
US 20070239822Al

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0239822 A1

Tuttle et al. (43) Pub. Date: Oct. 11, 2007

(54)

(76)

(21)

(22)

(63)

(60)

ASYNCHRONOUS MESSAGING USING A
NODE SPECIALIZATION ARCHITECTURE
IN THE DYNAMIC ROUTING NETWORK

Inventors: Timothy Tuttle, San Francisco, CA
(US); Karl E. Rumelhart, Palo Alto,
CA (US)

Correspondence Address:
STERNE, KESSLER, GOLDSTEIN & FOX
P.L.L.C.
1100 NEW YORK AVENUE, N.W.
WASHINGTON, DC 20005 (US)

Appl. No.: 11/396,251

Filed: Mar. 30, 2006

Related US. Application Data

Continuation of application No. 10/105,018, ?led on
Mar. 21, 2002, now Pat. No. 7,051,070, which is a
continuation-in-part of application No. 10/017,182,
?led on Dec. 14, 2001, now Pat. No. 7,043,525.

Provisional application No. 60/ 278,303, ?led on Mar.
21, 2001. Provisional application No. 60/280,627,
?led on Mar. 29, 2001. Provisional application No.
60/279,608, ?led on Mar. 28, 2001. Provisional appli

:31

cation No. 60/276,847, ?led on Mar. 16, 2001. Pro
visional application No. 60/256,613, ?led on Dec. 18,
2000.

Publication Classi?cation

(51) Int. Cl.
G06F 15/16 (2006.01)
G06F 3/00 (2006.01)

(52) US. Cl. 709/203; 710/19

(57) ABSTRACT

A network routes update messages containing updates to
properties of live objects from input sources to clients
having the objects. When the clients receive live objects, the
clients identify the object IDs associated with the objects
and register the object IDs with the routing network. The
routing network is adapted to selectively send update mes
sages to nodes in the network and the nodes forward the
messages to the clients. One implementation uses a hierar
chy of registries to indicate which nodes and clients receive
which update messages. Another implementation assigns
update messages to one or more of N categories and nodes
to one or more of M types, and the gateways maintain
mapping between categories and types. To ensure that
clients receive all of the update messages for which they
register, the clients connect to client proxies that in turn
connect to at least one node of each type.

server 1 117 Information 117 Dynamic

[El ‘ _ Provider : Content
** -- Provider

km

100

Patent Application Publication Oct. 11, 2007 Sheet 1 0f 12 US 2007/0239822 Al

F .91

09.

H g

o S x6252

@5501 EmEoo 28930

A

.5255 .l.

E950 N: $2>9a IT

2:555 cosmctoui

Patent Application Publication Oct. 11, 2007 Sheet 3 0f 12 US 2007/0239822 A1

m .5 INS“ ON; “arm wwvm 0N5 mm; <Nwm égéééééé? o r F

{05oz @5501
02m $5 <03

8.50m 850m =55 850m S9: S9:

Patent Application Publication Oct. 11, 2007 Sheet 4 0f 12 US 2007/0239822 A1

f, N. Nv
Q;

m 8:8 \ .3 238 n,
I

wwgoow N x8 @ vac wwLoow
w;

. f1] 15/
,

1, mm M Il

o;
N Qwmcmm wmxmk

w_< 962.8

0)

o 2%80 5 w 250 “a w @6230 8:8 vN 222mm ncmzmo
N ,. n

_

_ _

METKFNi " 2w? “a _ wmzoow $25 603

Patent Application Publication Oct. 11, 2007 Sheet 5 0f 12

Input Source

N

LO

C)

LO

/ 210

US 2007/0239822 A1

Fig. 5

Patent Application Publication Oct. 11, 2007 Sheet 6 0f 12 US 2007/0239822 A1

Parse Page
and Identify

Object IDs 10
V

Connect to
Routing
Network n 2

V

Register
Object IDs

VWth \
Network 614

v

Terminate

616

Message
Received

from Network
?

Extract

Data \
620

‘

Update
Identi?ed
Object

Fig. 6

Patent Application Publication Oct. 11, 2007 Sheet 7 0f 12 US 2007/0239822 A1

710A 7105 7100 710D
F F _ F F

Cluster Load Balancer Cluster Load Balancer

. Dynamlc
lnformatlon Content . . .

Provider Provider

GIobaI Load Balancer 716

.rzlntnsznuj: IX _________ “In-‘II ______ “7L _____ “I
I us er 0a I I : Balancer @ I : Cluster Load Balancer : : Cluster Load Balancer :
I \ I I \ I I l |

I
I I Gateway I I : I :
I724A I I Gateway Gateway I I Gateway I
I I I | I Q 0 . I

: : : [I U : : E I
l l l

I 734A ' I
I 730a . I
I I
l l
l I

. E E I E :
: Node Node Node Node ,

I I
l |
I l

I App App I
: Server Server :
I I
I I
I |
I I
l I
l I
I |
I l
I l
I l
I l
I l
l l
l l
I I

I Client | | Client | I Client |
712A 7125 L712C K712D 712E 712F

Patent Application Publication Oct. 11, 2007 Sheet 8 0f 12 US 2007/0239822 A1

V

Receive
Message _\

810

V

Extract IDs —\
820

‘

Look up
Registered
Nodes 10

V

Transmit
Message to

Registered Nodes _\
any 8

V

Look up
Registered

Clients “85D
‘7

Transmit
Message to
Registered _\

Clients 860

Fig. 8

Patent Application Publication Oct. 11, 2007 Sheet 9 0f 12

K 726
Node of Type 1

7

Client 1

110

US 2007/0239822 A1

K 726
Node of Type 2

2

_ Client Proxy

Fig. 9

Client 2

Patent Application Publication Oct. 11, 2007 Sheet 10 of 12

V

Receive
Message

V

Identify
Message
Category

V

Look Up
Nodes of the
Message
Category

1

Transmit
Message to

Identi?ed Nodes

Determine Clients
Registered for the
Message and Client
Proxies Connected

to the Clients

V

Transmit
Message to
Client Proxy

V

Transmit
Message to
Registered

Clients

1010

1 020

1030

1040

1050

1060

1070

Fig. 10

US 2007/0239822 A1

Patent Application Publication Oct. 11, 2007 Sheet 11 0f 12 US 2007/0239822 A1

K 726 K 726
Node of Type 1 Node of Type 2

Client Proxy

Client 1 Client 2

110

Fig. 11

Patent Application Publication Oct. 11, 2007 Sheet 12 0f 12 US 2007/0239822 A1

K 726 K 726
Node of Type 1 Node of Type 2

\ %
Node of Type 3

K / \ K 712
Client 1 Client 1

2'
110

Fig. 12

US 2007/0239822 A1

ASYNCHRONOUS MESSAGING USING A NODE
SPECIALIZATION ARCHITECTURE IN THE

DYNAMIC ROUTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of US.
application Ser. No. 10/017,182 ?led Dec. 14, 2001, Which
claims the bene?t of US. Provisional Application No.
60/256,613, ?led Dec. 18, 2000, US. Provisional Applica
tion No. 60/276,847, ?led Mar. 16, 2001, US. Provisional
Application No. 60/278,303, ?led Mar. 21, 2001, US.
Provisional Application No. 60/279,608, ?led Mar. 28,
2001, and US. Provisional Application No. 60/280,627,
?led Mar. 29, 2001, all of Which are hereby incorporated by
reference herein.

BACKGROUND

[0002] 1. Field of the Invention

[0003] This invention pertains in general to transferring
information through digital netWorks and in particular to
transferring information for remotely updating content at
client devices through the digital netWorks.

[0004] 2. BackgroundArt

[0005] The Internet is a digital netWork of computers. An
individual computer on the Internet is typically identi?ed by
an internet protocol (IP) address. A computer on the Internet
sends a packet of information to another computer by
routing the packet to a logical port at the destination com
puter’s IP address. The destination computer interprets the
packet according to one of several possible protocols deter
mined by the port to Which the packet Was sent.

[0006] The World Wide Web (the “Web”) is a collection of
technology and content available on the Internet that alloWs
the content to be routed from server computers to particular
destination computers. The Web includes a large number of
Web pages residing on many different servers. Web pages
contain one or more ?les, or references to one or more ?les,

specifying instructions for presenting the Web page and
content, such as text, images, applets, video, and/or audio.

[0007] Web pages use a variety of de?nitional and pro
gramming languages to control hoW information is pre
sented. The most fundamental of these is the Hypertext
Markup Language (HTML). HTML uses a system of “tags”
to specify hoW content should be displayed. Recent
advances in HTML introduce “style sheets” Which help
separate content information from display information.
HTML has also been modi?ed and extended to provide neW
capabilities. For example, Extensible Markup Language
(XML) adds semantic content to Web pages. In addition,
Dynamic HTML (DHTML) adds some dynamic content to
Web pages.

[0008] A Web page may also include one or more pro
grams for controlling hoW the Web page is displayed. For
example, JAVA® applets and JAVASCRIPT® scripts may
be used to control the display of a Web page. In addition,
DHTML uses scripts to control the dynamic content. Thus,
a Web page designer can use applets and scripts to produce
animation effects or modify the display based on user

Oct. 11, 2007

interaction. For example, the designer can Write a script that
changes the color of a piece of text When a user clicks on a
button.

[0009] Devices that display/execute Web pages are often
called “client devices” or simply “clients.” Client devices
include personal computers, Web-enabled set-top boxes and
televisions, cellular telephones, personal digital assistants
and other handheld devices, and special-purpose Web
broWsing appliances. Client devices typically employ a
program called a “Web broWser” for interpreting the HTML
or other display instructions in the Web page and displaying
the content accordingly. Most Web broWsers include special
functionality, such as a Java Virtual Machine, for executing
JAVA® applets and/or other applets or scripts embedded in
the Web pages.

[0010] A client device speci?es a Web page or other
document on the Web using a Uniform Resource Locator
(URL). A URL has the form “service://server/path/?le.”
Here “service” refers to the protocol to be used, such as the
?le transfer protocol (FTP) or the hypertext transport pro
tocol (HTTP). “Server” is the IP address of the server
containing the page, and “path/?le” speci?es the particular
Web page on the server.

[0011] The Web suffers from a substantial limitation With
respect to dynamically updating content in a Web page at a
client device. The Web’s only mode of operation is for a
client device to ?rst request a page from a server and then
for the server to send the requested page to the client device.
Once the server delivers the page to the client, it typically
terminates its connection to the client, and does not retain
any information about the client or the page that Was sent.
For this reason, servers are typically “stateless.” As a result,
client devices drive and control the How of information
around the Web. While client-side control is appropriate in
some situations, it does not permit e?icient updating of data
at the client devices. For example, if a Web page contains
information that may change, such as the score of a baseball
game or a stock quote, the server has no Way to inform the
client devices that are vieWing the page of the change.
Instead, the client devices must ask the server for the
updated information. HoWever, the client devices do not
knoW When the information on the Web page has changed,
and thus do not knoW to ask for the update.

[0012] There are some simple Web programming tech
niques that attempt to update content on client device-side
Web pages. One approach that Web designers use is to rely
on the client devices to periodically re-request Web pages.
This updating can be performed as the result of user action
(such as pressing the “refresh” button) or can be automated
to occur on a particular schedule (such as by using the
HTML Meta Refresh tag to cause the client device to request
the page every ‘X’ seconds). Although this technique pro
vides client devices With more up-to-date information, it is
very Wasteful of resources. In particular, the Web server must
resend the page even if nothing has changed, and, even When
something has changed, it must resend the entire Web page
rather than just the updated information, Which may be only
a very small part of the page. Further, attempting to reduce
unnecessary requests by decreasing the request rate results
in decreasing the currency of the data. This is an unalterable
trade off in a client-driven approach.

[0013] The performance of automatic refreshing can be
improved someWhat by putting information that may change

US 2007/0239822 A1

in a separate frame from information that is less likely to
change, and only refreshing the separate frame. A feW Web
designers even Write custom JAVA applets to limit refreshing
to individual components on a page, such as the score of a
soccer game. AWillingness to go to such effort illustrates the
serious drain of resources caused by frequent refreshing.
Nevertheless, even custom JAVA applets are not a mean
ingful attack on this problem. Custom applets require a large
separate development effort for each item on each page that
might need to be updated. More importantly, most custom
applets still update content based upon client-driven
requests, although it is possible to design an applet that
accepts “pushed” messages. This solution is not scalable to
provide updated information for large numbers of client
devices and for large numbers of Web pages.

[0014] Therefore, there is a need in the art for an ef?cient
Way to provide dynamic content to a Web page at a client
device.

DISCLOSURE OF THE INVENTION

[0015] The above need is met by a dynamic content
routing netWork that routes messages containing data for
updating properties of live objects to clients displaying Web
pages or other representations of data containing the live
objects. The Web server that initially provides the Web pages
to the clients does not need to track Which clients are
currently displaying the live objects. Instead, the informa
tion provider or a dynamic content provider (generically
referred to as an “input source”) that provided the live object
simply sends an update message to the routing netWork. This
routing utiliZes bandWidth e?iciently because the update
messages are provided to the clients only When the live
objects change.

[0016] The routing netWork is adapted to selectively send
messages to the nodes in the netWork. In one embodiment,
a hierarchy of registrations is used. Each gateWay in the
routing netWork maintains the mappings betWeen the live:
objects and the nodes that have registered for the live
objects. Each node in the routing netWork, in turn, maintains
the mappings betWeen the live objects and the clients that
display them. An input source provides a message to a
gateWay in each cluster in the routing netWork. Each gate
Way forWards to each node only messages that reference the
objects for Which it has registered. Each node forWards to
each client only messages that reference the objects for
Which it has registered. Adding node functionality to the
gateWay and client functionality to the node advantageously
alloWs the routing netWork to decide Which nodes should
receive an update message. As a result, messages are sent to
only nodes that have registered for the messages. Further
more, each node receives all the messages that the clients
connected to that node are interested in.

[0017] In another embodiment, all messages from an input
source are assigned to one or more of N categories. Also, the
nodes are assigned to one or more of M types, and mappings
are created betWeen message categories and node types.
Each gateWay keeps track of these mappings. When a
gateWay receives messages from input sources, the gateWay
identi?es the categories of the messages and routes the
messages to the nodes of the types to Which the categories
are mapped. To ensure that clients have access to the
messages they need, clients are alloWed to communicate

Oct. 11, 2007

With nodes of several types using client proxies connected
betWeen the clients and the nodes. There are at least tWo
Ways to implement the client proxy embodiment. The imple
mentations dilfer primarily in Where the client registration
information is stored. In the ?rst implementation, client
registration information is stored at the nodes, and the client
proxy merely passes messages among the clients and nodes.
When a node directs a message to the client, the node passes
the message to the client proxy along With a pointer to the
client socket. When the client proxy receives the message, it
simply pushes it to the client socket.

[0018] In the second implementation of the client proxy
embodiment, the client proxy stores client registration infor
mation. In this embodiment, each node stores the object IDs
registered by client proxies connected to the node. The client
proxy registers With the nodes for all objects for Which it
needs to receive updates. The nodes receive the messages
from the input sources, determine Which client proxies have
registered for the messages, and send the messages to the
appropriate client proxies. The client proxies, in turn, trans
mit the messages to the clients that have registered for the
messages.

[0019] The features and advantages described in this sum
mary and the folloWing detailed description are not all
inclusive, and particularly, many additional features and
advantages Will be apparent to one of ordinary skill in the art
in vieW of the draWings, speci?cation, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a high-level block diagram illustrating an
environment containing a dynamic content routing netWork;

[0021] FIG. 2 is an interaction diagram illustrating inter
actions among a server, information provider, dynamic
content provider, client, and routing netWork to update a
property of a live object on a Web page;

[0022] FIG. 3 is a high-level diagram graphically indicat
ing the many-to-many mapping performed by the routing
netWork;
[0023] FIG. 4 illustrates tWo different Web pages contain
ing sports scores;

[0024] FIG. 5 is a block diagram illustrating an input
source and the tools available to it for generating the update
messages;

[0025] FIG. 6 is a How chart illustrating the steps per
formed by an embodiment of an activation module;

[0026] FIG. 7 is a block diagram illustrating a loWer-level
vieW of the routing netWork according to an embodiment of
the present invention;

[0027] FIG. 8 is a How chart illustrating steps performed
by a gateWay and a node in a cluster to perform obj ect-based
routing of a message received from an input source in an
embodiment using a hierarchy of registries;

[0028] FIG. 9 is a block diagram illustrating a high-level
vieW of the routing netWork in an embodiment adapted to
use message categories, node types, and client proxies;

[0029] FIG. 10 is a How chart illustrating steps performed
by a gateWay, a node that stores client registration informa

US 2007/0239822 A1

tion, and a pass-through client proxy to perform object
based routing of a message received from an input source;

[0030] FIG. 11 is a block diagram illustrating a high-level
vieW of the routing network for an embodiment in Which the
client proxy stores the client registration information; and

[0031] FIG. 12 is a block diagram illustrating a high-level
vieW of the routing netWork for an embodiment in Which the
nodes adopt client proxy functionality.

[0032] The ?gures depict an embodiment of the present
invention for purposes of illustration only. One skilled in the
art Will readily recogniZe from the folloWing description that
alternative embodiments of the structures and methods illus
trated herein may be employed Without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0033] FIG. 1 is a high-level block diagram illustrating an
environment 100 containing a dynamic content routing
netWork 110 (hereafter referred to as the “routing netWor ”).
The environment 100 also contains a server 112 in commu
nication With a client 114, an information provider 108, and
a dynamic content provider 116. Although a typical envi
ronment 100 Will have hundreds of servers 112 and infor
mation providers 108, thousands (or even millions) of cli
ents 114, and multiple dynamic content providers 116, FIG.
1 illustrates only one of each of these entities in order to
enhance the clarity of this description.

[0034] The server 112, client 114, information provider
108, dynamic content provider 116, and routing netWork 110
are preferably in communication via conventional commu
nications links 117 such as those comprising the Internet.
The communications links 117 include knoWn Wired com
munications media, such as dedicated or shared data, cable
television or telephone lines, and/or knoWn Wireless com
munications media, such as communications over the cel
lular telephone netWork using protocols such as the global
system for mobile communications (GSM), code division
multiple access (CDMA), time division multiple access
(TDMA), etc.

[0035] In one embodiment, the entities may each be in
communication With one or more Internet Service Providers

(ISPs) (not shoWn) that provide each entity With access to
other computers on the Internet. In addition, the server 112,
client 114, information provider 108, dynamic content pro
vider 116, and routing netWork 110 are preferably each
identi?ed by at least one Internet Protocol (IP) address such
as “66.35.209.224.” The IP address may also have one or
more domain names associated With it, such as “bangnet
Works.com.” Alternative embodiments of the present inven
tion may use alternative addressing schemes and/or naming
conventions instead of, or in addition to, those described
herein. For example, embodiments Wherein one or more of
the clients are cellular telephones or other portable devices
may rely on different addressing schemes.

[0036] Preferably, the information provider 108 provides
Web pages or other representations of data to the server 112.
The Web pages contain one or more “live objects,” Which are
designated to be real-time dynamically-updateable objects.
Each live object is identi?ed by an object identi?er, or object
ID. Preferably, the server 112 provides the Web pages 118 to

Oct. 11, 2007

multiple clients 114. The clients 114 contact the routing
netWork 110 and register for update messages for the object
IDs on the Web page. The routing netWork 110, in turn,
preferably maintains a registry indicating Which clients have
registered for Which object IDs.

[0037] The information provider 108 and/or dynamic con
tent provider 116 send update messages to the routing
netWork 110. These messages can be sent any time the
information provider 108 or dynamic content provider 116
Wants to update a property of a live object. Each update
message preferably identi?es a live object and contains data
for updating a property of the identi?ed live object. The
routing netWork 110 accesses the registry and determines
Which clients have registered for the identi?ed object. Then,
the routing netWork 110 routes the update message to the
appropriate clients. Upon receipt of an update message, the
clients 114 update the speci?ed property of the live object.

[0038] The routing netWork 110 provides an ef?cient
one-to-many mapping of objects to clients (and by inference
of information, a many-to-many mapping of information
providers 108/dynamic content providers 116 to clients)
through object-based routing. Messages provided by the
information provider 108 and/or dynamic content provider
116 to the routing netWork 110 are not routed to the clients
114 based entirely on a speci?ed destination; more speci?
cally, they are not routed based on the IP address of the
client, as in conventional IP routing schemes. Instead, the
messages are routed based on the live objects referenced by
the message.

[0039] The mapping and object-based routing provided by
the routing netWork 110 alloW the information provider 108
and dynamic content provider 116 to update properties of
live objects at a dynamically changing cross-section of
clients in real-time, Without requiring the information pro
vider or dynamic content provider to track the clients or Web
pages being vieWed by the clients. The clients 114, in turn,
do not need to have any a priori knoWledge of object
IDsithey “discover” Which IDs they should register When
they receives the Web pages 118 from the server 112.

[0040] Object-based routing also alloWs information pro
viders 108 to dynamically update content on Web pages
Without requiring the clients 114 to re-request the content,
and Without requiring the information providers 108 or
servers 112 to maintain connections With the clients. In this
manner, signi?cantly more clients can receive updated con
tent from a given information provider 108 than Would be
possible utiliZing conventional client-side request-driven
transmission control protocol/Internet Protocol (TCP/IP)
connections betWeen the clients and the server 112.

[0041] Turning noW to the individual entities illustrated in
FIG. 1, the server 112 is preferably a conventional computer
system con?gured to act as a Web server and serves Web
pages 118 and other data representations to clients 114. The
Web pages 118 provided by the server 112 are associated
With one or more information providers 108.

[0042] An information provider 108 is an entity providing
one or more Web pages 118, information contained in Web
pages, and/or other representations of data served by the
server 112. The information provider 108 preferably has a
conventional computer system coupled to the Internet. In
one embodiment, the server 112 is directly controlled by the

US 2007/0239822 A1

information provider 108 (e.g., the server is physically
located at the information provider and/or is dedicated to
serving only the information provider’s Web pages). In this
embodiment, the server 112 and information provider 108
can be treated as the same entity. In an alternative embodi
ment, the server 112 serves Web pages from multiple infor
mation providers.

[0043] As is knoWn in the art, the Web pages 118 and other
content on the server 112 are speci?ed by uniform resource
locators (URLs) having the form “service://server/path/Web
page.” Typically, Web pages 118 are obtained via the hyper
text transport protocol (HTTP) and thus an exemplary URL
for retrieving the Web page “bl .html” from the Web server
having the domain name “WWW.bangnetWorks.com” is
“http://WWW.bangnetWorks.com/neWs/bl .html.”

[0044] As used herein, a “Web page” is a block of data
available from the server 112. In the simplest case, a Web
page is a ?le Written in the hypertext markup language
(HTML). The Web page may also contain or refer to one or
more other blocks of data, such as other ?les, text, images,
applets, video, and/or audio. In addition, the Web page may
contain instructions for presenting the Web page and its
content, such as HTML tags and style sheets. The instruc
tions may also be in the Extensible Markup Language
(XML), Which is related to HTML and adds semantic
content to Web pages or the Dynamic HTML (DHTML),
Which adds some dynamic content to Web pages. Addition
ally, the instructions may take the form of one or more
programs such as JAVA® applets and JAVASCRIPT® and/
or DHTML scripts.

[0045] As used herein, the phrase “Web page” also refers
to other representations of data served by the server 112
regardless of Whether these data representations include
characteristics of conventional Web pages. These data rep
resentations include, for example, application programs and
data intended for the Web broWser 120 or other application
programs residing at the clients 114 or elseWhere, such as
spreadsheet or textual (e.g., Word processing) data, etc.

[0046] In a preferred embodiment, objects at the client,
such as Web pages and elements of Web pages, can be
designated as “live” by the information provider 108. Prop
erties of a live object can be dynamically updated in real
time at the client 114 by the information provider 108 or
another entity acting on behalf of the information provider.
As used herein, an “object” is any datum or data at the client
114 that can be individually identi?ed or accessed.
Examples of objects include elements of Web pages such as
text characters and strings, images, frames, tables, audio,
video, applets, scripts, HTML, XML, and other code form
ing the Web page, variables and other information used by
applets, scripts and/or code, URLs embedded in the Web
page, etc. Application and operating system constructs are
also objects. For example, cells of spreadsheets, text in Word
processor documents, and title bars and messages displayed
by the operating system or applications are objects. Prefer
ably, multiple objects can be grouped together into a single,
logical object. Thus, an object can be de?ned at any desired
or useful level of granularity.

[0047] Since content on a Web page is conceptualized and
organiZed by “object,” the present invention essentially
abstracts Web pages and Web page content, and other mod
ules and/or functionality at the client 114, aWay from the

Oct. 11, 2007

HTML code or other conventional representation. This
abstraction alloWs the information provider 108 to update a
property of an object Without concern for the location,
display format, or other speci?cs of hoW the data is being
represented at the client 114.

[0048] Live objects have associated “properties” Which
include any modi?able data related to the object or refer
enced With respect to the object. The information provider
108 typically, but not necessarily, provides initial settings for
the properties of live objects provided to the client 114. The
properties may or may not affect the visual representation of
the object in the Web page or other data representation. A
property may affect an internal aspect of the object and, thus,
a change to the property may not have any direct effect on
a Web page containing the object. For example, the property
may affect Whether particular aspects of the object are
modi?able, hoW the object responds to user input or other
stimuli, etc. Additionally, a property may also have a direct
effect on hoW the object is displayed at the client 114. For
example, the property may affect the content, color, type
face, siZe, formatting, or other attribute of text, images, or
other data displayed by the object. Other properties may
occupy parts of the spectrum betWeen having no effect on
the visible representation of the object and having a direct
effect on the visible representation of the object. For
example, a Web page shoWing scores of football games may
include a list of games and the current scores of the games
as of the time the server 112 serves the Web page. The list
of games, subset of games to be displayed, and the scores of
the games can be designated as live objects (or properties of
a single live object) and updated as necessary or desired.

[0049] Aproperty can also preferably include instantiating
an instance of the object or invoking functionality of the
object. For example, a property of a broWser WindoW object
may include functionality for instantiating another broWser
WindoW. This function can be invoked as a logical change to
a property of the object. The second broWser WindoW can be
referenced through the original broWser WindoW (i.e.,
object) or designated as a neW live object.

[0050] An information provider 108 or other entity pref
erably updates a live object at a client 114 via an update
message. In general, an update message identi?es the live
object and, if necessary, the property of the live object, and
contains data for updating the property. In one embodiment,
the data may be the actual value for the property or execut
able code for causing the object’s property to be updated.
For example, the data may be a simple numerical or textual
value, e.g., “4,” to Which the property should be set, and/or
the data may be JAVASCRIPT® code or a call to a JAVA
SCRIPT® function at the client that effects the desired
change to the property of the object.

[0051] The update message preferably implicitly or
explicitly identi?es a handler at the client 114 for use in
updating the live object’s property. In one embodiment, the
client 114 utiliZes a default handler When the message
implicitly speci?es the handler (eg when the message does
not identify a speci?c handler). In one embodiment, if the
update message speci?es the actual value for the property, a
default handler generates JAVASCRIPT® code for changing
the property to the speci?ed value. If the data in the update
message are JAVASCRIPT® code, the default handler does
not perform any processing of the code. In either case, the

US 2007/0239822 A1

default handlers preferably use LiveConnect to execute the
JAVASCRIPT® code in a Java Virtual Machine (JVM) 122
at the client 114 and thereby update the property of the live
object.
[0052] For certain objects and/or data types, the default
handlers are not appropriate. In these cases, the message
preferably explicitly identi?es a handler for performing the
update. For example, the message may explicitly specify a
function to call on the data or the message may explicitly
identify the environment in Which the data should be
executed. For example, the data in the update message may
include code for execution by a softWare “plug-in” such as
MACROMEDIA FLASH® and the message may explicitly
identify FLASH as the handler.

[0053] The information provider 108 preferably desig
nates an object as “live” by including a unique identi?er for
the object, the object ID, in the Web page or other data
representation provided to the client 114. In one embodi
ment, the information provider 108 encodes the object ID in
an object’s corresponding HTML “ID” attribute using the
folloWing HTML expression:

[0054] ID=“elementIdenti?er,”
Where “elementIdenti?er” is the object ID and is prefer

ably a string. The string can encode any information
desired by the information provider 108 or other entity
establishing the object ID and in one embodiment is a
simple textual and/ or numeric identi?er. In one
embodiment, the information provider 108 begins the
object ID With a prede?ned token, such as “Bang$,” in
order to distinguish live objects from other objects that
happen to have de?ned ID attributes. For example, an
object can have the object ID “Bang$elementIdenti
?er.”

[0055] In the preferred embodiment, each information
provider 108 optionally encodes a unique information pro
vider ID in its object IDs in order to prevent naming
collisions betWeen the object IDs of different information
providers. In one embodiment, the information provider ID
is a textual and/or numeric identi?er. The information pro
vider 108 may specify the information provider ID and the
object ID as part of a hierarchical namespace. For example,
in one embodiment objects are named as folloWs:
“$namespacel$[namespace2$. . . $namespaceN$]objec

tId,” Where “$namespacel” is the information provider ID
and the “95” operates as the name separator and de?nes
additional optional levels of a namespace hierarchy. One
embodiment of the system 100 supports typical directory
services functionality. For example, tWo dollar sign charac
ters appearing together, “$95,” refers to the top level of the
namespace hierarchy.

[0056] Thus, the object ID for a live object is preferably
formed from a combination of the prede?ned token, the
information provider ID namespace, and a value assigned by
the information provider 108. For example, the object ID for
a live object representing the real time price of a stock
having the symbol “BANG” might be: “Bang$$information
ProviderID$equities$realtime$bang.” In this example,
“Bang$” is the prede?ned token that signi?es a live object,
“$informationProviderID” is the ID identifying the infor
mation provider, “$equities$realtime$” de?nes levels of a
namespace hierarchy, and “bang” identi?es the speci?c
object.

Oct. 11, 2007

[0057] In some embodiments and situations, the object ID
utiliZes relative names. For example, an information pro
vider 108 referring to its oWn object IDs is implicitly in its
oWn namespace. Accordingly, the information provider 108
does not need to include the information Provider ID in the
object IDs it utiliZes internally. In one embodiment, the
information provider ID is not explicitly encoded into the
object ID. Instead, the information provider ID is encoded
elseWhere in the Web page in order to provide scope to the
page’s object IDs.

[0058] In one embodiment, the object ID identi?es a point
(i.e., a node in a tree) in a Document Object Model (DOM)
representation of a Web page or other document at the client
114. The DOM is a platform- and language-neutral interface
that represents a document as a hierarchy of objects. The
DOM also provides an interface that alloWs programs and
scripts to dynamically access and update properties of the
objects. Object properties can be inherited by descendent
objects.

[0059] In this embodiment, the client 114 preferably
executes an update message in the context of the speci?ed
point in the DOM representation. The update may specify a
change to a property of the object at the identi?ed point. The
update also may specify a change to a parent or descendent
of the object at the identi?ed point. In each case, the update
is executed relative to the speci?ed point in the DOM
representation. In one embodiment, points in the DOM
representation specify hoW to update properties of live
objects located at those points. Thus, the same update may
be interpreted differently depending upon the identi?ed live
object’s location in the DOM representation.

[0060] For example, assume there is an object in the DOM
representation identi?ed as "WindoW.document.frame[3]
.ObjectID.” Also assume that the object has an “innerText”
property located at “WindoW.document.frame[3].Objec
tID.innerText” that speci?es the text displayed by the object.
An update message can change the text displayed by the
object by specifying “ObjectID” and the neW value for the
innerText property.

[0061] An advantage of utiliZing object IDs to specify
objects is that the information provider 108 or other entity
providing the update message can access and change prop
er‘ties of objects Without knoWing the obj ect’s actual location
in the DOM representation. Indeed, the object may be in
different locations in different DOM representations and/or
in multiple locations in the same DOM representation. In
any of these cases, the update message Will change the
speci?ed properties of all of the objects having the given
object ID.

[0062] Depending upon the particular embodiment of the
environment 100, the information provider 108 and/or the
dynamic content provider 116 provides update messages to
the routing netWork 110. The dynamic content provider 116
is preferably a conventional computer system operated by an
entity that provides real-time information, such as stock
prices and/or sports scores. In one embodiment, the infor
mation provider 108 receives updated properties for the live
objects from the dynamic content provider 116 or another
source (or generates the updated properties internally).
Then, the information provider 108 sends an update message
specifying the object ID and the change to the object

US 2007/0239822 A1

property to the routing network 110. In this embodiment, the
dynamic content provider 116 may be absent from the
environment 100.

[0063] In another embodiment, the dynamic content pro
vider 116 provides the object IDs for live objects to one or
more information providers 108 and the information pro
viders 108 distribute the live objects to the clients 114. Then,
the dynamic content provider 116 sends messages specifying
the changes to the properties of the live objects to the routing
network 110. For example, the dynamic content provider
116 distributes an object ID associated with the score of a
particular baseball game to the information providers 108.
Then, the dynamic content provider 116 sends a message
specifying the object ID and an update to a property of the
object that controls the displayed score of the particular
baseball game to the routing network 110. These two
embodiments are not mutually exclusive and, therefore,
some updates may be provided to the routing network 110 by
the information provider 108 while others are provided by
the dynamic content provider 116.

[0064] The client 114 is a device that retrieves web pages
118 and/or other information from the server 112. In one
embodiment, the client 114 is a conventional personal com
puter used by a person to access information on the Internet.
In alternative embodiments, the client 114 is a different
consumer electronic device having Internet connectivity,
such as an Internet-enabled television, a cellular telephone,
a personal digital assistant (PDA), a web browsing appli
ance, etc. The client 114 preferably, but not necessarily, has
an associated display device.

[0065] The client 114 preferably executes a web browser
120, such as MICROSOFT INTERNET EXPLORER®, for
retrieving web pages and displaying them on the display
device. In embodiments where the client receives data
representations from the server 112 other than conventional
web pages, the web browser 120 does not necessarily share
similarities with conventional web browsers. Preferably, the
web browser 120 contains a JV M 122 for executing JAVA®
applets and/or scripts. The web browser 120 also preferably
contains Dynamic HTML capabilities, such as support for
JAVASCRIPT® (or another scripting language, such as
VBScript) and the Document Object Model (DOM), and
enables communications between JAVA® and the scripting
languages. In one embodiment, the web browser 120 sup
ports the LiveConnect standard for enabling communication
between JAVA® applets and scripts written in the supported
scripting languages. The web browser 120 can also be
extended through software plug-ins such as MACROME
DIA FLASH®, REAL NETWORKS REALPLAYER®,
and/ or APPLE QUICKTIME®. In alternative embodiments,
the functionality of the JVM 122 and/ or other aspects of the
web browser 120 are provided by one or more other func
tional units within the client 114. The term “module” is used
herein to refer to software computer program code and/or
any hardware or circuitry utiliZed to provide the function
ality attributed to the module. The web browser 120 and
JVM 122 are examples of modules in the client 114.

[0066] In some embodiments, the client 114 does not
necessarily have a display device, web browser 120 and/or
other components associated with a typical consumer
device. The client 114, for example, may be a dedicated
purpose device having certain aspects of web connectivity

Oct. 11, 2007

such as an embedded HTTP client in a web-enabled appli
ance or in a controller for an automobile, audio-visual
equipment, or some other device.

[0067] Aweb page 118 provided from the server 112 to the
client 114 preferably includes instructions for enabling the
live objects on the web page. The instructions cause the
client 114 to automatically and transparently (i.e., without
user interaction) contact the routing network 110 and down
load an activation module 124 for activating the live objects.
In one embodiment, the instructions comprise a URL speci
fying the location of the activation module 124 at the routing
network 110. In an alternative embodiment, the client 114
obtains the activation module 124 from the server 112 or
another source.

[0068] The activation module 124 preferably contains
JAVA® instructions for execution by the JV M 122. How
ever, alternative embodiments of the module 124 may
encode the instructions in the web page 118 and/or the
activation module 124 using different languages and/or
techniques. For example, the instructions and/or activation
module 124 can be embedded in the web browser 120 or
operating system, either as native code or as plug-ins. In
these alternative embodiments, the web browser 120 does
not have to download the activation module 124 from an
external source.

[0069] The activation module 124 preferably registers
object IDs from the web page 118 downloaded by the client
114 with the routing network 110 and updates the live
objects in response to update messages received from the
network. The routing network 110 records the registrations
in the registry 125. The client’s registrations preferably
remain in effect as long as the client is displaying the
associated web page 118, although other embodiments of the
system 100 may use different criteria for determining when
to terminate the client’s registrations.

[0070] FIG. 2 is an interaction diagram illustrating inter
actions among the server 112, information provider 108/
dynamic content provider 116 (generically referred to as an
“input source 210”), client 114, and the routing network 110
to update a property of a live object. Initially, the client 114
sends 212 a web page request to the server 112. In response,
the server 112 provides 214 to the client 114 the web page
containing or otherwise identifying the one or more live
objects. Instructions encoded in the web page preferably
cause the client 114 to transparently request 216 the activa
tion module 124 from the routing network 110. In response,
the routing network 110 sends 218 the activation module
124. The client 114 executes 220 the activation module 124,
which identi?es the object IDs of the live objects at the client
and registers 222 the object IDs with the routing network
110. The routing network 110 updates 223 its registry to
identify the object IDs for which the client 114 has regis
tered.

[0071] At some point, the input source 210 sends 224 an
update message to the routing network 110 in order to
change a property of a live object at the client 114. In one
embodiment, the message from the input source 210 to the
routing network 110 contains only a single object ID and an
update to a property of the identi?ed object. In another
embodiment, the message contains multiple object IDs and
the corresponding property updates. In this latter embodi
ment, the message may have an associated “Batch ID” that

US 2007/0239822 A1

identi?es the message as having multiple object IDs and
updates. Preferably, the information provider 108 can
include a batch ID in a Web page 118 in the same manner as
including an object ID. Likewise, the client 114 can prefer
ably register for a batch ID With the routing netWork 110 in
the same manner as an object ID. In fact, the batch ID can
be the same as the object ID so that the client 114 registers
for both batch and non-batch messages by registering one
ID. Alternatively, separate procedures can be established for
registering batch messages. The client 114 preferably pro
cesses the component messages of a batch as if each
message Were delivered separately.

[0072] The routing netWork 110, in turn, routes 226 the
message to each client 114 that has registered for the
speci?ed object ID, preferably by utiliZing standard Internet
communications protocols, such as IP addresses, etc. The
activation module 124 at the client 114 processes the mes
sage and updates 228 the property of the identi?ed live
object. If live objects having the same object ID appear in
multiple locations at the client 114 (e.g., at multiple loca
tions on a Web page being displayed at the client), the
activation module 124 preferably updates each of the live
objects having the speci?ed ID. As a result, the routing
netWork 110 alloWs live objects at the client 114 to be
dynamically updated. Preferably, this routing and updating
happens quickly enough to be considered “real-time” for the
purposes of the input source 210.

[0073] This update process, indicated Within the dashed
box 230 in FIG. 2, can repeat an inde?nite number of times
and is fully asynchronous as to the information provider 210
and client 114. For example, the input source 210 may send
regular update messages to the routing netWork 110 as the
score of a sporting event changes or a stock price ?uctuates,
but may stop sending update messages once the sporting
event ends or stock market closes. When the client 114 ends
the display of a Web page containing the live object, or
otherWise no longer desires to receive update messages, the
client preferably closes 232 the connection With the routing
netWork 110. The routing netWork I 10, in turn, updates 234
the registry 125 to remove the client’s object registrations.
In another embodiment, the client 114 sends messages to the
routing netWork 110 that selectively register and/or de
register the client from one or more objects yet leaves the
connection open in order to receive update messages per
taining to other objects.

[0074] FIG. 3 is a high-level diagram graphically indicat
ing the many-to-many mapping performed by the routing
netWork 110. Multiple input sources (labeled 210A-C) send
update messages to the routing netWork 110. Each update
message preferably speci?es at least one object ID and an
update to a property of the identi?ed object. The routing
netWork 110, in turn, selectively routes the update messages
to the clients 114 that have registered for the given object ID
from the given input source 210. In FIG. 3, assume for
example that clients 312A and 312B have registered for a
given object ID While the other clients have not registered
for the object ID. Accordingly, the routing netWork 110
routes the update message to clients 312A and 312B, but
does not route the message to clients 312C-312H.

[0075] FIG. 4 illustrates an example of the capabilities of
the dynamic content routing netWork 110. FIG. 4 illustrates
tWo different Web pages 410, 412 containing sports scores.

Oct. 11, 2007

Although the Web pages are formatted differently, each page
contains the same scores for tWo professional football games
and tWo professional baseball games. Web page 410 con
tains all four games under the heading “Local Sports Scores”
While Web page 412 contains the baseball games under the
heading “Baseball Scores” and the football games under the
heading “Football Scores.”

[0076] There are various Ways to internally represent the
games and scores in the Web pages using live objects. In one
embodiment, a “game” object is de?ned having properties
for the tWo teams involved in the game and the score
associated With each team. The game object is placed at a
selected position in the Web page and the properties of the
object cause the information about the game to be displayed
on the page. In another embodiment, “team” and “score”
objects are de?ned, With the team object having a property
de?ning the name of a team and the score object having a
property de?ning a score. In this second embodiment, the
team and score objects are placed at selected locations on the
page so that the proper teams and scores are aligned When
the page is rendered. In yet another embodiment, an object
is de?ned having properties for the name of one team and a
score associated With that team. Then, pairs of the objects
are placed in the page in the proper alignment to indicate the
games and scores. In another embodiment, an object is
de?ned having properties specifying names of tWo teams
and a separate object is de?ned having properties specifying
tWo scores. In this last embodiment, the tWo objects are
placed in the page so that the names of the teams align With
the associated scores. Obviously, additional variations of
these representations are possible.

[0077] Assume for the example of FIG. 4 that the names
of teams in a game are speci?ed by a “names” object having
properties for the tWo team names and the scores in the game
are speci?ed by a “scores” object having properties for tWo
scores. In Web page 410, a names object 414 having prop
erties set to identify the “SF 49ers” and the “STL Rams” is
located directly under the “Local Sports Scores” heading. A
scores object 416 having a property set to identify the score
of the game as “42” to “7” is directly to the right of the
names object 414. In Web page 412, the properties of the
second names object 418 identify the same game using
slightly different terminology: “SF” and “STL.” HoWever,
this names object 418 is aligned With the same scores object
416 as is utiliZed in Web page 410.

[0078] Thus, the same scores object 416 is utiliZed in
different positions in each Web page 410, 412. In order to
update the score of the San Francisco 49ers vs. St. Louis
Rams football game on both Web pages, the input source 210
simply sends an update message to the routing netWork 110
specifying the object ID for the scores object 416 and the
update to the score property. The routing netWork 110 routes
the update message to the appropriate clients 114, and the
clients update the appropriate score regardless of the par
ticular page layout.

[0079] The input source 210, i.e., the information provider
108 and/or dynamic content provider 116 can use a variety
of tools to generate the update messages. FIG. 5 is a block
diagram illustrating an input source 210 and the tools
available to it for generating the update messages. Other
tools can be utiliZed in addition to or instead of the ones
described herein.

