
The complete guide to Pickering

A semantic interpreter for spoken language

Jens Edlund <edlund@speech.kth.se>

Gabriel Skantze <gabriel@speech.kth.se>

The complete guide to Pickering: A semantic interpreter for
spoken language
by Jens Edlund and Gabriel Skantze

Published 2004
Copyright © 2003, 2004 Jens EdlundGabriel Skantze

Permission to use, copy, modify and distribute the Pickering User Manual and accompanying documents for any purpose and without fee is
hereby granted in perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

The copyright holders make no representation about the suitability of this manual for any purpose. It is provided "as is" without expressed or
implied warranty.

Draft Draft

Draft Draft

Table of Contents

Preface ... vii
1. Why read this book? ... vii
2. Target audience ... vii
3. Organisation of the book ... vii
4. Conventions .. vii
5. Getting the book ..ix
6. Acknowledgements ...ix

I. An overview of the Pickering semantic interpreter ..1
1. Features ..5

1.1. Grammar writing flexibility ..5
1.2. Feature grammars ..6
1.3. Flexible semantics ...6
1.4. Confidence scores [not implemented] ..6
1.5. Robustness ..6
1.6. On-line features ...7
1.7. Extras ..7

2. How to find Pickering ..9
2.1. Download locations ..9
2.2. Contents of the Pickering distribution ..9
2.3. XML Schemas and XSL stylesheets ...10

3. Installing Pickering ..11
3.1. Prerequisits ..11
3.2. Installing Pickering ...11
3.3. Using public on-line resources ..12

4. Running Pickering ...13
4.1. Configuring Pickering ...13
4.2. Mozart/Tk GUI ...15

4.2.1. Caveats ...15
4.2.2. Overall description ...15
4.2.3. The File menu ..16
4.2.4. The Tools menu ...16

4.3. The Options menu ...17
4.4. The View menu ...17
4.5. Web server interface ...18
4.6. CTT Broker interface ..18
4.7. Command line interface ..18

5. Overview of Pickering grammars ..19
5.1. XML basics ...19
5.2. Writing a simple Pickering grammar ..21
5.3. Adding a lexicon ...23
5.4. Feature grammars ..24
5.5. Adding a morphology ...25

6. Building semantics ...29
6.1. Unification and semantic templates ..29
6.2. Controlling unification ..34

7. Visualisation ..35
7.1. Visualisation of input ..35

Draft Draft

v

7.2. Grammar visualisation ..35
7.3. Parse tree visualisation ..35
7.4. Visualisation of resulting semantics ...35

Glossary ...37
Index ..41
References ..43

Draft The complete guide to Pickering Draft

vi

Preface
This is the manual of the Pickering semantic interpreter. The following few pages contain in-
formation on the organisation of the book, its target audience, and the writing and layout con-
ventions used in the book.

1. Why read this book?
Pickering is part of the Higgins research project at CTT, KTH, Sweden. Higgins is a speech
technology project aimed at investigating robustness and error handling techniques in spoken
dialogue systems. Several conference articles have been published within the project, both on
Pickering and on other topics. The authors assume that potential users of Pickering may be
other speech researchers who's read some Higgins publications and are curious to try the inter-
preter out for themselves.

2. Target audience
Pickering is a semantic interpreter intended for extractingmeanings from spoken or written
language.This book, then, is directed to potential users of Pickering, such as speech techno-
logy researchers, computational linguists and suchlike. The book can be read in part by any
potential Pickering user, but certain parts are clearly intended for developers rather than casual
users. The first part is an overview and should be reasonably accessible to all.

Note, however, that although this book aims at comprehensively documenting the technical de-
tails of Pickering, it makes no claim of teaching speech technology - readers will have to have
formed a basic idea of what they want to use Pickering for before reading this book.

3. Organisation of the book
This book is divided into several parts, each of which can be read on its own. Part I, “An over-
view of the Pickering semantic interpreter” lets you get started by introducing the installation
and user interfaces, but skips most of the gory details. It contains general descriptions of the
functionality and features of Pickering, and includes some simplistic examples of Pickering
grammars. Finally, it gives an overview of Pickering's visualisation features. ??? is intended
for users with some experience of Pickering. It contains formal descriptions of the accepted in-
put formats, grammars, and semantics. ??? gives a detailed description on how to use Picker-
ing's visualisation features. The text is example based and contains examples of techniques
that should be helpful to Pickering users.

4. Conventions
Layout conventions. The final versions of this book are produces using standard methods
such as XSL transformations, and yhe authors make no attempt to control the formatting res-
ults in detail. Nevertheless, some conventions are upheld. They are descibed below, with ex-
amples in-lined in the descriptions.

Draft Draft

vii

• specially

• formatted

• itemised

• list

Acronyms and words that are explained in the glossary look like the following: XML. Each
chapter starts with an text describing its contents, as well as a a specially formatted itemised
list highlighting key areas.

Code examples. Inline and block code examples are formatted as monotype text.

Example 1. A code example

Block code examples often ❶
have a list of things worth
noticing underneath them - this

list is linked to places in
the code examples

with callouts ❷ .

❶ This block is an example of what code examples look like.
❷ This sentence describes what callouts are.

Encoding. The book is encoded in

[http://www.oasis-open.org/docbook/xml/], and is available for perusing as XHTML, PDF and
PostScript documents.

PDF version: A table of contents and a table of examples, both linked, are included. Refer-
ences to specifications and programming languages, etc., are given in-line as links to the gloss-
ary. Acronyms are also linked to the glossary. Further references are found in the glossary,
also encoded as links. XML elements are linked to their respective Higgins/Pickering specific-
ation, when applicable. A page based index is suplied at end of the book.

PostScript version: References to specifications and programming languages, etc., as well as
acronym explanations, are given in the glossary. The book comes with a table of contents, a ta-
ble of examples and a page based index (at the end of the book).

XHTML version: A table of contents and a table of examples, both linked, are included. Ref-
erences to specifications and programming languages, etc., are given in-line as links to the

Draft 4. Conventions Draft

viii

glossary. Acronyms are also linked to the glossary. Further references are found in the gloss-
ary, and are encoded as links. XML elements are linked to their respective Higgins/Pickering
specification, when applicable. A linked, section based index is suplied at the bottom of the
page.

5. Getting the book
Versions. This is version 0.1.2 (of August 2004) of the book. The latest version is available at
http://www.speech.kth.se/higgins/modules/pickering-manual.shtml.

Status. The introduction and first part of the book is in beta (1
st

draft) status. The second and
third parts are largely unwritten, and basically consists of a composition. The book as well as
the interpreter are works in progress, so expect minor faults and discrepancies. Please notify
the authors should you stumble on anything strange.

6. Acknowledgements
The code of the Pickering semantic interpreter is developed and maintained by Gabriel
Skantze. The functional requirements and specifications for the interpreter were used in the in-
terpreter are the result of the Higgins project in collaboration between Gabriel Skantze & Jens
Edlund. Grammars, visualisation code and utilities are coded by Gabriel Skantze, Jens Edlund,
and Anna Hjalmarsson. Thanks to Anna Hjalmarsson, Rolf Carlson, and the CHIL project,
amongst others, for testing and comments.

We thank Norman Walsh et.al. for their good work with DocBook XSL (by the way, the struc-
ture of this book is loosely based on that of [Walsh & Muellner 2001]).

This research was carried out at the Centre for Speech Technology, a competence centre at
KTH, supported by VINNOVA (The Swedish Agency for Innovation Systems), KTH and par-
ticipating Swedish companies and organisations.

Draft 5. Getting the book Draft

ix

x

1
Semantic interpreter, or parser, if you will. Parser, however, has a great many meanings to different people in the

speech technology, computaional linguistics and dialogue systems communities, so we'll stick to interpreter.

Part I. An overview of the Pickering
semantic interpreter

Introduction
Pickering is a robust interpreter

1
, designed for semantic interpretation of natural language. The

input may be written language, but the emphasis Pickeringdevelopment is on spoken language
in the form of automatic speech recognition (ASR) results. The interpretation results are inten-
ded for use in spoken dialogue systems (SDS). Thus, emphasis is placed on the possibility to
develop grammars and semantics rapidly and flexibly, as well as providing robust interpreta-
tion of distorted input. The robustness methods are placed in the interpreter engine, so that the
grammar writer is freed from having to encode robustness in the grammar. All interpreter re-
sources (grammar, lexicon, morphology, style sheets for presentations) are encoded in XML as
are the parse trees and the resulting semantic analyses. XML was chosen to make it easier to
incorporate the interpreter in a distributed architecture where different components may be im-
plemented in different languages and/or on different platforms, and to enable implementers to
write style sheets in CSS or XSLT/XSL to graphically present resources and results using
standard components, such as web browsers and XSLT/XSL engines. Transformations to other
formats may also be achieved using standard methods, for example XSLT. The XML tech-
niques used in Pickering follows the specifications issued by the W3C as closely as possible.

The interpreter uses a method similar to island parsing. It is implemented as a modified chart
parser in Mozart/Oz, but no knowledge about Oz programming is required to use it.

Draft Draft

Table of Contents

1. Features ..5
1.1. Grammar writing flexibility ..5
1.2. Feature grammars ..6
1.3. Flexible semantics ...6
1.4. Confidence scores [not implemented] ..6
1.5. Robustness ..6
1.6. On-line features ...7
1.7. Extras ..7

2. How to find Pickering ..9
2.1. Download locations ..9
2.2. Contents of the Pickering distribution ..9
2.3. XML Schemas and XSL stylesheets ...10

3. Installing Pickering ..11
3.1. Prerequisits ..11
3.2. Installing Pickering ...11
3.3. Using public on-line resources ..12

4. Running Pickering ...13
4.1. Configuring Pickering ...13
4.2. Mozart/Tk GUI ...15
4.2.1. Caveats ...15
4.2.2. Overall description ...15
4.2.3. The File menu ..16
4.2.4. The Tools menu ...16
4.3. The Options menu ...17
4.4. The View menu ...17
4.5. Web server interface ...18
4.6. CTT Broker interface ..18
4.7. Command line interface ..18

5. Overview of Pickering grammars ..19
5.1. XML basics ...19
5.2. Writing a simple Pickering grammar ..21
5.3. Adding a lexicon ...23
5.4. Feature grammars ..24
5.5. Adding a morphology ...25

6. Building semantics ...29
6.1. Unification and semantic templates ..29
6.2. Controlling unification ..34

7. Visualisation ..35
7.1. Visualisation of input ..35
7.2. Grammar visualisation ..35
7.3. Parse tree visualisation ..35
7.4. Visualisation of resulting semantics ...35

Draft Draft

iii

iv

Chapter 1. Features

Highlights

• Pickering feature overview

• Flexible semantic representations

• Flexible grammar writing

• Robust semantic interpretation

In this chapter: This chapter gives a brief overview of the features Pickering offers. First,
some grammar features are presented. More comprehensive information about Pickering
grammars can be found in Chapter 5, Overview of Pickering grammars (a non-formal descrip-
tion) and in ???, which contains a full grammar reference. Furthermore, some of the possibilit-
ies for building complex semantics in Pickering are presented, followed by what type of input
the interpreter is built to handle, and finally, some of the features of the GUI are described
along with some of the visualisation possibilities.

1.1. Grammar writing flexibility

• Mixed rule content. Grammar rules may contain a mix of:

• references to other rules

• references to lexicon entries

• explicit words

Mixing explicit words into rules provides speed for rapid development/testing, but should
probably be avoided from a maintainability point of view. The interpreter allows grammar
writers to be guided by their needs and common sense, rather than restricting the possibilit-
ies.

• Levels of abstraction.

• A lexicon may be used , but is not mandatory.

• A morphology may be ised, but is not mandatory.

Again, the grammar writer is encouraged to make design choices suitable to the task at
hand. A large, complex grammar that is to be used for a long time will most likely benefit

Draft Draft

5

from abstraction, whereas hard-coding everything into the rules will get you started faster.

• Modularity. The grammar may be split into a number of files, or modules. These are com-
bined by using include statements, either in each file that needs an inclusion, or in a master
file listing all included files.

1.2. Feature grammars

• The interpreter supports agreement of linguistic (such as definiteness and number) or other
features over word sequences. Agreeing features are automatically copied into the contain-
ing rule, and may be copied into the resulting semantics.

• Non-agreeing input, which is likely to occur in ASR results, will still be accepted, but is
ranked lower. This feature can be suppressed.

1.3. Flexible semantics

• The semantics are encoded to any depth and complexity chosen by the grammar writer.
Applications where feature-value pair frames, or even simple keywords, are sufficient may
use these, whereas more complex applications may use deep structured semantic trees or
nested feature-values.

• The interpreter unifies partial semantics according to a semantic template provided by the
grammar writer, instead of using lambda expressions. The template states how parts fit to-
gether in the specific application.

1.4. Confidence scores [not implemented]
Confidence scores [not implemented]. The interpreter will compute a confidence score for
each result. ASR word confidence, agreement, number of insertions, and other factors are
weighed in.

1.5. Robustness

• Partial results are parsed and delivered. The phrases do not have to cover the whole input
string.

• The interpreter automatically allows insertions inside rules and lexical entries. The number
of insertions permitted can be coded into the grammar (defaults to two). When used with
ASR, where disfluences and out-of-vocabulary (OOV) words may trigger random words to

Draft 1.2. Feature grammars Draft

6

appear anywhere in the string, this provides robustness.

• If a full parse is not obtained, the best combination of partial results is found. Rules and
lexicon entries can be prohibited from being allowed to function as stand-alone results,
either on a rule-by-rule, entry-by-entry basis, or using more general techniques.

• Top rule(s) need not be explicitly declared. The interpreter can be made to select the com-
bination of rules and entries that covers the highest number of words in the input while us-
ing the fewest number of rules.

• All solutions resulting in non-equivalent semantics can be delivered in an ordered n-best
list.

1.6. On-line features

• The interpreter can do incremental parsing. Words can be added one by one. Each addition
will result in a new interpretation, without the entire input having to be reprocessed each
time. The input string can also be changed partially without forcing a full re-interpretation.
The best combination of solutions can be retrieved at any time.

• The interpreter has a web browser interface (currently IE only). Solutions can be viewed
graphically in a browser window as they are being found. Style sheets creating a graphical
view are included, and personalised style sheets can be coded and linked to the grammar.
Switches between style sheets can be made using the minimal graphical user interface
(GUI). Default style sheets can also be specified in the grammar, and more then one style
sheet may be applied sequentially.

• Batch processing. The interpreter can process a large number of string in one sweep and
write the results to a compiled file.

• Rapid testing. A text file with utterances may be read into the GUI. The sentences are
presented in a text window, and clicking one of them will automatically interpret it.
Changes can be made in the grammar, which can then be reloaded and the effects easily
tested.

• Web server mode. Pickering can be started as a web server, in which case the string that is
to be interpreted is sent to Pickering from a web browser, either with the GET or the POST
methods. The resulting XML is returned to the web browser.

• Comand line mode. Pickering placed in a pipe chain on the command line. It then reads in-
put from STDIN and writes output to STDOUT.

1.7. Extras
The interpreter comes with a number of pre-written stylesheets, both in CSS and XSLT. The
stylesheets can be linked in the grammar, or chosen through the interpreter's GUI. The results
of these stylesheets may be viewed in standards complient web browsers.

Draft 1.6. On-line features Draft

7

8

Chapter 2. How to find Pickering
Jens Edlund <edlund@speech.kth.se>

Gabriel Skantze <gabriel@speech.kth.se>

Highlights

• Pickering distribution

• XML Schema distribution;

• Style sheet distribution

In this chapter: Instructions on how to find the Pickering distribution, or parts thereof, as well
as a brief version history is included in this chapter.

2.1. Download locations
Pickering is distributed at the web site of the department of speech, music and hearing
[http://www.speech.kth.se] at TMH, KTH, on the Higgins project web pages: ht-
tp://www.speech.kth.se/higgins/modules/pickering.shtml. The distribution comes in a zip
archive, and this book is available both on-line and for download. The latest version of the
Windows distribution and this book can be found at:

• http://www.speech.kth.se/higgins/modules/pickering-win.zip

• http://www.speech.kth.se/higgins/modules/pickering-manual.zip
[http://www.speech.kth.se/higgins/modules/pickering-win.zip]

2.2. Contents of the Pickering distribution
The Pickering distribution of version 0.9.0 contains the following files:

• Pickering.exe - Pickering executable.

• PickeringConfiguration.xml - default configuration file

• ExampleGrammar.xml - an example grammar, funnily enough

• PickeringManual.pdf - PDF version of this book

• TestPickeringWebServer/index.html and iTestPickeringWebServer/input.html - example

Draft Draft

9

page for web server mode (input.html is inlined in a frame in index.html)

2.3. XML Schemas and XSL stylesheets
The Pickering XML Schemas and XSL stylesheets are still under development, but examples
can be found at:

• http://www.speech.kth.se/higgins/2003/ namespace
[http://www.speech.kth.se/higgins/2003/]

• Standard transformations for presentation of Pickering results
[http://www.speech.kth.se/higgins/2003/pickering/result/transformations/parseresult_ie.xsl
t]

Documented stylesheets and updated schemas are underway.

Draft 2.3. XML Schemas and XSL
stylesheets

Draft

10

Chapter 3. Installing Pickering
Jens Edlund <edlund@speech.kth.se>

Gabriel Skantze <gabriel@speech.kth.se>

Highlights

• Prerequisits

• Installing Pickering

• Partial installations

• On-line materials

In this chapter: This chapter details what needs to be done before Pickering can be installed,
how to install Pickering or parts of it, and how to use the public web resources for Pickering
provided by TMH.

Note that version 0.9.0 is only available as a Windows binary, so this installation instruction is
valid for Windows only. Our intention is to make future versions available for other platforms
as well.

3.1. Prerequisits
In order to use Pickering, the following applications must be installed:

• Mozart 1.3 or later [http://www.mozart-oz.org/]

• Perl 5.6 or later [http://www.activestate.com/]

If you want to use Pickering in GUI mode, you also need to have the Perl package
Win32::OLE installed. See below for instructions on how to get and install Win32::OLE.

To find out if the Win32::OLE package is installed under ActiveState Perl, open a Command
Prompt and run: > ppm > install win32-ole > q

If Win32::OLE is installed, you will get the message "Note: Package 'Win32-OLE' is already
installed", otherwise it will be installed for you.

3.2. Installing Pickering
To install Pickering, simply unzip the distribution into a directory of your choice. If you want

Draft Draft

11

to be able to run Pickering from any directory, you have to add the directory containing Pick-
ering.exe to your PATH environment variable.

3.3. Using public on-line resources
This section will contain information on how to use, download and manipulate the XSL and
XML Schema files provided within the Higgins project. It has yet to be written.

Draft 3.3. Using public on-line resources Draft

12

Chapter 4. Running Pickering
Jens Edlund <edlund@speech.kth.se>

Gabriel Skantze <gabriel@speech.kth.se>

Highlights

• Pickering GUI

• Command line usage

• CTT Broker interface

• Web server mode

In this chapter: Pickering can be run in four different modes: GUI, web server, broker and
command line mode. The interfaces for these modes are are presented in this chapter: the GUI
and the command line tools. The GUI is presented with screen dumps and examples, and the
command line tools with formal synopses.

4.1. Configuring Pickering
To start Pickering, simply run Pickering.exe.

If no argument is provided, Pickering will look for "PickeringConfiguration.xml" for its con-
figuration. The name of a file can also be provided as an argument to specify another configur-
ation file.

Pickering can be run in four modes:

1. GUI: Pickering runs with a GUI, where the user can test the interpreter. From here it is
also possible to do batch processing and connect to the CTT Broker
[http://www.speech.kth.se/broker/].

2. Web server: Pickering is started as a web server without GUI. To test the web server,
open TestPickeringWebServer/index.html in a web browser (presently, you need to use
Internet Explorer for the style-sheets to work).

3. Broker: Pickering is started as a client to the CTT Broker
[http://www.speech.kth.se/broker/] without GUI.

4. Pipe: Pickering is started without GUI and reads strings to parse from STDIN and writes
the result on STDOUT.

Draft Draft

13

These modes are explained more thoroughly (e.g. what the input should look like) later in this
chapter.

In all modes, Pickering can be terminated by feeding it an empty line on STDIN.

Pickering is configured through an XML configuration file.

Example 4.1. XML document: Pickering configuration file

<?xml version="1.0" encoding="iso-8859-1"?>
<module

name="Pickering"
xmlns="http://www.speech.kth.se/higgins/2003/pickering/config/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.speech.kth.se/higgins/2003/pickering/config/
http://www.speech.kth.se/higgins/2003/pickering/config/config.xsd"

>
<send>

<module>ParseResultReceiver</module>❶
</send>
<settings>

<grammar_file>ExampleGrammar.xml</grammar_file>❷
<mode>gui</mode>❸
<permitted_top_rules>selected</permitted_top_rules>
<permitted_top_entries>selected</permitted_top_entries>❹
<permitted_insertions>2</permitted_insertions>
<permit_weak_agreement>true</permit_weak_agreement>
<style-sheets>

<parse_result>❺
<href type="text/xsl" name="Parse tree">

http://www.speech.kth.se/higgins/2003/pickering/result/transformations/parseresult_ie.xslt
</href>
<href type="text/xsl" name="XML original">

http://www.speech.kth.se/higgins/xsl/xml2html.xslt
</href>

</parse_result>
<grammar>
<href type="text/xsl" name="XML original">

http://www.speech.kth.se/higgins/xsl/xml2html.xslt
</href>

</grammar>
</style-sheets>
<webserver_port>80</webserver_port>❻
<broker_host>bach</broker_host>
<broker_port>2345</broker_port>❼
<broker_gui_connect>false</broker_gui_connect>
<broker_incremental_send>false</broker_incremental_send>❽

</settings>
</module>

❶ In broker mode, the Broker Server name the results should be addressed to (see the CTT
Broker documentation [http://www.speech.kth.se/broker/] for more information)

Draft 4.1. Configuring Pickering Draft

14

❷ The grammar file Pickering should start with.
❸ The mode in which Pickering should be run (see Section 4.1, “Configuring Pickering”).

It takes the following values: gui, webserver, pipe or broker
❹ These settings affect Pickerings processing behaviour. permitted_top_rules an dpermit-

ted_top_entries both take the values all (permit all rules or entries to be top nodes in
the parse tree), none (permit no rules or entries to be top nodes in the parse tree), or se-
lected (permit rules or entries with their top attribute set to true to be top nodes in
the parse tree). permitted_insertions states how many insertions Pickering allows within
phrases. Takes an integer as its value. 0 disables insertions of unmatched words. Finally,
allow_weak_agreement takes a boolean value. It declares whether entries listed as agree-
ing shall be used even if they don't agree, unless there is another, better solution. If these
switches are incomprehensible to you, disregard them for now and read the chapter on
Pickering grammars.

❺ The contents of the style-sheets element declares which style sheets will be available in
the GUI version. See the sections on visualisation for more info.

❻ In web server mode, specifies the port on which the web server should listen for connec-
tions.

❼ In broker mode, these specify which broker host and port to connect to. Port 1932 is re-
gistered with IANA [http://www.iana.org/] as the standard CTT Broker port.

❽ In GUI mode, broker_gui_connect specifies whether Pickering should connect to the
broker at startup. broker_incremental_send specifies specifies if the results should be sent
incrementally when connected to a broker.

4.2. Mozart/Tk GUI
This section describes the Mozart/Tk interface that ships with Pickering

4.2.1. Caveats

Platform dependency. The present version of Pickering comes with a Mozart/Tk graphical
user interface. Currently, it is somewhat tied to WIndows. This is simply because parts of the
implementation are in beta, and not yet coded machine independently. The intention is to fix
this in future versions. The Windows dependency is tied to the following:

• The XSLT/CSS visualisations are currently displayed by letting a Perl loop invoke IE6 as a
COM object. This solution is somewhat of a hack, and is meant to be recoded. Most of the
style sheets used are browser independent, however, and an implementation may equally
well use, say, Xalan or xslproc and Opera or Mozilla.

• Neither the Mozart/Oz code nor the Mozartl/Tk code is not yet tested under Linux, but
there shouldn't be any major problems here - the language is quite platform independent.

4.2.2. Overall description

Draft 4.2. Mozart/Tk GUI Draft

15

❶ This is the text input field. Text that is typed into this field will be interpreted, either in-
crementally after each space, or when the parse button is pressed.

❷ The parse button triggers parsing of the text in the input field.
❸ The send button sends the result to its recipient ofer the CTT broker, if one is connected.
❹ The reset button resets Pickering and clears the chart.

4.2.3. The File menu

❶ Loads a new grammar file. The current grammar file is unloaded.
❷ Re-reads the current grammar from disk. Handy for grammar development.
❸ Loads a text file with pre-written sentences. The sentences are listed in the centre of the

GUI, and when one of them is clicked it is instantly intertpreted. Very handy for gram-
mar development.

❹ Saves the current parse result to file.

4.2.4. The Tools menu

Draft 4.2.3. The File menu Draft

16

❶ Loads a text or XML file for batch processing.
❷ Displays a native Mozart/Tk visualisation of the current chart.
❸ Displays grammar statistics.
❹ Connects to a CTT Broker.
❺ Restarts Internet Explorer.

4.3. The Options menu

❶ When active,interpretations results are fed to Internet Explorer together with an XSL
stylesheet of the users choice.

❷ When active, the interpreter works incrementally, word by word. When inactive, the in-
terpreter only starts when a full utterance is given (or when the user clicks the parse but-
ton).

4.4. The View menu

❶ These are style sheets with which the current result may be viewed. The list is of style
sheets is read from the configuration file, thus it can be set by the user. When one of
these is selected, that style sheet is applied to any results displayed in the Internet Ex-
plorer browser window.

❷ These are style sheets with which the currentgrammar may be viewed. The list is of style
sheets is read from the configuration file, thus it can be set by the user. Note that as long
as one of these is selected, results are not shown in the Internet Explorer browser window
- the grammar is, with the selected style sheet.

Draft 4.3. The Options menu Draft

17

4.5. Web server interface
When started in web server mode, Pickering accepts calls on the standard HTTP port (80) and
looks for the parameter parsestring in the request. It then interprets its contents and re-
turns the resulting XML to the caller, for example a web browser. The distribution contains a
very small web page to exemplify this functionality - just start Pickering in web mode and
open the file index.html to see how it works.

Presentlly, there is no way to set the incoming port number for Pickering, so if you have a web
server or something else running on port 80, this is not going to work. This will be fixed in
some future version.

4.6. CTT Broker interface
The CTT Broker interface is what we use when we run Pickering within dialogue systems. The
method is slightly more complex, and a newer release of the CTT Broker than the one avail-
able at present is recommended. Information and links to a newer broker release will be in-
cluded here as soon as there is such a release.

4.7. Command line interface
When Pickering runs in pipe mode, it reads text line by line from STDIN until it gets a blank
line (which causes it to close). The results are written to STDOUT.

Draft 4.6. CTT Broker interface Draft

18

Chapter 5. Overview of Pickering
grammars

Highlights

• The Pickering grammar namespace

• First Pickering grammar example

• The <grammar/>, <rules/>, <rule/>, <match/> & <semantics/> elements

• The link attribute

• Extending a grammar with a lexicon

• Implementing a feature grammar

• Extending a lexicon with a morphology

In this chapter: This chapter briefly introduces the Pickering grammar formalism and the
XML Schema it is described in. This is done by example - the chapter goes through a minimal
grammar without getting into too much detail. XML Namespaces are mentioned briefly for
completeness.

Grammar writing for Pickering is designed to be as flexible as possible. Pickering grammars
are encoded in XML and the XML vocabulary used by Pickering is encoded in an XML
Schema, which provides sufficient constraints to facilitate validation (syntax checking) of
grammars.

In the most basic case, a Pickering grammar consists of nothing but rules. If a grammar is to be
used for more complex domains, or in a system that will need to be maintained for any longer
period of time, a rule-only grammar will become very cumbersome. Pickering offers several
methods to increase the flexibility and to ease the construction and maintainance of grammars.
Two of them, lexicons and morphologies, are described briefly in this chapter.

A common feature of grammars is to attach feature value pairs on rules, lexicon entries and/or
morphology. Linguistic features, for example are often utilised in this manner. Pickering sup-
ports optionally supports feature grammars, and the basic methods for using them are also de-
scribed here.

5.1. XML basics
Pickering grammars are encoded in XML and each XML document related to Pickering is re-
quired to be well-formed and valid. There are some details about XML files that, although not
direclty related to Pickering, one must be aware of to understand and use Pickering.

Draft Draft

19

XML declarations: It is a good idea to make a habit of placing an XML declaration at the top
of every XML document. It tells browsers and tools that the document is intended to be well-
formed XML and nothing else, which XML version it is, and which character encoding the
document uses. In most cases, and definitely in the case of Swedish documents, the ISO-

8859-1 encoding is the prudent choice. The XML declaration then, looks like this: <?xml
version="1.0" encoding="ISO-8859-1"?>

XML Namespaces: The XML vocabulary used for a grammar is defined in several XML
Namespaces. A namespace is a strictly and globally defined "home" for an XML vocabulary.
In this chapter, we will talk briefly about the most essential of these, from a Pickering point of
view: the http://www.speech.kth.se/higgins/2003/pickering/grammar/

namespace.

The Pickering grammar specification states that every element must have its namespace expli-
citly declared. In XML this is achieved in two steps:

1. Each namespace as declared. The declaration is usually placed on the top level element of
the XML document (the <grammar/> element in the case of Pickering grammars), and
is done using the xmlns attribute. A generic namespace declaration looks something like
this:

Example 5.1. XML snippet: a generic namespace declaration

<ELEMENT❶
xmlns:NS="UNIQUE_NAMESPACE_ID ❷ "/>

❸

❶ Often the top-level element.
❷ UNIQUE_NAMESPACE_ID is the unique namespace identifier, for example ht-

tp://www.speech.kth.se/higgins/2003/pickering/grammar/,
goes here.

❸ The namespace declaration can be seen as a way of locally aliasing the (often very
long) unique namespace identifier. NS in this example is the alias, which should pre-
ferrably be short.

2. The alias (NS above) is used to explicitly qualify elements belonging to the namespace in
question by prefixing it to the elements. A colon (:) is used to separate the namespace ali-
as and the element name: NS:ELEMENT. In the code examples throughout this book, g is
used as an alias for the Pickering grammar namespace (ht-
tp://www.speech.kth.se/higgins/2003/pickering/grammar/), so the
top level grammar element is written <g:grammar/>. (Note that explicit namespace
declarations are not used in the running text of this book, so inline, the same element is
written <grammar/>.)

XML Schema declarations: In order to validate XML it must be connected to a formal defin-
ition (a grammar for the XML if you will). This can be done in a number of ways (DTDs being

Draft 5.1. XML basics Draft

20

the most common to date). Pickering XML is specified in XML Schemas. An XML docu-
mented is associated with a schema using the xsi:schemaLocation attribute on the top
level element. The attribute takes string pairs as values, the first of a pair being the unique
identifier (not the alias) of the namespace being specified in the schema, the second an URL
(or an URI to be correct) to the XML Schema document holding the specification. More than
one pair may be given, if more than one namespace is used. The generic example looks like
this:

Example 5.2. XML snippet: a generic XML Schema declaration

<TOP_ELEMENT ❶
xsi:schemaLocation="UNIQUE_NAMESPACE_ID ❷

SCHEMA_URI ❸ "/>

❶ Schemas are associated with an XML document using the xsi:schemaLocation at-
tribute on the top-level element. The attribute takes string pairs as its value.

❷ The first part of each value pair is a unique namespace identifier, given as
UNIQUE_NAMESPACE_ID here.

❸ The second part of each value pair is a URI reference to the file containing the XML
Schema, given as SCHEMA_URI here.

5.2. Writing a simple Pickering grammar
A minimal Pickering grammar consists of a set of rules. Each rule has one or more
<match/> elements and a <semantics/> element (will be <semantics> in later ver-
sions). <match/> elements specify what the rule will match against and the
<semantics/> element specifies the semantics that the rule will return. Here is a simple ex-
ample from Swedish:

Example 5.3. XML example: a minimal grammar

<?xml version="1.0" encoding="ISO-8859-1"?> ❶
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/" ❷
xmlns:f="http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=" ❸
http://www.speech.kth.se/higgins/2003/pickering/grammar/

http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd

">
<g:rules> ❹
<g:rule f:name="landmark"> ❺
<g:match> ❻

Draft 5.2. Writing a simple Pickering
grammar

Draft

21

en <g:rule f:name="prop" link="1"/> lokal ❼
</g:match>
<g:match>

en <g:rule f:name="prop" link="1" ❽ /> byggnad
</g:match>
<g:sem> ❾
<w:object xsi:type="building">
<w:properties>
<g:ref link="1" ❿ />

<w:/properties>
</w:object>
</g:sem>
</g:rule>
<g:rule f:name="prop">
<g:match>gul</g:match>
<g:sem>
<w:colour>yellow</w:colour>
</g:sem>
</g:rule>
<g:rule f:name="prop">
<g:match>stor</g:match>
<g:sem>
<w:size>large</w:size>
</g:sem>
</g:rule>
</g:rules>
</g:grammar>

❶ Standard XML declaration.
❷ The <grammar/> top element carries XML Namespace and XML Schema declarations

in attributes. The Pickering grammar XML Namespace is ht-

tp://www.speech.kth.se/higgins/2003/pickering/grammar/.
Everything that has to do with the grammar specification lies in this namespace. The res-
ulting semantics should be placed in another namespace. In the example, the semantics
are placed in http://www.speech.kth.se/higgins/2003/world/, but this
is up to the grammar writer to decide.

❸ This calls in the Pickering grammar XML Schema.
❹ Grammar rules are always defined within a <rules/> element.
❺ Each grammar rule is defined with a <rule/> element.
❻ A <rule/> element may contain several alternative <match/> elements.
❼ A <match/> elements may contain <rule/> elements, text, or a combination of both.
❾ Only one <semantics/> element is allowed. The element defines the semantics pro-

duced by the rule.
❽❿ The semantics of a matching rule can be copied into the resulting semantics with the

link attribute, which tells the interpreter to unify each rule or entry with the link at-
tribute set, using the attribute values as ordering numerals. (See the chapter on semantic
unification.)

In example above, the parsing of the string "en stor byggnad" would result in the following se-
mantics:

Example 5.4. XML snippet: resulting semantics

Draft 5.2. Writing a simple Pickering
grammar

Draft

22

<w:object xsi:type="building" ❶ >
<w:properties>
<w:size>large</w:size> ❷

<w:/properties>
</w:object>

❶ xsi:type is a special attribute from the XML Schema namespace. It allows the author
to use the same top element within the same namespace to represent non-identical struc-
tures. In the Higgins domain, it is used to classify objects, since different object types
tend to have different properties.

❷ The exact mechanism that merges the semantics from various matching rules are ex-
plained later in this documents.

5.3. Adding a lexicon
A Pickering grammar can be extended with a lexicon. The lexicon consists of a set of entries,
each of which looks just like a rule in the grammar, except that the <match/> element in an
entry may only contain a textual words - no references to other entries or rules may be in-
cluded. The lexicon entries correspond to the leaves of a CF.

Using a lexicon has several advantages. From a maintainance point of view, placing all literal
words in one place makes it a lot easier to overview, extend and modify a grammar. There is
also a significant efficiency involved from a processing point of view: using more entries and
less rules permits the implementation to perform more bottom-up processing before the rules
are applied.

Here is an example of a lexicon:

Example 5.5. XML example: a minimal lexicon

<?xml version="1.0" encoding="ISO-8859-1"?>
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/"
xmlns:f="http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.speech.kth.se/higgins/2003/pickering/grammar/
http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd

">
<g:lexicon> ❶
<g:entry f:name="prop">
<g:match>gult</g:match>
<g:sem>
<w:colour>yellow</w:colour>
</g:sem>
</g:entry>
<g:entry f:name="prop">

Draft 5.3. Adding a lexicon Draft

23

<g:match>stort</g:match>
<g:sem>
<w:size>large</w:size>
</g:sem>
</g:entry>
<g:entry f:name="prop">
<g:match>stor</g:match>
<g:sem>
<w:size>large</w:size>
</g:sem>
</g:entry>
</g:lexicon>
</g:grammar>

❶ Lexicon entries are always defined within a <lexicon/> element. The element can
either sit in the same file as the grammar <rules/> element, or be defined in a separate
file, using Pickering's modularisation methods. These are explained elsewhere.

The rules in a grammar may then reference lexicon entries in the same manner as they do other
rules:

Example 5.6. XML snippet: referencing a lexicon entry

<g:rule f:name="examplerule">
<g:match>
en <g:entry f:name="prop" link="1" ❶ /> byggnad

</g:match>
<g:sem>
<g:unify/>
</g:sem>
</g:rule>

❶ When a lexicon is used, rules may reference lexicon entries.

5.4. Feature grammars
In the previous examples, the matching of rules and entries has been done on the bases of the
attribute f:name. However, the rules and entries may be extended with an arbitrary number
of features, grammatical or otherwise.

The features be given any name, and any number of them may be added. All features listed on
an entry or rule in a <match/> element must match for the match to be applicable. Note also
that all features are placed in the ht-

tp://www.speech.kth.se/higgins/2003/pickering/grammar/feature/

namespace, which is an open namespace permitting any attribute name. The feature attributes
must be qulified (i.e. have their namespace explicitly stated), however. An example follows:

Draft 5.4. Feature grammars Draft

24

Example 5.7. XML snippet: linguistic features in a lexicon

<g:lexicon>
<g:entry f:name="noun" f:number="sing" f:definiteness="indef" f:gender="utr">
<g:match>byggnad</g:match>
<g:sem><w:object xs:type="building"/><g:/sem>
</g:entry>
<g:entry f:name="noun" f:number="sing" f:definiteness="def" f:gender="utr">
<g:match>byggnaden</g:match>
<g:sem><w:object xs:type="building"/><g:/sem>
</g:entry>
<g:entry f:name="noun" f:number="plur" f:definiteness="indef" f:gender="utr">
<g:match>byggnader</g:match>
<g:sem><w:object xs:type="building"/><g:/sem>
</g:entry>
<g:entry f:name="noun" f:number="plur" f:definiteness="def" f:gender="utr">
<g:match>byggnaderna</g:match>
<g:sem><w:object xs:type="building"/><g:/sem>
</g:entry>
</g:lexicon>

These features can be used in referring rules, just like the name attribute was in the previous
examples:

Example 5.8. XML snippet: matching features in a rule

<g:match>
en <g:entry f:name="prop" f:gender="utr" link="1"/> byggnad
</g:match>

Finally, the features may also be transferred into the resulting semantics. Number and definite-
ness, for example, may be of semantic significance, depending on what the interpreter is used
for. The methods used to accomplish this are described later.

5.5. Adding a morphology
We have seen an example of how a word in different forms can be represented in a lexicon and
how features can be used on <match/> elements.. If different word forms have different fea-
tures but identical semantics, encoding them over and over is cumbersome and unnecessary.
Instead, the lexicon can be extended with a morphology. The morphology consists of
<morphology/> element containing a set of <declination/> elements, which in turn
contains <form/> elements. Each declination form describes how a suffix change the lin-
guistic features (see below) of an entry. The suffix itself is written as element content, and the
features are encoded as attributes, just as in a lexicon entry.

Draft 5.5. Adding a morphology Draft

25

Example 5.9. XML example: a morphology

<?xml version="1.0" encoding="ISO-8859-1"?>
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/"
xmlns:f="http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/"
xmlns:s="http://www.speech.kth.se/higgins/2003/pickering/semantics/"
xmlns:a="http://www.speech.kth.se/higgins/2003/annotation/"
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.speech.kth.se/higgins/2003/pickering/grammar/
http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd
http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/
http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/feature.xsd

">
<g:morphology ❶ >
<g:declination id="noun1" ❷ >
<g:form f:number="sing" f:definitness="indef"/> ❸
<g:form f:number="sing" f:definitness="def">en ❹ </g:form>
<g:form f:number="plur" f:definitness="indef">er</g:form>
<g:form f:number="plur" f:definitness="def">erna</g:form>
</g:declination>
</g:morphology>
</g:grammar>

❶ A morphology is always defined within a <morphology/> element.
❷ Each declination is always defined with a <declination/> element. The element

carries a mandatory id attribute, which must be a unique identifier within the entire
grammar. The id attribute is used to connect lexicon entries to their declinations.

❸❹ A <declination/> element contains a <form/> element for each suffix the lexicon
entry should be expanded with, and may also contain an empty <form/> element, rep-
resenting the word as it is written in the lexicon entry. The attributes listed on each form
are transferred to the expanded lexicon entry.

Example 5.10. XML snippet: referencing a declination

<g:entry f:name="noun" f:gender="utr" declination="noun1" ❶ >
<g:match>byggnad</g:match>
<g:sem><w:object xs:type="building"/><g:/sem> ❷

</g:entry>

❶ The morphology is linked into the lexicon by extending the lexicon with the declina-
tion attribute, the contents of which referes to a declination id in the morphology.

❷ Even though one can expand a lexicon entry into several by linking it to a declination, it

Draft 5.5. Adding a morphology Draft

26

can only have one set of semantics.

If the same feature is encoded both on the lexicon entry and the declination form, the declina-
tion form takes precedence. The result of the code in the examples above would be that the
entry is expanded to four entries, one for each <form/> element in the declination.

Draft 5.5. Adding a morphology Draft

27

28

Chapter 6. Building semantics

Highlights

• Pickering results

• Semantic constructions

• Unification of semantics

• Templates and the <template/> element

• Controlling unification

In this chapter: The <semantics/> element is mandatory in <rule/> and <entry/>

definitions. When the rule or entry is applied, the contents of the <semantics/> element is
used to build the resulting semantics. The examples in the introductory chapters on rules and
lexicons have showed how to encode new semantics and how to copy semantics from match-
ing nodes with the <unify><ref link="1"/></unify> construction and its abbrevi-
ated form, <unify/>. In this chapter we give a more thorough description of how Pickering
builds semantics.

6.1. Unification and semantic templates
Sometimes, the semantics of a matching part needs to be subordinated the semantics of anoth-
er. Consider the following grammar (for clarity, we don't use a morphology):

Example 6.1. XML example: building semantics

<?xml version="1.0" encoding="ISO-8859-1"?>
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/"
xmlns:f="http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/"
xmlns:s="http://www.speech.kth.se/higgins/2003/pickering/semantics/"
xmlns:a="http://www.speech.kth.se/higgins/2003/annotation/"
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.speech.kth.se/higgins/2003/pickering/grammar/
http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd

">
<g:rules>
<g:rule f:name="landmark">
<g:match> ❶
<g:entry f:name="art"/>

Draft Draft

29

<g:entry f:name="prop"/>
<g:entry f:name="lm"/>
</g:match>
<g:sem>
<!-- ❷ semantics go here -->

</g:sem>
</g:rule>
</g:rules>
<g:lexicon>
<g:entry f:name="art" f:number="sing" f:gender="utr" f:info="new"> ❸
<g:match>en</g:match>
<g:sem><w:object/></g:sem>
</g:entry>
<g:entry f:name="prop" f:number="sing" f:gender="utr" f:info="new"> ❹
<g:match>stor</g:match>
<g:sem><w:size>large</w:size></g:sem>
</g:entry>
<g:entry f:name="lm" f:number="sing" f:gender="utr" f:info="new"> ❺

<g:match>byggnad</g:match>
<g:sem><w:object xsi:type="building"/></g:sem>

</g:entry>
</g:lexicon>
</g:grammar>

❶ The only rule in this grammar describes a noun phrase. It contains a match element that
needs three entries to match.

❷ What we may put here is the topic of discussion in the next few paragraphs.

Draft 6.1. Unification and semantic tem-
plates

Draft

30

❺ An article, an adjective and a noun is needed. In Swedish, they all carry information on
gender, number and definitness, or new/given status if you will.

In the example above, we've left the semantics for the rule identified by
f:name="landmark" empty. Depending on the application, we may want the resulting se-
mantics to be represented in different ways. Here is an example:

Example 6.2. XML snippet: structured semantics

<w:object xsi:type="building">
<w:properties>

<w:size>large</w:size>
</w:properties>

</w:object>

Pickering leaves us with a lot of freedom to build any kind of semantics we want. This is not
achieved by using lambda expressions, but is based on unification with semantic templates.
We start by writing a semantic template:

Example 6.3. XML example: a semantic template

<?xml version="1.0" encoding="ISO-8859-1"?>
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/"
xmlns:s="http://www.speech.kth.se/higgins/2003/pickering/semantics/"
xmlns:a="http://www.speech.kth.se/higgins/2003/annotation/"
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.speech.kth.se/higgins/2003/pickering/grammar/
http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd

">
<g:template> ❶

❷ <w:object count="*"❸ >
<w:properties count="1" ❹ >
<w:size count="1"/>
</w:properties>
</w:object>
</g:template>
</g:grammar>

❶ The template is defined in a <template/> element, placed directly under the
<grammar/> top level element

❷ The template contains a simplistic description of the semantic model, which should be
kept in a separate namespace.

Draft 6.1. Unification and semantic tem-
plates

Draft

31

❸❹ The resulting semantics should be arranged in the same way as the the template. The
count attribute tells us how many times an element may be repeated. A Kleene star (*)
is used if an element may be repeated indefinitely.

The f:name="landmark" rule above may now be written as follows:

Example 6.4. XML example: building semantics

<?xml version="1.0" encoding="ISO-8859-1"?>
<g:grammar
xmlns:g="http://www.speech.kth.se/higgins/2003/pickering/grammar/"
xmlns:f="http://www.speech.kth.se/higgins/2003/pickering/grammar/feature/"
xmlns:s="http://www.speech.kth.se/higgins/2003/pickering/semantics/"
xmlns:a="http://www.speech.kth.se/higgins/2003/annotation/"
xmlns:w="http://www.speech.kth.se/higgins/2003/world/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.speech.kth.se/higgins/2003/pickering/grammar/
http://www.speech.kth.se/higgins/2003/pickering/grammar/grammar.xsd

">
<g:template> ❶
<w:object count="*">
<w:properties count="1">
<w:size count="1"/>
</w:properties>
</w:object>
</g:template>
<g:rules>
<g:rule f:name="landmark">
<g:match>
<g:entry f:name="art"/>
<g:entry f:name="prop" link="2"/>
<g:entry f:name="lm" link="1"/>
</g:match>
<g:sem>
<g:unify/> ❷

</g:sem>
</g:rule>
</g:rules>
<g:lexicon>
<g:entry f:name="art" f:number="sing" f:gender="utr" f:info="new">
<g:match>en</g:match>
<g:sem><w:object/> ❸ </g:sem>

</g:entry>
<g:entry f:name="prop" f:number="sing" f:gender="utr" f:info="new">
<g:match>stor</g:match>
<g:sem><w:size>large</w:size> ❹ </g:sem>

</g:entry>
<g:entry f:name="lm" f:number="sing" f:gender="utr" f:info="new">

<g:match>byggnad</g:match>
<g:sem><w:object xsi:type="building"/> ❺ </g:sem>

</g:entry>
</g:lexicon>

Draft 6.1. Unification and semantic tem-
plates

Draft

32

</g:grammar>

Draft 6.1. Unification and semantic tem-
plates

Draft

33

❺ Although the semantics of the entries above cannot be easily unified on their own...
❷ ...it is possible to see how the should be unified...
❶ ...in the light of the template.

The <unify/> element above says that all link-ed nodes under the <match/> element is
to be unified in the order stated by their link attributes. The order is important, because the
second unifying element will have to be placed on the same level or on a level subordinated to
the first unifying element.

6.2. Controlling unification
The <unify/> element can contain semantics that are stated directly inside it, as well as ref-
erences to the resulting semantics of matching rules and entries. You may put semantic nodes
inside the element for better control of what gets unified and how it is done. For example, you
may want to write:

Example 6.5. XML snippet: example <unify/> element

<g:unify>
<w:object/>
<g:ref link="2"/>

</g:unify>

In the example above, the literally stated <w:object/> and the semantics referenced by
<g:ref link="2"/> are the only semantics that will be unified. Any other linked se-
mantics are ignored.

Draft 6.2. Controlling unification Draft

34

Chapter 7. Visualisation
Jens Edlund <edlund@speech.kth.se>

Highlights

• Grammar statistics

• Visualised grammars

• Visualised interpretation results

• Adding custom visualisations

In this chapter: Pickering comes with a number of XSLT and CSS style sheets which can be
used to visualise grammars, parse trees and resulting semantics. This section briefly introduces
the included standard style sheets, and shows how additional, custom style sheets can be in-
cluded.

7.1. Visualisation of input
TODO

7.2. Grammar visualisation
TODO

7.3. Parse tree visualisation
TODO

7.4. Visualisation of resulting semantics
TODO

Draft Draft

35

36

2
These definitions have been shortened and rewritten, but their contents are taken from W3C (http://www.w3.org/).

3
The DTDs for DocBook are maintained by OASIS (http://www.oasis-open.org/), and are available for free. A good

manual can be found at http://docbook.org/, and there's a WIKI at http://www.docbook.org/wiki/moin.cgi/
4
The style sheets and documentation are developed as a SourceForge.net (http://sourceforge.net) project, and can be

downloaded from the project home page (http://docbook.sourceforge.net/projects/xsl/). For a comprehensive manual,
see ???.
5
The DTD format is specified in ISO 8879:1986 (the SGML specification), which is owned by ISO and not available

for free. A good tutorial can be found at http://www.xmlfiles.com/dtd/

Glossary

ASR
Automatic Speech Recognition: collective term for a number of
methods to convert an audio speech signal into a textual repres-
entation of what was said.

CSS
Cascading Style Sheets: a simple mechanism for adding layout,
for example fonts, colors, and spacing, to Web documents

2
. CSS

documentation can be found at http://www.w3.org/Style/CSS/.
See Also W3C.

CTT
Centrum fAAAAAr Talteknologi (Centre of Speech Techno-
logy): Speech lab at KTH, Stockholm, Sweden. CTT can be
found at http://www.speech.kth.se/ctt/.
See Also KTH.

DocBook
DocBook: an XML/SGML vocabulary for encoding books and
papers

3
.

See Also SGML, XML.

DocBook XSL
DocBook XSL: XSL documents for transforming DocBook into
HTML, and XSL-FO, which in turn can be used to produce PDF
and PostScript documents

4
.

See Also DocBook, XSL.

DTD
Document Type Definition: a type definition for an XML or
SGML file

5
.

See Also SGML, XML.

GUI
Graphical User Inteface: a visible interface between a human
and a computer, often consisting of monitor, keyboard and
mouse.

KTH
Kungliga Tekniska Högskolan (Royal Institute of Technology:
Technical University in Stockholm, Sweden. KTH can be found
at http://www.kth.se/.

Mozart
The Mozart Programming System: an advanced development
platform for distributed applications
(http://www.mozart-oz.org/).
See Also Oz.

Draft Draft

37

OOV
Out Of Vocabulary: word that is not contained in the vocabulary
of a speech application (e.g. an ASR, parser or semantic inter-
preter)

Oz
The Oz Programming Language: a programming language sup-
porting declarative programming, object-oriented programming,
constraint programming, and concurrency as part of a coherent
whole (http://www.mozart-oz.org/).
See Also Mozart.

PDF
Portable document format: is a computer file format designed to
publish and distribute electronic documents, developed by
Adobe®. The company's blurb is available at ht-
tp://www.adobe.com/products/acrobat/adobepdf.html.
See Also PostScript.

Perl
Practical extraction and report language: Open Source program-
ming language first released by Larry Wall in 1987. Perl sources
are available through http://www.perl.com/.

PostScript
PostScript: a programming language optimized for printing
graphics and text and introduced by Adobe® in 1985. The com-
pany's blurb is available at ht-
tp://www.adobe.com/products/postscript/main.html.

SDS
Spoken Dialogue System: a computer system using ASR and
synthetic speech to communicate with a human.

TMH
Tal, Musik & Hörsel (Speech, Music & Hearing): Speech Tech-
nology department at KTH, Stockholm, Sweden. TMH can be
found at http://www.speech.kth.se/.
See Also KTH.

URI
Uniform Resource Identifier: A complicated way of saying "inter-
net address", defined in RFC2396 (ht-
tp://www.gbiv.com/protocols/uri/rfc/rfc2396.html).
See Also URI.

URL
Uniform Resource Locator: A complicated, and nowadays form-
ally abandoned, way of saying "internet address", defined in the
now obsolete RFC1738 (ht-
tp://www.gbiv.com/protocols/uri/rfc/rfc2396.html#RFC1738)
and RFC1808 (ht-
tp://www.gbiv.com/protocols/uri/rfc/rfc2396.html#RFC1808).

Draft Draft

38

Modern definitions are listed under URI.
See Also URI.

VINNOVA
Swedish Agency for Innovation Systems: an agency whose mis-
sion it is to promote growth by financing the development of in-
novation systems.. VINNOVA can be found at ht-
tp://www.vinnova.se/.

W3C
the World Wide Web Consortium: created in October 1994, the
W3C develops common protocols that promote the evolution of
the Web and ensure its interoperability

2
. W3C can be found at

http://www.w3.org/.

XHTML
(eXtensible) HyperText Markup Language: Designed by Tim
Berners-Lee some decades ago, HTML and its predecessors re-
main the leading WWW markup. Modern HTML (XHTML) is
formally specified in terms of XML. HTML documentation can
be found at http://www.w3.org/MarkUp/.
See Also XML, W3C.

XML
Extensible Markup Language: a simple and flecible markup lan-
guage derived from SGML

2
. XML documentation can be found

at http://www.w3.org/XML/.
See Also SGML, W3C.

XML Namespace
Extensible Markup Language Namespace: a simple method for
qualifying element and attribute names used in XML documents
by associating them with namespaces

2
. Information can be

found at ht-
tp://www.w3.org/TR/2004/REC-xml-names11-20040204/.
See Also XML, W3C.

XML Schema
Extensible Markup Language Schema: a means for defining the
structure, content and semantics of XML documents

2
. Informa-

tion can be found at http://www.w3.org/XML/Schema.
See Also XML, W3C.

XSL
Extensible Stylesheet Language: a family of W3C recommenda-
tions for defining XML document transformation and presenta-
tion, comprised by XSLT, XPATH, and XSL-FO

2
. XSL docu-

mentation can be found at http://www.w3.org/Style/XSL/.
See Also XML, W3C.

XSLT
Extensible Stylesheet Language (XSL) Transformations: a lan-
guage in the XSL family for transforming XML documents into

Draft Draft

39

other XML documents
2
. XSLT documentation can be found at

http://www.w3.org/Style/XSL/.
See Also XML, XSL, W3C.

Draft Draft

40

Index

A
ASR, 5

C
CSS

(see also XSL/XSLT)

D
download, 9

I
installation, 11

P
programming

Mozart/Oz, 5

S
speech technology

ASR, 5

U
usage

user interfaces, 13

V
visualisation, 35

X
XML, 5

CSS
(see also XSL/XSLT)

Pickering grammar attributes, 29, 29, 29
count, 29, 34
declination, 25
id, 25
link, 21, 29

Pickering grammar elements, 21, 23, 24, 25, 29,
29, 34

declination, 25
entry, 23, 24, 25
form, 25
lexicon, 23
match, 21, 23, 24, 25
morphology, 25
ref, 21, 29
rule, 21, 23

rules, 21
sem, 25, 29, 34
(see also semantics)
semantics, 21
template
(see also semantics)
unify, 23, 29, 29, 34

XSL/XSLT
(see also CSS)

XSL/XSLT
(see also CSS)

Draft Draft

41

42

References
Bob Stayton (2003): DocBook XSL: The Complete Guide. Retrieved 2004-07-20 from ht-

tp://www.sagehill.net/docbookxsl/

Norman Walsh & Leonard Muellner (2001): DocBook: The Definitive Guide. Retrieved
2004-07-20 from http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html

Draft Draft

43

