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Abstract

Wavelet packet representation of textured regions

This master thesis examines a way of separating textured regions in an image
and representing them using wavelet packets. Highly textured images tend to
have a spectral distribution with much energy content in the mid-bands.
Wavelet packet representation is thereby a suitable basis for the image and
an extended form of tiling the spatial-frequency domain is suggested along
with operations to manipulate the representation. This over-complete form
of representation is called stacks and the operations are guided by selection
masks.

The method is demonstrated in experiments and the extension of non-linear
operations is discussed. The literature study contains a commented list.
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1. Preface

Every line has to start somewhere. So has the guiding red line that marks the
path of thought. This very spot is a good place to start the journey through
this thesis and so you have. Welcome.

Separating an image into two additive images, based on the texture content
in the image, is the goal of the master project summarised in this thesis. A
new form of representation, the stack, is described and used in several
examples. The stack is a generalised wavelet packet-decomposition and
operations to manipulate the stack using selection masks are described.

Starting with the results gives you an overall view of what the destination
will look like. It is followed by a guide to the wavelet representation of
images and its historical development. The basic stack representation is a
new form of representation designed to simplify the separation. Building on
this representation, we select a few wavelet packets and separate one of
Brodatz images, the brick wall. Advancing the concept further, the next step
is to only select some of the coefficients from the decomposition. The
image used to illustrate this is the well-known Lenna image.

Selecting wavelet packets and coefficients for transfer is the foundation of
the concept presented in this thesis. Combining all of the previous methods
the Barbara image is separated. It is the textured structure of her cloths, her
left leg to be precise, that is separated. The result is good.

From there extensions to the separation scheme is presented. Non-binary
selection masks and non-linear masks and their use in stacks are advanced
topics that require understanding of all the previous chapters.

The extensive literature study is presented as a commented list. The
appendix and chapter four on wavelet representation of images can be read
independently and out of the context of the rest of this thesis.

Fasten your seatbelts.

Jens Larsen, larsen@isy.liu.se, LiTH, Sweden
Monday, 12 February 2001



2. Introduction

This thesis describes several experiments that each demonstrates principles
and techniques used in the separation. Visually, all of them perform well and
none of the experiments has been fine-tuned afterwards, but was carefully
designed to capture the essence of the underlying idea in the first execution.
This is a success. However, the small number of examples still leaves doubt
about the generality of the techniques.

M
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From chapter 5: Excperiment separating a highly texctured image. If these three images are added together,
the original image is recovered.

The introduction of the representation form called szacks does not lack
generality. It is probably the most general form of representation possible.
The stacks are therefore classified into basic stacks and basis stacks to
maintain the connection to conventional wavelet packet representation. If
nothing else, the stack concept is the most fundamental issue of this thesis.

Pl

From chapter 6: Excperiment using selection masks. The selection masks at several scales. Since they are
binary, an AND-operation is all it takes to mask out the desired coefficients. The masks are independent
of each other. Sharp edges are present at all scales, but other features are only present in some. This can
be excploited in texcture separation.

Operations within the stack have been developed and the link to texture
separation is made using selection masks of different kinds. It is in this area
that more work can be done to fully test this texture separation technique's
potential. There are many questions to be answered about the different ways
to create the masks, and also how the masks relate to each other over the



scales. On top of that, in the later chapters there is a discussion of non-
linear operations.

From chapter 7: Non-binary selection masks. Result from the separation. The striped leg to the right is
separated from the initial image. To the right, the difference in detail and structure can be observed by
comparing the texture on the right and left leg.

As usual, any attempt to answer a scientific question seems to generate even
more questions. In this thesis, it is clearly demonstrated that it is possible to
do the desired texture separation in a controlled way using stacks. In doing
so, the generality of the method adds a higher degree of freedom in
selection of parameters. This selection, in all its endless combinations, raises
new questions.

I will end my introducing journey here and I hope that this thesis inspires
others to follow some of the many lose ends.



3. Segmentation - Separation

Separation is a wider concept than segmentation

There is a difference between segmentation and separation. Separation is a
wider concept than segmentation and to avoid confusion the term
separation is used to describe the methods and results in this thesis.

Separation is an operation that divides an image into several parts. The
individual parts are often subject to different coding methods or
transmission requirements. This thesis deals with the issue of separating
highly textured image content in a spatial-frequency sense and is not limited to
disjunctive regions. The separated parts are additive, but the parts overlap
spatially. This property disqualifies the method from being referred to as a
segmentation scheme. The overlap is a natural consequence of working
within the wavelet packet-representation.

Traditionally segmentation means a division of the image into smaller parts by
simply cutting out certain areas. A more suitable name for these areas are
regions since methods of this kind operate on the image itself with cleatly
defined borders, often rectangular. Many methods use the concept and refer
to them as region of interest, ROL [5]. In the video coding standard MPEG4 a
similar idea of video object plane, VOP, is used.

For texture-separation, wavelet packet-decomposition is promising. Most
appealing is the multi-resolution property of the wavelet. The
decomposition also forms a basis. Many other analysing functions do not
form a basis and although they have supreme texture matching properties,
control over the image is lost. For lossy compression, this might not be of
importance, but unexpected results might be difficult to explain. A basis
representation is a solid foundation from which deviations can be made. A
new representation is presented and is called stacks.

Texture

Texture lacks a general definition. Somehow, an overall agreement on what
is and what is not a textured area exists. Areas with certain texture can
clearly be treated differently than non-textured areas. Imagine a portrait. The
hair is a texture, but the face is not. It is possible to model the hair using
orientation, thickness, cutliness and so on. On the other hand, the region
around the eyes is subject to demands on high detail. Scale is also important
if a region is to be considered a texture or not. Texture representation using
a model based synthesis can be successfully used [A13] but is troublesome
to generalise. Classic texture analysis used textons as a fundamental building
block for textures. The self-similarity of textured regions can be exploited
using fractals.



Computer graphics use the term texture for the surfaces covering a
tessellated 3D model. Sophisticated lighting models produce impressive
result that looks very photo realistic. This definition is may be useful for
model based image coding.

Texture is important to the human vision. It helps us to determine the size
and shape of things. It also plays a big role in how sharp and detailed we
perceive the image. Although textured areas can be very detailed, exact
spatial localisation is not required by the human observer for recognition.

A certain degree of homogeneity in one or several properties is expected
within a textured area. This can be in orientation, structure or pattern. The
repetitiveness can be expressed in terms of frequency and this is found in
the mid-bands often referred to as resonance-frequency. A wavelet packet
representation that is optimised for these particular frequency bands can be
constructed. A good example of this is the use of wavelet packets in the
WSQ image-coding standard used for fingerprints in the criminal justice
community. The image coding standard WSQ is described in the appendix.



4. Theory of wavelet representation of images

Development of wavelet based image coding in brief

State of the art image coders today are based on wavelet theory. The wavelet
theory is a purely mathematical creation and its applications have been
found very useful for image compression. Wavelet theory consists of a
transform quite similar to the fourier transform or discrete cosine transform,
DCT, and has nothing to do with image compression in itself. When the
discrete wavelet transform, DWT, and its extensions like wavelet packets (flat
decomposition instead of hierarchical), are used to derive the FIR filters
actually used in practical applications the compression algorithm is referred
to as being wavelet based. The filters can then be analysed in a more
traditional way.

One of the fundamental differences between wavelet based coding and
traditional subband coding, lies in the interpretation of the wavelet
transform into classic subband terminology. Instead of discussing signal
analysis in terms of filters and frequency bands, the wavelet transform uses a
mathematical terminology such as wavelet functions, bases and subspace.
Approximation space and detail space splitting is viewed as low pass and
high pass filtering. The cascaded use of the very same filter on incrementally
subsampled versions of the original image is one of the distinct marks of a
wavelet based image coder. Another property is the multi-resolution
analysis. From a principle point of view, this idea of several scales is a
property that promotes the wavelet transform to something slightly more
than just another transform.

History and development

J. Morlet [H1] was investigating a way to analyse seismological data and
introduced the term wavelet in the early eighties. Wavelet means small wave
and is a very suitable term for reasons that is obvious when we study the
characteristic shape of a mother wavelet. The figure above is one example of
a Daub4 wavelet, note that its mean is zero. The original term was ondelettes,
which is French, because the pioneering work was made in France and
Belgium. The reason for Morlet's studies was the need for an analysing tool
for the very rapid changing frequency content of seismic data and fourier
analysis was not sufficient. A few years later Ingrid Daubechies [H2]
constructed families of orthonormal wavelet functions with compact
support and Stephane Mallat [H3] put the wavelet transform in the
framework of multi-resolution signal decomposition.

In 1993, J.M Shapiro [A15] published a compression algorithm, EZW, which
outperformed all other compression algorithms. The algorithm very
successfully tied together the necessary components of wavelet transform,



selection of transform coefficients and entropy coding into a unit. Using
Shapiro s genius idea of zrrelevant zerotrees and refining it, the SPITH algorithm
was developed by Awir Said and William Pearlpman [A16]. SPITH is still one of
the best compression algorithms in the research domain.

Future and industrial application of the JPEG2000

Today the industry has adopted the concept of wavelet theory. In the
beginning of year 2000, the new image coding standard JPEG2000 was
presented after several years of an international effort by the joint picture
Expert Group. JPEG2000 outperforms the current JPEG-standard in all
aspects; although the gap 1s not that great in terms of compression ratio, it
has other properties such as error resilience and a loss-less mode. JPEG2000
is soon to be introduced in digital cameras and camcorders.

The current JPEG-standard is based on an entropy coded zig-zag scan of
tixed 2D DCT-blocks. JPEG2000 has nothing to do with this method. Its
generic form uses one of two wavelet filter banks and an advanced
quantisation scheme called EBCOT, embedded block coder with optimised
truncation.

Wavelets from a mathematical viewpoint

The transform is based around a selected square integrable function (x).
This function is called the mother wavelet. From this single function, translated
and dilated wavelets can be derived. The wavelet functions may be either
continuous or discrete. For our purposes, the discrete form is the only one
of interest.

Wavelet functions

The translated (moved in space) and dilated (expanded in space) wavelet
function derived from the mother wavelet are given by:

Ymnlk] =277 - 1p[27™k —n]
Eguation 4.1

where n, m and k are integers, n is the translation factor and m the scaling
factor.

A function that it is square integrable can then be written:
z(k] = Z Z w[m, n] - Ymn[k]
m n

Egquation 4.2

where the inner products:



wlm,n] = (&, Ymn) = Zw[k] “Ymnlk]
k
Egquation 4.3

are called the wavelet coefficients.

A requirement on Y[k] is that it is square integrable, but equation (9.2) and
(9.3) also imply that the functions generated in (9.1) are orthonormal. The
same function is used in both the transform and the inverse. Two functions
are orthonormal when their inner product is:

("pmnawm‘n‘) — 6mm‘ : 5nn‘

Egquation 4.4

If the mother wavelet satisfy these equations, it forms an orthonormal basis
into which we may transform our function and an inverse transform may
uniquely be found. This is not different from any other transform. However,
by adding two extra requirements to the mother wavelet P(x) the wavelet
functions get properties that make the transform useful for practical
applications like signal processing.

The mother wavelet should have compact support, which means that only a
finite number of terms are non-zero. This is highly useful when calculating
the sum in equation 9.3.

The second requirement is called the admissibility condition and implies:
> Ykl =0
k

Eguation 4.5

L.e. the wavelet functions mean value (0:th moment) 1s zero.

This simply means that the wavelet function is a zero mean function with
compact support and hence exhibits some oscillatory behaviour. It is this
fact that has given the function its name: One small wave, ondelette or in
English, wavelet.

When functions that matched all these requirements were developed and the
wavelet transform was put in the framework of multi-resolution analysis the
importance of these wavelet bases became clear.

Multi-resolution analysis
Multi-resolution analysis is dealing with the representation of a function at

several scales. Given the space V- of all squate integrable functions (L)
approximations of this space can be produced recursively. From this follows



that the approximation is a subspace to V-» and a signal x[k] in the subspace
is an approximation of x. In this process, as we go to coarser levels, more
and more information of the original signal is lost. The function @k], which
generates the bases for these nested subspaces are called the scaling function,
or sometimes, but rarely, the father wavelet. The scaling function must
satisty:

D dlkl=1
k

Egquation 4.6

i.e. the mean of the scaling function is one.

There exist many ways to perform this ladder of nested subspaces. Using a
similar idea to the one found in the generation of wavelets from one mother
wavelet (equation 4.1) is the sighum of multi-resolution analysis. The use of
a factor two in the dilation (expansion) is called dyadic and is especially
useful in digital signal processing.

When going down to a coarser level (up in level of decomposition), from
subspace Vm to Vm+1 some information is lost to the complementary space
W+1. Together the two subspaces Vm+1 and W+1 span exactly the same
space as Vm. Just as (a[k] forms a basis for Vm, there is a set of functions
that form the basis for Wa. This basis is the wavelet basis earlier derived.

This pair of functions, one with zero mean and the other with unit mean,
and their respective translations and dilations form a complete basis. The
two sets of functions are tied to each other and given one of them, the other
is uniquely determined. This is a way to represent any square integrable
function (L2) at any dyadic level of resolution and the basis is given
by the mother wavelet.

Wavelets families

So, when Ingrid Daubechies constructed her family of wavelets that were
both orthonormal and, more important, compactly supported and gave
some guiding mathematical proofs a wide spectrum of wavelets was derived.
Her filters are very common, mainly because they tend to have few
coefficients and therefore are well localised in the spatial domain.

Other mother wavelet functions can be derived that satisfy some additional
constrains. To represent smooth signals it seems to be a good idea to use
smooth wavelets as well. A mathematical way of expressing this is in terms
of moments:

/:clqb(sc)da::(), [=1,...,L—1



/:cli,b(:r)da::(), l=1,...,L—1

Note: 1=0 would be the mean value, [=1 moment etc

Finding wavelets with several vanishing moments was solved by R. Coifpran
and these are called Coiflets of order L.

Other ways of constructing families of wavelets are by relaxing the
requirement of compact support to only approximately compact support. A
large set of functions that has exponential decay exists. Mostly used and
quite easily derived are the B-Sp/line wavelets.

Wavelets from a signal processing viewpoint

One of the basic ideas behind transform coding is that we can find basis
functions, which fit well with the image to be coded. In this sense, we like to
think that the image can be described in terms of frequencies. The fourier
transform does a great job in finding the frequencies, but there is no special
location associated with the frequency. It is similar to having a musical note
score where it just says how many notes of A, B or G# there are in the
piece, without the information about when and how long to play the notes.

On the left signal, fourier analysis is sufficient since it is periodic. The signal to the right needs another
approach such as windowed fourier analysis or wavelet based methods.

Windowing of the analysing function

The most common work-around to this problem is to cut out only a piece
of the infinite basis function. The way to cut is referred to as windowing the
fourier transform and other names are short-time-fourier-transform, STFT
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or windowed fourier transform, WFT. The choice of window greatly affects
the frequency response. Wavelets have this window built in and its size
varies depending on the scale. This is very important since it is not possible
to measure the frequency exactly and at the same time its location. The
phenomena is a consequence of the wncertainty relation which is also found in
quantum physics (Heisenberg's uncertainty relation). Equation 4.1 describes
how the wavelet function is expanded in space. The figure below shows the
tiling of the space-frequency plane and the area is held constant in the
wavelet case, thereby trying to be as precise as possible in both domains. In
other words, to measure high frequencies only a short filter is needed while
low frequencies, slowly varying, require larger filter kernels and thereby
affecting the precision in space or time.

frequency frequency

STFT ' ' spacestime ' ' DWT I I space/time

The tiling of the space - frequency plane for a one-dimensional signal differs between STFT and DWT
(discrete wavelet transform). The window fixates the width in the short-time-fourier-transform, but in the
wavelet transform case, the window varies with the frequency. The uncertainty relation sets the lower
boundary of the tile size.

The use of a fixed windowing function is equivalent to cutting the image
into fixed blocks before analysing the frequency. By decomposing the image
using wavelets at different scales, block related artefacts are avoided. After
decomposition into a approximation part (low-pass) and a detail part (high-
pass) there is nothing stopping us from repeating the process once more. If
we choose to only split the approximation part, again with the same filter
the scheme is called wavelet decomposition and if we also split the detail part, the
scheme is referred to as wavelet packet decomposition.

Implementation and filter banks

Practical implementations use filter banks constructed from the wavelet
function. Since these functions have compact support, they can be used

11



directly as FIR filters. The cascaded use of the same filter on the wavelet
coefficients at different scales is one of the reasons that wavelet transforms
are efficient to compute. An optimised algorithm can be used repeatedly.
The combined cascaded filter is equal to a specific bandpass filter. This
becomes clear if we consider how the wavelet functions are generated using
equation 4.1.

Scaling function phi Wavelet function psi
1.4 1.5
1 1
0.4 0.5
a 0
-0.A -0.5
1 -1
-1.4 -1.5
] 1 2 3 ] 1 2 3
Decomposition low-pass filter Decomposition high-pass filter
0.s 0.8
06 l 0.6
04 04
nz n.z2
I $ 0
-n.zT -0.2 ® T
-0.4 -DA.
1] 1 2 3 1] 1 2 3
Reconstruction lovw-pass filter Reconstruction high-pass filter
na T n.s T
Uﬁi 0.6
0.4 0.4
0z 0.2
a $ 0
02 T -n.zT ®
-04 -0.4 &
a 1 2 3 a 1 2 3

Example of a compactly supported wavelet function and the associated FIR filters used to decompose and
reconstruct one-dimensional signals. The wavelet function is the often-used Daubechies four tap filter.

Some common wavelet FIR filter banks:

Haar (B-Spline):
» [lo,hi]=wfilters('haar')

lo = 0.7071 0.7071

hi = -0.7071 0.7071

Daubechies:

» [lo,hi]l=wfilters('db2'); % Comment N=2 is the number of vanishing moments
lo = -0.1294 0.2241 0.8365 0.4830

hi = -0.4830 0.8365 -0.2241 -0.1294

» [lo,hi]=wfilters ('db3")

lo 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327
hi -0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352
Coiflets:

» [lo,hi]=wfilters('coifl")

lo = -0.0157 -0.0727 0.3849 0.8526 0.3379 -0.0727
hi = 0.0727 0.3379 -0.8526 0.3849 0.0727 -0.0157

These FIR filter banks where generated using MatLab Wavelet toolbox.
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Images are two-dimensional signals. Until now, the discussion has only dealt
with one-dimensional functions and signals. A way of expanding these filters
is to make them cartesian-separable in a straightforward construction. Given
a low-pass filter h, and a corresponding high-pass filter g, four new filters
can then be derived.

hrrlk,l] = hlk]- Rl
hiwlk,l] = hk]-gll]
harlk,ll = g[k]- R[]
huulk,l] = g[k]-g[l]

The subscript denote the low-pass and the high-pass characteristics in x and y direction of the image.

Three levels of wavelet decomposition of the famons Lenna picture using the Haar filter. Only the low-
pass band is split further. Coefficients have their magnitude coded in greyscale. On the right only the grid
is shown, this way of representing the decomposition is often used.

The wavelet decomposition of Lenna in three levels shows the wavelet
coefficients (not the reconstructed image) magnitude coded in greyscale.
The upper left tile contains the low-pass band and clearly has the most
energy, but on the other hand, it only contains 6.25 per cent of the original
amount of data. If we store this low-pass band and only the significant
wavelets coefficients in the other bands a data reduction is achieved. What is
considered significant is one of the hard questions to answer in efficient
image coding. Typically, only the coefficients with a magnitude above a
certain threshold are regarded as significant. In an energy or PSNR sense, this
is correct.

13



Figure shows complete wavelet packet decomposition in three cascaded levels. Note that the frequency
order is not kept when cascading filters. Some literature refers to this total decomposition to be the only
Sform of wavelet packet decomposition, disregarding the option of variations like the example below. This

nullifies the benefits of multi-resolution since all the filter kernels have the same size.

This wavelet packet decomposition illustrates the difference in how the
subbands are split. Whether it is beneficial to decompose the higher bands
turther or not depends on the image contents and highly textured images
might have a resonance frequency that are in one of the middle bands.
Federal Bureau of Investigations (FBI) stores fingerprints in a format that is
a mixture of ordinary wavelet decomposition and wavelet packet
decomposition. The compression scheme is called WSQ and it uses a 64-
band decomposition before quantisation. A more detailed description of this
scheme is found in the appendix.

14




There are many ways to split the image, this example is done using the best tree method using the Haar
filter, and subband energy as cost function. The literature study indicates that this more general form of
wavelet packet decomposition is referred to as best-tree splitting or alike. 1t is here the advantages of
wavelet theory is used to the full, mixing different scales [A2], [A9].

Down sampling between the bands is done by simple decimation. Practically
it is achieved by disregarding every second filter response, or more
efficiently, by moving the filter two steps at a time before computing the
convolution.

Bi-orthonormal wavelets

Ingrid Daubechies [H4] proved that if the filter banks are orthonormal then
they could not be symmetrical. This is bad news from an image coding point
of view, since the filter response should be independent of alighment of the
image. It is possible to construct bi-orthonormal filters that are symmetrical,
but they tend to have larger support, i.e. they have larger filter kernels. In
practise, the non-symmetry is of less importance. Bi-orthonormal filters use
a pair of filters where one is used for decomposition and the other for
reconstruction.

The admissibility condition (the zero mean condition) gives at hand that the
mother wavelet can not be a low-pass filter. On the other hand, it has to be
orthogonal to the low-pass filter and this is calculated directly from the inner
product (equation 9.4). If we construct a high-pass filter that has desired
localisation in space and frequency, we also know the complementary low-
pass filter. This is given by the mother wavelet and calculating filter banks is
a question of finding this wavelet function with desired properties. For
image coding purposes, filters that are short work well and larger kernels are
usually not worth the extra cost in computational complexity.

15



Use of wavelet decomposition in separation

As shown, there are several ways to decompose an image. The same location
on every tile in the decomposition is related to the same spatial
neighbourhood in the original image. The tiles also form a basis for the
image. The different basis functions represent separate frequency bands and
to some extent, local orientation [6]. An extraction of carefully selected
coefficients will perform separation in both the spatial and frequency
domain at the same time.

16



5. Experiment separating a highly textured image

Commonly used images that are highly textured

These highly textured images are made by the famous photographer P.
Brodatz. His photographs of natural textures are as widely used in the
texture community, as the Lenna image is in other related research areas.
The book is now in print again. VisTex is a public database with similar
images.

used and there are many more in his series. The original pictures are digitised to 512512 pixels and §-
bit greyscale.

The image to the left shows a brick wall and the other is beach sand. The
wall is, on a larger scale, a texture in itself as well as the individual bricks
have textured faces. It is all a matter of scale. In this experiment, we will
separate the structure of the grid pattern that the blocks make, using wavelet
packet decomposition. As mentioned before, the wavelet functions
associated with the individual tiles have band-pass properties and are
orientation sensitive. By identifying these tiles and separating those into a
new basis, separation is achieved.

Separation of the tiles

In this experiment, all of the coefficients in a tile are moved to the new
separated basis. Moving single coefficients of other tiles is a promising
strategy, but on homogeneous images like Brodatz, this is not necessary.
Transferring parts of the coefficient in the tile are on the other hand a better
idea.

17



The two-level wavelet packet decomposition is separated into three new bases. The white is void.
Analysing the wavelet functions, or rather the corresponding FIR-filter, a separation based on the
orientation is expected. The first shows the low-pass tile. This must be treated by itself since almost all of
the image energy content is in this band. 1t is also the only band with a mean value not equal to Zero.

The reconstructed image from the three different decompositions contains
features that can be described as texture.

The reconstructed image using a separated basis with only the packets shown in the figure. Since wavelets
have a mean of ero, the pixel values has been greyscale coded using their magnitude. The contrast has

also been boosted.

Using only coefficients from those tiles that have wavelet functions that
capture vertical variations it is possible to separate the structure. The
reconstructed image has a mean around zero and this poses a problem when
trying to display it as an image. It is necessary to adjust the range and even
the contrast. The three selected tiles represent two different scales, but the
same direction.

18



Using some of the other tiles, this image captures the horigontal image content and the details.

The other twelve tiles represent both the horizontal image content and the
details of the bricks.

If these three images are added together, the original image is recovered.

The image is now divided into three components that have separate
orientation and frequency content. They form an additive decomposition. It
becomes clear that they together form a basis when inspecting the respective
coverage of the wavelet tiles. The first can be considered local mean in non-
ovetlapping 4x4 neighbourhoods.

At this stage, no real separation has been made since the whole tile, and not
only parts of it, where transferred. When doing so, the stack is a convenient
representation. The principle of transferring coefficients remains the same.

A way of selecting which coefficients to transfer is by using selection masks
created from features in the image. Binary selection masks transfer the
whole coefficient.

19



6. Experiment using selection masks

Wavelet based image coder using binary selection masks

The highly distorted reconstruction of a wavelet-coded image of the Lenna
image shown on page 23 is not an attempt to construct a new type of image
coder, but merely to illustrate some basic principles. These involve the
multi-resolution property of wavelets and selecting coefficients using binary masks.
Still, a reduction of the data contents is 26 times (0.31 bit/pixel) without any
entropy coding.

The use of binary selection masks is the most fundamental concept. The
masks themselves are produced using a feature extraction scheme to capture
edges.

First, the multi-resolution analysis is cleatly shown in the variable block size.
This is prominent in the upper left corner. The wavelet of choice is the
ultra-simple Haar wavelet. This wavelet has extremely appealing properties,
but one drawback is the introduction of block effects when used on the
larger scales. For representation of details (eyes) and high contrast textures
(hair) it actually might enhance the visual impact quite like an so called
unsharpen mask filter. The non-overlapping property eliminates the border
padding that all other wavelets need. Experiments using a smoother wavelet
to reconstruct the coefficients from the two largest scales produced a
visually more appealing image with much less prominent false edges. This
supports the idea of using the stack representation and a mix of basis
functions.

Secondly, the use of masks based on a specific feature in the image, control
the extraction of coefficients into a blank basis stack. In a sense, the texture
"portrait" has been separated using the feature "edge", supported by a
general idea on how the human vision system works. What is left is mostly
image content regarded as irrelevant and the reconstructed image holds the
more relevant content.
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Original Lenna image and the binary selected mask on its largest scale. Only the coefficients whose
reconstruction filter-kernels overlap the mask are kept and the remaining 89% are ignored.

Binary selection masks

The use of selection masks is a fundamental step towards data-irrelevancy-
reduction and can be used to separate an image. This separation is made in
the wavelet domain. The JPEG Q-table can be viewed as a fixed form of
mask, but is more tied to a signal model. The mask used here is not fixed
and is one of the more basic feature-extraction schemes. The binary mask is
produced with an edge detecting Sobel operator followed by a threshold of the
filter responses magnitude. From this mask, all the smaller masks are made.
On the smaller scales, the line widens and thereby represents a larger and
larger area of the original image.

Since a line drawing of a person often is sufficient for recognition, it also
ought to point towards the relevant, for human vision, regions in the image.
Using the edge map to mask out only the wavelet coefficients in these
regions, a successful reduction of the irrelevant image content is achieved.

Pl

The selection masks at several scales. Since they are binary, an AND-operation is all it takes to mask
out the desired coefficients. The masks are independent of each other. Sharp edges are present at all scales,
but other features are only present in some. This can be exploited in texture separation.
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On each scale, each wavelet coefficient corresponds to a region of a
particular size. The table shows how many coefficients that are forced to
Zero:

2x2 92% zeros
4x4 84%
8x8 74%
16x16 59%
32x32 39%
04x64 17%

In a total, 233324 of 262144 elements are forced to zero. This equals 89%.

Quantisation to a bitstream

As a third and final step, the coefficients are quantized to three bits using an
ad hoc four-times-standard-deviation wnzform quantizer without a dead zone.
The visual impact of this is very small and indicates that the accuracy in the
magnitude of the filter response is not a critical issue. Shapiro [A15]
concluded that the sign certainty is critical.

Using this crude scheme, a data reduction of 26 times is achieved. Note that no
entropy coding is done since it is not obvious how to scan the coefficients.
Shapiro's zerotree idea [A15] is hard to generalise to wavelet packets. The
matrix of coefficients is simply scanned row-wise.
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The image of Lenna coded and reconstructed using wavelet coefficients selected by a binary edge map. The
Haar filter is used, which introduces false edges on the larger scales.

The reconstructed image is highly distorted, but considering that it only use
one tenth of the coefficients and the remaining coefficients are set to zero,
the result is not bad. The obvious fine-tuning that can be made is to use
smoother wavelets on the larger scales and the highly localised Haar wavelet
on the fine scale levels.

Independent selection masks

The masks at different scales are independent of each other. In the
experiment above, the masks are created using an edge-detecting filter.
Edges are present in all scales making the different masks quite similar. If
another feature was of interest, like vertical lines, a special mask for the tiles
with that direction and resonance-frequency could be used. It should also be
noticed that to create these masks the techniques used are not based on the
wavelet decomposition itself. For this, the wavelet coefficients themselves
are not a good enough tool and methods using for example quadrature filter
and tensor representation are superior [6]. The Sobel-operator is a classical and
efficient method of finding edges, but operates on one scale only.
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To find regions with texture is a very complex task. It is a hard problem to
find something that lacks a definition like texture does. A discussion is
found in chapter three. If one or several properties can be isolated as
characteristic for the texture and then measured using whatever method, the
task of automatically making the masks is within reach.

The area of the image is limited and some parts of it are probably not highly
textured. As a working model, an inverse definition of texture as what is not
texture can be used. Successful segmentation and separation algorithms can
be developed [A(]. If a region is homogeneous on several scales, it is
probably a texture. A sharp edge or a line would violate this test condition.

Once a region is identified as a textured region, an analysis of the local
orientation and the local frequency points out the relevant tiles in the
wavelet packet representation. The mask can then be created.

Combining the methods to reach further

So far, experiments using the general ideas of selection masks and the
selection of only certain wavelet packets have been demonstrated by
themselves. The selection of only certain wavelet packets using the Brodatz
brick wall image in chapter five and the selection masks on the Lenna image
in this chapter. The goal is to integrate them and pushing further with help
of the generality of the stack representation. This is done in chapter nine,
but while still on the topic of selection masks, a different form of mask are
discussed. These are the non-binary selection masks.
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7. Separation of a textured region

Transferring coefficients selected by masks

By using a method of transferring both the coefficients and using selection
masks to guide the selection will give real separation. This scheme is
operating only within a subset of the tiles in the representation. The Barbara
image shows a gitl in striped clothes and a checked tablecloth. These
represent textured regions and we shall separate the striped texture on her
leftmost leg.

The Barbara (512x512) image to the lefl, and a close-up of her legs. The striped clothes are here
considered textured regions that shall be separated.

Standard way of labeling the tiles

There exist several ways of labeling the tiles. The tree structure presents
many possibilities and there is no obvious way that is better than the others
are. One method is based on a number-pair where the first is the level of
decomposition and the other pointing out the tile in that level. This method
still suffers from the drawback that there are several ways to point out the
tile. In dyadic wavelet decomposition, there are only four tiles at each level
so it still feasible, but expanding it to wavelet packets is cumbersome.
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The conventional way of labeling the tiles. The underlying tree-structure is conserved in the labeling and
given the number it is straightforward to calculate the level and position of the tile.

In wavelet packet decomposition, the conventional way of labeling the tiles
is by running number. These start at the first level. On the next level each
parent is given its children labels in order. The figure shows how this is
done. Typically, the tile represented by number one is the approximation
tile, two is horizontal, three is vertical and finally the detail is in number
four. This relation is the same in 9, 10, 11 and 12. The order has nothing to
do with the frequency as it sometimes is assumed in the literature [A3].

Another way to represent the decomposition is by a tree. This
representation is more suited for one-dimensional data since it only divides
in two instead of four.

Wavelet packet decomposition of Barbara

Before proceeding with the separation, the image is decomposed as shown
below where we see both the decomposition space and the corresponding
tree. The wavelet is Haar. An initial experiment used db4, but the result was
only marginally better visually than using the much simpler Haar wavelet.
The coefficients are visualised as grey-scale coded by their magnitude.
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Figure shows a wavelet packet decomposition of Barbara. Both representations show the same tree.
W avelet coefficients are grey-scale coded by their magnitude. (a) approximation, (h) horizontal, (v)
vertical and (d) detail.

To perform the separation, selected coefficients from tile 3, 8, 17, 19, 24, 30
and 88 is transferred to a new wavelet packet basis. These tiles or packets
hold the image content with the orientation of the stripes at several scales.
The tiles or packets where chosen based on an analysis of the filter kernels
that are related to the tiles. The primary requirement was orientation and
secondly the scale. Fourier analysis and visual inspection of the filter kernels
assisted the manual pick of tiles.

No selection is made from the low pass tiles since only the texture and not
the overall structure was to be separated. The coefficients in tile 3 span a
neighbourhood of 2x2 pixels and tile 88 the much larger region of 16x16
pixels. This will give separation with smooth fading along the borders of the
region. A set of selection masks is needed. These are produced manually.

/

Two of the masks used in the separation. Original sige is 256x256 elements and the smallest is 32x32
elements. Five masks are needed.

The masks all refer to approximately the same region but on the coarser
levels, the region is narrowing into a line. The selected coefficients are
transferred to a blank basis and reconstructed and so are the remaining
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coefficients. The two images can be added to form the original image. The
loss when converting back to eight-bit representation from floating-point is
handled. This is done by adding the rounding-off error from the texture
image (left image below) to the remaining image (right image below). The
sum of the two images then form the original image. The rounding-off error
is very small and can not be detected visually.

Result from the separation. The striped leg to the right is separated from the initial image. To the right,
the difference in detail and structure can be observed by comparing the texture on the right and left leg.

A separation of Barbara's leg is the result. The region is not cut out sharply
as most segmentation methods do, but the detail and the structure of the
tabric are separated into a new image. The remaining image still contains the
overall structure and the lighting of the scene is conserved. The smooth
transition does not introduce false edges, which the human vision system is
sensitive to and tends to notice. This controlled blurring might also boost
compression ratios in conventional coding schemes as JPEG, but also EZW
[A15] or SPITH [A16]. They are all based on a signal model prioritising low
frequencies, often called 1/f processes or decaying spectrum.
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The tiles used in the separation. Note that tile 17 is the tile with the highest centre frequency and not tile
20 which is a common belief. This is an aliasing phenomenon due to the cascaded use of the same filter.

The successful result is 2 combination between the choice of the tiles, i.e.
the filters, and the construction of the masks. Since the masks narrows in on
the coarser levels, the borders become smoother than if this mask
modification had not been done. The tiles or packets where chosen based
on an analysis of the filter kernels that are related to the tiles. The primary
requirement was orientation and secondly the scale. To separate the texture
of the other leg another set of tiles has to be picked since that texture has
another orientation.
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8. Stacks, a suitable representation for separation

Introduction of a new representation form

By using a collection of wavelet packet decompositions and selecting a
mixture of them, a new basis is produced. The collection is the so-called
stack. The initial over-representation is related to frames [6] [A7], but the
connection between ditferent levels of decomposition has strong links to the
parent-children relation found in the concept of zerotrees [A15].

The stack consists of several layers and each layer is a complete
decomposition. A Haar wavelet packet stack contains layers of increasing
levels of decomposition. Using functions that are non-overlapping, as the
Haar wavelet, is preferable. Even two-dimensional DCT of several sizes can
be used and stacked.
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A basic stack consisting of three layers. These three layers are discrete wavelet packet decompositions.
From this stack, a new basis can easily be extracted. The original image can also be added to the top.

The tigure shows a basic stack. The dyadic scaling is shown and is in some
applications expanding too fast. Astrid Lundmark at ICG, LiTH has
proposed other scaling ladders, an advanced topic that requires development
of new wavelet families. A problem with the dyadic scaling is that the
wavelet functions quickly start to span large areas of the original image and
eventually span larger areas than the entire image. Once there, further
decomposition is meaningless. Before that, the functions spill over the
image's edges and complicated border padding has to be performed. To
avoid this highly localised functions can be used.

A new basis can be extracted from the stack. If we use the Haar wavelet,
that is non-overlapping, this process of extracting a basis becomes
straightforward. If the selection of tiles cover the whole area, the basis is
complete. Many combinations can be made, but there are an even greater
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number of impossible selections. The issue is related to quad-tree
segmentation and representation [A12].
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After forming a stack, a basis can be extracted. In this example the wavelet basis is formed. Looking on
the stack from above, all the area is covered and only once. This gives a basis. Other selections can be
made.

On every level in the stack, each coefficient is connected to a location in the
original image. This relation is trivial and easy to calculate. The
corresponding wavelet function also spans different areas depending on the
level. Along with the coefficients value, the orientation and resonance-
frequency form something that can be viewed as a texton [A11] [6]. From a
signal-processing viewpoint, the triple is related to some local properties.
Local orientation, local frequency and contrast have connections to the
particular wavelet packet and the coefficient value.

Much of the work found in the literature tries to use the wavelet as a
feature-extracting tool. The results are mixed. Most successful is the wavelet
used for discriminating textures from each other [Al]. To examine local
orientation and local frequency (phase) the wavelet is a too rough tool and
methods using quadrature filter and tensor representation are supetiof.
Advances in this field of science are mainly done in computer vision and
machine intelligence. This suggests that the feature-extraction should be
done with other methods than those that use the wavelet itself. The result,
however, from this extraction can be used to steer the separation or
compression.
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General wavelet packet
basis from stack

From a three level Haar stack, many basis representations can be made. This example illustrates how to
construct a general wavelet packet-basis from the coefficients in the stack. White is void.

Basis stacks from basic stacks

It is possible to build a basis stack from the basic stack. Note the difference

between basic and basis. In fact, the extension is simple and in the example

above it is just a matter of not deflating the stack to one level. This is shown
below.

Basis stack -e-———m General wavelet packet
basis from stack

A basis stack. The corresponding, ordinary wavelet packet basis is shown to the right. All the white tiles
are void or set to gero so the data contents are identical.

The basis stack contains exactly the same data as the ordinary basis, which
could be expected. The representation offers some advantages in generality
when used for separation. For this purpose it is convenient to use several
basis stacks that are additive. This could for example be done by creating an
identical copy of the stack and dividing the coefficients by two. When the
two are added together and deflated to one level the more common
representation is retrieved. From this, it becomes obvious that the basis
stack can also be constructed from the general, wavelet packet
decomposition. The use of two stacks is the final product of the separation
operation. As the process evolves, coefficients are moved from one stack to
the other.
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Transferring coefficients between different levels in the stack

Within a basis stack, coefficients can be transferred between the different
levels. By doing this transfer, the idea of the tiles covering the whole plane
to form a basis collapses. The representation is still complete and no
information is lost.
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There is a parent-children relation between the levels in the stack. Each coefficient is also related to a
Spatial location in the original image. In level two each image pixel has a relation to sixteen wavelet
coefficients.

Each wavelet coefficient is related to a region in the original image. In the
case of the Haar wavelet a 2x2 region is uniquely represented by only four
wavelet coefficients in the first level of decomposition. On every level, it
takes four coefficients to represent one coefficient on the upper level.
Further down, the related region per coefficient becomes larger.

By exploiting this parent-children relation, it is possible to transfer single
coefficients down to four new ones or gather four and move up one level.
This can only be done in one way if the whole content in the source level is
transferred. What is less obvious is the possibility of transferring parts of the
coefficients. A way to analyse its consequences is to alter one coefficient and
see how the others must be compensated. Whatever is altered inside the
stack, the original image must remain the same. This is a complicated
operation with many degrees of freedom.

Separation using stacks

Until now, the flat wavelet representation has been sufficient for all the
examples and experiments. When picking the tiles of interest within a stack
a collision might occur. The feature to be separated can have properties that
call for an impossible combination of tiles in the flat representation. The
analysis might point towards both tile 4 and tile 17, which overlap.
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Tile 4 and tile 17 picked to be used in the selection. This collection of tiles is impossible to represent if not
using stacks. When forming the basis stack only a fraction of the coefficients in tile 4 or tile 17 can be
transferred. The tiles have the same centre-frequency but different support.

When forming a basis stack from the two levels in the basic stack above,
only a fraction of the coefficients can be transferred. Since the two tiles have
the same centre-frequency and orientation, this transfer can be used for
energy compaction into as few coefficients as possible. If a neighbourhood
of 2x2 coefficients in tile 4 is of approximately the same value, they can be
lowered to tile 17. The magnitude of the corresponding coefficients in tile
18, 19 and 20 will then become very small. Four coefficients will be
represented by only one. The representation is redundant.

To remain the basis for the image, if only tile 4 and tile 17 are to be used, tile
4 can only contain the information of tile 18, 19 and 20. Either the
information from tile 17 is subtracted from tile 4 or it is blanked and built
up again by inverse transformation of tile 18, 19 and 20.
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9. Advanced selection masks

Non-binary selection masks

Using a binary mask, the whole coefficient is transferred to another stack or
another level in the current stack. Using a non-binary mask, only a part of
the coefficient would be selected for transfer. Normally this mask would
weight out a fraction of the coefficient, which is rather uncomplicated to
implement. The analysis of the results becomes rather complicated on the
other hand. If the separation is done in purpose of aiding a compression
algorithm, normally an energy compaction is desired. The use of several
stacks and transfers between them is not in line with that strategy.

Many commercial JPEG encoders have the option of an initial smoothing
before coding to boost the compression ratio and reducing the specific
compression artefacts associated with the JPEG algorithm. In a sense, this
smoothing is a frequency-related decomposition where only the low pass
component is regarded.

Selecting the tile and the coefficient in question has been discussed and the
criteria for these selections can be described explicitly. When it comes to the
question of transferring only a fraction of a coefficient, the reason is not
obvious and the decision criteria harder to formulate. For example, this may
happen when a very smooth border is desired or to remove lighting effects
as shadows by selecting small fractions of the low pass tile coefficients. This
is hard to automate in an algorithm.

In chapter 7, non-binary masks are not used directly in the separation
process but in an initial rearrangement of the stack with internal transfers
between the scales. The separation is then done using binary selection masks
in a stack representation.

Non-linear masks

A third form of mask is the non-linear mask. These have not been
investigated. The masks are only discussed here in general terms as the next
level of complexity.

Median or threshold masks are two suggestions using non-linear filters. The
threshold can be adaptive and the median neighbourhood restricted. The
result, however, is very difficult to predict from such operations. A
fundamental problem with linear filters is that they always give a response
[A11] regardless of whether the filter matches the signal or not.

In many fields of science, the use of approximation is commonly used to
estimate model parameters from empirical data. Using only linear
approximation, most prediction models fail but as more terms, quadratic
cubic etc, is added the curve fit rapidly becomes better. Considering general
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moments the same principle is found. Non-linear masks might be the
method of the future, but the analysis is extremely complicated.

Linear approaches are in this sense considered first-order approaches in
analogy with the Spline and moment concept.
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10. Literature study

Overview

As a part of the master project described in this thesis, a literature study and
gathering of articles was to be performed.

To this date, there is no book on the topic available and most sources of
information are found in articles and doctoral theses. For this reason, this
part of the thesis serves as a commented list of references.

One goal of the study was to collect the latest and best introduction to
wavelet theory, mathematical as well as to practical applications. This was
not easy due to the young nature of the subject and most literature is so to
say, the first wave and published in the period from the early to mid
nineties. It is expected that newer publications manage to refine the
presentation and contents.

There seems to be two kinds of wavelet introduction books and the
background of the author mostly determines the type. Mathematicians write
one kind and signal processing engineers another. Chui's book [1] however,
manages to combine the two descriptions into a compact, but still complete
presentation. The book is by no means easy and requires a few passes.

The clearest, as well as the shortest, presentation of wavelet theory is found
in the doctoral thesis [Al] and [A10], of which the latter is the slightly better
one. Gert Van de Wouwer has written a lot on textures and segmentation.
His website on texture analysis is no longer maintained. John R Smith's
thesis [A9] also contains a presentation of the wavelet theory, but lacks the
mathematical presentation that the theory deserves. His work [A9] and
[A14] is non-the-less brilliant work and is richly illustrated and exemplified.
These references, [A10], [Al] and [A9], form the frontline in texture
segmentation to date and a summary is found in [A8] written by Gert Van
de Wouwer et al.

The other goal with the literature study was to find out what was the status
of the research in texture segmentation using wavelet techniques. Faced with
this task, one quickly finds out that the term texture has many different
definitions. Equally fast, it becomes obvious that segmentation also lacks a
common denominator and the process of narrowing in became time-
consuming. Lots and lots of impressive and interesting work have been
done in neighbouring research areas and keeping focus is not easy for the
curious-minded.

Early in the work with this thesis, the use of the term segmentation became
uncomfortable and eventually the wider term separation was adopted.
Depending on the underlying proposal for this sort of manipulation, this
distinction might be of more or less importance. To avoid confusion and

37



misuse of the common praxis separation is the chosen term. The difference
between segmentation and separation is discussed in chapter 3.

The remaining references that have not been mentioned above consist of
articles and single chapters in books. Some point to dead ends and others to
related areas, but they all contain ideas that are worth a closer look. If the
comment seem harsh, it is by no means to discredit the authors.

In the appendix, a summary of a wavelet packet based texture image coder
used to store fingerprints is presented. It is called WSQ and since it is
designed exclusively for use on highly textured images as fingerprints, we
found it appropriate to include it in this thesis.

List of references with comments

The comments are with respect to Image Coding Group's work with
wavelet packets on textures, but might also help the reader in selecting
literature for their purpose. Each of the references has its own reference list
that ought to be of interest. The numbering of the books and articles are the
same throughout this entire thesis. Much of the information is available
online on the Internet, but due the dynamic nature of it, most universal
resource locators are omitted.

Books
[1] An introduction to wavelets

Chui, Charles K.

ISBN 0-12-174584-8, 1992

This book contains a compact and good mix of mathematics and signal
analysis. This is the only book recommend as entry-level literature.
Especially chapter 3 on short time fourier transform has a good introduction
to time-frequency analysis and it also covers Gabor window (transform).
This transform is optimal with respect to the uncertainty principle and has
many uses and connections to wavelet based techniques in texture analysis
and computer vision. The book is complete and has the depth into the
subject that can be expected.

[2] A friendly guide to Wavelets

Kaiser, Gerald

ISBN 0-8176-3711-7, 1994

It is not friendly at all. Chapter 2 and 3 might be of interest as an overview
to the wavelet transform. The author has published other related material of
more interest.
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[3] Adapted Wavelet Analysis from Theory to Software

Wickerhauser, Mladen Victor

ISBN 1-56881-041-5, 1994

A book with a good hands-on approach which is very useful if you intend to
implement computer routines yourself. Chapter 7 deals with wavelet packets
and the cascaded use of filters. The best-basis algorithm is discussed in
chapter 8. Chapter 10 deals with time-frequency analysis. The appendix
includes some orthogonal QF coefficients as well as a couple of
biorthogonal QF coefficients. Some editions of the book contain errors in
these filter coefficients so double-check your filters if your source is the
ones found in this book.

[4] Wavelets: A tutorial in Theory and Applications

Chui, Charles K

ISBN 0-12-174590-2, 1992

A hardcore mathematics based book almost free of figures. It covers
wavelet transforms and filter banks in great depth. However, at the end of
the book, there are some articles and especially one of them presents a
rather new idea. It is called the Second generation compact image coding
with wavelets. Textures, defined as the error image, are coded separately and
added. The overhead is too costly to give a good compression ratio, but the
underlying idea can be useful for segmentation schemes. Feature extraction
is a part of the algorithm and a similar concept is used in this thesis in
chapter 7.

[5] Video Coding, The Second-Generation Approach

Edited by Luis Torres and Murat Kunt.

ISBN 0-7923-9680-4, 1996

It is a very novel set of ideas presented and the 5:th chapter, Region oriented
texture coding, by Michael Gilge is of interest. Texture is in this text defined
as the contents of a region. A good description of generalised moments of
which the Fourier basis happens to be one is enlightening reading. The LMS
approximation and transform coding is shown to be equivalent. The use of
polynomial approximation is in fact a low pass filtering operation. In a
method description using the concept of region of interest, ROI, the
overhead created by the shape information of the arbitrary shaped region
proves to be quite costly. In Shapiro's article [A15] on EZW it becomes clear
that this overhead, if any at all, can be tolerated if an extremely compact
representation is to be achieved.
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Signal Processing
for Computer Vision

Grsta H: Graniued #nd Hans Bitsson

Fhipseesr Aizailinriie Pubiliahus

Cover of the book Signal Processing for Computer 1V ision [6]

[6] Signal Processing for Computer Vision

Edited by Gosta H. Granlund and Hans Knutsson

ISBN 0-7923-9530-1, 1995

Especially chapter 13, Texture Analysis by Morgan Ulvklo, deals with topics
of feature extraction, discrimination and segmentation. The methods use
QMEF to estimate local orientation and frequency and these methods are
quite robust. The authors are primary involved in computer vision. The
techniques can be used to produce selection masks to steer segmentation.

Articles and doctoral thesis

[A1] Performance measures for Wavelet-based Segmentation Algorithms
Navid Fatemi-Ghomi

Surrey University, September 1997.

Doctoral thesis.

As a texture-discriminating tool, the wavelet transform is used on images.
The performance is measured for many different wavelets.

[A2] Joint Space-Frequency Segmentation using Balanced Wavelet Packet
Trees for Least-cost Image Representation.

Cormac Hetley, Zixiang Xiong, Kannan Ramchandran and Michael T.
Orchard

Hewlett-Packard Labs, University of Illinois

IEEE Trans. on Image Processing, vol. 6, pp. 1213-1230, September 1997
This article shows an uncomplicated method of segmentation that gives
excellent results in terms of compression. Keywords are wavelet-tree, single-
tree, double-tree, dual double and space-frequency tree.
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Figure 1. Block diagram of the multi-layered compression algorithm.

Facsimile taken from [A3] showing a flowchart of the multi-layered image compression algorithm.

[A3] Multi-layered Image Compression

F.G Meyer, A.Z Averbuch, J.O Strémberg and R.R Coifman

IEEE Transactions on Image Processing, September 1998

Impressive work and very nice results even below 0.25 bit/pixel. They use a
library of different bases, starting with an ordinary wavelet and continue to
code the error image recursively using other basis functions. The
experiments are made on the Barbara image.

[A4] Wavelet Probing for Compression Based Segmentation

Baiqiao Deng, Bjorn Jawerth, Gunnar Peters and Wim Sweldens
Mathematical imaging (1993) 2034 /266-.

Attempts to use wavelets to find cutting points in one-dimensional data for
separate compression of the segments. The result on non-artificial data is

horribly bad. The method is cleatly a dead end.

[A5] A Robust Automatic Clustering Scheme for Image Segmentation Using
Wavelets

Robert Porter and Nishan Canagarajah

IEEE Transactions on Image Processing Volume 5 no 4 April 1996.
Interesting algorithm for automatic true cluster number detection that
requires no threshold. The optimal feature selection is ordinary multi-
resolution analysis, using the sub-bands energy content as discriminating
feature. Local orientation is not considered as a texture feature.

[AG] Texture Segmentation using Wavelet Packets

Yu-Chuan Lin, Tianhorng Chang and C-C Jay Kuo

Mathematical imaging (1993) 2034 /277-.

The algorithm uses a fuzzy logic algorithm. Some parameters, alpha and
beta, are not explained which makes the examples difficult to assess. The
main idea is to use a sort of energy measurement of the sub-bands as
features. The method uses thresholds, but does not group the subbands and
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thereby losing information of the textures orientation. It contains many
examples and illustrations.

[A7] Unsupervised Texture Segmentation using Discrete Wavelet Frames
S. Liapis, N. Alvertos and G. Tziritas

Institute of Computer, Department of Computer Science, University of
Crete, Greece. http://www.csd.uch.gr/~liapis/publications.html
European Signal Processing Conference, 1998

This article is very interesting. They use discrete wavelet frames, DWF, to
extract a feature vector. DWF are related to WP but instead of sub-sampling
the image, the filter is up-sampled. The redundant representation improves
robustness and the correspondence between the scales become simple. The
features are created from variance of the pixels in an automatically detected
homogenous region. Results are good and the simplicity of the algorithm is

very appealing.

[A8] Wavelets for Texture Analysis

S. Livens, P. Scheunders, G. Van de Wouwer, D. Van Dyck
University of Antwerp, Belgium

IEE conference Image Processing and Analysis in Dublin 1997

http://www.ruca.ua.ac.be/~VisionLab/
Overview of the field of texture analysis using wavelets. Excellent literature
list. One of the authors is Gert Van de Wouwer who wrote [A10].

[A9] Integral Spatial and Feature Image Systems: Retrieval, Analysis and
Compression

John. R Smith, Colombia University Press 1997

Doctoral thesis

Dealing mainly with automatic texture extraction from large data bases,
Smith also discusses the feature extraction from the wavelet subbands. This
thesis describes all possible spatial and frequency splitting that can be done
using either quad-tree or wavelet decomposition.

2. NON-PARAMETRIC CLASSIFIERS 11

pieterl}
Betwl -

SR 1 11 11111 121 3111 S S
o
a)

Figure .1 2 classes with gaussian likelihoods and their decision boundaries (see text):
a) in L dimensgion, b) in 2 dimensicns.

Facsimile taken from the doctoral thesis [A10] displaying some test results of a classifier.
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[A10] Wavelets for Multiscale Texture Analysis

Gert Van de Wouwer, University of Antwerpen, Belgium, 1998

Doctoral thesis

This doctoral thesis is a collection of independent chapters. The coverage of
wavelet theory and texture analysis in chapter 3 and 4 is well done. The
chapter on rotation invariant wavelets is interesting for texture analysis
application, since a rotated zebra is still wrapped in a skin with zebra texture.
Discussion on colour texture analysis is the only one found in this literature
study.

[A11] Textons, Contours and Regions: Cue Integration in Image
Segmentation

Jitendra Malik, Serge Belongie, Jianbo Shi and Thomas Leung,

Computer Science Division, University of California at Berkeley
International Conference on Computer Vision, September, 1999
Discusses challenges in image segmentation and presents a method that
combines contour and texture features into the analysis. The method does
not use wavelets although the concept of multiscale is recognised. The
problem with linear filter responses is formulated.

[A12] Quad-Tree Segmentation for Texture-Based Image Query

John R. Smith and Shih-Fu Chang, Columbia University

ACM 2" International Conference on Multimedia, 1994

Multi resolution analysis is used on quad-tree segmented images to extract
features. The feature space is partitioned to reduce its dimension. This
article is a part of [A9]. See also [A2].

[A13] Texture Representation and Synthesis using Correlation of Complex
Wavelet Coefficient Magnitudes.

Javier Portilla and Eero P. Simoncelli

CSIC Technical Report #54, April 1999

Impressive work that gives some insight in how to model textures. Their
synthesis and extrapolation of textures give very good visual results. The
paper is not that relevant for image coding, but helps to understand how
texture could be defined and modelled.

[A14] Frequency and Spatially Adaptive Wavelet Packets

John R. Smith and Shih-Fu Chang Colombia University

0-7803-22431-5/95 IEEE 1995

The paper presents a tree decomposition in both frequency and space. The
complexity is the same as the double-tree decomposition. The results are 3-5
dB PSNR better than JPEG at low bit rate. The author uses rate-distortion
criteria to optimise the tree. See also [A9].
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Facsimile taken from [A15] showing a generic image coder and the irrelevant Zerotree concept.

[A15] EZW, Embedded Image Coding using Zerotrees of Wavelet
Coeftficients

Jerome M. Shapiro
IEEE Transactions on Signal Processing, pp 3445-62, December 1993
This article presents the EZW image coder. The scanning of the coefficients

is done using irrelevant zerotrees. Mandatory reading for everyone involved
in image coding.
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Figure 3: Comparative evaluation of the new coding method.

Facsimile from [A16] comparing EZW and the newer serrii image coder
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[A16] SPITH, A New Fast and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees

Amir Said and William Pearlman

IEEE Transaction on Circuits and System for Video Technology, vol. 6,
June 1996 (originally from 1993).

SPITH is a very good compression scheme. It contains references to [A15].

Classics

[H1] Decompositions of hardy functions into square integrable wavelets of
constant shape

A. Grossman and J. Morlet

SIAM J. Math Anal., 15:723-736, 1984.

[H2] Orthogonal bases of compactly supported wavelets
I. Daubechies
Comm. Pure Appl. Math., vol41, 909-996, 1988.

[H3] A theory for multi-resolution signal decomposition: The wavelet
representation

S. Mallat
IEEE Trans. Pattern Anal. Machine Intell., vol11(7), 674-693, 1989.

[H4] Ten Lectures on Wavelets
I. Daubechies
Capitol City Press, Montepellier, Vermont, 1992.

wsQ

[WSQ1] WSQ Fingerprint Image Compression Encoder/Decoder
Certification Guidelines, January 12, 1999, National Institute of Standards
and Technology (NIST).

Found at for example:
http://www.itl.nist.gov/iaui/894.03/fing/cert gui.html

[WSQ2] The FBI/Yale/Los Alamos [W]avelet-packet [S]calar
[QJuantization fingerprint compression algorithm, for Windows 3.1 or
higher, by He Ouyang and M. Victor Wickerhauser Washington University
in St. Louis.

Executable program file found at for example:

http://archives.math.utk.edu/software/msdos/miscellaneous/wsqwin/wsqwin.zip
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A. Appendix

The WSQ - file format

The Wavelet Scalar Quantisation (WSQ) Grey-scale Fingerprint Image
Compression Algorithm is a standard for the exchange of fingerprint images
within the criminal justice community. The WSQ Specification defines a class
of encoders and a single decoder with sufficient generality to decode
compressed image data produced by any compliant encoder [WSQT1].

The image format stores greyscale images at a target rate of approximately
0.75 bits per pixel and along with a Huffman coder yields a compression
ratio of 15:1. At this target rate, the DCT-based industrial standard
compression JPEG starts to introduce block artefacts. This type of artefact
can not be tolerated within the criminal justice community for obvious
reasons.

A 4
Zoomed 4x [PEG compared to WSQ at a rate of 0.75 bits per pixel. Note the block artefacts on the
JPEG coded image to the left.

\

The use of wavelet decomposition is one way to deal with this artefact since
the discrete wavelet transform operates over several scales and not in fixed
8x8 pixel blocks. The decomposition is made into 64 bands that split some
of the high-pass band. This is called wawvelet packet decomposition, and the
mid-bands are in fact band-pass filter responses. They are orientation
sensitive as can be seen on the example of the 64-band decomposition
below. This choice of decomposition tree is probably done with the insight
that fingerprints represent a type of texture that has strong resonance
frequencies in the mid-bands. For natural objects, the ordinary wavelet tree
is a better choice with respect to subband energy.



Example of WSQ 64-band discrete wavelet decomposition and for clarity the grid of the separate
subbands.

The mother wavelet used to encode the fingerprint is not fixed by the
standard. The filter coefficients must therefore be embedded in the data
format together with the tables for the scalar quantisation as well as the
Huffman coder table. This makes the WSQ format versatile and open to
advances in the knowledge of wavelet filters, or for that matter other
subband filters. For an encoder to be accepted for certification it must
manage to compress a set of publicly available test images according to
specifications in part III of the certification guidelines [WSQ1].

WSsQ Encodaer:

= < el = < TR
1‘ + + Com[;})rtessed
poace? [Tavies | [Tabes | [ Tales | =

WSQ Decodaer:

| Huffman | Scalar -
0010 pecoder B Dsguant. —w IDWT
Compressed
Data * *
| Tables | | Tables | | Tables | Reconstructed
[ 4 [ Image

The tables of the wavelet, quantisation and Huffman coder must be embedded in the bitstream.

Today there are many commercial encoders and decoders on the market,
but most companies have the compression software as a part of a biometrics
system that is sold on a turnkey system basis. One free software package,
written in 1993, is available for PC-systems running Windows [WSQ?2].
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Mladen Victor Wickerhauser is co-author and have greatly contributed to
the development of wavelet based applications [3] over the years.

Reference:

[WSQ1] WSQ Fingerprint Image Compression Encoder/Decoder
Certification Guidelines, January 12, 1999, National Institute of Standards
and Technology (NIST).

Found at for example:
http://www.itl.nist.gov/iaui/894.03/fing/cert gui.html

[WSQ2] The FBI/Yale/Los Alamos [W]avelet-packet [S]calar
[QJuantization fingerprint compression algorithm, for Windows 3.1 or
higher, by He Ouyang and M. Victor Wickerhauser Washington University
in St. Louis.

Executable program file found at for example:

http://archives.math.utk.edu/software/msdos/miscellaneous/wsqwin/wsqwin.zip
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