US 20070239822A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2007/0239822 Al

Tuttle et al.

43) Pub. Date: Oct. 11, 2007

(54)

(76)

@
(22)

(63)

(60)

ASYNCHRONOUS MESSAGING USING A
NODE SPECIALIZATION ARCHITECTURE
IN THE DYNAMIC ROUTING NETWORK

Inventors: Timothy Tuttle, San Francisco, CA
(US); Karl E. Rumelhart, Palo Alto,
CA (US)

Correspondence Address:

STERNE, KESSLER, GOLDSTEIN & FOX
P.L.L.C.

1100 NEW YORK AVENUE, N.W.,
WASHINGTON, DC 20005 (US)

Appl. No.: 11/396,251

Filed: Mar. 30, 2006

Related U.S. Application Data

Continuation of application No. 10/105,018, filed on
Mar. 21, 2002, now Pat. No. 7,051,070, which is a
continuation-in-part of application No. 10/017,182,
filed on Dec. 14, 2001, now Pat. No. 7,043,525.

Provisional application No. 60/278,303, filed on Mar.
21, 2001. Provisional application No. 60/280,627,
filed on Mar. 29, 2001. Provisional application No.
60/279,608, filed on Mar. 28, 2001. Provisional appli-

cation No. 60/276,847, filed on Mar. 16, 2001. Pro-
visional application No. 60/256,613, filed on Dec. 18,

2000.
Publication Classification
(51) Inmt. Cl
GO6F 15/16 (2006.01)
GO6F 3/00 (2006.01)
(52) US. Clo oivinevenceesciececnne 709/203; 710/19
57 ABSTRACT

A network routes update messages containing updates to
properties of live objects from input sources to clients
having the objects. When the clients receive live objects, the
clients identify the object IDs associated with the objects
and register the object IDs with the routing network. The
routing network is adapted to selectively send update mes-
sages to nodes in the network and the nodes forward the
messages to the clients. One implementation uses a hierar-
chy of registries to indicate which nodes and clients receive
which update messages. Another implementation assigns
update messages to one or more of N categories and nodes
to one or more of M types, and the gateways maintain
mapping between categories and types. To ensure that
clients receive all of the update messages for which they
register, the clients connect to client proxies that in turn
connect to at least one node of each type.

| | l
Server))
117 Information 117 Dynamic
A - Provider » Content
118 ¢
(- — Provider

Client
120 122

117 L108

Dynamic
Content
Routing

Network 110

100

US 2007/0239822 Al

Patent Application Publication Oct. 11,2007 Sheet 1 of 12

| B4

001

oLl

HIOMISN
Bunnoy
Jusuon
olweuiqg

~

Jopinoid — L
uBU0Y [e Japinoid —
olweuAq bl uoneunou|

L)

A 4

US 2007/0239822 Al

Patent Application Publication Oct. 11,2007 Sheet 2 of 12

A A A A
VEC | fysi[Boy
\ selpdn
2T
~ U0Io8uuoy 9s0|) l .m_n_
gzz | °Bled m
QM
N aielodn "
9¢¢c > “
abessaly painoy vzZ "
M abessapy a1epdn |
€CC | fys1Blay
\| aep|dn
» {44
i8)s16ay
0z2 anp|o
UONEA(OY
4 8)no [ox3
8L¢ N
alNpojy uoleAndy
. 9lz @inpow
~ uofeAldy jsenbay 4%
- abed|qap
ZLe N
1sonboy | ebeyq qapm -
oLl il 0Le 153
yiomjeN Bunoy Wwalo 204n0g Jnduy SEVNEYS

US 2007/0239822 Al

Patent Application Publication Oct. 11,2007 Sheet 3 of 12

¢ B4

HZLE A% 42i¢€ 3¢\€ azie ocle gcie vele

COECECHECHEICHRCD RC RGN

oLl
HOMISN
Bunnoy

v
2012 0.2 0L

US 2007/0239822 Al

Patent Application Publication Oct. 11,2007 Sheet 4 of 12

1454

oy 8LY

f/. f‘n/
€ sejeq |/ 2\ / LS\
b |
yz pueNEQ 1zp /\ A4S |
,/l\ // \\
$81008 ||eq1004

z XL 0 VI

6 %0 9 4S
$§81038 lleqaseg

0184

N

z siabuey sexa
6 S\Y puepEQ

0 si8bpog v
9 sjuelo 49

S sAogmoD sejleq
144 siepiey puepeQ

e -

$9100g suodg |E207

Patent Application Publication Oct. 11,2007 Sheet 5 of 12

Input Source

i
To)

N
0

o
o

o

210

US 2007/0239822 Al

Fig. 5

Patent Application Publication Oct. 11,2007 Sheet 6 of 12

Terminate

Parse Page
and Identify

A 4

Connect to
Routing

\ 4
Register
Object IDs

Network

US 2007/0239822 Al

Object IDs N

610

Network _\

612

With N

614

l

Y

616

Message
Received

No

from Network
?

618

Extract

A

Update
ldentified

Data \

620

Object

Fig. 6

Patent Application Publication Oct. 11,2007 Sheet 7 of 12 US 2007/0239822 A1

(—- 710A

(—7108 r—71OC

(—71OD

. Dynamic
Information c
. ontent e o o
Provider .
Provider
Global Load Balancer 716
roo N 1 :r‘\ ““““““ \/ ‘‘‘‘‘ E
Clg:tlz:]lég?d 720A 1| Cluster Load Balancer ¥ Cluster Load Balancer |
N\ [\ I [|
- Gateway X ¥ |
724A ||| Gateway Gateway |11 Gateway | o o o
N [L[] |
734A S % |
730a : i
i
| [|
[732A]| ([Z32A](i+ || (1| i |l | |
Node Node ||| Node Node |1 | Node Node :
11 11 t
k726A) & i |
| 11 |
App i App 1 App |
Server) Server M Server |
728A ¥ X |
110 1 |
il [-
I [|
[I :
Cluster Load L t
Balancer 722A : : Cluster Load Balancer : : Cluster Load Balancer :
t g I
(N} [|
|1 [|
| [|
Il |

L;:ZA 1\—714B
Global Load Balancer
[Client| [Client| |Client| [Client| |[Client| o o @

712A

712B k712C

Fig. 7

712D k712E 712F

Patent Application Publication Oct. 11,2007 Sheet 8 of 12

US 2007/0239822 Al

Bl

A 4

Receive
Message

810

Extract IDs

820

A

Look up
Registered
Nodes

830

Y

Transmit
Message to
Registered Nodes
if any

840

A 4

Look up
Registered
Clients

850

A 4

Transmit
Message to
Registered

Clients

860

Fig. 8

Patent Application Publication Oct. 11,2007 Sheet 9 of 12

/ 726

Node of Type 1
7

Client 1

110

US 2007/0239822 Al

/ 726

Node of Type 2
2

~ Client Proxy

Fig. 9

r/ \/

Client 2

Patent Application Publication Oct. 11,2007 Sheet 10 of 12 US 2007/0239822 A1

>

A 4

Receive
Message \
1010
\ 4
Identify
Message
Category ﬁ
1020
h 4
Look Up

Nodes of the

Message ﬂ

Category 1030
A
Transmit
Message to
\dentified Nodes | "\
1040

Determine Clients
Registered for the

Message and Client
Proxies Connected —\

to the Clients 1050
4
Transmit
Message to
Client Proxy _\
1060
Y
Transmit
Message to
Registered _\
Clients 1070

Fig. 10

Patent Application Publication Oct. 11,2007 Sheet 11 of 12 US 2007/0239822 A1

/ 726 r 726

Node of Type 1 Node of Type 2
\ /
Client Proxy
73
/ 712/ \ r 712
Client 1 Client 2
Ve
110

Fig. 11

Patent Application Publication Oct. 11,2007 Sheet 12 of 12 US 2007/0239822 A1

/ 726 / 726

Node of Type 1 Node of Type 2
\ /
Node of Type 3
/ / \ f 712
Client 1 Client 1
e
110

Fig. 12

US 2007/0239822 Al

ASYNCHRONOUS MESSAGING USING A NODE
SPECIALIZATION ARCHITECTURE IN THE
DYNAMIC ROUTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
application Ser. No. 10/017,182 filed Dec. 14, 2001, which
claims the benefit of U.S. Provisional Application No.
60/256,613, filed Dec. 18, 2000, U.S. Provisional Applica-
tion No. 60/276,847, filed Mar. 16, 2001, U.S. Provisional
Application No. 60/278,303, filed Mar. 21, 2001, U.S.
Provisional Application No. 60/279,608, filed Mar. 28,
2001, and U.S. Provisional Application No. 60/280,627,
filed Mar. 29, 2001, all of which are hereby incorporated by
reference herein.

BACKGROUND

[0002] 1. Field of the Invention

[0003] This invention pertains in general to transferring
information through digital networks and in particular to
transferring information for remotely updating content at
client devices through the digital networks.

[0004] 2. Background Art

[0005] The Internet is a digital network of computers. An
individual computer on the Internet is typically identified by
an internet protocol (IP) address. A computer on the Internet
sends a packet of information to another computer by
routing the packet to a logical port at the destination com-
puter’s IP address. The destination computer interprets the
packet according to one of several possible protocols deter-
mined by the port to which the packet was sent.

[0006] The World Wide Web (the “Web”) is a collection of
technology and content available on the Internet that allows
the content to be routed from server computers to particular
destination computers. The Web includes a large number of
web pages residing on many different servers. Web pages
contain one or more files, or references to one or more files,
specifying instructions for presenting the web page and
content, such as text, images, applets, video, and/or audio.

[0007] Web pages use a variety of definitional and pro-
gramming languages to control how information is pre-
sented. The most fundamental of these is the Hypertext
Markup Language (HTML). HTML uses a system of “tags”
to specify how content should be displayed. Recent
advances in HTML introduce “style sheets” which help
separate content information from display information.
HTML has also been modified and extended to provide new
capabilities. For example, Extensible Markup Language
(XML) adds semantic content to web pages. In addition,
Dynamic HTML (DHTML) adds some dynamic content to
web pages.

[0008] A web page may also include one or more pro-
grams for controlling how the web page is displayed. For
example, JAVA® applets and JAVASCRIPT® scripts may
be used to control the display of a web page. In addition,
DHTML uses scripts to control the dynamic content. Thus,
a web page designer can use applets and scripts to produce
animation effects or modify the display based on user

Oct. 11, 2007

interaction. For example, the designer can write a script that
changes the color of a piece of text when a user clicks on a
button.

[0009] Devices that display/execute web pages are often
called “client devices” or simply “clients.” Client devices
include personal computers, web-enabled set-top boxes and
televisions, cellular telephones, personal digital assistants
and other handheld devices, and special-purpose web-
browsing appliances. Client devices typically employ a
program called a “web browser” for interpreting the HTML
or other display instructions in the web page and displaying
the content accordingly. Most web browsers include special
functionality, such as a Java Virtual Machine, for executing
JAVA® applets and/or other applets or scripts embedded in
the web pages.

[0010] A client device specifies a web page or other
document on the web using a Uniform Resource Locator
(URL). A URL has the form “service://server/path/file.”
Here “service” refers to the protocol to be used, such as the
file transfer protocol (FTP) or the hypertext transport pro-
tocol (HTTP). “Server” is the IP address of the server
containing the page, and “path/file” specifies the particular
web page on the server.

[0011] The Web suffers from a substantial limitation with
respect to dynamically updating content in a web page at a
client device. The Web’s only mode of operation is for a
client device to first request a page from a server and then
for the server to send the requested page to the client device.
Once the server delivers the page to the client, it typically
terminates its connection to the client, and does not retain
any information about the client or the page that was sent.
For this reason, servers are typically “stateless.” As a result,
client devices drive and control the flow of information
around the Web. While client-side control is appropriate in
some situations, it does not permit efficient updating of data
at the client devices. For example, if a web page contains
information that may change, such as the score of a baseball
game or a stock quote, the server has no way to inform the
client devices that are viewing the page of the change.
Instead, the client devices must ask the server for the
updated information. However, the client devices do not
know when the information on the web page has changed,
and thus do not know to ask for the update.

[0012] There are some simple web programming tech-
niques that attempt to update content on client device-side
web pages. One approach that web designers use is to rely
on the client devices to periodically re-request web pages.
This updating can be performed as the result of user action
(such as pressing the “refresh” button) or can be automated
to occur on a particular schedule (such as by using the
HTML Meta Refresh tag to cause the client device to request
the page every ‘X’ seconds). Although this technique pro-
vides client devices with more up-to-date information, it is
very wasteful of resources. In particular, the web server must
resend the page even if nothing has changed, and, even when
something has changed, it must resend the entire web page
rather than just the updated information, which may be only
a very small part of the page. Further, attempting to reduce
unnecessary requests by decreasing the request rate results
in decreasing the currency of the data. This is an unalterable
trade off in a client-driven approach.

[0013] The performance of automatic refreshing can be
improved somewhat by putting information that may change

US 2007/0239822 Al

in a separate frame from information that is less likely to
change, and only refreshing the separate frame. A few web
designers even write custom JAVA applets to limit refreshing
to individual components on a page, such as the score of a
soccer game. A willingness to go to such effort illustrates the
serious drain of resources caused by frequent refreshing.
Nevertheless, even custom JAVA applets are not a mean-
ingful attack on this problem. Custom applets require a large
separate development effort for each item on each page that
might need to be updated. More importantly, most custom
applets still update content based upon client-driven
requests, although it is possible to design an applet that
accepts “pushed” messages. This solution is not scalable to
provide updated information for large numbers of client
devices and for large numbers of web pages.

[0014] Therefore, there is a need in the art for an efficient
way to provide dynamic content to a web page at a client
device.

DISCLOSURE OF THE INVENTION

[0015] The above need is met by a dynamic content
routing network that routes messages containing data for
updating properties of live objects to clients displaying web
pages or other representations of data containing the live
objects. The web server that initially provides the web pages
to the clients does not need to track which clients are
currently displaying the live objects. Instead, the informa-
tion provider or a dynamic content provider (generically
referred to as an “input source”) that provided the live object
simply sends an update message to the routing network. This
routing utilizes bandwidth efficiently because the update
messages are provided to the clients only when the live
objects change.

[0016] The routing network is adapted to selectively send
messages to the nodes in the network. In one embodiment,
a hierarchy of registrations is used. Each gateway in the
routing network maintains the mappings between the live:
objects and the nodes that have registered for the live
objects. Each node in the routing network, in turn, maintains
the mappings between the live objects and the clients that
display them. An input source provides a message to a
gateway in each cluster in the routing network. Each gate-
way forwards to each node only messages that reference the
objects for which it has registered. Each node forwards to
each client only messages that reference the objects for
which it has registered. Adding node functionality to the
gateway and client functionality to the node advantageously
allows the routing network to decide which nodes should
receive an update message. As a result, messages are sent to
only nodes that have registered for the messages. Further-
more, each node receives all the messages that the clients
connected to that node are interested in.

[0017] Inanother embodiment, all messages from an input
source are assigned to one or more of N categories. Also, the
nodes are assigned to one or more of M types, and mappings
are created between message categories and node types.
Each gateway keeps track of these mappings. When a
gateway receives messages from input sources, the gateway
identifies the categories of the messages and routes the
messages to the nodes of the types to which the categories
are mapped. To ensure that clients have access to the
messages they need, clients are allowed to communicate

Oct. 11, 2007

with nodes of several types using client proxies connected
between the clients and the nodes. There are at least two
ways to implement the client proxy embodiment. The imple-
mentations differ primarily in where the client registration
information is stored. In the first implementation, client
registration information is stored at the nodes, and the client
proxy merely passes messages among the clients and nodes.
When a node directs a message to the client, the node passes
the message to the client proxy along with a pointer to the
client socket. When the client proxy receives the message, it
simply pushes it to the client socket.

[0018] In the second implementation of the client proxy
embodiment, the client proxy stores client registration infor-
mation. In this embodiment, each node stores the object IDs
registered by client proxies connected to the node. The client
proxy registers with the nodes for all objects for which it
needs to receive updates. The nodes receive the messages
from the input sources, determine which client proxies have
registered for the messages, and send the messages to the
appropriate client proxies. The client proxies, in turn, trans-
mit the messages to the clients that have registered for the
messages.

[0019] The features and advantages described in this sum-
mary and the following detailed description are not all-
inclusive, and particularly, many additional features and
advantages will be apparent to one of ordinary skill in the art
in view of the drawings, specification, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a high-level block diagram illustrating an
environment containing a dynamic content routing network;

[0021] FIG. 2 is an interaction diagram illustrating inter-
actions among a server, information provider, dynamic
content provider, client, and routing network to update a
property of a live object on a web page;

[0022] FIG. 3 is a high-level diagram graphically indicat-
ing the many-to-many mapping performed by the routing
network;

[0023] FIG. 4 illustrates two different web pages contain-
ing sports scores;

[0024] FIG. 5 is a block diagram illustrating an input
source and the tools available to it for generating the update
messages;

[0025] FIG. 6 is a flow chart illustrating the steps per-
formed by an embodiment of an activation module;

[0026] FIG. 7 is a block diagram illustrating a lower-level
view of the routing network according to an embodiment of
the present invention;

[0027] FIG. 8 is a flow chart illustrating steps performed
by a gateway and a node in a cluster to perform object-based
routing of a message received from an input source in an
embodiment using a hierarchy of registries;

[0028] FIG. 9 is a block diagram illustrating a high-level
view of the routing network in an embodiment adapted to
use message categories, node types, and client proxies;

[0029] FIG. 10 is a flow chart illustrating steps performed
by a gateway, a node that stores client registration informa-

US 2007/0239822 Al

tion, and a pass-through client proxy to perform object-
based routing of a message received from an input source;

[0030] FIG. 11 is a block diagram illustrating a high-level
view of the routing network for an embodiment in which the
client proxy stores the client registration information; and

[0031] FIG. 12 is a block diagram illustrating a high-level
view of the routing network for an embodiment in which the
nodes adopt client proxy functionality.

[0032] The figures depict an embodiment of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following description that
alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0033] FIG.1 is a high-level block diagram illustrating an
environment 100 containing a dynamic content routing
network 110 (hereafter referred to as the “routing network™).
The environment 100 also contains a server 112 in commu-
nication with a client 114, an information provider 108, and
a dynamic content provider 116. Although a typical envi-
ronment 100 will have hundreds of servers 112 and infor-
mation providers 108, thousands (or even millions) of cli-
ents 114, and multiple dynamic content providers 116, FIG.
1 illustrates only one of each of these entities in order to
enhance the clarity of this description.

[0034] The server 112, client 114, information provider
108, dynamic content provider 116, and routing network 110
are preferably in communication via conventional commu-
nications links 117 such as those comprising the Internet.
The communications links 117 include known wired com-
munications media, such as dedicated or shared data, cable
television or telephone lines, and/or known wireless com-
munications media, such as communications over the cel-
Iular telephone network using protocols such as the global
system for mobile communications (GSM), code division
multiple access (CDMA), time division multiple access
(TDMA), etc.

[0035] In one embodiment, the entities may each be in
communication with one or more Internet Service Providers
(ISPs) (not shown) that provide each entity with access to
other computers on the Internet. In addition, the server 112,
client 114, information provider 108, dynamic content pro-
vider 116, and routing network 110 are preferably each
identified by at least one Internet Protocol (IP) address such
as “66.35.209.224.” The IP address may also have one or
more domain names associated with it, such as “bangnet-
works.com.” Alternative embodiments of the present inven-
tion may use alternative addressing schemes and/or naming
conventions instead of, or in addition to, those described
herein. For example, embodiments wherein one or more of
the clients are cellular telephones or other portable devices
may rely on different addressing schemes.

[0036] Preferably, the information provider 108 provides
web pages or other representations of data to the server 112.
The web pages contain one or more “live objects,” which are
designated to be real-time dynamically-updateable objects.
Each live object is identified by an object identifier, or object
ID. Preferably, the server 112 provides the web pages 118 to

Oct. 11, 2007

multiple clients 114. The clients 114 contact the routing
network 110 and register for update messages for the object
IDs on the web page. The routing network 110, in turn,
preferably maintains a registry indicating which clients have
registered for which object IDs.

[0037] The information provider 108 and/or dynamic con-
tent provider 116 send update messages to the routing
network 110. These messages can be sent any time the
information provider 108 or dynamic content provider 116
wants to update a property of a live object. Each update
message preferably identifies a live object and contains data
for updating a property of the identified live object. The
routing network 110 accesses the registry and determines
which clients have registered for the identified object. Then,
the routing network 110 routes the update message to the
appropriate clients. Upon receipt of an update message, the
clients 114 update the specified property of the live object.

[0038] The routing network 110 provides an efficient
one-to-many mapping of objects to clients (and by inference
of information, a many-to-many mapping of information
providers 108/dynamic content providers 116 to clients)
through object-based routing. Messages provided by the
information provider 108 and/or dynamic content provider
116 to the routing network 110 are not routed to the clients
114 based entirely on a specified destination; more specifi-
cally, they are not routed based on the IP address of the
client, as in conventional IP routing schemes. Instead, the
messages are routed based on the live objects referenced by
the message.

[0039] The mapping and object-based routing provided by
the routing network 110 allow the information provider 108
and dynamic content provider 116 to update properties of
live objects at a dynamically changing cross-section of
clients in real-time, without requiring the information pro-
vider or dynamic content provider to track the clients or web
pages being viewed by the clients. The clients 114, in turn,
do not need to have any a priori knowledge of object
IDs—they “discover” which IDs they should register when
they receives the web pages 118 from the server 112.

[0040] Object-based routing also allows information pro-
viders 108 to dynamically update content on web pages
without requiring the clients 114 to re-request the content,
and without requiring the information providers 108 or
servers 112 to maintain connections with the clients. In this
manner, significantly more clients can receive updated con-
tent from a given information provider 108 than would be
possible utilizing conventional client-side request-driven
transmission control protocol/Internet Protocol (TCP/IP)
connections between the clients and the server 112.

[0041] Turning now to the individual entities illustrated in
FIG. 1, the server 112 is preferably a conventional computer
system configured to act as a web server and serves web
pages 118 and other data representations to clients 114. The
web pages 118 provided by the server 112 are associated
with one or more information providers 108.

[0042] An information provider 108 is an entity providing
one or more web pages 118, information contained in web
pages, and/or other representations of data served by the
server 112. The information provider 108 preferably has a
conventional computer system coupled to the Internet. In
one embodiment, the server 112 is directly controlled by the

US 2007/0239822 Al

information provider 108 (e.g., the server is physically
located at the information provider and/or is dedicated to
serving only the information provider’s web pages). In this
embodiment, the server 112 and information provider 108
can be treated as the same entity. In an alternative embodi-
ment, the server 112 serves web pages from multiple infor-
mation providers.

[0043] Asis known in the art, the web pages 118 and other
content on the server 112 are specified by uniform resource
locators (URLs) having the form “service://server/path/web
page.” Typically, web pages 118 are obtained via the hyper-
text transport protocol (HTTP) and thus an exemplary URL
for retrieving the web page “b1.html” from the web server
having the domain name “www.bangnetworks.com” is
“http://www.bangnetworks.com/news/b1 .html.”

[0044] As used herein, a “web page” is a block of data
available from the server 112. In the simplest case, a web
page is a file written in the hypertext markup language
(HTML). The web page may also contain or refer to one or
more other blocks of data, such as other files, text, images,
applets, video, and/or audio. In addition, the web page may
contain instructions for presenting the web page and its
content, such as HTML tags and style sheets. The instruc-
tions may also be in the Extensible Markup Language
(XML), which is related to HTML and adds semantic
content to web pages or the Dynamic HTML (DHTML),
which adds some dynamic content to web pages. Addition-
ally, the instructions may take the form of one or more
programs such as JAVA® applets and JAVASCRIPT® and/
or DHTML scripts.

[0045] As used herein, the phrase “web page” also refers
to other representations of data served by the server 112
regardless of whether these data representations include
characteristics of conventional web pages. These data rep-
resentations include, for example, application programs and
data intended for the web browser 120 or other application
programs residing at the clients 114 or elsewhere, such as
spreadsheet or textual (e.g., word processing) data, etc.

[0046] In a preferred embodiment, objects at the client,
such as web pages and elements of web pages, can be
designated as “live” by the information provider 108. Prop-
erties of a live object can be dynamically updated in real-
time at the client 114 by the information provider 108 or
another entity acting on behalf of the information provider.
As used herein, an “object” is any datum or data at the client
114 that can be individually identified or accessed.
Examples of objects include elements of web pages such as
text characters and strings, images, frames, tables, audio,
video, applets, scripts, HTML, XML, and other code form-
ing the web page, variables and other information used by
applets, scripts and/or code, URLs embedded in the web
page, etc. Application and operating system constructs are
also objects. For example, cells of spreadsheets, text in word
processor documents, and title bars and messages displayed
by the operating system or applications are objects. Prefer-
ably, multiple objects can be grouped together into a single,
logical object. Thus, an object can be defined at any desired
or useful level of granularity.

[0047] Since content on a web page is conceptualized and
organized by “object,” the present invention essentially
abstracts web pages and web page content, and other mod-
ules and/or functionality at the client 114, away from the

Oct. 11, 2007

HTML code or other conventional representation. This
abstraction allows the information provider 108 to update a
property of an object without concern for the location,
display format, or other specifics of how the data is being
represented at the client 114.

[0048] Live objects have associated “properties” which
include any modifiable data related to the object or refer-
enced with respect to the object. The information provider
108 typically, but not necessarily, provides initial settings for
the properties of live objects provided to the client 114. The
properties may or may not affect the visual representation of
the object in the web page or other data representation. A
property may affect an internal aspect of the object and, thus,
a change to the property may not have any direct effect on
a web page containing the object. For example, the property
may affect whether particular aspects of the object are
modifiable, how the object responds to user input or other
stimuli, etc. Additionally, a property may also have a direct
effect on how the object is displayed at the client 114. For
example, the property may affect the content, color, type-
face, size, formatting, or other attribute of text, images, or
other data displayed by the object. Other properties may
occupy parts of the spectrum between having no effect on
the visible representation of the object and having a direct
effect on the visible representation of the object. For
example, a web page showing scores of football games may
include a list of games and the current scores of the games
as of the time the server 112 serves the web page. The list
of games, subset of games to be displayed, and the scores of
the games can be designated as live objects (or properties of
a single live object) and updated as necessary or desired.

[0049] A property can also preferably include instantiating
an instance of the object or invoking functionality of the
object. For example, a property of a browser window object
may include functionality for instantiating another browser
window. This function can be invoked as a logical change to
a property of the object. The second browser window can be
referenced through the original browser window (i.e.,
object) or designated as a new live object.

[0050] An information provider 108 or other entity pref-
erably updates a live object at a client 114 via an update
message. In general, an update message identifies the live
object and, if necessary, the property of the live object, and
contains data for updating the property. In one embodiment,
the data may be the actual value for the property or execut-
able code for causing the object’s property to be updated.
For example, the data may be a simple numerical or textual
value, e.g., “4,” to which the property should be set, and/or
the data may be JAVASCRIPT® code or a call to a JAVA-
SCRIPT® function at the client that effects the desired
change to the property of the object.

[0051] The update message preferably implicitly or
explicitly identifies a handler at the client 114 for use in
updating the live object’s property. In one embodiment, the
client 114 utilizes a default handler when the message
implicitly specifies the handler (e.g. when the message does
not identify a specific handler). In one embodiment, if the
update message specifies the actual value for the property, a
default handler generates JAVASCRIPT® code for changing
the property to the specified value. If the data in the update
message are JAVASCRIPT® code, the default handler does
not perform any processing of the code. In either case, the

US 2007/0239822 Al

default handlers preferably use LiveConnect to execute the
JAVASCRIPT® code in a Java Virtual Machine (JVM) 122
at the client 114 and thereby update the property of the live
object.

[0052] For certain objects and/or data types, the default
handlers are not appropriate. In these cases, the message
preferably explicitly identifies a handler for performing the
update. For example, the message may explicitly specify a
function to call on the data or the message may explicitly
identify the environment in which the data should be
executed. For example, the data in the update message may
include code for execution by a software “plug-in” such as
MACROMEDIA FLASH® and the message may explicitly
identify FLASH as the handler.

[0053] The information provider 108 preferably desig-
nates an object as “live” by including a unique identifier for
the object, the object ID, in the web page or other data
representation provided to the client 114. In one embodi-
ment, the information provider 108 encodes the object ID in
an object’s corresponding HTML “ID” attribute using the
following HTML expression:

[0054] ID=“elementldentifier,”

where “elementldentifier” is the object ID and is prefer-
ably a string. The string can encode any information
desired by the information provider 108 or other entity
establishing the object ID and in one embodiment is a
simple textual and/or numeric identifier. In one
embodiment, the information provider 108 begins the
object ID with a predefined token, such as “Bang$,” in
order to distinguish live objects from other objects that
happen to have defined ID attributes. For example, an
object can have the object ID “Bang$elementIdenti-
fier.”

[0055] In the preferred embodiment, each information
provider 108 optionally encodes a unique information pro-
vider ID in its object IDs in order to prevent naming
collisions between the object IDs of different information
providers. In one embodiment, the information provider 1D
is a textual and/or numeric identifier. The information pro-
vider 108 may specify the information provider ID and the
object ID as part of a hierarchical namespace. For example,
in one embodiment objects are named as follows:
“$namespacel$[namespace2$. . . $namespaceNS$]objec-
tld,” where “$namespacel” is the information provider 1D
and the “$” operates as the name separator and defines
additional optional levels of a namespace hierarchy. One
embodiment of the system 100 supports typical directory
services functionality. For example, two dollar sign charac-
ters appearing together, “$$,” refers to the top level of the
namespace hierarchy.

[0056] Thus, the object ID for a live object is preferably
formed from a combination of the predefined token, the
information provider ID namespace, and a value assigned by
the information provider 108. For example, the object ID for
a live object representing the real time price of a stock
having the symbol “BANG” might be: “Bang$$information-
ProviderID$equities$realtime$bang.” In this example,
“Bang$” is the predefined token that signifies a live object,
“SinformationProviderID” is the 1D identifying the infor-
mation provider, “$equities$realtime$” defines levels of a
namespace hierarchy, and “bang” identifies the specific
object.

Oct. 11, 2007

[0057] In some embodiments and situations, the object ID
utilizes relative names. For example, an information pro-
vider 108 referring to its own object IDs is implicitly in its
own namespace. Accordingly, the information provider 108
does not need to include the information Provider ID in the
object IDs it utilizes internally. In one embodiment, the
information provider ID is not explicitly encoded into the
object ID. Instead, the information provider ID is encoded
elsewhere in the web page in order to provide scope to the
page’s object IDs.

[0058] Inone embodiment, the object ID identifies a point
(i.e., a node in a tree) in a Document Object Model (DOM)
representation of a web page or other document at the client
114. The DOM is a platform- and language-neutral interface
that represents a document as a hierarchy of objects. The
DOM also provides an interface that allows programs and
scripts to dynamically access and update properties of the
objects. Object properties can be inherited by descendent
objects.

[0059] In this embodiment, the client 114 preferably
executes an update message in the context of the specified
point in the DOM representation. The update may specity a
change to a property of the object at the identified point. The
update also may specify a change to a parent or descendent
of the object at the identified point. In each case, the update
is executed relative to the specified point in the DOM
representation. In one embodiment, points in the DOM
representation specify how to update properties of live
objects located at those points. Thus, the same update may
be interpreted differently depending upon the identified live
object’s location in the DOM representation.

[0060] Forexample, assume there is an object in the DOM
representation identified as ‘“window.document.frame[3]
.ObjectID.” Also assume that the object has an “innerText”
property located at ‘“window.document.frame[3].Objec-
tID.innerText” that specifies the text displayed by the object.
An update message can change the text displayed by the
object by specifying “Object]D” and the new value for the
innerText property.

[0061] An advantage of utilizing object IDs to specify
objects is that the information provider 108 or other entity
providing the update message can access and change prop-
erties of objects without knowing the object’s actual location
in the DOM representation. Indeed, the object may be in
different locations in different DOM representations and/or
in multiple locations in the same DOM representation. In
any of these cases, the update message will change the
specified properties of all of the objects having the given
object ID.

[0062] Depending upon the particular embodiment of the
environment 100, the information provider 108 and/or the
dynamic content provider 116 provides update messages to
the routing network 110. The dynamic content provider 116
is preferably a conventional computer system operated by an
entity that provides real-time information, such as stock
prices and/or sports scores. In one embodiment, the infor-
mation provider 108 receives updated properties for the live
objects from the dynamic content provider 116 or another
source (or generates the updated properties internally).
Then, the information provider 108 sends an update message
specifying the object ID and the change to the object

US 2007/0239822 Al

property to the routing network 110. In this embodiment, the
dynamic content provider 116 may be absent from the
environment 100.

[0063] In another embodiment, the dynamic content pro-
vider 116 provides the object IDs for live objects to one or
more information providers 108 and the information pro-
viders 108 distribute the live objects to the clients 114. Then,
the dynamic content provider 116 sends messages specitying
the changes to the properties of the live objects to the routing
network 110. For example, the dynamic content provider
116 distributes an object ID associated with the score of a
particular baseball game to the information providers 108.
Then, the dynamic content provider 116 sends a message
specifying the object ID and an update to a property of the
object that controls the displayed score of the particular
baseball game to the routing network 110. These two
embodiments are not mutually exclusive and, therefore,
some updates may be provided to the routing network 110 by
the information provider 108 while others are provided by
the dynamic content provider 116.

[0064] The client 114 is a device that retrieves web pages
118 and/or other information from the server 112. In one
embodiment, the client 114 is a conventional personal com-
puter used by a person to access information on the Internet.
In alternative embodiments, the client 114 is a different
consumer electronic device having Internet connectivity,
such as an Internet-enabled television, a cellular telephone,
a personal digital assistant (PDA), a web browsing appli-
ance, etc. The client 114 preferably, but not necessarily, has
an associated display device.

[0065] The client 114 preferably executes a web browser
120, such as MICROSOFT INTERNET EXPLORER®, for
retrieving web pages and displaying them on the display
device. In embodiments where the client receives data
representations from the server 112 other than conventional
web pages, the web browser 120 does not necessarily share
similarities with conventional web browsers. Preferably, the
web browser 120 contains a JVM 122 for executing JAVA®
applets and/or scripts. The web browser 120 also preferably
contains Dynamic HTML capabilities, such as support for
JAVASCRIPT® (or another scripting language, such as
VBScript) and the Document Object Model (DOM), and
enables communications between JAVA® and the scripting
languages. In one embodiment, the web browser 120 sup-
ports the LiveConnect standard for enabling communication
between JAVA® applets and scripts written in the supported
scripting languages. The web browser 120 can also be
extended through software plug-ins such as MACROME-
DIA FLASH®, REAL NETWORKS REALPLAYER®,
and/or APPLE QUICKTIME®. In alternative embodiments,
the functionality of the JVM 122 and/or other aspects of the
web browser 120 are provided by one or more other func-
tional units within the client 114. The term “module” is used
herein to refer to software computer program code and/or
any hardware or circuitry utilized to provide the function-
ality attributed to the module. The web browser 120 and
JVM 122 are examples of modules in the client 114.

[0066] In some embodiments, the client 114 does not
necessarily have a display device, web browser 120 and/or
other components associated with a typical consumer
device. The client 114, for example, may be a dedicated
purpose device having certain aspects of web connectivity

Oct. 11, 2007

such as an embedded HTTP client in a web-enabled appli-
ance or in a controller for an automobile, audio-visual
equipment, or some other device.

[0067] A web page 118 provided from the server 112 to the
client 114 preferably includes instructions for enabling the
live objects on the web page. The instructions cause the
client 114 to automatically and transparently (i.e., without
user interaction) contact the routing network 110 and down-
load an activation module 124 for activating the live objects.
In one embodiment, the instructions comprise a URL speci-
fying the location of the activation module 124 at the routing
network 110. In an alternative embodiment, the client 114
obtains the activation module 124 from the server 112 or
another source.

[0068] The activation module 124 preferably contains
JAVA® instructions for execution by the JVM 122. How-
ever, alternative embodiments of the module 124 may
encode the instructions in the web page 118 and/or the
activation module 124 using different languages and/or
techniques. For example, the instructions and/or activation
module 124 can be embedded in the web browser 120 or
operating system, either as native code or as plug-ins. In
these alternative embodiments, the web browser 120 does
not have to download the activation module 124 from an
external source.

[0069] The activation module 124 preferably registers
object IDs from the web page 118 downloaded by the client
114 with the routing network 110 and updates the live
objects in response to update messages received from the
network. The routing network 110 records the registrations
in the registry 125. The client’s registrations preferably
remain in effect as long as the client is displaying the
associated web page 118, although other embodiments of the
system 100 may use different criteria for determining when
to terminate the client’s registrations.

[0070] FIG. 2 is an interaction diagram illustrating inter-
actions among the server 112, information provider 108/
dynamic content provider 116 (generically referred to as an
“input source 210”), client 114, and the routing network 110
to update a property of a live object. Initially, the client 114
sends 212 a web page request to the server 112. In response,
the server 112 provides 214 to the client 114 the web page
containing or otherwise identifying the one or more live
objects. Instructions encoded in the web page preferably
cause the client 114 to transparently request 216 the activa-
tion module 124 from the routing network 110. In response,
the routing network 110 sends 218 the activation module
124. The client 114 executes 220 the activation module 124,
which identifies the object IDs of the live objects at the client
and registers 222 the object IDs with the routing network
110. The routing network 110 updates 223 its registry to
identify the object IDs for which the client 114 has regis-
tered.

[0071] At some point, the input source 210 sends 224 an
update message to the routing network 110 in order to
change a property of a live object at the client 114. In one
embodiment, the message from the input source 210 to the
routing network 110 contains only a single object ID and an
update to a property of the identified object. In another
embodiment, the message contains multiple object IDs and
the corresponding property updates. In this latter embodi-
ment, the message may have an associated “Batch ID” that

US 2007/0239822 Al

identifies the message as having multiple object IDs and
updates. Preferably, the information provider 108 can
include a batch ID in a web page 118 in the same manner as
including an object ID. Likewise, the client 114 can prefer-
ably register for a batch ID with the routing network 110 in
the same manner as an object ID. In fact, the batch ID can
be the same as the object ID so that the client 114 registers
for both batch and non-batch messages by registering one
ID. Alternatively, separate procedures can be established for
registering batch messages. The client 114 preferably pro-
cesses the component messages of a batch as if each
message were delivered separately.

[0072] The routing network 110, in turn, routes 226 the
message to each client 114 that has registered for the
specified object ID, preferably by utilizing standard Internet
communications protocols, such as IP addresses, etc. The
activation module 124 at the client 114 processes the mes-
sage and updates 228 the property of the identified live
object. If live objects having the same object ID appear in
multiple locations at the client 114 (e.g., at multiple loca-
tions on a web page being displayed at the client), the
activation module 124 preferably updates each of the live
objects having the specified ID. As a result, the routing
network 110 allows live objects at the client 114 to be
dynamically updated. Preferably, this routing and updating
happens quickly enough to be considered “real-time” for the
purposes of the input source 210.

[0073] This update process, indicated within the dashed
box 230 in FIG. 2, can repeat an indefinite number of times
and is fully asynchronous as to the information provider 210
and client 114. For example, the input source 210 may send
regular update messages to the routing network 110 as the
score of a sporting event changes or a stock price fluctuates,
but may stop sending update messages once the sporting
event ends or stock market closes. When the client 114 ends
the display of a web page containing the live object, or
otherwise no longer desires to receive update messages, the
client preferably closes 232 the connection with the routing
network 110. The routing network I 10, in turn, updates 234
the registry 125 to remove the client’s object registrations.
In another embodiment, the client 114 sends messages to the
routing network 110 that selectively register and/or de-
register the client from one or more objects yet leaves the
connection open in order to receive update messages per-
taining to other objects.

[0074] FIG. 3 is a high-level diagram graphically indicat-
ing the many-to-many mapping performed by the routing
network 110. Multiple input sources (labeled 210A-C) send
update messages to the routing network 110. Each update
message preferably specifies at least one object ID and an
update to a property of the identified object. The routing
network 110, in turn, selectively routes the update messages
to the clients 114 that have registered for the given object ID
from the given input source 210. In FIG. 3, assume for
example that clients 312A and 312B have registered for a
given object ID while the other clients have not registered
for the object ID. Accordingly, the routing network 110
routes the update message to clients 312A and 312B, but
does not route the message to clients 312C-312H.

[0075] FIG. 4 illustrates an example of the capabilities of
the dynamic content routing network 110. FIG. 4 illustrates
two different web pages 410, 412 containing sports scores.

Oct. 11, 2007

Although the web pages are formatted differently, each page
contains the same scores for two professional football games
and two professional baseball games. Web page 410 con-
tains all four games under the heading “Local Sports Scores”
while web page 412 contains the baseball games under the
heading “Baseball Scores” and the football games under the
heading “Football Scores.”

[0076] There are various ways to internally represent the
games and scores in the web pages using live objects. In one
embodiment, a “game” object is defined having properties
for the two teams involved in the game and the score
associated with each team. The game object is placed at a
selected position in the web page and the properties of the
object cause the information about the game to be displayed
on the page. In another embodiment, “team” and “score”
objects are defined, with the team object having a property
defining the name of a team and the score object having a
property defining a score. In this second embodiment, the
team and score objects are placed at selected locations on the
page so that the proper teams and scores are aligned when
the page is rendered. In yet another embodiment, an object
is defined having properties for the name of one team and a
score associated with that team. Then, pairs of the objects
are placed in the page in the proper alignment to indicate the
games and scores. In another embodiment, an object is
defined having properties specifying names of two teams
and a separate object is defined having properties specifying
two scores. In this last embodiment, the two objects are
placed in the page so that the names of the teams align with
the associated scores. Obviously, additional variations of
these representations are possible.

[0077] Assume for the example of FIG. 4 that the names
of'teams in a game are specified by a “names” object having
properties for the two team names and the scores in the game
are specified by a “scores” object having properties for two
scores. In web page 410, a names object 414 having prop-
erties set to identify the “SF 49ers” and the “STL Rams” is
located directly under the “Local Sports Scores™ heading. A
scores object 416 having a property set to identify the score
of the game as “42” to “7” is directly to the right of the
names object 414. In web page 412, the properties of the
second names object 418 identify the same game using
slightly different terminology: “SF” and “STL.” However,
this names object 418 is aligned with the same scores object
416 as is utilized in web page 410.

[0078] Thus, the same scores object 416 is utilized in
different positions in each web page 410, 412. In order to
update the score of the San Francisco 49ers vs. St. Louis
Rams football game on both web pages, the input source 210
simply sends an update message to the routing network 110
specifying the object ID for the scores object 416 and the
update to the score property. The routing network 110 routes
the update message to the appropriate clients 114, and the
clients update the appropriate score regardless of the par-
ticular page layout.

[0079] The input source 210, i.e., the information provider
108 and/or dynamic content provider 116 can use a variety
of tools to generate the update messages. FIG. 5 is a block
diagram illustrating an input source 210 and the tools
available to it for generating the update messages. Other
tools can be utilized in addition to or instead of the ones
described herein.

US 2007/0239822 Al

[0080] Preferably, the tools allow the input source 210 to
access an application programming interface (API) provided
by the routing network 110 for accepting messages. In one
embodiment, the messages sent by the input source 210 are
in the same format as utilized by the activation module 124
at the client 114. In an alternative embodiment, the messages
provided to the routing network 110 are in a different format
and the routing network translates the messages into the
format utilized by the activation module 124.

[0081] In one embodiment, the input source 210 utilizes a
data pump module 510 to access the API. The data pump
module 510 reads an extensible markup language (XML)
file containing one or more object IDs and the new values for
the identified objects at regular intervals and automatically
generates API calls that send messages representing changes
to object properties to the routing network 110. In another
embodiment, the data pump module 510 is event-driven and
reads the XML file in response to a change in the file or some
other occurrence.

[0082] In another embodiment, the input source 210 uti-
lizes a director console module 512 to access the APIL.
Preferably, the director console module 512 presents an
administrator with a graphical interface displaying the con-
tents of the web page 118. For example, the administrator
may use the director console 512 to edit textual data, images,
and/or any objects or properties of objects on the web page.
After editing, the administrator uses a “send update” button
or similar technique to cause the director console module
512 to send messages for the changed objects and properties
to the routing network 110 via the API.

[0083] In another embodiment, the information provider
108 and dynamic content provider 116 work together as the
input source 210 by using a content management system
module 514 to access the API. Preferably, the content
management system module 514 resides at the information
provider 108 and receives object property updates from the
dynamic content provider 116. The content management
system module 514 preferably updates the properties of the
live objects in the web page 118 stored at the server 112 and
also sends messages for the changed properties to the
routing network 110. In this manner, the web page 118 at the
server 112 and the web page displayed at the client 114 are
updated almost simultaneously. In one embodiment, the
dynamic content provider 116 sends the update messages to
the routing network 110 instead of to the information
provider 108. Embodiments of the system 100 can also
utilize any combination of the content management tech-
niques described herein.

[0084] For example, the tools described above can gener-
ate a message having the following code for updating the
text displayed by a score object to “2”

[0085] LiveObject score=new LiveObject(“Bang$ho-
meScorelD”);

[0086] score.setProperty(“innerText”, “27).

This code sets the innerText property of the object having
object ID “Bang$homeScoreID” to “2.” The tools use
the API to pass this message to the routing network 110.

[0087] Turning now to the actions performed at the client
114, FIG. 6 is a flow chart illustrating the steps performed by
an embodiment of the activation module 124. Those of skill

Oct. 11, 2007

in the art will recognize that different embodiments may
perform the steps of FIG. 6 in different orders. The activa-
tion module 124 generally performs three functions: register
object IDs with the routing network 110, handle messages
received by the client 114 from the network in order to
update the properties of live objects, and control communi-
cations between the client and the network.

[0088] In order to register object IDs, the activation mod-
ule 124 preferably parses 610 the web page 118 received
from the server 112 and identifies the object IDs of the live
objects. In an alternative embodiment, the activation module
124 identifies only a subset of the object IDs, such as the IDs
of only live objects that are currently being displayed by the
web browser 120. Alternatively, a list of object IDs may be
pre-encoded in the web page in addition to the objects
themselves, thereby enabling easy identification by the
activation module 124. In yet another embodiment, a user of
the client 114 selects the object IDs to register.

[0089] The activation module 124 preferably opens 612 a
connection between the client 114 and the routing network
110. The activation module 124 can open 612 this connec-
tion before or after the activation module receives and/or
parses the web page 118. In some cases, the client 114 is
located behind a firewall that puts a restriction on the types
of connection requests the client can make. A firewall might,
for example, block all non-HTTP traffic. For this reason, the
activation module 124 preferably wraps the connection
request in an HTTP header in order to get the request to the
routing network 110 through the firewall.

[0090] The activation module 124 uses the connection
between the client 114 and routing network 110 to register
614 the object IDs by communicating to the routing network
116 a vector (e.g., a list or array) containing the identified
object IDs. In order to accomplish this task through the
firewall, the activation module 124 preferably puts the
vector into a string, referred to as “object data,” and then
preferably creates an HTTP message to communicate the
object data to the routing network 110. A schematic example
is as follows:

[0091] POST/HTTP/1.\r\n

[0092] Content-Length: <length of object data>\r\n
[0093] \rn

[0094] <object data>

where <object data> is the object ID list. When the routing
network 110 receives such an HTTP request, it extracts
the object data and updates the registry 125 to indicate
that the client 114 has registered for the identified
objects.

[0095] If the web browser 120 loads 616 a new page, or
otherwise terminates display of the objects on the initial
page, the activation module 124 associated with the initial
web page preferably terminates 618 the client’s connection
with the routing network 110. Those of skill in the art will
recognize that this termination 618 can occur asynchro-
nously with the other steps illustrated in FIG. 6. Thus, the
location of steps 616 and 618 represents only one possible
place in the sequence of steps where the termination may
occur.

[0096] If the connection is not terminated, the activation
module 124 preferably waits until it receives 618 a message

US 2007/0239822 Al

from the routing network 110 specifying an object ID and an
update to a property of the identified object. In one embodi-
ment, this message is received as HTTP data. Upon receipt
of the message, the activation module 124 preferably
extracts 620 the object ID and update from the HTTP data.
Then, the activation module 124 updates 622 the property of
the identified object, or causes the object to be updated, as
specified by the message.

[0097] The sequence of receiving messages 618, extract-
ing data 620, and updating objects 622 is preferably repeated
until a new page is loaded 616 or the connection with the
routing network 110 is otherwise terminated. Although not
shown in FIG. 6, in certain circumstances, such as when a
user action with respect to the web page 118 activates a new
live object, the activation module 124 may register new
object IDs with the routing network 110 without first down-
loading and parsing a new page. In one embodiment, if the
newly-loaded page contains live objects, then the process of
downloading the activation module 124 and updating the
objects as described by FIG. 6 is repeated. In an alternative
embodiment, the activation module 124 remains active at
the client 114 and, therefore, the client does not re-download
the activation module from the routing network 110. Instead,
the already-present activation module 124 performs the
live-enabling process on the new page.

[0098] FIG. 7 is a block diagram illustrating a lower-level
view of the routing network 110 according to one embodi-
ment of the present invention. FIG. 7 illustrates multiple
input sources (labeled 710A-D) representative of sources
providing messages to the routing network 110, such as an
information provider 710A and a dynamic content provider
710B. FIG. 7 also illustrates multiple clients (labeled 712A-
F) representative of the many clients in communication with
the routing network 110 at any given instant.

[0099] Internally, the routing network 110 is preferably
divided into one or more clusters 714. In FIG. 7, the routing
network 110 has three clusters 714A, 714B, 714C, although
the number of clusters can vary depending upon the pro-
cessing needs of the network. An input-side global load
balancer 716 preferably routes messages from the input
sources 710 to the clusters 714. Similarly, a client-side
global load balancer 718 preferably routes connection
requests from the clients 712 to the clusters 714. The load
balancers 716, 718 are designed to ensure that load is
distributed among the clusters 714 according to a predeter-
mined heuristic. For example, the load may be distributed
evenly among the clusters 714 or a more powerful cluster
may be distributed a majority of the load. In one embodi-
ment, one load balancer performs the functions of the
input-side 716 and client-side 718 load balancers and uti-
lizes conventional Domain Name System-(DNS-) based
load balancing.

[0100] Each cluster 714, of which cluster 714A is repre-
sentative, preferably contains an input-side cluster load
balancer 720A and a client-side cluster load balancer 722A.
The cluster load balancers 720A, 722 A function similarly to
the corresponding global load balancers 716, 718 in that the
input-side cluster load balancer 720A balances and routes
incoming messages among one or more gateways 724 A and
the client-side cluster load balancer 722A balances and
routes incoming connection requests among one or more
nodes 726A and application servers 728A. The gateways

Oct. 11, 2007

724 A are connected to the nodes 726 A. In one embodiment
every gateway 724A is connected to every node 726A and in
another embodiment certain gateways are connected to only
certain nodes.

[0101] Preferably, the routing network 110 utilizes con-
ventional single-processor computer systems executing the
Linux operating system (OS). Preferably, each component of
the routing network 110 is implemented by a separate,
dedicated computer system in order to enable the separate
optimization of the components. The input/output (1/O)
functionality of the OS is preferably enhanced through the
use of a non-blocking OS package such as NBIO available
from the University of California, Berkeley, Calif. Based on
the assumption that connections with the nodes 728 are
long-lived, the OS is preferably configured to not allocate
resources toward monitoring idle connections. Instead, the
well-known/dev/poll patch is preferably applied to the OS in
order to provide advanced socket polling capabilities.

[0102] Those skilled in the art will recognize that there are
many ways to use the functionality of the routing network
110 to route update messages to clients 710. For example, in
one embodiment, every message is distributed to every node
726. In another embodiment, the routing network 110 selec-
tively sends messages to the nodes 726 in the routing
network 110. Selectively sending messages to the nodes in
the routing network presents at least the two difficulties.
First, for a given message, a decision needs to be made as to
which nodes should receive it. Second, a client must receive
all messages in which it is interested. There are at least two
approaches meeting these difficulties. The first approach
uses a hierarchy of registries at the gateways and nodes to
respectively keep track which messages to send to the nodes
and clients. The second approach assigns messages to one or
more categories, assigns nodes to one or more types, and
maintains mappings between categories and types. This
latter approach also uses client proxies to allow clients 712
to communicate with multiple nodes of different types.

[0103] FIG. 7 illustrates the embodiment using the hier-
archy of registries. A node 726 registers with each gateway
724 in all of the clusters and indicates which messages it
needs and the clients do the same with the nodes. Each
gateway 724 preferably maintains a registry 734 containing
the object IDs registered by the nodes 726 connected to the
gateway 724. In one embodiment, the gateway registry 734
associates each object ID with a linked list containing one
entry for each node 726 that has registered for that object ID.
In another embodiment, the gateway registry 734 is a hash
table containing the object ID registered by the nodes 726
connected to the gateway 724. A node 726 preferably
maintains a node registry 732 containing the object IDs
registered by clients 712 connected to the node. The gate-
ways 724 in each cluster 714 receive the messages from the
input sources 710 and direct the messages to the appropriate
node or nodes 726. The nodes 726 preferably transmit
messages received from the gateways 724 to the clients 712
that have registered in the object IDs identified by the
messages.

[0104] In one embodiment, the node registry 732 associ-
ates each object ID with a linked list containing one entry for
each client 712 that has registered for that object ID. In
another embodiment, the node registry 732 is a hash table
containing the object ID registered by the clients 712

US 2007/0239822 Al

connected to the nodes 726. Each entry in the linked list or
hash table preferably contains a pointer to a socket repre-
senting the connection to the corresponding client 712. As is
known in the art, the pointer to the socket, typically called
a “file descriptor,” represents an address to which the node
can write in order to send the message to the corresponding
client. Gateways 724 can also use file descriptors in this
manner to store node addresses. Alternative embodiments of
the present invention utilize other data structures in addition
to, or instead of, the hash table and linked list, and/or may
utilize different data within the data structures.

[0105] Preferably, the node 726 adds an entry to its
registry 732 every time a client 712 registers an interest in
an object and deletes the corresponding entry from the
registry when the client 712 disconnects from the node or
otherwise indicates that it is no longer interested in a
particular object. If the node 726 determines that the client
712 registered for an object ID that was not previously
registered on that node, the node preferably registers that
object ID with the gateways 724 to which it is connected.
Similarly, if the node 726 determines that the client 712
deregistered an object ID for which it was the last interested
client, the node 726 deregisters that object ID with the
gateways 724 to which it is connected. The gateways 724
update their registries 734 in response to the communication
from the node 726.

[0106] In alternative embodiments of the present inven-
tion, when the client 712 disconnects from the node 726 or
otherwise indicates that it is no longer interested in a
particular object, the node 726 waits for a period of time or
until some event occurs before deregistering the object 1D
with the gateway 724. For example, the node 726 could wait
until it receives a message associated with that object ID to
do the deregistration. Alternatively, the wait time can be
fixed, random, or based on the frequency of registrations for
that object ID, or registrations for the same input source 710
as the object being deregistered. This latter approach keeps
the object IDs from more frequently used input sources 710
registered for a longer period of time. This waiting advan-
tageously reduces the number of registration changes
required between nodes and gateways in cases where it is
likely that another client will soon register for the same
object ID.

[0107] Since a gateway 724 does not control the rate at
which it receives messages from input sources 710, it is
possible for the gateway to receive messages faster than it
can process them (i.e., send the messages to the nodes).
Therefore, each gateway 724 preferably maintains a queue
730 of messages that have been received but not yet pro-
cessed in order to avoid losing messages. In one embodi-
ment, the gateway 724 drops messages if the queue 730
becomes too long. In another embodiment, the gateway 724
utilizes priorities assigned to certain messages or input
sources to determine which messages to drop.

[0108] The application server 728 within each node 714
preferably serves the activation module 124 to the clients
712 in response to client requests. In addition, the applica-
tion server 728 serves any other modules that may be
required or desired to support the environment 100. In an
alternative embodiment of the routing network, a single
application server 728 fulfills all of the client requests. This
application server 728 may be within a certain cluster 714 or

Oct. 11, 2007

independent of the clusters. However, this single-applica-
tion-server embodiment is less desirable because it lacks
redundancy.

[0109] FIG. 8 is a flow chart illustrating steps performed
by a gateway 724 and a node 726 in a cluster 714 to perform
object-based routing of a message received from an input
source 710 in the embodiment using a hierarchy of regis-
tries. Initially, the gateway 724 receives 810 the message
from the input source 710. The gateway 724 extracts 820 the
object ID from the message. The gateway 724 examines its
registry 734 to determine the nodes 726 that have registered
in the object ID. The gateway 724 transmits 840 the message
to each of the registered nodes 726. Each node 726 that
receives the message uses its registry 732 to determine 850
which clients 712 have registered for the message. Each
node 726 then forwards 860 the message to the registered
clients 712.

[0110] Adding node functionality to the gateway and
client functionality to the node advantageously allows the
routing network 110 to solve the difficulties identified above.
For example, it allows the routing network 110 to decide
which nodes should receive an updated message. As a result,
messages are sent to only nodes that have registered for the
message. Further, no matter which node a client connects to,
that node will receive all messages that the client wants. One
skilled in the art would understand that while the present
invention allows registration at both a gateway level and
node level, registration could be extended to any number of
levels.

[0111] In the second approach for meeting the difficulties
described above, all messages in the routing network 110 are
assigned to one or more of N categories, and all of the nodes
are assigned to one or more of M types. Mappings are
created that specify which categories of messages are for-
warded to which types of nodes. The mappings allow control
over the amount of traffic processed by the nodes.

[0112] FIG. 9 is a block diagram illustrating a high-level
view of the routing network 110 of FIG. 7 in an embodiment
adapted to use the approach having message categories and
node types. Although FIG. 9 illustrates only two node
types—nodes of type 1726 and nodes of type 2726—for
purposes of simplicity, this embodiment of the network 10
can have any number of node types. FIG. 9 also illustrates
a client proxy 740 for reasons described below. However, an
embodiment of the present invention using message catego-
ries and node types does not necessarily utilize a client proxy
740.

[0113] There are many different possible mappings
between message categories and node types. In the simple
case, there is one-to-one mapping between message catego-
ries and node types. For example, if the message is of
category 1, it is forwarded to the nodes of type 1. In more
complicated mappings, messages of one category are
mapped to nodes of multiple types. For example, messages
of category 1 are mapped to nodes of types 1, 2, and 3,
whereas messages of category 2 are mapped to nodes of
types 2, 3 and 4. In short, any possible mapping of message
categories to node types is possible and the number of
message categories, N, does not have to be the same as the
number of node types, M.

[0114] There are multiple ways to assign the messages into
categories. One way is to assign all messages from a given

US 2007/0239822 Al

input source 710 into a certain category. Another way is to
explicitly specify the category in the object ID for the
message. Yet another way is to utilize a hashing function or
lookup table to partition messages into categories based on
object IDs or other values. For example, in one embodiment
a hash function is applied to the object ID to generate an
integer between 1 and N, and this integer is the message
category.

[0115] Nodes are preferably assigned to types based on
information stored in the gateways 724. In one embodiment,
each gateway 724 holds a lookup table or other data struc-
ture that specifies the types to which each node is assigned.
The lookup table also preferably stores the mappings
between message categories and node types. When a gate-
way 724 receives a message from an input source, the
gateway preferably determines the category of the message
using one of the techniques described above. Then, the
gateway 724 determines the node type (or types) to which
the message category maps, and determines which nodes are
of'the given type. The gateway 724 routes the message to the
appropriate nodes.

[0116] In one embodiment, the gateway 724 uses a com-
bination of multiple techniques to determine the message
categories, node types, and/or mappings. For example, a
lookup table can be used to encode a priori knowledge about
categories, types, and/or mappings and a hash table can be
used to route messages for which there is no a priori
knowledge. Continuing this example, assume that certain
messages are assigned to a given category based on a table
lookup, while other messages are assigned to categories
based on a hashing function. In this example, the gateway
724 looks up the object ID (or other information, such as an
input source ID) of an arriving message in a lookup table to
determine if it has a specified category. If the object ID is
stored in the lookup table, the gateway 724 determines the
mappings for the category and routes the messages to the
nodes of the appropriate types. If the object ID is not stored
in the lookup table, the gateway 724 utilizes a hash function
on the object ID (or other information) to determine the
message category.

[0117] Message categorization advantageously allows the
routing network 110 to decide which nodes get which
messages. However, message categorization does not ensure
that clients 712 have access to the messages they need.
Assume a client 712 connects to a node of type 1 and the
client 712 wants to receive messages of category 3. If there
is a simple one-to-one mapping of message categories to
node types, nodes of type 1 will never receive messages of
category 3, and neither will the client 712. To ensure that
clients have access to the messages they need, the embodi-
ment shown in FIG. 9 uses client proxies to allow clients 712
to communicate with multiple nodes of different types. As
shown in FIG. 9, the clients 712 connect to a client proxy
740 instead of the nodes 726. Each client proxy 740 is
connected to at least one node of each type. For example, as
shown in FIG. 9, the client proxy 740 connects to a node of
type 1726 and a node of type 2726.

[0118] There are at least two ways to implement the
embodiment that uses client proxies to ensure that clients
connect to multiple nodes of different types. The implemen-
tations vary primarily in where the client registration infor-
mation is stored. In the first variation, client registration

Oct. 11, 2007

information is stored at the nodes, and the client proxy is
adapted to simply pass update messages and registration
information among the clients and nodes. In the second
variation, the client proxy 740 is responsible for keeping
track of client registrations.

[0119] FIG. 9 illustrates the variation where the nodes
store the client registration information, and the client proxy
740 is adapted to pass messages and registration information
among the clients and nodes. When a client sends registra-
tion information to the client proxy 740, the client proxy
passes it to the appropriate node or nodes. In one embodi-
ment, the client proxy 740 sends client registration infor-
mation to at least one node of every type, and the nodes
ignore irrelevant registration information (e.g., registrations
for messages of categories not handled by the node). In
another embodiment, the client proxy 740 itself analyzes the
registrations, and passes only registrations relevant for a
given node type to a node of that type. In a third embodi-
ment, the client contains functionality for determining which
node types handle which registration requests, and the client
tells the proxy 740 to which node types to pass the regis-
tration information.

[0120] The client proxy 740 preferably stores an identifier
of'its connection to each client 712, such as a pointer to the
socket for the client connection, and sends this identifier to
the nodes along with the registration information. Each node
726, in turn, maintains a registry 732 storing the relevant
registration information it receives from the client proxy
740. Preferably, at most one node of each type will contain
registration information for a given client for messages of a
category mapped to the node type. In addition, a node
preferably does not store registration information for mes-
sages of categories not mapped to its node type.

[0121] The registry 732 for each node 726 preferably
indicates the object IDs registered by the clients, the client
proxy 740 to which the client is connected (e.g., a pointer to
the socket at the node to which the client proxy is con-
nected), and the identifier indicating the client’s connection
to the client proxy (e.g., the pointer to the socket at the client
proxy to which the client is connected). When the node 726
receives an update message, it uses the registry to identify
the clients to which it should forward the message, the client
proxies to which the clients are connected, and the specific
connections between the client proxies and the clients. The
node routes the update message to the identified client
proxies and includes the identifier (e.g., the pointer to the
client socket) telling the client proxy where to send the
update message. When the client proxy 740 receives the
update message, it uses the identifier to send the message to
the client or clients.

[0122] Inoneembodiment, the node registry 732 contains,
for each object ID, a list with one entry for each client
registered for that ID. Each entry contains a (name of client
proxy, name of client) pair where each “name” is a socket
identifier or some other information for identifying how to
route the message to the named entity. In another embodi-
ment, the registry 732 is adapted to more efficiently handle
the case where multiple clients at a given client proxy are
registered for the same object ID by placing a list of clients
registered for the object ID in each entry. Thus, each entry
in the list for a given object ID contains a (name of client
proxy, list of names of clients on that proxy) pair. When a

US 2007/0239822 Al

message having a particular object ID arrives at the node, the
node walks down the corresponding entries in the registry
for that ID, pushing one copy of the message to each listed
client proxy. Along with the message, the node includes the
list of clients on that proxy (e.g., a list of pointers to sockets
for the clients) who have registered for the object ID. When
the client proxy receives the message and the list, it simply
pushes a copy of the message to each client.

[0123] The approach using the pass-through client proxy
740 described above is advantageous because it reduces
memory loads because the client proxy stores only minimal
state, and each node has a restricted list of object IDs for
which it is responsible. It also expedites message routing
because the client proxy does very little processing to
forward a message. Plus, this approach separates different
potential stress points in the network into different compo-
nents, allowing the network to be tuned to provide good
performance. In particular, the nodes handle a large amount
of data and store a large amount of state, but do not have to
hold open a large number of connections. The client proxies
do not store a large amount of data or state, but hold open
a large number of connections to the clients. In different
embodiments, the ratios of nodes to client proxies can be
varied to match the network to its requirements.

[0124] In the second variation of client proxies, the client
proxy 740 stores client registration information. FIG. 11
illustrates a high-level diagram of the routing network 110 in
which the client proxy 740 stores the client registration
information. In this embodiment, the node registry 732
stores the object IDs registered by client proxies 740 con-
nected to the node. Each client proxy 740 preferably main-
tains a client proxy registry 736 containing the object IDs
registered by clients 712 connected to the client proxy 740.
The client proxy 740 registers with the nodes for all objects
for which it needs to receive updates. Thus, this variation is
similar to the hierarchical registry embodiment described
above.

[0125] An alternative to maintaining a separate client
proxy as described above is to have the nodes themselves
provide the client proxy functionality. In this alternative,
clients connect to a node of a first type. When a client
registers for messages of a category not handled by the node,
the node passes the registration to a node of the appropriate
type along with an identifier of the client connection. In this
case, the node connected to the client adopts the function-
ality of the pass-through client proxy. The node can also
adopt the functionality of the client proxy that stores client
registration information, thereby creating a hierarchy of
registrations among the nodes themselves.

[0126] FIG. 12 is a high-level block diagram of the routing
network 110 of the embodiment in which the nodes them-
selves adopt client proxy functionality. There are at least two
ways to implement this embodiment. In one implementation
there is a preferred node type, such as node of type 3, that
always serves as a client proxy. This node type may be
designated to handle the most common categories of mes-
sages. As a result, the client proxy functionality would be
utilized very rarely. As shown in FIG. 12, client 1712 and
client 2712 are connected to the node of type 3726, which
in turn is connected to a node of type 1726 and a node of
type 2726.

[0127] In another implementation, instead of having one
preferred node type that always serves as a client proxy, each

Oct. 11, 2007

node type can serve as a node and as a client proxy. For
example, when a client 712 connects to a node 726, it passes
the node all of the object IDs the client wishes to register.
For object IDs of message categories handled by that node,
the node stores the registrations in its registry. For object IDs
of messages in other categories, the node acts as a client
proxy and passes the registration requests to nodes of the
appropriate types. This implementation can be made more
efficient by providing functionality in the activation module
for identifying the most common categories of messages
sought by the client, and causing the client to connect to a
node of a type that receives those categories of messages.

[0128] An alternative to connecting clients 712 to nodes
726 using a client proxy 740 is having a client 712 maintain
multiple connections to the routing network 110. This can be
accomplished, for example, by attaching message-categori-
zation functionality to the activation module 124. The acti-
vation module 124 preferably determines which categories
of messages it needs and to which nodes types it should
connect. The activation module 124 then makes a connec-
tion to one node of each relevant type and registers the
appropriate object IDs with the appropriate nodes.

[0129] An alternative to using client proxies is to allow
clients to register for only categories of messages handled by
one type of node. For example, if each node type handles
messages from only one input source, each client 712 can be
required to register for messages from only one input source.
This can be done, for example, by configuring the load
balancer 718 to ensure that clients registering for messages
from one input source connect to a node of the type that
receives messages from that input source.

[0130] FIG. 10 is a flow chart illustrating steps performed
by a gateway 724, a node 726 that stores client registration
information, and a pass-through client proxy 740 to perform
object-based routing of a message received from an input
source 710. Initially, the gateway 724 receives 1010 the
message from an input source 710. The gateway 724 deter-
mines 1020 to which category the message belongs using
one or more of the techniques described above. After the
gateway 724 has determined to which category the message
belongs, the gateway 724 identifies 1030 node types to
which the message category is mapped and routes 1040 the
message to the nodes of those types. Each node 726 that
receives the message extracts 1050 the object ID from the
message. Each node 726 examines its registry 732 to deter-
mine which clients have registered for the message, the
client proxies to which the clients are connected, and the
connections between the client proxies and the clients. Each
node 726 then forwards 1060 the message to the identified
client proxies 740 along with the identifiers for the client
connections (e.g., the client socket or a list of client sockets).
When a client proxy 740 receives the message from a node
726, it pushes 1070 the message to the identified client
socket or sockets.

[0131] The above description is included to illustrate the
operation of the preferred embodiments and is not meant to
limit the scope of the invention. The scope of the invention
is to be limited only by the following claims. From the above
discussion, many variations will be apparent to one skilled
in the relevant art that would yet be encompassed by the
spirit and scope of the invention.

US 2007/0239822 Al

1-25. (canceled)
26. A method for providing dynamic content over a
network, the method comprising:

receiving an update message from an input source, the
update message identifying a live object and containing
data for updating a property of the live object;

identifying a category of the update message;
identifying a mapping of the category to a node type;

routing the update message to a node having the mapped
node type;

determining a client that has registered for updates of the
live object and routing the data to the client, wherein
the client is adapted to process the update data and
update the property of the live object.

27. The method of claim 26, wherein determining a client
and routing the data to the client are performed at the node.

28. The method of claim 26, wherein determining a client
comprises extracting an object ID from the update message
and determining a connection to the client.

29. The method of claim 28, wherein determining a
connection comprises determining at least one client proxy
with which the client communicates and routing the data to
the client proxy, and then routing the data from the client
proxy to the client.

30. The method of claim 29, wherein client registration
information concerning the client connection is maintained
at the node.

31. The method of claim 29, wherein client registration
information concerning the client connection is maintained
at the client proxy.

32. The method of claim 28, wherein:

routing the update message comprises routing the update
message to a proxy node comprising a node that is
adapted to receive messages of more than one message
category; and

determining a connection comprises determining at least
one corresponding node having a node type that is
mapped to the message category, with which the reg-
istered client communicates, and routing the data to the
corresponding node.
33. A routing network for enabling dynamic updating of
a property of a live object at a client coupled to the network,
the routing network comprising:

a gateway that receives an update message from an input
source, the update message identifying a live object and
containing data for updating a property of the live
object, wherein the gateway identifies a category of the
update message, identifies a mapping of the category to
a node type, and routes the update message in accor-
dance with the identified mapping; and

routing means for determining a client that has registered
for updates of the live object and routing the data from
a node that has received the routed update message to
the registered client, wherein the registered client is
adapted to process the data and update the property of
the live object.

34. The routing network of claim 33, wherein the routing
means extracts an object ID from the update message and
determines a connection to the registered client for routing
the data to the registered client.

Oct. 11, 2007

35. The routing network of claim 34, wherein the routing
means determines a connection by determining at least one
client proxy with which the registered client communicates,
and then routing the data to the client proxy.

36. The routing network of claim 35, wherein client
registration information concerning the client connection is
maintained at the node.

37. The routing network of claim 35, wherein client
registration information concerning the client connection is
maintained at the client proxy.

38. The routing network of claim 33, wherein:

the gateway routs the update message by routing the
update message to a proxy node comprising a node that
is adapted to receive messages of more than one
message category; and

the routing means determines at least one corresponding
node that has a node type mapped to the message
category and with which the registered client commu-
nicates, and then routing the data to the corresponding
node.
39. A computer method for providing dynamic content
over a network, the method comprising:

providing a data representation to a client device coupled
to the network, wherein the data representation
includes at least one live object that is recognized by
the client device, and wherein the client responds to the
live object of the data representation by determining an
object ID of the live object to register for updates of the
live object with a routing network, such that registering
the client with the routing network provides client
connection information to the routing network;

sending an update message to the routing network,
wherein the update message identifies the live object
and contains update data that updates a property of the
live object such that the routing network has sufficient
information to identify the client device as a registered
device and send a routed message containing the update
data to the client device, such that the client device
processes the routed message upon receipt to update the
property of the live object at the client device.

40. The method of claim 39, wherein the live object of the
data representation causes the client device to register with
a client proxy of the network.

41. The method of claim 39, wherein the live object of the
data representation causes the client device to register with
a node of the network.

42. The method of claim 39, wherein the received data
representation includes an activation module that is executed
by the client device and is adapted to register the live object
with the routing network.

43. The method of claim 42, wherein the activation
module determines a node type that handles registration and
causes the client device to register with a node of the
determined registration node type.

44. The method of claim 42, wherein the activation
module determines a message category of the data repre-
sentation and causes the client device to register with a node
having a node type corresponding to the message category.

45. An apparatus for providing dynamic content over a
network, the apparatus comprising:

a content provider that provides a data representation to a
client device coupled to the network, wherein the data

US 2007/0239822 Al

representation includes at least one live object that is
recognized by the client device, and wherein the client
responds to the live object of the data representation by
determining an object ID of the live object to register
for updates of the live object with a routing network,
such that registering the client with the routing network
provides client connection information to the routing
network;

an information provider that sends an update message to
the routing network, wherein the update message iden-
tifies the live object and contains update data that
updates a property of the live object such that the
routing network has sufficient information to identity
the client device as a registered device and send a
routed message containing the update data to the client
device, such that the client device processes the routed
message upon receipt to update the property of the live
object at the client device.

46. The apparatus of claim 45, wherein the live object of
the data representation causes the client device to register
with a client proxy of the network.

47. The apparatus of claim 45, wherein the live object of
the data representation causes the client device to register
with a node of the network.

48. The apparatus of claim 45, wherein the received data
representation includes an activation module that is executed
by the client device and is adapted to register the live object
with the routing network.

49. The apparatus of claim 48, wherein the activation
module determines a node type that handles registration and
causes the client device to register with a node of the
determined registration node type.

50. The apparatus of claim 48, wherein the activation
module determines a message category of the data repre-
sentation and causes the client device to register with a node
having a node type corresponding to the message category.

51. A computer-readable medium having computer code
embodied therein for providing dynamic content over a
network, the computer program code configured to cause a
computing device to perform operations comprising:

providing a data representation to a client device coupled
to the network, wherein the data representation
includes at least one live object that is recognized by
the client device, and wherein the client responds to the
live object of the data representation by determining an
object ID of the live object to register for updates of the
live object with a routing network, such that registering
the client with the routing network provides client
connection information to the routing network;

sending an update message to the routing network,
wherein the update message identifies the live object
and contains update data that updates a property of the
live object such that the routing network has sufficient
information to identify the client device as a registered
device and send a routed message containing the update
data to the client device, such that the client device
processes the routed message upon receipt to update the
property of the live object at the client device.
52. The computer-readable medium of claim 51, wherein
the live object of the data representation causes the client
device to register with a client proxy of the network.

14

Oct. 11, 2007

53. The computer-readable medium of claim 51, wherein
the live object of the data representation causes the client
device to register with a node of the network.

54. The computer-readable medium of claim 51, wherein
the received data representation includes an activation mod-
ule that is executed by the client device and is adapted to
register the live object with the routing network.

55. The computer-readable medium of claim 54, wherein
the activation module determines a node type that handles
registration and causes the client device to register with a
node of the determined registration node type.

56. The computer-readable medium of claim 54, wherein
the activation module determines a message category of the
data representation and causes the client device to register
with a node having a node type corresponding to the
message category.

57. A device for providing dynamic content over a net-
work, the device comprising:

logic configured to provide a data representation to a
client device coupled to the network, wherein the data
representation includes at least one live object that is
recognized by the client device, and wherein the client
responds to the live object of the data representation by
determining an object ID of the live object to register
for updates of the live object with a routing network,
such that registering the client with the routing network
provides client connection information to the routing
network;

logic configured to provide an update message to the
routing network, wherein the update message identifies
the live object and contains update data that updates a
property of the live object such that the routing network
has sufficient information to identify the client device
as a registered device and send a routed message
containing the update data to the client device, such that
the client device processes the routed message upon
receipt to update the property of the live object at the
client device.

58. The device of claim 57, wherein the live object of the
data representation causes the client device to register with
a client proxy of the network.

59. The device of claim 57, wherein the live object of the
data representation causes the client device to register with
a node of the network.

60. The device of claim 57, wherein the received data
representation includes an activation module that is executed
by the client device and is adapted to register the live object
with the routing network.

61. The device of claim 60, wherein the activation module
determines a node type that handles registration and causes
the client device to register with a node of the determined
registration node type.

62. The device of claim 60, wherein the activation module
determines a message category of the data representation
and causes the client device to register with a node having
a node type corresponding to the message category.

