity isomorphism in the bipermutative
category of finite sets and surjective maps as defined in Example 2.4.

We have to check that the so defined distributivity transformation dr coincides with τ⊗ ◦ (τ⊗ ⊕ τ⊗).
The twist terms γ⊗ and cJ occur twice in the composition, so they reduce to the identity. What is left
is a permutation that is caused by τ⊗ ◦ (τ⊗ ⊕ τ⊗) and this is precisely ξ.

Since the isomorphisms dℓ, dr and τ⊕ are all of the form (σ, id, id) for some permutation σ, proper-
ties (8) to (10) of Definition 2.1 follow from the ones in the bipermutative category of finite sets and
surjections.

This finishes the proof that the zeroless bipermutative category structure works fine on objects.
We have to establish that ⊕ and ⊗ are bifunctors on hocolimJ C•, and that the associativity and

distributivity laws and the additive and multiplicative twists are natural.
For ⊕ this is straightforward and can be found in [Th3]: suppose given two morphisms

(ψ, ℓi, ̺j) : n[(x1, X1), . . . , (xn, Xn)]→ n′[(x′1, X
′
1), . . . , (x

′
n′ , X ′

n′)]

and

(ϕ, ki, πj) : m[(y1, Y1), . . . , (ym, Ym)]→ m′[(y′1, Y
′
1), . . . , (y′m′ , Y ′

m′)]

in the homotopy colimit, with ψ : n → n′, ℓi : xi → x′ψ(i) and ̺j :
⊕

ψ(i)=j C(ℓi)(Xi) → X ′
j , and

ϕ : m→m′ with corresponding ki and πj . Then there is a surjection ψ+ϕ from n + m to n′ + m′, and
we can recycle the morphisms ℓi and ki to give corresponding morphisms in J . In the third coordinate
we can use the morphisms ̺j and πj to get new ones, because the preimages of n′ and m′ under ψ and ϕ
are disjoint. Taken together, this results in a morphism from the sum (n+m)[(x1, X1), . . . , (ym, Ym)] to
the sum (n′ +m′)[(x′1, X

′
1), . . . , (y

′
m′ , Y ′

m′)]. It is straightforward to see that ⊕ defines a bifunctor, that
the associativity law for ⊕ is natural, and that the additive twist τ⊕ is natural.

For the remainder of this proof let us denote the elements in the set nm = {1, . . . , nm} as pairs (i, j)
with 1 6 i 6 n and 1 6 j 6 m. The tensor product of the maps (ψ, ℓi, ̺j) and (ϕ, ki, πj) has three
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coordinates. On the first, we take the product of the surjections, i.e.,

nm ∋ (i, j) 7→ (ψ(i), ϕ(j)) ∈ n′m′,

and on the second we take the sum ℓi + kj : xi + yj → x′ψ(i) + y′ϕ(j) of the maps ℓi and kj in J .

The third coordinate of the morphism (ψ, ℓi, ̺j)⊗ (ϕ, ki, πj) has to be a map
⊕

(ψ(i),ϕ(j))=(r,s)

C(ℓi + kj)(Xi · Yj) =
⊕

(ψ(i),ϕ(j))=(r,s)

C(ℓi)(Xi) · C(kj)(Yj) −→ X ′
r · Y

′
s .

Here, the sum is taken with respect to the lexicographical ordering of the indices (i, j). Consider the
following diagram.

⊕
(ψ(i),ϕ(j))=(r,s) C(ℓi)(Xi) · C(kj)(Yj)

id

ttiiiiiiiiiiiiiiii
σ

**UUUUUUUUUUUUUUUU

⊕
ψ(i)=r

⊕
ϕ(j)=s C(ℓi)(Xi) · C(kj)(Yj)

L

ψ(i)=r dr

��

⊕
ϕ(j)=s

⊕
ψ(i)=r C(ℓi)(Xi) · C(kj)(Yj)

L

ϕ(j)=s dℓ

��⊕
ψ(i)=r C(ℓi)(Xi) ·

(⊕
ϕ(j)=s C(kj)(Yj)

)

L

ψ(i)=r idC(ℓi)(Xi)
·πs

��

⊕
ϕ(j)=s

(⊕
ψ(i)=r C(ℓi)(Xi)

)
· C(kj)(Yj)

L

ϕ(j)=s ̺r ·idC(kj )(Yj )

��⊕
ψ(i)=r C(ℓi)(Xi) · Y ′

s

dℓ
��

⊕
ϕ(j)=sX

′
r · C(kj)(Yj)

dr
��(⊕

ψ(i)=r C(ℓi)(Xi)
)
· Y ′

s

̺r⊗id
**TTTTTTTTTTTTTTTTT

X ′
r ·

(⊕
ϕ(j)=s C(kj)(Yj)

)

id⊗πs
ttjjjjjjjjjjjjjjjjj

X ′
r · Y

′
s

The σ is an appropriate permutation of the summands.
The distributivity laws in C• are natural with respect to morphisms in C• and therefore we have that

dℓ ◦


 ⊕

ψ(i)=r

idC(ℓi)(Xi) · πs


 =

((
idL

ψ(i)=r C(ℓi)(Xi)

)
· πs

)
◦ dℓ ,

dr ◦


 ⊕

ϕ(j)=s

̺r · idC(kj)(Yj)


 =

(
̺r ·

(
idL

ϕ(j)=s C(kj)(Yj)

))
◦ dr .

We use the generalized pentagon equation

dℓ ◦
⊕

ψ(i)=r

dr = dr ◦
⊕

ϕ(j)=s

dℓ ◦ σ

to see that the diagram commutes. We define the tensor product of the two maps to be the composition
given by either of the branches.

Note that for (ψ, ℓi, ̺j)⊗ id the definition reduces to (̺j · id) ◦ dℓ, and similarly the third coordinate
of id ⊗ (ϕ, ki, πj) is (id · πj) ◦ dr. In particular, the tensor product of identity morphisms is an identity
morphism.

Compositions of morphisms in the homotopy colimit involve an additive twist [Th3, p. 1631]. For

(ψ′, ℓ′i, ̺
′
j) : n

′[(x′1, X
′
1), . . . , (x

′
n′ , X ′

n′)]→ n′′[(x′′1 , X
′′
1 ), . . . , (x′′n′′ , X ′′

n′′)]

the morphism
⊕

ψ′ψ(i)=r C(ℓ
′
ψ(i)ℓi)(Xi) −→ X ′′

r is given as a composition. First, one has to permute the

summands

σ :
⊕

ψ′ψ(i)=r

C(ℓ′ψ(i)ℓi)(Xi)→
⊕

ψ′(k)=r

⊕

ψ(i)=k

C(ℓ′kℓi)(Xi) .

20



Then, as we assumed that C is a functor to Perm(Strict), we know that

⊕

ψ′(k)=r

⊕

ψ(i)=k

C(ℓ′kℓi)(Xi) =
⊕

ψ′(k)=r

⊕

ψ(i)=k

C(ℓ′k)C(ℓi)(Xi) =
⊕

ψ′(k)=r

C(ℓ′k)


 ⊕

ψ(i)=k

C(ℓi)(Xi)


 .

Finally, we apply the morphism

⊕

ψ′(k)=r

C(ℓ′k)(̺k) :
⊕

ψ′(k)=r

C(ℓ′k)


 ⊕

ψ(i)=k

C(ℓi)(Xi)


 −→

⊕

ψ′(k)=r

C(ℓ′k)(X
′
k)

and prolong this map with ̺′r to end up in X ′′
r .

In order to prove that the tensor product actually defines a bifunctor, we will show that

(ψ, ℓi, ̺j)⊗ (ϕ, ki, πj) = ((ψ, ℓi, ̺j)⊗ id) ◦ (id⊗ (ϕ, ki, πj)) = (id⊗ (ϕ, ki, πj)) ◦ ((ψ, ℓi, ̺j)⊗ id)

and

((ψ′, ℓ′i, ̺
′
j)⊗ id) ◦ ((ψ, ℓi, ̺j)⊗ id) = ((ψ′, ℓ′i, ̺

′
j) ◦ (ψ, ℓi, ̺j))⊗ id

and leave it to the reader to check the remaining identity.
The first equation is straightforward to see, because ((ψ, ℓi, ̺j)⊗ id) ◦ (id⊗ (ϕ, ki, πj)) corresponds to

the left branch of the diagram above and the other composition is given by the right branch.
For the second equation we have to check that (((̺′ ◦ ̺) · id) ◦ dℓ)s = ((̺′ · id) ◦ dℓ ◦ (̺ · id) ◦ dℓ)s. Both

morphisms have source
⊕

ψ′ψ(i)=s

C(ℓ′ψ(i)ℓi + id)(Xi · Yj) =
⊕

ψ′ψ(i)=s

C(ℓ′ψ(i)ℓi)(Xi) · Yj

and the left hand side corresponds to the left branch of the following diagram and the right hand side
to the right branch.

⊕
ψ′ψ(i)=s C(ℓ

′
ψ(i)ℓi)(Xi) · Yj

dℓ
��

⊕
ψ′ψ(i)=s C(ℓ

′
ψ(i)ℓi + id)(Xi · Yj)

σ

��(⊕
ψ′ψ(i)=s C(ℓ

′
ψ(i)ℓi)(Xi)

)
· Yj

σ·id

��

⊕
ψ′(k)=s

⊕
ψ(i)=k C(ℓ

′
ψ(i) + id)C(ℓi + id)(Xi · Yj)

(⊕
ψ′(k)=s

⊕
ψ(i)=k C(ℓ

′
ψ(i))C(ℓi)(Xi)

)
· Yj

⊕
ψ′(k)=s C(ℓ

′
k + id)

(⊕
ψ(i)=k C(ℓi + id)(Xi · Yj)

)

L

ψ′(k)=s C(ℓ′k+id)((̺k·id)◦dℓ)

��(⊕
ψ′(k)=s C(ℓ

′
k)

(⊕
ψ(i)=k C(ℓi)(Xi)

))
· Yj

(
L

ψ′(k)=s C(ℓ′k)(̺k))·id
��

⊕
ψ′(k)=s C(ℓ

′
k)(X

′
k) · Yj

dℓ

��(⊕
ψ′(k)=s C(ℓ

′
k)(X

′
k)

)
· Yj

̺′s·id ((QQQQQQQQQQQQ

(⊕
ψ′(k)=s C(ℓ

′
k)(X

′
k)

)
· Yj

̺′s·iduukkkkkkkkkkkkkk

X ′′
s · Yj

Naturality of dℓ in C• ensures that dℓ can change place with
⊕

ψ′(k)=s C(ℓ
′
k + id)(̺k · id) on the right

branch. That dℓ ◦ σ = (σ · id) ◦ dℓ holds because C• satisfies property (8) from Definition 2.1 and hence
the diagram commutes.

In order to show that the associativity identification is natural, we have to prove that

((ψ1, ℓ1i , ̺
1
j)⊗ (ψ2, ℓ2i , ̺

2
j))⊗ (ψ3, ℓ3i , ̺

3
j) = (ψ1, ℓ1i , ̺

1
j)⊗ ((ψ2, ℓ2i , ̺

2
j)⊗ (ψ3, ℓ3i , ̺

3
j))

for morphisms in the homotopy colimit. The claim is obvious on the coordinates of the surjections and
the morphisms in J .
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For proving the identity in the third coordinate of morphisms, note that the naturality of ⊗ implies
that we can write

((ψ1, ℓ1i , ̺
1
j)⊗ (ψ2, ℓ2i , ̺

2
j))⊗ (ψ3, ℓ3i , ̺

3
j)

=(((ψ1, ℓ1i , ̺
1
j)⊗ id)⊗ id) ◦ ((id⊗ (ψ2, ℓ2i , ̺

2
j))⊗ id) ◦ ((id⊗ id)⊗ (ψ3, ℓ3i , ̺

3
j)) .

Therefore, it suffices to prove the claim for each of the factors. We will show it for the middle one
and leave the other ones to the curious reader. Recall that id ⊗ (ψ2, ℓ2i , ̺

2
j) has as third coordinate the

composition (id · ̺2
j ) ◦ dr and therefore (id⊗ (ψ2, ℓ2i , ̺

2
j))⊗ id has third coordinate

(((id · ̺2
j) ◦ dr) · id) ◦ dℓ = (id · ̺2

j · id) ◦ (id · dr) ◦ dℓ .

But (id · dr) ◦ dℓ = (dℓ · id) ◦ dr (equation (7’) of Definition 2.5) holds in C•, and therefore the third
coordinate equals

(id · ̺2
j · id) ◦ (id · dr) ◦ dℓ = (id · ̺2

j · id) ◦ (dℓ · id) ◦ dr

which is the third coordinate of id⊗ ((ψ2, ℓ2i , ̺
2
j)⊗ id).

Naturality of the multiplicative twist map can be seen as follows. We have to show that

τ⊗ ◦ ((ψ, ℓi, ̺j)⊗ (ϕ, ki, πj)) = ((ψ, ℓi, ̺j)⊗ (ϕ, ki, πj)) ◦ τ⊗ .

On the first coordinate of the morphisms this reduces to the equality

σn′,m′ ◦ (ψ, ϕ)(i, j) = (ϕ(j), ψ(i)) = (ϕ, ψ) ◦ σn,m(i, j),

and on the second coordinate we have the equation

cJ ◦ (ℓi + kj) = (kj + ℓi) ◦ cJ

because cJ is natural. Thus, it remains to prove that the above equation holds in the third coordinate,
which amounts to showing that the following diagram commutes.

⊕
ψ(i)=r

⊕
ϕ(j)=s C(ℓi)(Xi) · C(kj)(Yj)

(
L L

γ⊗)◦σ //

L

ψ(i)=r dr

��

⊕
ϕ(j)=s

⊕
ψ(i)=r C(kj)(Yj) · C(ℓi)(Xi)

σ−1

��⊕
ψ(i)=r

⊕
ϕ(j)=s C(kj)(Yj) · C(ℓi)(Xi)

L

ψ(i)=r dℓ

��⊕
ψ(i)=r C(ℓi)(Xi) ·

(⊕
ϕ(j)=s C(kj)(Yj)

)

L

ψ(i)=r id·πs

��

L

ψ(i)=r γ⊗ // ⊕
ψ(i)=r

(⊕
ϕ(j)=s C(kj)(Yj)

)
· C(ℓi)(Xi)

L

ψ(i)=r πs·id

��⊕
ψ(i)=r C(ℓi)(Xi) · Y ′

s

dℓ
��

⊕
ψ(i)=r Y

′
s · C(ℓi)(Xi)

dr
��(⊕

ψ(i)=r C(ℓi)(Xi)
)
· Y ′

s

̺r ·id

��

Y ′
s ·

(⊕
ψ(i)=r C(ℓi)(Xi)

)

id·̺r

��
X ′
r · Y

′
s

γ⊗ // Y ′
s ·X

′
r

The top diagram commutes because dr is defined in terms of dℓ and γ⊗. For the bottom diagram we
apply the same argument together with the naturality of γ⊗.

We have to check that left distributivity is the identity on morphisms. Consider three morphisms
as above. When we focus on the surjections ψ1 : n → n′, ψ2 : m → m′, and ψ3 : ℓ → ℓ′, we see that a
condition like (ψ1 + ψ2)ψ3(i, j) = (r, s) only affects either the preimage of n′ℓ′ or the preimage of m′ℓ′

in (n+m)ℓ, but never both. Therefore, the third coordinate of the morphism

((ψ1, ℓ1i , ̺
1
j)⊕ (ψ2, ℓ2i , ̺

2
j))⊗ (ψ3, ℓ3i , ̺

3
j)

is either a third coordinate of (ψ1, ℓ1i , ̺
1
j) ⊗ (ψ3, ℓ3i , ̺

3
j) or of (ψ2, ℓ2i , ̺

2
j) ⊗ (ψ3, ℓ3i , ̺

3
j) and thus left dis-

tributivity is the identity on morphisms.
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In the J-graded bipermutative case the naturality of the right distributivity isomorphism follows
from the one of dℓ and the multiplicative twist. In the bipermutative and the strictly bimonoidal case
right distributivity is given by (ξ, id, id). Therefore naturality of dr in the bipermutative setting proves
naturality in the strictly bimonoidal setting as well.

This finishes the proof that the homotopy colimit hocolimJ C• is a bipermutative category without
zero.

We now prove the remaining statements of the lemma. There is a natural functor G from C0 to
hocolimJ C• which sends X ∈ C0 to 1[(0, X)]. Note that the functor G is strict (symmetric) monoidal
with respect to ⊗, because G(1) = 1[(0, 1)] and

G(X)⊗G(Y ) = 1[(0, X)]⊗ 1[(0, Y )] = 1[(0 + 0, X ⊗ Y )] = 1[(0, X ⊗ Y )] = G(X ⊗ Y ) .

However, G is only lax symmetric monoidal with respect to ⊕: there is a binatural morphism η⊕
from G(X) ⊕ G(Y ) = 1[(0, X)] ⊕ 1[(0, Y )] = 2[(0, X), (0, Y )] to G(X ⊕ Y ) = 1[(0, X ⊕ Y )] given by
the canonical surjection ψ from 2 to 1 and identity morphisms in the other two components, but of
course this map is not an isomorphism. We have to show that the functor G respects the distributivity
constraints dℓ = id and dr. In our situation we have that η⊗ = id, thus we have to check that

η⊕ = η⊕ ⊗ id

and

(id⊗ η⊕) ◦ τ⊗ ◦ (τ⊗ ⊕ τ⊗) = G(τ⊗ ◦ (τ⊗ ⊕ τ⊗)) ◦ η⊕ .

The first equation is just stating the fact that

2[(0, XY ), (0, X ′Y )]

η⊕=(ψ,id,id)

��

2[(0, X), (0, X ′)]⊗ 1[(0, Y )]

η⊕⊗id=(ψ,id,id)⊗id

��
1[0, XY ⊕X ′Y ] 1[0, (X ⊕X ′)Y ]

commutes.
For the right distributivity law we should observe that the multiplicative twist τ⊗ on the homotopy

colimit reduces to the morphism (id, cJ , γ⊗) in the case of elements of length 1 in the homotopy colimit,

and that c0,0J = id. Furthermore, id⊗ (ψ, id, id) = (ψ, id, id) holds. Therefore

(id⊗ η⊕) ◦ dr =(id⊗ (ψ, id, id)) ◦ τ⊗ ◦ (τ⊗ ⊕ τ⊗)

=(ψ, id, id) ◦ (id, id, γ⊗ ◦ (γ⊗ ⊕ γ⊗))

=(id, id, γ⊗ ◦ (γ⊗ ⊕ γ⊗)) ◦ (ψ, id, id) = G(dr) ◦ η⊕ .

The claim about the module structure is obvious.
As the right distributivity on the homotopy colimit is of the form (ξ, id, id), the above proof carries

over to the strictly bimonoidal case. �

Lemma 5.3. If g : C• → D• is a lax morphism of J-graded bipermutative categories (resp. J-graded
strictly bimonoidal categories) then it induces a lax morphism of zeroless bipermutative categories (resp. ze-
roless strictly bimonoidal categories) g∗ : hocolimJ C• → hocolimJ D•.

Proof. Of course, we define g∗ : hocolimJ C• → hocolimJ D• as

g∗(n[(x1, A1), . . . , (xn, An)]) := n[(x1, g(A1)), . . . , (xn, g(An))] .

Note that with this definition g∗ is strict symmetric monoidal with respect to ⊕ even if g was only lax
symmetric monoidal.

For a morphism (ψ, ℓi, ̺j) from n[(x1, A1), . . . , (xn, An)] to m[(y1, B1), . . . , (ym, Bm)] we define an
induced morphism

g∗(n[(x1, A1), . . . , (xn, An)])→ g∗(m[(y1, B1), . . . , (ym, Bm)])

as follows: we keep the surjection ψ and the maps ℓi. For

̺j :
⊕

ψ(i)=j

Ai → Bj
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we take the composition

̺
g
j :

⊕

ψ(i)=j

g(Ai)
η⊕
−→ g(

⊕

ψ(i)=j

Ai)
g(̺j)
−→ g(Bj)

and obtain a morphism (ψ, ℓi, ̺
g
j ) on the homotopy colimit. The naturality of η⊕ ensures that composition

of morphisms is well-defined.
Let n[(x1, A1), . . . , (xn, An)] and m[(y1, B1), . . . , (ym, Bm)] be two objects in hocolimJ C•. Applying

g∗ ◦ (−⊗ −) yields

nm[(x1 + y1, g(A1 ⊗B1)), . . . , (xn + ym, g(An ⊗Bm))]

whereas the composition (− ⊗−) ◦ (g∗, g∗) gives

nm[(x1 + y1, g(A1)⊗ g(B1)), . . . , (xn + ym, g(An)⊗ g(Bm))] .

Thus, we can use (id, id, η⊗) to obtain a natural transformation ηh⊗ from (−⊗−)◦(g∗, g∗) to g∗ ◦(−⊗−).

This transformation inherits all properties from η⊗, in particular, ηh⊗ is lax symmetric monoidal if η⊗
was so.

It remains to check the properties concerning the distributivity laws. As dℓ is the identity on the
J-graded bipermutative category and on the homotopy colimit, and η⊕ is the identity on the homotopy
colimit, the equalities reduce to

(2) (ηh⊗ ⊕ η
h
⊗) = ηh⊗

and

(3) g∗(dr) ◦ (ηh⊗ ⊕ η
h
⊗) = ηh⊗ ◦ dr .

The first equation is straightforward to check.
The right distributivity law in the homotopy colimit is given by dr = (ξ, id, id) and ηh⊗ ⊕ η

h
⊗ is equal

to

ηh⊗ ⊕ η
h
⊗ = (idnm, idxi+yj , η⊗)⊕ (idnm′ , idxi+zk , η⊗) .

As addition in the homotopy colimit is given by concatenation, this shows that we can simplify the above
expression to (idnm+nm′ , idxi+ur , η⊗) where ur is either of the form yj or zk. As dr differs from the
identity only in the first coordinate, and ηh⊗⊕ η

h
⊗ only in the third coordinate, these maps commute. �

6. A multiplicative group completion device

Collecting the results we are ready to define our multiplicative group completion.

Theorem 6.1. If R is a commutative rig category (or a rig category) satisfying the conditions of The-
orem 1.1, then

R̄ = D hocolimI(−R)•R

is a simplicial commutative ring category (resp. a simplicial ring category), where (−R)•R is the I-
graded bipermutative category (resp. I-graded strictly bimonoidal category) of Proposition 3.9 applied to
the bipermutative category (resp. strictly bimonoidal category) associated with R.

The rig maps

R
∼

←−−−− ZR −−−−→ R̄

are stable equivalences. Furthermore, the maps

(−R)R
∼

←−−−− Z(−R)R
∼

−−−−→ R̄

form a chain of unstable equivalences of ZR-modules.

Proof. We may assume that R is a bipermutative category or a strictly bimonoidal category. By Lemma
3.7 we know that R → (−R)R is a stable equivalence, and that for each ϕ : m → n with m > 0 the
induced map ϕ∗ : (−R)mR → (−R)nR is an unstable equivalence, and so we are done by Lemma 4.2
and Proposition 5.1. �
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7. Connection to GLn(−R)R

Let R be a strictly bimonoidal category.

Definition 7.1. The category of n × n-matrices over R, Mn(R), is defined as follows. The objects
of Mn(R) are matrices X = (Xi,j)

n

i,j=1 of objects of R and morphisms from X = (Xi,j)
n

i,j=1 to Y =

(Yi,j)
n

i,j=1 are matrices F = (Fi,j)
n

i,j=1 where each Fi,j is a morphism in R from Xi,j to Yi,j .

Lemma 7.2. For a strictly bimonoidal category (R,⊕, 0R, c⊕,⊗, 1R) the category Mn(R) is a monoidal
category with respect to the matrix multiplication bifunctor

Mn(R)×Mn(R)
·
−→Mn(R)

(Xi,j)
n

i,j=1 · (Yi,j)
n

i,j=1 = (Zi,j)
n

i,j=1 with Zi,j =

n⊕

k=1

Xi,k ⊗ Yk,j .

The unit of this structure is given by the unit matrix object En which has 1R ∈ R as diagonal entries
and 0R ∈ R in the other places.

The property of R being bimonoidal gives π0(R) the structure of a rig, and its (additive) group
completion Gr(π0(R)) = (−π0R)π0R is a ring.

Definition 7.3. We define the weakly invertible n×n-matrices over π0(R), GLn(π0R), to be the n×n-
matrices over π0(R) that are invertible as matrices over Gr(π0R).

Note that we can define GLn(π0R) by the pullback square

GLn(π0R) //
��

��

GLn(Gr(π0R))
��

��
Mn(π0R) // Mn(Gr(π0R))

Definition 7.4. The category of weakly invertible n × n-matrices over R, GLn(R), is the full sub-
category of Mn(R) with objects all matrices X = (Xi,j)

n

i,j=1 ∈ Mn(R) whose matrix of π0-classes

[X ] = ([Xi,j ])
n

i,j=1 is contained in GLn(π0R).

Matrix multiplication is of course compatible with the property of being weakly invertible. Thus, the
category GLn(R) inherits a monoidal structure from Mn(R).

However, even if our base category is not bimonoidal it still makes sense to talk about matrices and
even weakly invertible matrices, as long as π0 of that category is a rig. In particular, we can consider
Mn(−R)R and GLn(−R)R. Recall that (−R)R has a bifunctor ⊕ which turns it into a permutative
category and recall the R-module structure on (−R)R defined by A(B,C) := (AB,AC) for A ∈ R and
(B,C) ∈ (−R)R.

Lemma 7.5. Assume that R satisfies the conditions of Theorem 1.1. Then the categories GLn(−R)R,
GLnZ(−R)R and GLn(R̄) are weakly equivalent as modules over GLn(ZR).

Proof. We define the GLn(ZR)-action on Mn(−R)R, MnZ(−R)R and Mn(R̄) via

(Xi,j)
n

i,j=1(Yi,j)
n

i,j=1 = (Wi,j)
n

i,j=1

with Wi,j =
⊕n

k=1Xi,kYk,j where Xi,kYk,j is given by the ZR-module structure of (−R)R, Z(−R)R
or R̄, respectively. Multiplicativity of the determinant then ensures that this passes to a well-defined
module structure on the weakly invertible matrices. The weak equivalences from Theorem 6.1 thus
combine to give weak equivalences of GLn(ZR)-modules

GLn(−R)R
∼
←− GLnZ(−R)R

∼
−→ GLn(R̄) .

�

There is a canonical stabilization functor GLn(R)→ GLn+1(R) which is induced by taking the block
sum with E1 ∈ GL1(R). Let GL(R) be the colimit of the categories GLn(R).
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8. One-sided bar construction

Definition 8.1. Let (T , ·, 1) be a monoidal category and M a left T -module. The one-sided bar con-
struction B(∗, T ,M) is the simplicial category whose q-simplices Bq(∗, T ,M) are the following category:
consider the ordered set [q]+ = [q] ⊔ {∞}, i.e., in addition to the numbers 0 < 1 < · · · < q there is a
maximal element ∞. An object a in Bq(∗, T ,M) consists of the following data.

(1) For each 0 6 i < j 6 q there is an object aij ∈ T , and for each 0 6 i 6 q an object ai∞ ∈M.
(2) For each 0 6 i < j < k 6∞ there is an isomorphism

aijk : aij · ajk → aik

(in T if k < ∞ and in M if k =∞) such that if 0 6 i < j < k < l 6∞, the following diagram
commutes

(aij · ajk) · akl

aijk·id

��

struct. iso. // aij · (ajk · akl)

id·ajkl

��
aik · akl

aikl // ail aij · ajl .
aijloo

A morphism f : a→ b consists of morphisms fij : aij → bij (in T if j <∞ and inM if j =∞) such that
if 0 6 i < j < k 6∞

fikaijk = bijk(fij · fjk) : aij · ajk → bik .

The simplicial structure is gotten as follows: if φ : [q] → [p] ∈ ∆ the functor φ∗ : Bp(∗, T ,M) →
Bq(∗, T ,M) is obtained by precomposing with φ+ = φ⊔{∞}. So for instance d1(a) is gotten by deleting
all entries with indices containing 1 from the data giving a . In order to allow for degeneracy maps si,
we use the convention that all objects of the form aii are the unit of the monoidal structure, and all
isomorphisms of the form aiik and aikk are identities.

A good way to think about this comes from the discrete case (T is a monoid andM is a T -set). Then an
object a ∈ Bq(∗, T ,M) is uniquely given by the “diagonal” (a01, a12, . . . , aq−1 q, aq∞), and B(∗, T ,M)
is isomorphic to the nerve of the category with objects T and morphisms a1∞ → a01 · a1∞ = a0∞

corresponding to (a01, a1∞).

Example 8.2. (1) If M is the one-point category ∗, then B(∗, T , ∗) is isomorphic to the bar con-
struction BT of [BDR].

(2) If F : T → T ′ is a lax monoidal functor, then T ′ may be considered as a T -module, and we write
without further ado B(∗, T , T ′) for the corresponding bar construction (with F suppressed). In
case F is an isomorphism, B(∗, T , T ′) is contractible.

We think of elements of Bq(∗, T ,M) in terms of triangular arrays of objects, suppressing the isomor-
phisms, so that a typical element in B2(∗, T ,M) is written

a01 a02 a0∞

a12 a1∞

a2∞

with d1 given by

a02 a0∞

a2∞ .

The one-sided bar construction is functorial in “natural modules”. A natural module is a pair (T ,M)
where T is a monoidal category and M is a T -module. A morphism (T ,M) → (T ′,M′) consists of a
pair (F,G) where F : T → T ′ is a lax monoidal functor and G : M → F ∗M′ is a map of T -modules,
where F ∗M′ isM′ endowed with the T -module structure given by restricting along F .

Lemma 8.3. For each q there is an equivalence of categories between Bq(∗, T ,M) and the product
category T ×q ×M.

Proof. The equivalence is given by the forgetful functor

F : Bq(∗, T ,M)→ T ×q ×M

sending a to the “diagonal” F (a) = (a01, . . . , aq−1 q, aq∞). The inverse is gotten by sending (a1, . . . , aq, a∞)
to the a with aij = ai+1 · (· · · (aj−1 · aj) · · · ) and aijk given by the structural isomorphisms. �
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Corollary 8.4. Let (F,G) : (T ,M) → (T ′,M′) be a map of natural modules such that F and G are
equivalences of categories. Then the induced map

B(∗, F,G) : B(∗, T ,M)→ B(∗, T ′,M′)

is a degreewise equivalence of simplicial categories.

Usually T ×q × M is not functorial in [q], but if (T ,M) is strict, the monoidal structure gives a
simplicial category

Bstrict(∗, T ,M) = {[q] 7→ T ×q ×M} .

In this situation Lemma 8.3 reads:

Corollary 8.5. Let T be a strict monoidal category andM a strict T -module. Then there is a degreewise
equivalence between the simplicial categories B(∗, T ,M) and Bstrict(∗, T ,M).

Proposition 8.6. Let F : T → G be a strong monoidal functor such that the monoidal structure on G
induces a group structure on π0G. Then

B(∗, T ,G) −−−−→ BT
y

y

B(∗,G,G) −−−−→ BG

is homotopy cartesian, meaning that it induces a homotopy cartesian diagram upon applying the nerve
functor in every degree. The (nerve of the) lower left hand corner is contractible.

Proof. By [JoS] there is a diagram of monoidal categories

stT
∼

−−−−→ T

stF

y F

y

stG
∼

−−−−→ G

such that the horizontal maps are monoidal equivalences, and stF is a strict monoidal functor between
strict monoidal categories. Together with Corollaries 8.4 and 8.5 this tells us that we may just as well
consider the strict situation, and use the strict bar construction. However, note that the nerve of the strict
monoidal category stT is a simplicial monoid, and that reversal of priorities gives a natural isomorphism

B(∗, NstT , NstG) ∼= NBstrict(∗, stT , stG),

so that our statement reduces to the statement that

B(∗, NstT , NstG)→ B(NstT )→ B(NstG)

is a fiber sequence up to homotopy, which is a classical result given that NstG is group-like. �

9. Contracting the one-sided bar construction

9.1. A model for K-theory of R as an R-module. In order to construct concrete homotopies, we
offer a slight variant of the Grayson–Quillen model where morphisms are not entire equivalence classes.
The price is as usual that the resulting object is a two-category. Since there was some confusion about
this point while the paper was still at a preprint stage, we emphasize that this is not the construction of
Thomason [Th1, 4.3.2] and Jardine [Ja].

Let (M,⊕, 0M, τM) be a permutative category written additively. Let TM be the following 2-
category. The objects of TM are pairs (A+, A−) of objects inM, thought of as plus and minus objects
inM. Given two objects A,B ∈ TM, the category of morphisms TM(A,B) has objects the pairs (X,α)
where X is an object inM and α is a pair of isomorphisms α± : A±⊕X → B± inM. A morphism from
(X,α) to (Y, β) is a map φ : X → Y such that β(1 ⊕ φ) = α. Composition TM(B,C)× TM(A,B) →
TM(A,C) is gotten by sending ((Y, β), (X,α)) to the pair consisting of X ⊕ Y and the composite maps

A± ⊕ (X ⊕ Y ) = (A± ⊕X)⊕ Y
α±⊕id
−−−−→ B± ⊕ Y

β±

−−−−→ C± .

Composition on morphisms is simply given by addition. Composition is strictly associative becauseM is
permutative; ifM is merely symmetric monoidal, standard modifications are necessary. Symmetry allows
for a symmetric monoidal structure on TM: if we define (A+, A−)⊕ (B+, B−) := (A+⊕B+, A−⊕B−),
we need the symmetry in order to turn that prescription into a bifunctor.
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Consider the Grayson–Quillen version of K-theory (−M)M as a 2-category with discrete morphism
categories. Note that if A and B are objects in TM, then (−M)M(A,B) = π0TM(A,B). (In the case of
a topological category, we interpret π0 as the coequalizer of the source and target maps from the morphism
space to the object space.) The assignment that is the identity on objects and otherwise is induced by
the projection TM(A,B)→ π0TM(A,B) gives a 2-functor TM→ (−M)M. It is not hard to see that
the morphism categories in TM are homotopy discrete (in the sense that TM(A,B)→ π0TM(A,B) is
a weak equivalence), and so the following result is true:

Lemma 9.1. Let M be a permutative category. The 2-functor TM→ (−M)M is a weak equivalence.
Hence, if all morphisms inM are isomorphisms and if translation is faithful, then the standard inclusion
M→ TM is a group completion.

Note that if R is a rig category, TR will not be a rig category (essentially because of the non-strict
symmetry in quadratic terms, as in [Th2, p. 572]), but it will still be an R-module:

Lemma 9.2. Let (R,⊕, 0R, c⊕,⊗, 1R) be a strictly bimonoidal category. The map

R× TR→ TR

given on objects by (A, (B+, B−)) 7→ (A ⊗ B+, A ⊗ B−), and on morphisms by sending φ : A→ B ∈ R
and (X,α) ∈ TR(C,D) to the pair consisting of A⊗X and the map

A⊗ C± ⊕A⊗X
dr−−−−→ A⊗ (C± ⊕X)

φ⊗α±

−−−−→ B ⊗D±

induces an R-module structure on TR.

We consider TR as a simplicial category by taking the nerve of each category of morphisms; thus in
simplicial degree ℓ, the objects of TℓR are the objects of TR. The morphisms in TℓR from (A+, A−)
to (B+, B−) consist of objects X0, . . . , Xℓ, a one-morphism α± : A± ⊕ X0 → B±, and isomorphisms
φl : X l → X l−1 for l = 1, . . . , ℓ. The simplicial structure is given by composing and forgetting φl’s and
inserting identity maps.

9.2. Subdivisions. We will use the following variant of edgewise subdivision to make room for an
explicit simplicial contraction, whose construction begins in subsection 9.4. Consider the shear functor
z : ∆ × ∆ → ∆ × ∆ given by sending (S, T ) to (T ⊔ S, T ) where T ⊔ S is the disjoint union with the
ordering obtained from T and S with the extra declaration that every object in S is greater than every
object in T . If B is a bisimplicial object, we let z∗B = B ◦ z. The standard inclusion S → T ⊔ S
gives a natural transformation η in ∆×∆ from the identity to z, and hence a natural transformation in
bisimplicial sets η∗ : z∗ → id. Let Ens denote the category of sets and functions.

Lemma 9.3. For any bisimplicial set X the map η∗ : z∗X → X becomes a weak equivalence upon
realization.

Proof. The diagonal of z∗X is equal to the evaluation of X on the opposite of the composite

∆
S 7→(S,S)
−−−−−−→ ∆×∆

(S,T ) 7→(S⊔S,T )
−−−−−−−−−−→ ∆×∆ ,

so since a map of bisimplicial sets is an equivalence if it is one in every (vertical) degree, it is enough
to know that for each fixed T ∈ ∆ the natural map {S 7→ X(S ⊔ S, T )} → {S 7→ X(S, T )} is a weak
equivalence. But this is a standard weak equivalence from the (second) edgewise subdivision, which is
known to be homotopic to a homeomorphism after realization. See [BHM, Lemma 1.1] and the proof of
[BHM, Proposition 2.5]. �

Vertices in z∗(∆[p] × ∆[q]) (where products of simplicial sets are viewed as bisimplicial sets, and
vertices are (0, 0)-simplices) are for instance indexed by tuples ((a, b), c) where 0 6 a 6 b 6 p and
0 6 c 6 q.

Here are pictures of z∗(∆[2]×∆[0]) and z∗(∆[2]×∆[1]):

((2, 2), 0) //

&&MMMMMMMMMM
((1, 2), 0)

��

// ((1, 1), 0)

��
((0, 2), 0) //

&&MMMMMMMMMM
((0, 1), 0)

��
((0, 0), 0)
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((2, 2), 1) //

��

++WWWWWWWWWWWWWWWWWWWWWWWWWW

""EEE
EEE

EE
EEE

EE
EE

EEE
EE

E

��

((1, 2), 1)

��

&&MMMMMMMMMM
//

22
22

��2
22

22
22

22
22

22
22

22
22

((1, 1), 1)

��

&&MMMMMMMMMM

22
22

22
2

22
22

��2
22

22
22

22
22

2

((0, 2), 1)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY //

��

((0, 1), 1)

&&MMMMMMMMMM

��

((2, 2), 0) //

++WWWWWWWWWWWWWWWWWWWWWWWWWW ((1, 2), 0)

&&MMMMMMMMMM
// ((1, 1), 0)

&&MMMMMMMMMM
((0, 0), 1)

��

((0, 2), 0)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY // ((0, 1), 0)

&&MMMMMMMMMM

((0, 0), 0) .

Note that for any bisimplicial set X

X(p,q)
∼= Hombisimp. sets(∆[p]×∆[q], X) =

∫

([s],[t])

Ens(∆([s], [p])×∆([t], [q]), X(s,t))

as a categorical end. Therefore, the right adjoint of z∗, z∗, is given by

(z∗X)(p,q) = Hombisimp. sets(∆[p]×∆[q], z∗X) ∼= Hombisimp. sets(z
∗(∆[p]×∆[q]), X)

and thus

z∗X = {[p], [q] 7→ {bisimp. maps z∗(∆[p]×∆[q])→ X}}

= {[p], [q] 7→

∫

([s],[t])

Ens(∆([t] ⊔ [s], [p])×∆([t], [q]), X(s,t))} .

Let η∗ : X → z∗X be the natural transformation associated with η. Notice that η∗ maps X(0,q)

isomorphically to (z∗X)(0,q) for all q > 0, so (z∗X)(0,q) ∼= X(0,q).

Lemma 9.4. In the homotopy category with respect to maps that are weak equivalences on the diagonal,
η∗ : X → z∗X is a split monomorphism.

Proof. By formal considerations the diagram

z∗X
z∗η∗ //

η∗ $$HH
HH

HH
HH

HH
z∗z∗X

adjunction

��
X

commutes, and η∗ is a weak equivalence on the diagonal. Hence z∗η∗ (and so η∗) is a split monomorphism
in the homotopy category. �

9.3. The bar construction on matrices. Let R be a strictly bimonoidal category such that all mor-
phisms are isomorphisms.

Consider the one-sided bar construction B(∗, GLn(R), GLn(TR)). In the following, 0 and 1 are short
for zero resp. unit matrices over R of varying size. Viewing TR as a simplicial category we get that
B(∗, GLn(R), GLn(TR)) is a bisimplicial category. We are going to show that

B(∗, GL(R), GL(TR)) ∼= colimnB(∗, GLn(R), GLn(TR))

is contractible, and it is enough to show that B(∗, GL(R), GL(TℓR)) is contractible for every ℓ.
To ease readability, we will abandon the cumbersome ⊕ and ⊗ in favor of the more readable + and ·

— reminding us of the matrix nature of our efforts.
Fix ℓ once and for all, and let Bn = B(∗, GLn(R), GLn(TℓR)). An object in Bnq is a collection mij of

n×n matrices in R for 0 6 i < j 6 q and for each 0 6 i 6 q a matrix mi∞ in TℓR, together with suitably
compatible structural isomorphisms mijk : mij ·mjk → mik. The matrices are drawn from the “weakly
invertible components”. The matrices mi∞ and the structural isomorphisms relating these need special
attention. Each entry is in TℓR, so mi∞ can be viewed as a pair m±

i∞ of matrices, and the structural
isomorphism mij∞ : mij · mj∞ → mi∞ is a tuple (m±

ij∞, φ
1
ij∞, . . . , φ

ℓ
ij∞), where the φlij∞ : xlij∞ →
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xl−1
ij∞ ∈ Mn(R) for l = 1, . . . , ℓ are matrices of isomorphisms, and the m±

ij∞ : mij ·m
±
j∞ + x0

ij∞ → m±
i∞

are isomorphisms.
The commutativity of

(mij ·mjk) ·mk∞

∼= //

mijk ·id

��

mij · (mjk ·mk∞)

id·mjk∞

��
mik ·mk∞ mik∞

// mi∞ mij ·mj∞
mij∞

oo

says that two morphisms from (mij ·mjk) ·mk∞ agree: one is an isomorphism with source (mij ·mjk) ·
mk∞+xlik∞, the other one is an isomorphism with source (mij ·mjk)·mk∞+mij ·x

l
jk∞+xlij∞. Therefore

we obtain the following equality.

Lemma 9.5. In the situation above one has the identity

xlik∞ = mij · x
l
jk∞ + xlij∞

for l = 0, 1, . . . , ℓ, and the diagram

mij · (mjk ·m
±
k∞) + x0

ik∞ mij · (mjk ·m
±
k∞) +mij · x0

jk∞ + x0
ij∞

id·m±
jk∞+id

��
(mij ·mjk) ·m

±
k∞ + x0

ik∞

∼=

OO

mijk·id+id

��

mij ·m
±
j∞ + x0

ij∞

m±
ij∞

��
mik ·m

±
k∞ + x0

ik∞

m±
ik∞ // m±

i∞

commutes.

(Here the map id ·m±
jk∞ already incorporates the right distributivity isomorphism dr, as specified in

Lemma 9.2.)
A morphism α : m→ m̃ in Bnq consists of a matrix αij : mij → m̃ij of maps in R for 0 6 i < j 6 q, and

morphisms (α±
i∞, ψ

1
i∞, . . . , ψ

ℓ
i∞) : m±

i∞ → m̃±
i∞ in TℓR for 0 6 i 6 q, all compatible with the structure

maps of m and m̃. Here α±
i∞ is a map m±

i∞ + ξ0i∞ → m̃±
i∞, and the ψli∞ for l = 1, . . . , ℓ are maps

ξli∞ → ξl−1
i∞ of matrices in R.

The condition αi∞mij∞ = m̃ij∞(αij · αj∞) allows us to draw the following conclusion.

Lemma 9.6. In the situation above one has the identity

xlij∞ + ξli∞ = mij · ξ
l
j∞ + x̃lij∞

for each l = 0, . . . , ℓ.

9.4. Start of the proof that B(∗, GL(R), GL(TℓR)) is contractible. We will show that colimnB
n =

B(∗, GL(R), GL(TℓR)) is contractible by showing that each matrix stabilization functor in: Bn → B2n

is trivial in the homotopy category. Here in(m) = [m 0
0 1 ].

We regard the simplicial categories Bn and B2n as bisimplicial sets, by way of their respective nerves
NBn and NB2n. To be precise, the (p, q)-simplices of NB2n are NpB

2n
q . By Lemma 9.4 it then suffices

to show that the composite map inc = η∗ ◦ in : NBn → z∗NB
2n is trivial in the homotopy category. As

remarked above, z∗(NB
2n)(0,q) ∼= (NB2n)(0,q) = N0B

2n
q , so the subdivision operator z∗ does not make

any difference before we start to consider positive-dimensional simplices (p > 0) in the nerve direction.
Seeing that the image lies in a single path component is easy: if m ∈ N0B

n
0 = obGLn(TℓR) then

there is a path [
m 0
0 1

]
→

[
m m−

0 1

]
→

[
m m−

(1, 1) 1

]
←

[
1 0

(0, 1) 1

]
.

The first arrow represents the one-simplex in the bar direction given by the matrix multiplication
[
1 m−

0 1

]
·

[
m 0
0 1

]
=

[
m m−

0 1

]
∈ GL2n(TℓR) .
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The second arrow represents the one-simplex in the nerve direction induced by the map 0 = (0, 0) →
(1, 1) ∈ T0R ⊂ TℓR. The third map represents the one-simplex in the bar direction given by multiplica-
tion by [

m+ m−

1 1

]
∈ GL2n(R) .

The rest of this section extends this path to a full homotopy, from inc via maps jnc and knc to a
constant map lnc.

9.5. The homotopic maps inc and jnc. Recall that ℓ > 0 is fixed, Bn = B(∗, GLn(R), GLn(TℓR))
is the simplicial category given by the one-sided bar construction, and NBn : [p], [q] 7→ NpB

n
q is the

bisimplicial set given by its degreewise nerve. We let inc : NBn → z∗NB
2n be the composite of the

matrix stabilization map in : NBn → NB2n and the natural map η∗ : NB2n → z∗NB
2n.

There is another map jnc : NBn → z∗NB
2n which is homotopic to inc. OnN0B

n
q it is easy to describe:

if m ∈ N0B
n
q , we declare that X(m) is given by

X(m)ij =





[
1 m−

i∞

0 1

]
if i < j =∞

[
1 x0

ij∞

0 1

]
if i < j <∞

and let

jnc(m) = X(m) · inc(m) ∈ N0B
2n
q = z∗(NB

2n)(0,q) .

Here

jnc(m)ij =





[
mi∞ m−

i∞

0 1

]
if i < j =∞

[
mij x0

ij∞

0 1

]
if i < j <∞

with jnc(m)ijk : jnc(m)ij · jnc(m)jk → jnc(m)ik being the isomorphisms induced by mijk as follows: for
k <∞ we use the identity x0

ik∞ = mij · x0
jk∞ + x0

ij∞ from Lemma 9.5 and obtain

[
mijk id
id id

]
:

[
mij x0

ij∞

0 1

]
·

[
mjk x0

jk∞

0 1

]
=

[
mij ·mjk mij · x0

jk∞ + x0
ij∞

0 1

]
→

[
mik x0

ik∞

0 1

]

and for k =∞ we use the string of isomorphisms
[
xℓij∞ 0

0 0

]
→ . . .→

[
x0
ij∞ 0
0 0

]

together with the isomorphism
[
mij∞ m−

ij∞

id id

]
:

[
mij x0

ij∞

0 1

]
·

[
mj∞ m−

j∞

0 1

]
+

[
x0
ij∞ 0
0 0

]

=

[
mij ·mj∞ + x0

ij∞ mij ·m
−
j∞ + x0

ij∞

0 1

]
→

[
mi∞ m−

i∞

0 1

]
.

We notice that the Tℓ-direction does not add any complications but notational. This continues to be
true in general, so we simplify notation by considering only the case ℓ = 0.

The relevant complications arise when one starts moving in the nerve direction. As the construction
of the map jnc is quite involved, we will give some examples first. The impatient reader can skip this
part and restart reading in subsection 9.6 where the formula in the general case is given.

As an illustration, let ℓ = 0, p = 2 and q = 0 so that

m (m0 (ξ1,α1)
←−−−−− m1 (ξ2,α2)

←−−−−− m2) ∈ N2B
n
0 = N2GLn(T0R) .
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Then jnc(m) is captured by the picture

[
m2 (m2)−

0 1

] h

1 ξ2

0 1

i

//

h

1 ξ2+ξ1

0 1

i

''OOOOOOOOOOO

[
m2 (m2)−+ξ2

0 1

]

h

1 ξ1

0 1

i

��

//
[
m1 (m1)−

0 1

]

h

1 ξ1

0 1

i

��[
m2 (m2)−+ξ2+ξ1

0 1

]
//

''PPPPPPPPPPPP

[
m1 (m1)−+ξ1

0 1

]

��[
m0 (m0)−

0 1

]

where the bar direction is written in the “g
m

−−−−→ mg” form, and the unlabeled arrows correspond to
the nerve direction, with entries consisting of the appropriate α’s.

An even more complicated example, essentially displaying all the complications of the general case:
ℓ = 0, p = q = 1, and α : m1 → m0 ∈ N1B

n
1 with (mu)±01∞ : (mu)01 · (mu)±1∞ + (xu)001∞ → (mu)±0∞ (for

u = 0, 1 running in the nerve direction), α01 : m1
01 → m0

01 and α±
i∞ : (m1)±i∞ + ξi∞ → (m0)±i∞.

Then jnc(m) is the map from

z∗(∆[1]×∆[1]) = ((0, 0), 0) ((0, 1), 0)oo ((1, 1), 0)oo

((0, 0), 1)

OO

((0, 1), 1)oo

OO

((1, 1), 1)oo

OOffMMMMMMMMMM

sending the (nondegenerate) ((0, 1), 0)← ((1, 1), 0)← ((1, 1), 1) simplex to

[
1 ξ0∞
0 1

] [
m1

01 x
1
01∞+ξ0∞

0 1

] [
m1

0∞ (m1)−0∞+ξ0∞
0 1

]
[
m1

01 x
1
01∞

0 1

] [
m1

0∞ (m1)−0∞
0 1

]
[
m1

1∞ (m1)−1∞
0 1

] ∈ N0B
2n
2 ,

the ((0, 1), 0)← ((0, 1), 1)← ((1, 1), 1) simplex to
[
m1

01 x
0
01∞

0 1

] [
m1

01 x
1
01∞+ξ0∞

0 1

] [
m1

0∞ (m1)−0∞+ξ0∞
0 1

]

[
1 ξ1∞
0 1

] [
m1

1∞ (m1)−1∞+ξ1∞
0 1

]
[
m1

1∞ (m1)−1∞
0 1

] ∈ N0B
2n
2 ,

(here the identity from Lemma 9.6 is used) and the (1, 1)-simplex ((0, 0), 0) ((0, 1), 0)oo

((0, 0), 1)

OO

((0, 1), 1)oo

OO
to

[
m0

01 x
0
01∞

0 1

] [
m0

0∞ (m0)−0∞
0 1

]
[
m0

1∞ (m0)−1∞
0 1

]

[
α01 id
id id

] [
α0∞ α−

0∞
id id

]
[
α1∞ α−

1∞
id id

]

←−−−−−−−−−−−−−−−−

[
m1

01 x
0
01∞

0 1

] [
m1

0∞ (m1)−0∞+ξ0∞
0 1

]
[
m1

1∞ (m1)−1∞+ξ1∞
0 1

]
∈ N1B

2n
1 .

Here we have employed the formula x1
01∞ + ξ0∞ = m1

01 · ξ1∞ + x0
01∞ of Lemma 9.6.

9.6. General version of jnc. Consider

(4) m (m0 α1

←−−−− m1 ←−−−− . . .
αp

←−−−− mp) ∈ NpB
n
q .

Then (αu)i∞ is given by the tuple

((αu)±i∞ : (mu)±i∞ + (ξu)0i∞ → (mu−1)±i∞ , {(ψu)li∞ : (ξu)li∞ → (ξu)l−1
i∞ })
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for u = 1, . . . , p, l = 1, . . . , ℓ, but we simplify notation by setting ξui∞ = (ξu)0i∞, xuij∞ = (xu)0ij∞, and

ignoring the ψ’s. Then jnc sends an m as in (4) to the simplex jnc(m) ∈ z∗(NB
n)pq with value at the

((a, b), c)-vertex in z∗(∆[p]×∆[q]) given by

[
(mb)c∞ (mb)−c∞ + ξbc∞ + · · ·+ ξa+1

c∞

0 1

]
∈ GL2n(TℓR)

with the convention that the ξ’s only occur if a + 1 6 b. Higher simplices are given by the structural
isomorphisms in m. Note that the elements in the off-diagonal blocks are actually all in R.

More precisely, a triple (φ, b, ψ) where φ : [r] → [p] and ψ : [r] → [q] are in ∆ and φ(r) 6 b 6 p,
determines a (0, r)-simplex in z∗(∆[p]×∆[q]), because z∗(∆[p]×∆[q])(0,r) = ∆([r + 1], [p])×∆([r], [q])

and φ together with b determine an element in the first factor. We see that jnc(m)(φ, b, ψ) ∈ N0B
2n
r is

the element whose (0 6 i < j 6 r)- and (0 6 i 6 r < j =∞)-entries are

[
(mb)ψ(i)ψ(j) x

φ(j)
ψ(i)ψ(j)∞ + ξ

φ(j)
ψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞

0 1

]

and [
(mb)ψ(i)∞ (mb)−

ψ(i)∞ + ξbψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞

0 1

]
,

respectively. (As before, the ξ’s only occur when φ(i) + 1 6 φ(j) and φ(i) + 1 6 b, respectively.)
Moving in the (nerve =) b-direction is easy because it amounts to connecting two values jnc(m)(φ, b, ψ)

and jnc(m)(φ, b′, ψ) by morphisms. Since this is determined by the one-skeleton, it is enough to describe
the case b′ = b − 1 < b. On the (0 6 i < j 6 r)-entries it is induced by (αb)ψ(i)ψ(j) : (mb)ψ(i)ψ(j) →

(mb−1)ψ(i)ψ(j) (in the upper left hand corner, and otherwise the identity), and on the (0 6 i 6 r <

j =∞)-entries it is given by (ξbψ(i)∞, (α
b)ψ(i)∞) : (mb)ψ(i)∞ → (mb−1)ψ(i)∞ and (αb)−

ψ(i)∞ : (mb)−
ψ(i)∞ +

ξbψ(i)∞ → (mb−1)−
ψ(i)∞ (in the upper row, and otherwise the identity).

Checking that this is well defined and simplicial amounts to the same kind of checking as we have
already encountered, using the same identities. One should notice that at no time during the verifica-
tions is the symmetry of addition used. It is used, however, for the isomorphism that renders matrix
multiplication associative up to isomorphism.

The simplicial homotopy from inc to jnc is gotten by multiplications (in the bar direction) by matrices
of the form

[
1 x

φ(j)
ψ(i)ψ(j)∞ + ξ

φ(j)
ψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞

0 1

]
and

[
1 (mb)−

ψ(i)∞ + ξbψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞

0 1

]
.

9.7. The homotopic maps knc and lnc. Consider the following variant knc of the map jnc: using
the same notation as for jnc, when evaluated on (φ, b, ψ) where φ : [r]→ [p] and ψ : [r]→ [q] are in ∆ and
φ(r) 6 b 6 p, knc(m)(φ, b, ψ) ∈ N0B

2n
r is the element whose (0 6 i < j 6 r)- and (0 6 i 6 r < j =∞)-

entries are [
(mb)ψ(i)ψ(j) x

φ(j)
ψ(i)ψ(j)∞ + ξ

φ(j)
ψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞

0 1

]

and
[
(mb)ψ(i)∞ + (ξbψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞ , ξbψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞ ) (mb)−

ψ(i)∞ + ξbψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞

(1, 1) 1

]
,

respectively. The (A,B)-notation is the “plus-minus” notation for objects in TℓR. The entries for j =∞

can be written more concisely as

[
(mb)ψ(i)∞ + (Ξ,Ξ) (mb)−

ψ(i)∞ + Ξ

(1, 1) 1

]
where Ξ = ξbψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞ .

The entries for finite j are the same as for jnc.
There is a natural map (in the nerve direction) from jnc to knc (of the form (X, id) : (A,B) →

(A+X,B +X) ∈ TℓR — induced by the identity), giving a homotopy.
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Finally, let lnc : NBn → z∗NB
2n be induced by the constant map sending any matrix to

[
1 0

(0,1) 1

]
.

Matrix multiplication yields
[
(mb)+

ψ(i)∞ + ξbψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞ (mb)−

ψ(i)∞ + ξbψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞

1 1

]
·

[
1 0

(0, 1) 1

]

=

[
(mb)ψ(i)∞ + (ξbψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞ , ξbψ(i)∞ + · · ·+ ξ

φ(i)+1
ψ(i)∞ ) (mb)−

ψ(i)∞ + ξcψ(i)∞ + · · ·+ ξ
φ(i)+1
ψ(i)∞

(1, 1) 1

]
.

With the same abbreviation as above, this reads
[
(mb)+

ψ(i)∞ + Ξ (mb)−
ψ(i)∞ + Ξ

1 1

]
·

[
1 0

(0, 1) 1

]
=

[
(mb)ψ(i)∞ + (Ξ,Ξ) (mb)−

ψ(i)∞ + Ξ

(1, 1) 1

]
.

We obtain a homotopy from lnc to knc.
Hence inc is connected by a chain of homotopies to a constant map. Since η∗ : id → z∗ is a

monomorphism in the homotopy category, this means that the stabilization map in: Bn → B2n is
homotopically trivial, and so B(∗, GL(R), GL(TℓR)) = colimnB

n is contractible for each ℓ > 0. Hence
B(∗, GL(R), GL(TR)) is also contractible.

10. The K-theory of a ring category

Given a strictly bimonoidal category R, let HR be a suitably defined multiplicative version of SptR
with HR being an Ω-spectrum from the first level on. For example, we can use the construction in [EM].

Remember that the group-like monoid GLn(HR) is defined by the pullback

GLn(HR) //

��

hocolimm∈I ΩmMn(HR(Sm))

��
GLn(π0HR) // Mn(π0HR) .

Lemma 10.1. If R̄ is a ring category, i.e., a rig category with π0(R̄) a ring, then

|GLn(R̄)|
∼
−→ GLn(HR̄)

is a homotopy equivalence.

Proof. By assumption π0(R̄) is isomorphic to Gr(π0R̄) = π0HR̄, so it is enough to show that |MnR̄|
and hocolimm∈I ΩmMn(HR̄(Sm)) are equivalent. Both are n2-fold products, so it suffices to show that

|R̄| and hocolimm∈I ΩmHR̄(Sm) are equivalent. All the structure maps ΩmHR̄(Sm) → Ωm
′

HR̄(Sm
′

)
are equivalences for m → m′ an injection of nonempty finite sets, and since R̄ is already group-like
|R̄| ≃ HR̄(S0) maps by an equivalence to ΩHR̄(S1). �

11. The Proof

Let R be a bipermutative or strictly bimonoidal category that satisfies the conditions of Theorem 1.1.
Then we know that there is a group completion of R, R̄ = D hocolimI(−R)•R, which is a ring category.

We know from Lemma 9.2 that TR is an R-module, and from Lemma 4.3, Theorem 6.1 and Lemma
9.1 that the maps ZR → R and TR → (−R)R ← Z(−R)R → R̄ are unstable equivalences of ZR-
modules. It follows that GL(ZR) is equivalent to GL(R), and that GL(TR) is equivalent to GL(R̄) as
a GL(ZR)-module. In section 9 we showed that the one-sided bar construction B(∗, GL(R), GL(TR))
is contractible, hence B(∗, GL(ZR), GL(R̄)) is contractible, too. But this is the homotopy fibre of
BGL(ZR)→ BGL(R̄), so we have weak equivalences

BGL(R)
∼
←− BGL(ZR)

∼
−→ BGL(R̄) .

In section 10 we obtained that
|BGL(R̄)|

∼
−→ BGL(HR̄) .

As HR is equivalent to HR̄ this yields that in the diagram

|BGL(R)|

��

|BGL(ZR)|
∼ //∼oo |BGL(R̄)|

∼

��
BGL(HR) BGL(HZR)

∼oo ∼ // BGL(HR̄)
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five out of six arrows are weak equivalences, hence so is |BGL(R)| −→ BGL(HR). Thus finally we
obtain

K(HR) ≃ Z×BGL(HR)+ ≃ Z× |BGL(R)+| ≃ K(R) .

12. Appendix: an alternative construction

We sketch an alternative construction of a group completion of a strictly bimonoidal category which
works in broader contexts than the construction we gave in sections 2.1 to 6.

First, let us recall a slightly modified version of the Elmendorf–Mandell model of K-theory. There
is a precursor of this model in Shimakawa’s papers [Sh, pp. 378–379]. Let (R,⊕, 0R, c⊕,⊗, 1R) be a
small strictly bimonoidal category. For now we focus on the additive structure (R,⊕, 0R, c⊕) of R. The
following is taken from [EM, §4].

For finite based sets X1
+, . . . , X

n
+ with + denoting the basepoint, H̄R(X1

+, . . . , X
n
+) is the category

with objects (C〈S〉, ρ(〈S〉; i, T, U)) where

• 〈S〉 = (S1, . . . , Sn) is an n-tuple of basepoint-free subsets Si ⊂ X i.
• The C〈S〉 are objects of R.
• Let 〈S; i, T 〉 denote (S1, . . . , Si−1, T, Si+1, . . . , Sn) for some subset T ⊂ Si. Then the ρ(〈S〉; i, T, U)

are isomorphisms from C〈S;i,T 〉⊕C〈S;i,U〉 to C〈S〉 for i = 1, . . . , n and T, U ⊂ Si with T ∩U = ∅

and T ∪ U = Si.

The (C〈S〉, ρ(〈S〉; i, T, U)) satisfy the following properties.

(1) If one Si = ∅ for i ∈ {1, . . . , n}, then C〈S〉 = 0R.
(2) If one of the Si or T or U is empty, then ρ(〈S〉; i, T, U) = id.
(3) If c⊕ denotes the twist of the permutative structure (R,⊕, 0R), then

ρ(〈S〉; i, T, U) = ρ(〈S〉; i, U, T ) ◦ c⊕ .

(4) The ρ(〈S〉; i, T, U) are associative, i.e., for all 〈S〉, i and pairwise disjoint T, U, V ⊂ Si with
T ∪ U ∪ V = Si the diagram

C〈S;i,T 〉 ⊕ C〈S;i,U〉 ⊕ C〈S;i,V 〉
ρ(〈S;i,T∪U〉;i,T,U)⊕id //

id⊕ρ(〈S;i,U∪V 〉;i,U,V )

��

C〈S;i,T∪U〉 ⊕ C〈S;i,V 〉

ρ(〈S〉;i,T∪U,V )

��
C〈S;i,T 〉 ⊕ C〈S;i,U∪V 〉

ρ(〈S〉;i,T,U∪V ) // C〈S〉

commutes.
(5) The ρ(〈S〉; i, T, U) satisfy the pentagon rule, i.e., for i 6= j and T, U ⊂ Si, V,W ⊂ Sj with

T ∩ U = ∅ = V ∩W the diagram

C〈S;j,V 〉 ⊕ C〈S;j,W 〉

ρ(〈S〉;j,V,W )

��0
00

00
00

00
00

00
00

C〈S;i,T ;j,V 〉 ⊕ C〈S;i,U ;j,V 〉 ⊕ C〈S;i,T ;j,W 〉 ⊕ C〈S;i,U ;j,W 〉

ρ(〈S;j,V 〉;i,T,U)⊕ρ(〈S;j,W〉;i,T,U)

33hhhhhhhhhhhhhhhhhhh

id⊕c⊕⊕id

��

C〈S〉

C〈S;i,T ;j,V 〉 ⊕ C〈S;i,T ;j,W 〉 ⊕ C〈S;i,U ;j,V 〉 ⊕ C〈S;i,U ;j,W 〉

ρ(〈S;i,T 〉;j,V,W )⊕ρ(〈S;i,U〉;j,V,W )
++VVVVVVVVVVVVVVVVVVV

C〈S;i,T 〉 ⊕ C〈S;i,U〉

ρ(〈S〉;i,T,U)

GG���������������

commutes.

Morphisms in the category consist of morphisms f〈S〉 : C〈S〉 −→ D〈S〉 in R that are the identity if any of
the Si is empty. These morphisms have to commute with the structure maps ρ(〈S〉; i, T, U).

Thus H̄R is a functor from the n-fold product of the category Γ of finite pointed sets to the category
of permutative categories. If f : X+ → Y+ is a map of finite pointed sets and (C〈S〉, ρ(〈S〉; i, T, U))

is an object in H̄R, then f∗(C〈S〉, ρ(〈S〉; i, T, U)) is the object that is given by the cube with values
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f∗C〈S〉 := C〈f−1(S)〉 for all subsets S of Y . As f respects the basepoint +, this is well-defined because

f−1(T ) does not contain the basepoint for T ⊂ S. The structure maps f∗ρ are given by

f∗C〈S;i,T 〉 ⊕ f∗C〈S;i,U〉 C〈f−1S;i,f−1T 〉 ⊕ C〈f−1S;i,f−1U〉

ρ(〈f−1S〉;i,f−1T,f−1U)

��
C〈f−1S;i,f−1T∪f−1U〉 = f∗C〈S〉 .

The permutative structure on H̄R is given by sending (C〈S〉, ρ(〈S〉; i, T, U)) and (D〈S〉, ρ
′(〈S〉; i, T, U))

to the object

(C〈S〉 ⊕D〈S〉, ρ
′′(〈S〉; i, T, U))

where the structure map ρ′′ is given by

(C ⊕D)〈S;i,T 〉 ⊕ (C ⊕D)〈S;i,U〉 C〈S;i,T 〉 ⊕D〈S;i,T 〉 ⊕ C〈S;i,U〉 ⊕D〈S;i,U〉

id⊕c⊕⊕id

��
C〈S;i,T 〉 ⊕ C〈S;i,U〉 ⊕D〈S;i,T 〉 ⊕D〈S;i,U〉

ρ(〈S〉;i,T,U)⊕ρ′(〈S〉;i,T,U)

��
C〈S〉 ⊕D〈S〉 .

The above definition is quite close to the one in [EM]; however, we require the gluing maps ρ to be
isomorphisms.

The case n = 1 is well studied: let m+ denote the finite pointed set {0, 1, . . . ,m} with 0 as basepoint.

Lemma 12.1. [ShSh, Lemma 2.2] The canonical map

H̄R(m+) −→ H̄R(1+)× . . .× H̄R(1+)

is an equivalence of categories.

Let X1, . . . , Xn be finite pointed simplicial sets. We define H̄R(X1, . . . , Xn) to be the n-simplicial
permutative category with

H̄R(X1, . . . , Xn)(ℓ1,...,ℓn) := H̄R((X1)ℓ1 , . . . , (Xn)ℓn)

for ℓi ∈ ∆.

Definition 12.2. For a strictly bimonoidal category R we define KnR to be the category that is the
limit of the diagram

H̄R(Yi1 , . . . , Yin)

with ij ∈ {0, 1, 2} and Y0 = S1, Y1 = Y2 = PS1 and d0 : PS1 → S1.
Here, S1 is the small simplicial model of the 1-sphere, P denotes the simplicial model of the path

space functor which takes a simplicial set X to the simplicial set PX with PXn = Xn+1. The map
d0 : Xn+1 → Xn induces a map PX → X .

More generally, we define for pointed simplicial sets X1, . . . , Xn

H̃R(X1, . . . , Xn) := lim H̄R(Yi1 ∧X1, . . . , Yin ∧Xn)

where the Yij are as above.

Note that K1R corresponds to the classical case ([ShSh, M3, Se]). It is the pullback of the diagram

H̄R(PS1)

d0

��
H̄R(PS1)

d0

// H̄R(S1).

Lemma 12.3. The set of path components π0(K
1R) is an abelian group.

Proof. The pullbackK1R is a simplicial permutative category. Therefore π0(K
1R) is an abelian monoid.

Switching the two copies of H̄R(PS1) in the defining diagram for K1R results in a homotopy inverse
which gives π0(K

1R) a group structure. �

36



There is a natural pairing
KnR×KmR −→ Kn+mR

which is induced by

H̄R(X1
+, . . . , X

n
+)× H̄R(Xn+1

+ , . . . , Xn+m
+ ) −→ H̄R(X1

+, . . . , X
n+m
+ )

(C〈S〉, D〈T 〉) 7→ (C ⊗D)〈U〉

with
(C ⊗D)(U1,...,Un+m) := C(U1,...,Un) ⊗D(Un+1,...,Un+m).

The functors Kn are natural with respect to strictly bipermutative functors between bipermutative
categories.

Let I be the category of finite sets and injective functions. Any morphism in I can be expressed as a
composition of an order preserving injection with a permutation. For a permutation σ ∈ Σn we obtain
from [EM, §4], that the induced map

σ : H̄R(X1
+, . . . , X

n
+) −→ H̄R(X

σ−1(1)
+ , . . . , X

σ−1(n)
+ )

is an equivalence of categories. Thus it induces an equivalence of n-simplicial categories on KnR.
Let i : n→ n+1 be the standard inclusion which misses the element n+1. Then Elmendorf and Mandell

show in their discussion of Extension Functors [EM, §4], that there is an isomorphism of categories

i : H̄R(X1
+, . . . , X

n
+) −→ H̄R(X1

+, . . . , X
n
+, 1+)

for every n-tuple of pointed sets (X1
+, . . . , X

n
+) (compare [Sh, p. 380]). This induces a map KnR →

Kn+1R as follows. First of all the maps H̄R(X1
+, . . . , X

n
+) −→ H̄R(X1

+, . . . , X
n
+, 1+) induce a map from

KnR to the limit of the system H̄R(Yi1 , . . . , Yin , 1+). The natural maps from 1+ to (PS
1)0 = 1+ and

S1
0 = + then yield the desired map to Kn+1R.
One can check that these structure maps fit together to give the following result.

Theorem 12.4. The assignment n 7→ KnR turns K•R into an I-graded bimonoidal category.

Fixing finite pointed sets X1
+, . . . , X

n
+, H̄R(X1

+, . . . , X
n
+,−) is a functor from the category of finite

pointed sets to n-fold simplicial categories. Similar to Lemma 12.1 we get that this is a special Γ-space
in the sense of Segal (up to some realizations resp. diagonals).

Lemma 12.5. The canonical inclusion n→ n+1 induces a weak equivalence KnR → Kn+1R for n > 1.

Proof. Note that
H̃R(1+) = lim H̄R(Yi1 ) ∼ ΩH̄R(S1)

because the natural map is a homology isomorphism of H-spaces (compare [Se, §4]). We know that
KnR ∼= lim H̄R(Yi1 , . . . , Yin , 1+). As n is at least one, the defining diagram for this limit admits a
flip-map and therefore

lim H̄R(Yi1 , . . . , Yin , 1+) ∼ Ω lim H̄R(Yi1 , . . . , Yin , S
1) .

An argument similar to the one at the beginning of the proof shows that

Ω lim H̄R(Yi1 , . . . , Yin , S
1) = limΩH̄R(Yi1 , . . . , Yin , S

1) ∼ H̃R(1+, . . . , 1+) = Kn+1R .

�
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