
Palantir-B System Software Requirements and Design Document

 10/01/01

1 of 1 10/1/2001 12:19 AM

 Palantir-B System

Software Requirements and Design Document (SRDD)

9-30-2001

Prepared for:
Bennett

Prepared by

Team D
(Fernando, Indu, Liang, Udai, Cindy, Tony)

Ac3@cec.wustl.edu

http://userfs.cec.wustl.edu/~ac3/

Palantir-B System Software Requirements and Design Document

 10/01/01

2 of 2 10/1/2001 12:19 AM

Palantir-B System Software Requirements and Design Document

 10/01/01

3 of 3 10/1/2001 12:19 AM

Table of Contents

1......................Introduction 6

1.1...................Purpose of the System 6

1.2...................Scope of the System 6

1.3...................Objective and Success Criteria of the Project..6

1.4...................Definition of Terms and Acronyms ...6

1.5...................References 6

2......................system context 7

2.1...................current system 7

2.2...................System Design (If this is a component or subsystem of a larger system)....7

2.3...................System (Subsystem) Overview..7

3......................Requirements 11

3.1...................Functional Requirements 12

3.2...................Nonfunctional Requirements 12

3.3...................Pseudo Requirements 12

3.4...................Functional analysis 14

3.4.1................Actors 15

3.4.2................Use-Case X 15

3.5...................User Interface 19

4......................Design approach 20

5......................development planning 22

6......................Future Capabilities 22

7......................Analysis/Design 23

7.1...................Analysis/Design Model 23

7.1.1................Component Descriptions 23

7.1.2................External Storage 41

7.1.3…………External Interface Descriptions 45

7.1.4…………Data dictionary 46

Palantir-B System Software Requirements and Design Document

 10/01/01

4 of 4 10/1/2001 12:19 AM

List of Figures & Tables

Figure 1 - System Context Diagram ... 9

Figure 2 – Detailed system overview………………………………………………………

Figure 3 - System Overview

Figure 4 - Overall Use Case Diagram

Figure 5 - Use Case Diagram for Comm

Figure 6- Use Case Diagram for Flight Software

Figure 7- Use Case Diagram for Ground Station

Figure 8 - Use Case Diagram for Sensors

Figure 9 - State Diagram for Flight Software

Figure 10 - Activity Diagram for Sensors

Figure 11 - Activity Diagram for Power Manager

Figure 12 - Second Activity Diagram for Power Manager

Figure 13 - Activity Diagramfor Event Manager

Figure 14 - State Diagram for Data Manager

Figure 15 - Activity Diagram for Data Manager

Figure 16 - State Diagram for Comm Manager

Figure 17 - Activity Diagram for Comm Manager

Figure 18 - Second Activity Diagram for Comm Manager

Figure 19 - State Diagram for Ground Station

Figure 20 - Activity Diagram for Ground Station

Palantir-B System Software Requirements and Design Document

 10/01/01

5 of 5 10/1/2001 12:19 AM

Revision History

9/30/01

Replace System Context diagram

Updated requirements

Updated Actors and User-cases

Inserted Use-case diagram

Updated User-interface Section

Added Design Approach Section

Updated Analysis /Design Section

Inserted new State, Activity diagrams

Updated External Storage Section

Updated External Interface Section

Palantir-B System Software Requirements and Design Document

 10/01/01

6 of 6 10/1/2001 12:19 AM

1 INTRODUCTION

The Palantir-B system is an on-going project that collects data from the atmosphere

and send it back to its end-users. The system consists of 2 parts – Flight System and the

Ground Station System. The Flight System controls sensors on a microsatellite sent to

the atmosphere by Project Aria, a research program led by the School of Engineering of

Washington University. The Flight System is also responsible for self-power

management and data transmission back to the Ground Station. The Ground Station

System allows user to request data and display them in a graphical user interface.

1.1 Purpose of the System

Palantir-B is to provide its users, which range from K-12 students to researchers

around the world, reliable data from the microsatellites of Project Aria for different

experiments.

Our potential customers might also be our end-user; for example, atmospheric

researchers. While other customers might be an intermediate link to the end-user. This

could be school teachers purchasing the software for high school students.

While processing those raw data from the microsatellites and sending them to clients

will be straightforward, the challenge of this project is to overcome transmission delay.

Furthermore, the solar power supply of the satellite is not stable. Thus, besides dealing

with data transmission and multiple clients, our system also need to “power-manage” the

satellite.

1.2 Scope of the System

The Palantir-B is a system that builds on top of the sensor packages of the

microsatellites from Project Aria. It also provides an interface that abstracts away the

complexities of transmission delay.

1.3 Objective and Success Criteria of the Project

The criteria for success in this project is

♦ To provide communication between the flight system with the ground station

system with the constraint of unreliable data transmission

♦ To have the system be able to power manage itself in all imaginable condition

♦ To allow the system to be upgraded with minimal effort

1.4 Definition of Terms and Acronyms

 Palantir A – Device for collecting information about an environment, and

relaying that information to a ground station

 Palantir B – Next generation Palantir, designed to have greater data collection

ability. Does not yet exist in physical form.

1.5 References

 Project Aria Program Description

Palantir-B System Software Requirements and Design Document

 10/01/01

7 of 7 10/1/2001 12:19 AM

 Palantir TD Drawings

 SSC01-VIII-6 Paper

 In-class handout (project reqs)

2 SYSTEM CONTEXT

2.1 Current System

The current system consists of everything developed for Washington University’s

Project Aria. This includes the Palantir CubeSat program and the Palantir Technology

Demonstration balloon program.

The CubeSat program is run collectively by Stanford University’s Space Systems

Development Laboratory (SSDL) and California Polytechnic State University. It’s goal

is to provide a framework for the design, construction and launch of picosatellites by

students.

The Palantir Technology Demonstration, referred to as the “Tech Demo,” is an

instrument that was to be mounted as a payload on Steve Fossett’s balloon. Using a

combination of solar cells and batteries for power, this payload would collect

measurements of temperature, pressure, altitude, humidity, and location data as well as

take pictures of Fossett’s flight as he attempts to travel around the world. This data is

collected on solid state flash memory within the payload and would periodically be sent

to a ground station via a network of amateur radio and satellite network. Unfortunately,

in the days leading to the actual deployment of this payload, the power system failed,

preventing its deployment.

Two websites with more detailed information are:

http://www.aria.cec.wustl.edu/

http://userfs.cec.wustl.edu/~palantir/

System Design (If this is a component or subsystem of a larger system)

2.2 System (Subsystem) Overview

DESCRIPTION OF NEW SYSTEM (OR SUBSYSTEM)

Palantir-B is the next generation Palantir rebuilding on the Palantir-Technology

Demonstrator. The latter was designed in Spring2001 as an information gathering

payload to be carried aboard Steve Fossett’s Round-The-World balloon flight. The

Palantir Technology Demonstrator or Palantir-TD payload would gather atmospheric and

relative data such as temperature, pressure, altitude, humidity and location. Palantir-B

will go a step further and allow the following data to be collected:

ATMOSPHERIC:

 external temperature, pressure, wind speed, wind direction

GPS:

 latitude, longitude, altitude

VISUAL:

Palantir-B System Software Requirements and Design Document

 10/01/01

8 of 8 10/1/2001 12:19 AM

 360 degree virtual and motion detected images run on an event schedule

OTHER:

 sound and other sensor detected data such as sound from microphone

While Palantir–TD’s software was written in C++, Palantir–B will use JAVA as its

programming language in order to avoid fatal memory management problems and be

ready to run on Linux (and possibly be made ready to run on a StrongARM processor).

Palantir-B will be designed to actively gather data based on an event-based

schedule residing in an internal table. The data from the sensors located at various remote

sites will be transmitted to the one or more Palantir Microsatellites, which in turn will

transmit it to Palantir’s Ground Communication Station. Palantir-B’s Ground Processing

Center will then collect this data from the Communication Station.

The main focus of Palantir-B is on creating robust software for the Ground

Processing Center for the processing of data collected from the various sensors

monitoring the atmospheric, GPS, visual and other controls. The processed data or

information will be relayed back to the Palantir Communication Station, which will then

make it available for viewing over the Internet allowing end users such as researchers and

K-12 students to have a virtual experience of the remote Palantir sites.

How it will fit into the current domain?

Palantir-B is part of the bigger project known as Project Aria which is a hands on

space engineering/science program allowing students to analyze, design, manufacture,

launch and operate various space related projects. Palantir-B is one of the projects

underway with remote monitoring as its primary operation. The final working

implementation of Palantir-B would allow it to be used in other projects such as Palantir-

TD where it would be able to replace the basic stamp computer software used in driving

the sensors and accumulating and processing the data collected.

Palantir-B System Software Requirements and Design Document

 10/01/01

9 of 9 10/1/2001 12:19 AM

Figure 1 - System Context Diagram

Palantir-B System Software Requirements and Design Document

 10/01/01

11 of 11 10/1/2001 12:19 AM

Palantir-B System Software Requirements and Design Document

 10/01/01

12 of 12 10/1/2001 12:19 AM

3 REQUIREMENTS

3.1 Functional Requirements

A) Shall support sensors for:

1) GPS.

2) Forward-looking camera, vertical camera with a mirror giving 360-

degree image.

3) External temperature, pressure, humidity, wind speed, wind direction.

4) Microphone.

5) Movement detection.

6) Shall provide easy adaptation for additional sensors.

B) Provide power management.

1) Monitor power availability.

2) Shut off or suspend operations if low power is detected.

C) Function according to an event schedule:

1) Receive event schedule from ground station.

2) Prioritize schedules.

3) Override schedules during exceptional situations.

4) Use schedule as a set of guidelines, not as explicit timeline.

D) Communicate with a ground station:

1) Comm system that uses TCP/IP over Ethernet.

2) Will simulate data transmission delays and low data rates

3.2 Nonfunctional Requirements

A) Performance:

1) Distinguish between relevant and irrelevant data.

2) Provide text interface for users.

B) Security:

 1) Moderate security required, no need for completely secure data

transmission.

C) Modifiability:

1) Support new sensors.

2) Support new event schedule formats, templates.

3) Support new communications systems.

4) Support general flight software replacements.

D) Error handling:

1) Recognition of error types.

2) Ability to provide event logs, error logs.

3) Provide troubleshooting support.

E) Hardware Restrictions:

1) Should run on a StrongARM processor.

3.3 Pseudo Requirements

A) Platforms:

1) Linux OS with java support.

Palantir-B System Software Requirements and Design Document

 10/01/01

13 of 13 10/1/2001 12:19 AM

Overall System view

Ground

Station

COMM

System

Flight

Software Sensors

Temperature

Camera

GPS

Audio

Motion

Humidity

Pressure

Palantir-B System Software Requirements and Design Document

 10/01/01

14 of 14 10/1/2001 12:19 AM

3.4 Functional analysis

flight software

PALANTIR-B

Ground Processing Center

SIMULATED

SENSORS

User Interface

Ground

Communications

Station

COMM LINK

Model on TCP/IP

Confirmation system to

confirm data received and

transmitted

PALANTIR-B SYSTEM CONTEXT DIAGRAM

Palantir-B System Software Requirements and Design Document

 10/01/01

15 of 15 10/1/2001 12:19 AM

3.4.1 Actors

1. Actor: Ground Station

Purpose : To allow the end user at the Ground Station to interact with our system

Relations: From the Comm System’s perspective the Ground Station uploads and

downloads data. From the Flight software’s perspective the Ground Station send

commands to it as an event table, as a calibration command or a reprogramming

command.

2. Actor: Flight Software

Purpose: To allow the collection od data from the sensors and relay it back to the

users at the Ground Station

Relations: From the Comm System’s perspective the Flight Software uploads and

downloads data. From the Ground Station’s perspective the Flight Software sends in

data which is saved locally.

3.4.2 Use-Case X

1. Use-Case Name: Comm System

Participating Actors: Ground Station, Flight Software

Entry Condition: When data is ready to be transmitted between Ground Station and

Flight Software

Palntir-B System

End User at Ground Station

Send Data

-

* *

Receive Data

*

*

Overall Use Case Diagram

Palantir-B System Software Requirements and Design Document

 10/01/01

16 of 16 10/1/2001 12:19 AM

Flow of Events:

Exit Condition: When data has been sent to the Comm System

2. Use-Case Name: Flight Software

Participating Actors: Ground Station

Entry Condition: When the user at the ground station send data to the flight software

Flow of Events:

Exit Condition: When the data has been sent by the flight station

3. Use-Case Name: Ground Station

Participating Actors: Flight Software, Smart Human Being

Entry Condition: When there is data to be sent to the flight software

Use Case of the Comm
System

Ground Station

Upload File
«uses»

Flight Sof tware
Download File

«uses»

«uses»

«uses»

Use Case of the Flight
Software

Ground Station

Process New Ev ent

Table

«uses»

Palantir-B System Software Requirements and Design Document

 10/01/01

17 of 17 10/1/2001 12:19 AM

Flow of Events:

Exit Condition: When the flight software has sent back data and it has been saved on

the ground station. When the ground station is ready to send the parsed input

command from the Smart Human Being.

4. Use-Case Name: Sensors

Participating Actors: Flight Software

Entry Condition: When the flight software is ready to get data from the sensor based

on a scheduled event from the event table.

Flow of Events:

Exit Condition: When the flight software has received data

3.4.2.1 Scenerio X.1

Use Case of the Ground
Station

Flight sof tware

Sav e Data

«uses»

Smart Human Being

Enter Command

«uses»

Use Case of the Sensors

Flight Sof tware

Get Data

«uses»

Palantir-B System Software Requirements and Design Document

 10/01/01

18 of 18 10/1/2001 12:19 AM

Palantir-B System Software Requirements and Design Document

 10/01/01

19 of 19 10/1/2001 12:19 AM

4 USER INTERFACE

The user interface is designed to be intuitive and easily expanded. To this end, some

functions defined here may not actually be implemented in this portion of the Palantir

project lifecycle. The actual interface is a simple text prompt which the ground user can

use to enter commands one at a time. Because the user interface will be replaced in

future versions of this product, it does not need to be particularly error-tolerant. All

entered commands will be grouped and sent to the first available satelite, and will be

executed by the Palantir probe in the order the commands are entered. Note: command

ordering assumes that all commands are sent together and are recevied in the same

transmission burst. Because commands may be received (and thus executed) out of

order, it is recommend that mission-critical commands such as changing out flight

software be executed only when successful receipt of the target data has been confirmed.

All commands have been grouped under three headings: get, send, and execute. All

syntax is in the form (GET/SEND) command [options]. Incoming data from the

Palantir will be dumped into appropriate files on the groundstation machine, and will not

be displayed on the text interface screen. Any instructions to be executed by the Flight

Software should be included in the event table.

Get Information
GET CHECKSUM filename

This command will cause the Palantir-B to send back the sum of the bytes in the

requested file. This command is userful to verify correct delivery of mission-

critical data packets, such as those holding flight software updates.
GET DATALIST [directory] [start date [end date]]

By default, this command returns a listing of all the datafiles in the system,

including software, event schedules, and captured data, and shows the file names,

dates, free space, and any other relevent information. This option can be used to

check for new files that may have been lost in transmission, and to perform

routine maintenance checks.

-The optional directory option allows the listing to be limited to a particular

directory.

-The optional start date and end date options allow the returned listing to be

limited to data acquired in the specified date range.
GET FILE filename

This requests that the Palantir send back a particular file, which may contain an

image, sound, log, or other data.

Send Information
SEND FILE filename [destination name]

This option is provided to allow ground teams to update software remotely. The

file specified by filename will be sent, and will be placed into the name/location

specified by destination name. If no destination name is provided, the file will

retain its original filename and will be placed into a default directory onboard the

Palantir. If the file already exists on the Palantir, it will be overwritten by the

incoming file. Note: users are strongly cautioned against overwriting exiting

Palantir-B System Software Requirements and Design Document

 10/01/01

20 of 20 10/1/2001 12:19 AM

files. For software updates, a better strategy is to send the file and request a

checksum, and only then swap out the old file with the new using the SWAP

command.
SEND SCHEDULE (APPEND/OVERWRITE) filename

This command allows the ground station to update the flight software’s schedule.

Sending with the APPEND option will simply add events, while choosing

OVERWRITE will replace the Palantir’s onboard schedule with a new, provided

schedule. All schedule updates are performed by sending a text file containing

schedule events.

Use Case Example A:

This is a typical set of commands for a ground station controller. In this example, the

user is adding some events to the Palantir schedule, and is manually retrieving an image.

>SEND SCHEDULE APPEND sched05.txt

>GET FILE /camera/img00128.jpg

Use Case Example B:

For this example, the ground controller requests a file list. Seeing that there is a junk

datafile using up space, the controller deletes it. In addition, he re-enables the camera

which had previously been shut down to conserve power.

>GET DATALIST

// -- Break of several days to get data -- //

Use Case Example C:

This example is a conceptualization of how flight software would be updated, should that

need arise.

>SEND FILE flightSoft flightSoftNew

>GET CHECKSUM flightSoftNew

// -- Break of several days to get data -- //

>GET CHECKSUM flightSoft

// -- Break of several days to get data -- //

>DELETE flightSoftNew

Palantir-B System Software Requirements and Design Document

 10/01/01

21 of 21 10/1/2001 12:19 AM

5 DESIGN APPROACH

The design of our system is driven by the event table and other data such as

calibration information, which is sent by user at the ground station. Because this system

is designed to fulfill an extremely narrrow, specific purpose, it does not have as many

external influencing actors as other similar projects. Rather, most of the “actors” and

communications take place between components of the system itself.

The key requirements that will drive our design include : modifiability and “event-

responsive.” Modifability meaning that the system can be modified easily in order to

satisfy new demands, such as addition of sensors. “Event-responsive” means that the

system does not strictly follow the commands given by the user and is equipped to deal

with special events.

Our design will basically be object-oriented to allow modifability and abstract away

the complexity of the main system and simplify the interaction with the external

hardware. Our design will use threads, which is supported in Java, to allow parallel

running of multiple events.

Palantir-B System Software Requirements and Design Document

 10/01/01

22 of 22 10/1/2001 12:19 AM

6 DEVELOPMENT PLANNING

This section is used to describe the general development approach. On larger

systems, this would be in a separate Software Project Management Plan of Software

Development Plan.

This sections should contain the following:

• Master Development Plan – i.e. versions to be development. For each version,

identify which requirements and/or use-cases are to be development.

• Development Standards – Idenfity coding, design, documentation, etc. standards

that the development team will adhere too.

• Configuration Management Plan – Describe the configuration management

approach.

• Development Environment – Describe the development environment to be used.

Include languages, tools, facilities, etc.

7 FUTURE CAPABILITIES

List any future capabilities which, while not required in the current system, should be

considered during design.

Palantir-B System Software Requirements and Design Document

 10/01/01

23 of 23 10/1/2001 12:19 AM

8 ANALYSIS/DESIGN

8.1 Analysis/Design Model

8.1.1 Component Descriptions

8.1.1.1 Sensors Class

• Description and Purpose

The Sensors Class will implement a class supporting the use of pre-determined

sensors, collection of data from the sensors and the change of calibration of the

sesnors when possible (as in the case of Camera). The sensor class will try to

minimize what the user of this component should know by hiding the details of

sensors mangement for each specific sensor and instead making available simple

and recognizable functions as an interface to the general Sensor class.

• Dynamic

• The Sensors class will be a dynamic component running its own thread.

This would not only allow any new sensors to be added in the future

without having a ripple effect on the other components dependent on the

Sensors Class but also have several sensors running at the same time

• Permanent

• The Sensors class will be a permanent object that exists as long as the

program is running

State Diagram of
Flight Software

Waiting f or something to do Collecting data

Getting Comm Data

Collect Data

Done Collecting Data

Get Comm Data

Done Posting Data

Sending Com Data

Of f State

Send Data

(Called by Event Mgr)

Done Sending
Data

PowerDown
(Called by pwr mgr)

PowerUp
(Called by pwr mgr)

Palantir-B System Software Requirements and Design Document

 10/01/01

24 of 24 10/1/2001 12:19 AM

• The Sensors class will be a top-level public class so as to provide easy access

by other components.

• Overall Component States

Each sensor thread only has two states, can be either running or dead.

Overall Component Processing (shown via activity, sequence or collaboration

diagram) –

Hardware Component

Wind Sensor

Pressure Sensor

Temperature Sensor

Humidity Sensor

(360deg)Camera

GPS sensor

Microphone

turn on take picture collect picture send to data mgr.

turn off

collect data

collect data

collect data

collect data

collect data

collect datadetect temp

detect humidity

get GPS info

detect motion

send to data mgr.

collect sound info

collect wind info

turn off

turn on

turn on

turn on

turn on

turn on

turn on

Microphone

Wind Sensor

Temp. Sensor

Humidity
Sensor

GPS

Motion
Detector

Camera

Activity Diagram

For primary sensor operations

Palantir-B System Software Requirements and Design Document

 10/01/01

25 of 25 10/1/2001 12:19 AM

Wind Sensor

Since the Wind sensor will be on all the time and its operating state will not be

controlled by the Sensor Class the only point of concern is that of the kind of data

being passed.

Get Wind Speed

Pre-Conditions

 Wind Sensor: On

 Post-Conditions

 Wind Sensor: Targeted

 I/O

 Speed: km/hr/miles/hr

Pressure Sensor

Since the Pressure sensor will be on all of the time and its operating state will not be

controlled by the Sensor Class the only point of concern is that of the knid of data

being passed.

Get Pressure

 Pre-Conditions

 Pressure Sensor: On

 Post-Conditions

 Pressure Sensor: Targeted

 I/O

 Pressure: (Barometer Reading)inches

Temperature Sensor

Since the Temperature sensor will be on all the time and its operating state will not be

controlled by the Sensor Class the only point of concern is that of the knid of data

being passed.

Get Temperature

 Pre-Conditions

 Temperature Sensor: On

 Post-Conditions

 Temperature Sensor: Targeted

 I/O

 Temperature: Celsius/Farenheit/Kelvin

Humidity Sensor

Since the Humidity sensor will be on all the time and its operating state will not be

controlled by the Sensor Class the only point of concern is that of the knid of data

being passed.

Palantir-B System Software Requirements and Design Document

 10/01/01

26 of 26 10/1/2001 12:19 AM

Get Humidity

 Pre-Conditions

 Humidity Sensor: On

 Post-Conditions

 Humidity Sensor: Targeted

 I/O

 Humidity: degrees

(360deg)Camera

Since the Camera is one of the sensor devices which will be on all the time but it will

be callibrated by the Sensors Class which will be receiving the caliibration

instructions from the Ground Station our piint of concern is not only the visual dat

being passed but also the ability to monitor the state of the Camera and callibrate it

when the power is sufficient and also to be able to shut it off in certain conditions

such as night conditons where the visual images being taken and sent by the camera

might not be worth taking.

Check Image

 Will help to test for night conditions and similar conditions(storm etc)

 Pre-Conditions

 Camera Sensor: On

 Post-Conditions

 Camera Sensor: Targeted

 I/O

 Direction : camera_direction;

Angle: viewpoint angle

Image: jpeg, gif

 Power up/off camera

 Pre-Conditions

 Camera Sensor: Off/On

 Post-Conditions

 Camera Sensor: Targeted

 I/O

 Power Up/Off Confirmation: Analog/Digital signal

Power Check

 Pre-Conditions

 Camera Sensor: Off/On

 Post-Conditions

 Camera Sensor: Targeted

 I/O

 Power Sufficient Confirmation: Analog/Digital signal

GPS sensor

Palantir-B System Software Requirements and Design Document

 10/01/01

27 of 27 10/1/2001 12:19 AM

Since the GPS will be on all the time and its operating state will not be controlled by

the Sensor Class the only point of concern is that of the knid of data being passed.

Get GPS

Pre-Conditions

 GPS Sensor: Off/On

 Post-Conditions

 GPS Sensor: Targeted

 I/O

 Location: Latitude/Longitude degrees

 Altitude: km/miles

Microphone

Since the Microphone sensor will be on all the time and its operating state will not be

controlled by the Sensor Class the only point of concern is that of the kind of data

being passed.

 Pre-Conditions

 Microphone Sensor: On

 Post-Conditions

 Microphone Sensor: Targeted

 I/O

 Sound: Radio waves

Motion Detector

The Motion Detector will be turned off / on accordingly based on the environment.

For example, in night condition it can be turned off by the flight software.

 Pre-Conditions

Motion Detector: On

 Post-Conditions

 Motion Detector: Targeted

 I/O

 Signals

8.1.1.1.1 Internal Design

The internal design for the Sensors Class may be a little more complicated than the above

overall view. The Senors class will be interacting with other possible componenets such

as a Power Management Class and an Events Class both of which are essential for

mangaging the data from the sensors as the Power Management Class will make sure that

there is sufficient power to manage the sensors and the Events class will schedule the

collection/transmission of data. This interaction will be hidden from the user.

8.1.1.2 Power Manager Class

Palantir-B System Software Requirements and Design Document

 10/01/01

28 of 28 10/1/2001 12:19 AM

• Description and Purpose – The power manager class fundamentally controls the

operation of the system. If there is not enough power for the system to maintain

it’s operation, the power manager will force the system to either use less power or

shut down the system temporarily to allow the batteries to recharge. The battery

used by the system is smart, meaning it provides this class with remaining power.

The event manager class notifies the power managerclass when there is no

operation scheduled for an extended period of time. During this time, it may be

better just to shut down the system for a while to save battery power. For

example, if the event manager determines that the current time is 12:00PM, and

the next event scheduled at 4:00PM, then it will notify this class. It will then be

up to this class to decide whether to shut down the system to conserve battery

power.

Every time the flight software reboots, the power manager is consulted to ensure

that there exists enough battery power to run the system reliably. If there isn’t

enough battery power, then the system is shut down.

• Dynamic, Static, or Evolving:

• This class is a dynamic class. It continously monitors the state of the

battery subsystem and changes state when the battery level reaches a

certain critical level.

• Temporary, Permanent, or Persistent:

• This class is permanent since it must monitor the power throughout the

lifetime of the system.

• This is a private class within our application.

• Overall Component States

Since the power manager class is permanent, it has only one state, “running.”

Palantir-B System Software Requirements and Design Document

 10/01/01

29 of 29 10/1/2001 12:19 AM

• Overall Component Processing

Notify Power Manager to turn on in a few hrs

Tell All Components to save state through Event Manager

Shut Down

Activity Diagram

When Power Manager detects

critically low power

Palantir-B System Software Requirements and Design Document

 10/01/01

30 of 30 10/1/2001 12:19 AM

• Hardware Component – runs on the same hardware as the flight software

• List of all component procedure, methods or entry points:

CanRunEvent

 Determines if there is enough power to run the event.

 Pre-Conditions

 The battery exists, the battery is smart

 Post-Conditions

 We know if we can run the event given the power availability

 I/O

 In: the event we want to run, out: yay or nay

CanRunApplication

 Determines if there is enough power to run the application

 Pre-Conditions

Activity diagram for the power manager to
check battery status

Check Battery Status

Continue Operation

Notif y Ev ent Manager

Is there enough
power to do
operation?

Is the power level
critical?

No

No

Yes

Yes

Palantir-B System Software Requirements and Design Document

 10/01/01

31 of 31 10/1/2001 12:19 AM

 The battery exists, the battery is smart

 Post-Conditions

 We know if we have enough power to run the application

 I/O

 In: none, out: yay or nay

8.1.1.2.1 Internal Design

The power manager contains a thread that continuously monitors the state of the smart

battery. If the state of the battery falls below a certain critical value, it immediately shuts

down the system. This scenario is extremely rare because other classes can pass events to

pass this class to determine if there is enough power to run the event.

8.1.1.3 Event Manager Class

• Description and Purpose

The event manager class takes in table of events from the ground station and

schedule the events in a sequential fashion. It also has a table of internal events,

separate from the event table supplied by the user at the ground station. If there is

enough power to carry out the event, then the event manager will perform the

event by activating the appropriate sensors.

If there is enough power to perform an event, but carrying out the event takes

resources already consumed by another event, then the event with the highest

priority takes precedence.

If there is not enough power to run the event, the event manager will add an event

into its internal event schedule (which takes the highest precedence), telling the

ground station of the failure to complete the given event.

• Dynamic, Static, or Evolving

• This class is dynamic because it is running its own thread.

• Temporary, Permanent, or Persistent

• Permanent – must exist throughout the life of our application. It contains

an event schedule which is persistent. This event schedule is a file stored

on the flash memory module.

• This class is a private class within the flight software class.

• Overall Component States
Since the Event manager is a dynamic class runing several threads, it does not

exhibit one state at any given point of time.

• Overall Component Processing

Palantir-B System Software Requirements and Design Document

 10/01/01

32 of 32 10/1/2001 12:19 AM

• Hardware Component – The event manager runs on the same processor as the

main application.

• List of all component procedure, methods or entry points:

New Event List

 Replace the existing event table with a new one.

 Pre-Conditions

 None

 Post-Conditions

 The old event table is replaced with the new one.

 I/O

 Table of events: a list of event.

8.1.1.3.1 Internal Design

The event manager is a class that contains within it a schedule, which is a priority queue

ordered by smallest starting time. The event manager registers itself with the system

clock and is notified every time-interval change. This time interval has yet to be

determined, but it basically is the finest grain of time resolution that the end user desires.

Every time this class is notified of a time change, it queries the priority queue looking for

events that need to be scheduled. If there are internal events that need to be scheduled,

the class then checks to make sure there are enough resources available to run the events.

Process Event from Event Table

Send Error to Comm Mgr

Enable Cursor Collect Data Disable Sensor

Send Data to Data Manager

Data Manager notify Comm Manager of data collected

Power
Enough?

Yes

No

Activity Diagram

When the Event Manager
decides to process an event

from event table

Palantir-B System Software Requirements and Design Document

 10/01/01

33 of 33 10/1/2001 12:19 AM

If there are, the events are executed. If there isn’t, the event may be run depending on

whether it has a higher priority than the event currently taking up the resource in

question. If the event cannot be run, then an event is added instructing this class to send a

failure message to the comm system.

Palantir-B System Software Requirements and Design Document

 10/01/01

34 of 34 10/1/2001 12:19 AM

8.1.1.4 Data Manager Class

• Description and Purpose – The Data Manager class is responsible for collecting

data from the sensors. It is also responsible for telling the Event Manager when it

is ready to send data.

When the sensors are activated through the Event Manager and the Data Manager

records the data collected by the sensors, the Data Manager informs the event

manager that the data just collected needs to be sent back to the Ground Station.

The Event Manager determines whether there is enough power and tells the data

manager that it is ok to send the data to the comm manager.

• Dynamic, Static, or Evolving

Since this class only performs actions when the event class tells it to, this

class is considered static.

• Temporary, Permanent, or Persistent

This is a permanent class.

• This class is also a private class held within the flight software

• Overall Component States

 Sensor data received

STATE DIAGRAM FOR THE DATA MANAGER

Ready Collect data and notify

event manager when done

Palantir-B System Software Requirements and Design Document

 10/01/01

35 of 35 10/1/2001 12:19 AM

• Overall Component Processing

• Hardware Component – runs on the same hardware resources as the main

process.

• List of all component procedure, methods or entry points:

RecordData

 Saves the data gathered by a sensor into persistent storage

 Pre-Conditions

 none

 Post-Conditions

 The data is stored, and the event manager is aware of the data

 I/O

In: the data to be saved

Out: an event that tells the flight software to send the data back to

the ground station

8.1.1.4.1 Internal Design

The data manager is a class that has listeners registered with all of the sensors. Whenever

the sensors send the data manager data, the data manager uses the file manager within it

to store the data and then notifies the event manager that it has data that is ready to be

sent to the comm system.

Process Data Entry request Process Data

Store Data

Send Error to Comm Manager

No

Yes

Activity Diagram

Upon Data Manager
receiving data From

Sensors

Enough
Memory
to store
data?

Palantir-B System Software Requirements and Design Document

 10/01/01

36 of 36 10/1/2001 12:19 AM

8.1.1.5 Comm System Class

Description and Purpose – The Comm Class will manage the communications

between the Ground Station and the Flight Software Package and will be in constant

access by the Ground Station and the Event Manager classes in the package. It will be

able to send and receive data / messages from the Ground Station using a

confirmation mechanism for managing messages and requests to minimize the

problems associated with time lag .

• characteristics of the component including:

• Static.

The Comm Class will be a static component so that it cannot change it’s own

state without another (main) component calling it. This would help to avoid

any internal changes take place in the comm system without first notifying the

other classes and also help in making sure that all the components accessing

the Comm Class will have the same state information about the Comm Class.

• The Comm Class will be a permanent object.

• The Comm Class will be a public class allowing easy access to it by the other

main classes which might be functioning independently .

• Overall Component States

State Diagram of
Comm System

Waiting f or something to do Getting Data

Posting Data

Get Data

Done Getting Data
Post Data Got Data (return data)

Palantir-B System Software Requirements and Design Document

 10/01/01

37 of 37 10/1/2001 12:19 AM

• Overall Component Processing

• List of all component procedure, methods or entry points:

 Send/Receive/Erase/Check(for unsent) data packet

Will allow for the sending/receiving/erasing/checking of data packets

currently available to the Comm Class

Activity Diagram for the Flight Software when the
Comm Manager determines

that a satellite is near by.

Get Data f rom Satellite

Check to make

sure there is
enough power.

Yes

No

Notif y Ev ent Manager

Get Data from Data Manager Process data Send To Satellite

Power
Enough?

Yes

No

Activity Diagram

When Comm Manager detects it can
 send data to a satellite

Palantir-B System Software Requirements and Design Document

 10/01/01

38 of 38 10/1/2001 12:19 AM

 Pre-Conditions

 Data Object State: Available(i.e. communcation is up and running)

 Post-Conditions

 Data Object State: Targeted

 I/O

 Data State: State variable corresponding to action

Check Event Schedule

Will allow for the sending/receiving/erasing/checking of data packets

According to the Event schedule currently available to the Comm Class

 Pre-Conditions

 Event Schedule State : Available(i.e. communcation is up and

running)

 Post-Conditions

 Event Schedule State: Targeted

 I/O

 Event State: Data packets containing forthcoming event details

Power Check

Will allow Comm class to make sure power is sufficient to proceed with

further actions

 Pre-Conditions

 Power Object State: On/Off

 Post-Conditions

 Data Object State: Targeted

 I/O

 Power State: Message indicating power state

8.1.1.5.1 Internal Design

The Comm Class will have sufficient independence to manage data transmission once it

is authorized by the other main components such a Power Management Class and an

Event Management class but since it can change state only when called to do so by other

components its internal design will not be too complicated so as to make the design

creates state which are not discernable by other components. For e.g.: If the Comm Class

were to change its data packet size internally without the other component knowing about

it this might create problems of non-transparency.

8.1.1.6 Ground Station Class

• Description and Purpose – In this implementation of the program, the ground

station is used to send event schedules to the flight software and to receive data

from the flight software via the comm system.

Palantir-B System Software Requirements and Design Document

 10/01/01

39 of 39 10/1/2001 12:19 AM

• Dynamic, Static, or Evolving

Static

• Temporary, Permanent, or Persistent

Permanent – since we are in a distributed environment, this application must

always be running on the user side of the application.

• This is a public class.

• Overall Component States

State Diagram of
Ground Station

Waiting f or something to do Perf orm Command

Checking f or COM data, sav e if f ound

Command Inputed

Command Completed

timeout
Done checking COM

Palantir-B System Software Requirements and Design Document

 10/01/01

40 of 40 10/1/2001 12:19 AM

•

• Overall Component Processing

• Hardware Component – Runs on the local user’s system.

• List of all component procedure, methods or entry points:

AddEvent

 Append an event to an event table.

 Pre-Conditions

 Event table exists.

 Post-Conditions

 Event table updated

 I/O

 Out: the event(s)

RemoveEvent

Remove an event from an event table before sending it off to the flight

software

 Pre-Conditions

 Event table exists.

 Post-Conditions

 Event table updated

 I/O

 Out: the event(s) to be removed

Send Event table

 Send the entire event table constructed using AddEvent and RemoveEvent

 Pre-Conditions

Parse Command Input

Notify COMM System

Notify COMM System

Send Event
Table

Get Current
Data

Is command
valid?

What is the
command

type?

yes

No

Activity Diagram for the ground station

Palantir-B System Software Requirements and Design Document

 10/01/01

41 of 41 10/1/2001 12:19 AM

 Event Table ready to be sent

 Post-Conditions

 None

 I/O

 Out: Event table sent

GetCurrentData

Fetches the data collected by the flight software to us.

 Pre-Conditions

 The comm. Manager exists

 Post-Conditions

 The ground station has the data collected by the FS.

 I/O

 In: the data collected by the flight software

8.1.1.6.1 Internal Design

The ground station consists of a very simple GUI that allows users to input commands to

the system. These commands are parsed by a command parser which determines what

the user wants to do and passes the appropriate command to the comm center. The

ground station has a comm which determines when the next satellite crosses over and

checks for incoming data when one does.

8.1.2 External storage

In our system, we collected data by the flight software and we sent data back to

ground station.

8.1.2.1 External Storage : ground station part

The ground station is assumed to exist for the operation of the flight software and the

following features are assumed by the ground station’s internal storage, which is external

to the flight software.

Storage Method – Identify how the data is stored such as a file, special hardware device,

or database.

Characteristic:

 Low_price harddisk allow big storage space and complex mangement of data

 Need user_friendly interface

Method:

 Data saved as files in different directory

 Can keep data long-period

 Can save data by other media

 Can use some DBMS to control data

• Hardware Used

 Mainly be harddisk

 Can use multiple media such as CD etc

Palantir-B System Software Requirements and Design Document

 10/01/01

42 of 42 10/1/2001 12:19 AM

• Data Format - Describe the format of data stored including data structures. For

example, the data is stored in 32-Byte records made up of the following data

elements or the data is stored Data_Packet format where Data_Packet is defined

here or in the data dictionary.

 Analog data:

 Data source: sensors which collects analoy data, such as humidity,

pressure, motion sensors.

 Through A/D convertion, those data will transferred to digitial data.

 Data structure: float point (double)

 Digital data:

 Data source: sensors which collects digital data, such as temperature or

GPS etc;

 Data structure: float point (double)

 Image data

 Data source: CCD_camera

 Data structure: .jpeg

 Audio data

 Data source: microphone

 Data structure: .ave

• Other – Include any other information relevant to understanding the interface and

to designing software to communicate using the interface. Don’t be afraid to

include additional information.

 Currently, the user interface will be very simple. It will be mainly in

command line style to pass data to user and user manage directory directly

by unix command.

 Future function: GUI for user to manage and handle data. Multiple diagram

and tools for use to “visiualization” data and image.

8.1.3 External Interface Descriptions

8.1.3.1Ground Station Interface:

• Purpose of the Interface:

- To communicate with the flight software through the comm system.

• Conditions under which it is used:

- End user at ground station wants to ask the comm system if there is new data

available from the flight software.

- End user at ground station wants to create new event schedules

- End user at ground station wants to send event schedules, calibration info or

updates to the flight software through the comm system.

• Data items to be passed in and out:

- The ground station will send and receive Data_Packets to and from the comm

system.

- Data_Packets obtained from the comm system will contain data that will be

timed, dated, and classified as visual, text, audio, flight software error

Palantir-B System Software Requirements and Design Document

 10/01/01

43 of 43 10/1/2001 12:19 AM

messages, flight software status messages, etc., and will have a minumum and

maximum total size.

- Data_Packets sent to the comm system will contain event schedule data, and

software update data.

• Communications Method :

- The ground station interface will communicate with a simulated comm system

via ethernet using TCP/IP.

• Data Frequency:

- Data requests by the ground station interface can be sent at:

- Present time,

- Any number of seconds, minutes, hours, or days in the future,

- Or on an automated schedule (e.g. every minute, hour, day, etc.)

8.1.4 Data Dictionary

All identified data items should be described here. Each data description should

include type, range, and any constraints.

Sensor / Camera Data:

Temperature – in Calvin. A float will be used. The value ranges from –200C to

200C, subject to change when we research on the specific environment in which

palantirB will operate on.

Pressure,Humditiy,Windspeed - A float will be used for each of the measurement. It

is subjec to change when more precise values are needed.

WindDirection - 3 integers representing the degree, minutes, and seconds of the wind

direction from the North. The degree ranges from 0 to 360 / or / 0 to 2 pi radians.

GPS - 2 sets of 3 integers, one set representing the degree, minutes and seconds in the

longitude and the other represents the degree, minutes, and seconds in the latitude.

Camera - images in jpeg format sliced up into a fixed number of sections.

Microphone - the audio data will be in 64-kbr MP3 compression format. There will

only be a limited amount of space allocated for recording.

Sensor / Camera Communication:

Specific commands to sensor / camera for turning on and off (to conserve power) or

take images in the Data Manager Interface. These packets of data will adhere to the

interface supplied by the sensor

Software Upgrade Data / New sensor interface data:

These data will use compression algorithm to minimize the time of transmission (such

as zip). The only constraint on its size will be that after it has been downloaded, there

will be sufficient space left on Palantir-B to extract, install, while holding onto data from

Palantir-B System Software Requirements and Design Document

 10/01/01

44 of 44 10/1/2001 12:19 AM

sensors that are to be transmit back to the ground station later. This is not too big of an

issue because we are implementing java and we only need to send the source code.

Periodic Data:

Battery Life: Assuming we are using a “smart battery,” our power manager receives a

percentage of the remaining battery life in the form of a small integer (e.g. we can treat

98.5 percent as an integer of 985)

