
 CDT401 - Component Technologies, 7.5 credits

 2-1

Exercise 2 Implementing the Shop with EJB

2.1 Overview

This exercise is a hands-on exercise in Enterprise JavaBeans (EJB). The exercise is as similar as possible to

the other exercises (in other technologies). We will implement a database connected fruit shop with a

simple web access point.

2.1.1 Goals

After completing this exercise you should be able to:

• Give an overview of the EJB component technology

• Use entity classes and the Java Persistence API to maintain persistent data.

• Use session beans to maintain session specific data.

• Create web clients with Java Servlets.

• Compare the amount and type of work needed to accomplish the same task in the different

technologies discussed during the course.

2.1.2 System Requirements

See online tutorial on Java EE at http://netbeans.org/kb/docs/javaee/javaee-gettingstarted.html.

2.1.3 Prerequisites

You should be familiar with Java (or some similar object oriented language) and have read the EJB chapter

in the book. Use the lecture slides and (not or) tutorials etc. available at http://java.sun.com and

http://netbeans.org, in particular the abovementioned tutorial on Java EE.

2.1.4 Examination

You should be able to explain all parts of your produced software.

The application should be zipped and submitted in Blackboard (see http://mdh.blackboard.com for

instructions).

You are allowed to be at a maximum two persons in each group. Both must know – and be able to answer

questions about – all parts of the produced software.

CDT401 - Component Technologies, 7.5 credits

2-2

2.1.5 Application Overview

The idea is to implement a fruit shop, similar to the other exercises. The different kinds of fruits are stored

in a database. To represent an entity in this database, we use an entity class (Fruits). One instance

represents one row in the FRUITS database table. We will use the Java Persistence API for mapping the

rows in the database to entity class instances. (In EJB 2.0, container managed persistence was the preferred

way to link classes and databases, but Sun has now declared this method deprecated.)

The Fruits class has only local interfaces since it is never accessed directly from a remote user. Instead

we use a “façade” to the shop. This is a stateless session bean (FruitsFacade). The idea is that

Fruits has a local interface for fine grained access and FruitsFacade has a course grained interface,

suitable for remote communication. To keep track of each customer’s choices, we can implement a stateful

session bean (ShoppingCart). The shopping cart is a session bean since it does not represent an entity

in a database, but something that should exist during a session only. Each session will have its own

instance (meaning that all customers will have their own shopping carts).

The user is presented with a list of fruits available to buy on a web page. This page is produced by a

“servlet” component on the server side. It is up to you to implement a full scale shop, in the exercise we

will use the servlet to test the beans only. The relationship between the different parts of the application is

described in the following picture.

Database

Fruits

WebshopPage

(Servlet)

ShoppingCart

ID Name Price Qty

123 Banana 23.4 10

241 Apple 341 1

Fruits

Uses (remote)

Uses (local)

WebshopPage

(HTML)

P
ro

d
u

c
e

s

Application Server

Database Server

Uses(Local)

P
o

s
s
ib

le
 S

e
rv

e
r

B
o

u
n

d
a

ry

Application Server

FruitsFacade

Figure 2.1 Web shop artifact relationship overview

 CDT401 - Component Technologies, 7.5 credits

 2-3

2.2 Setting up a private development environment

This exercise uses the GlassFish v3 application server and the Java DB database server from Sun. If you

wish to use your own Linux or Windows machine instead of the MDH equipment, you can download the

Java EE 6 SDK and the NetBeans IDE 6.8 from http://java.sun.com/javaee/downloads/. All software used

in this exercise is available for free.

The rest of this document assumes you will be working in the computer rooms and use “H:\cdt401” as your

working directory. Since we are several groups sharing the same machines and want to work without

interfering with each other, we have to create our own domains and databases.

1. Start the NetBeans IDE 6.8 and select the Services tab.

2. Create a personal domain:

a. Right-click Servers and select Add Server…

b. Select GlassFish v3 and type a server name, e.g. “MyServer”.

c. Click Next twice to go to the Domain Name/Location page.

d. Select Register Local Domain and type the path to where you wish to create the domain, e.g.

“H:\cdt401\domains\MyDomain”. (Folders will be automatically created if necessary.)

e. Click Finish and wait (creating the domain may take some time).

f. Expand Servers to verify that your server has been added. Right-click the server to start it (this may

take some time as well). Right-click it once more to stop it again.

3. Create the database for the fruits:

a. Expand Databases, right-click Java DB, and select Create Database…

b. Type “FruitShop” as the database name and select a username and password (which you will need

to remember). The rest of this document assumes the username is “cdt401”.

c. Click the Properties… button and change the Database Location to where you wish to store the

database, e.g. “H:\cdt401\.netbeans-derby”.

d. Click OK twice and wait while the database is created.

e. Right-click the connection jdbc:derby://localhost:1527/FruitShop [cdt401 on CDT401] and select

Connect…

f. Right-click the connection again and select Execute Command…

g. Type or copy/paste the below SQL commands into the window that opens and click the Run SQL

button (in the same window, directly to the right of the Connection field).

CREATE TABLE Fruits
(
 id VARCHAR(8) CONSTRAINT pk_Fruit PRIMARY KEY,
 name VARCHAR(24),
 price DOUBLE PRECISION,
 quantity INTEGER
);

CDT401 - Component Technologies, 7.5 credits

2-4

h. Expand the connection down to CDT401/Tables/FRUITS, right-click FRUITS, and select View

Data… (if you do not see CDT401, right-click the connection and select Refresh).

i. Click the Insert Record(s) button (or press Alt + I) and enter some data (just like you did in

Exercise 1).

If you have chosen to use to the paths and names suggested above, you should now have a personal domain

at “H:\cdt401\domains\MyDomain” and a database at “H:\cdt401\.netbeans-derby\FruitShop”.

 CDT401 - Component Technologies, 7.5 credits

 2-5

2.3 Working Steps

The exercise will start with creating the Fruits entity class that represents one row in the FRUITS

database table. We will then create the FruitsFacade session been and a simple servlet that (possibly

remotely) fetches some contents from the database. These will be deployed and tested before creating the

shopping cart session bean and the complete web shop (optional exercises). We will use the NetBeans IDE

and its wizards to create the code, but let us first take a look at what happens behind the scenes.

2.3.1 Persistence Overview

As already mentioned, the Fruits entity class should represent a row in the database and we will use the

Java Persistence API to handle the database mapping. Instead of writing the code for the class, we use a

NetBeans wizard to generate it from the existing database. For each property we wish to persist, the class

has simple set/get methods. The generated file Fruits.java will furthermore contain a number of

annotations defining named queries, which can be used to fetch data from the database in the form of

Fruits objects. In addition to this file, the wizard also generates a number of resources: a persistence unit

(PU), a data source (or JDBC resource) and a database connection pool. These are described further below.

jdbc:derby://localhost:1527/FruitShop

ID Name Price Qty

123 Banana 23.4 10

241 Apple 341 1

Connection Pool

derby_net_FruitShop_cdt401Pool

JDBC Resource

jdbc/FruitShop

Manages con-

nections to

Maps code to

existing pool

Stored in

H:\cdt401\.netbeans-derby\FruitShop

Manually created (from

the NetBeans IDE)

Fruits.java
Based

on

Generated

by wizard

1

2Persistence Unit

MyEJBShop-ejbPU

FruitsFacade*.java

Based

on

Generated by wizard

(and manually edited)
3

Maps entity

classes to DB

Figure 2.2 Details of connection to the database.

The persistence setup is described in the figure above. The data is physically stored in a folder on disk, but

since the database server could be run on another machine, and for efficiency reasons, you have to use a

connection pool that manages all connections to the database. This also gives you the opportunity to

change from Java DB to another database, such as MySQL or Oracle, without changing your code. During

deployment, the JDBC resource is used to identify which pool to use. The Java code references the JDBC

resource indirectly through the PU, which is defined in a file called persistence.xml (not shown).

Note that the names generated by NetBeans may differ from those shown here.

CDT401 - Component Technologies, 7.5 credits

2-6

To access the data from the user interface, which could potentially be running on a separate web server, we

also need the FruitsFacade session bean. In this exercise, you will first use another NetBeans wizard

to generate both interfaces and an implementation class for the bean, and then edit the generated files to

achieve the desired functionality. The two interfaces are FruitsFacadeLocal with fine-grained access

methods and FruitsFacadeRemote with course-grained access methods. The last step of the exercise

is to implement a simple servlet to test both these interfaces (not shown in the figure).

2.3.2 Creating the Entity Class with the NetBeans IDE

1. Open the tutorial at http://netbeans.org/kb/docs/javaee/javaee-gettingstarted.html. Read the tutorial

together with the instructions here to get the coding details.

2. Create a new project in the NetBeans IDE:

a. Click the New Project button and select Enterprise Application from the Java EE category.

b. Name the project “MyEJBShop” and change the Project Folder to where you wish to store your

files, e.g. “H:\cdt401\NetBeansProjects”.

c. Select the server you defined in Section 2.2 and the version Java EE 6. Make sure that Create EJB

Module and Create Web Application Module are both checked while Create Client Application

Module is unchecked.

d. Click Finish and wait for the project to be created

3. Select the Projects tab and create the entity class:

a. Right-click MyEJBShop-ejb and select New | Entity Classes from Database…

b. Select New Data Source… from the Data Source drop-down list.

c. Type “jdbc/FruitShop” as the JNDI Name and, select the connection

jdbc:derby://localhost:1527/FruitShop [cdt401 on CDT401], and click OK.

d. Add FRUITS to the Selected Tables list and click Next.

e. Type “entities” as the Package and make sure that Generate Named Query Annotations for

Persistent Fields is checked.

f. Click on the Create Persistence Unit button.

g. Select jdbc/FruitShop as the Data Source and None as the Table Generation Strategy.

h. Click Create and then Finish.

4. Expand MyEJBShop-ejb/Source Packages/entities and open the generated file Fruits.java.

Carefully read through the file and make sure that you understand the code that was generated.

Compare with the tutorial, which creates an entity class without an existing database.

2.3.3 Implementing the Session Bean

1. Follow the steps under Creating the Session Facade in the tutorial to create a session bean for the

Fruits entity class, but select to create both a local and a remote interface. Expand MyEJBShop-

ejb/Source Packages/boundary to see the three generated files.

2. Open FruitsFacadeLocal.java and add one method to the interface:

 CDT401 - Component Technologies, 7.5 credits

 2-7

Fruits findByName(String name);

3. Open FruitsFacadeRemote.java and replace all the methods in the interface with one single

method, as shown below. Hint: after editing the code, right-click in the window and select Fix Imports.

public interface FruitsFacadeRemote {
 Collection getFruitsList();
}

4. Open FruitsFacade.java and implement the two new methods (use Fix Imports as before):

public Fruits findByName(String name) {
 Query q = em.createNamedQuery("Fruits.findByName");
 q.setParameter("name", name);
 return (Fruits)q.getSingleResult();
}

public Collection getFruitsList() {
 ArrayList outList = new ArrayList();
 try {
 Iterator i = findAll().iterator();
 while (i.hasNext()) {
 Fruits f = (Fruits) i.next();
 outList.add(f.getName() + ", " + f.getPrice() + " kr, " +
 f.getQuantity() + " in stock");
 }
 }
 catch (Exception e) {
 outList.add(e.toString());
 }
 return outList;
}

5. Study the code in FruitsFacade.java and make sure you understand at least the big picture.

Build the project before you continue.

2.3.4 Creating the Servlet

1. Right-click MyEJBShop-war and select New | Servlet…

2. Type “ShopServlet” as the Class Name and “servlets” as the Package, and click Finish.

3. Right-click inside the processRequest method, select Insert Code… and then Call Enterprise

Bean… Expand MyEJBShop-ejb and select FruitsFacade. Select Remote as the Referenced Interface.

4. Repeat the above step, but now select Local as the Referenced Interface.

5. Modify processRequest to look something like below. (Implementing the complete shop with

shopping cart and GUI is optional, but a lot of fun!)

CDT401 - Component Technologies, 7.5 credits

2-8

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet ShopServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ShopServlet at " +
 request.getContextPath () + "</h1>");

 out.println("<h2>Contents of the Fruit Shop</h2>");
 Iterator i = fruitsFacade.getFruitsList().iterator();
 while (i.hasNext())
 out.println(i.next() + "
");

 out.println("<h2>Test of the Local Interface</h2>");
 out.println("There are " + fruitsFacade1.count() +
 " different fruits
");
 try {
 Fruits f = fruitsFacade1.findByName("Banana");
 out.println("The price of bananas is " +
 f.getPrice() + " kr");
 }
 catch (Exception e) {
 out.println("Could not find the price of bananas (" +
 e.toString() + ")");
 }

 out.println("</body>");
 out.println("</html>");
 }
 finally {
 out.close();
 }
}

2.3.5 Deploying the Application

1. Right-click MyEJBShop and select Properties. Select the Run category, type “ShopServlet” as the

Relative URL, and click OK. This means that the application will start by opening the servlet instead of

the default index.jsp.

2. Press F6 to deploy and run the application. Note that the application and database servers are started

automatically and will be stopped when you exit NetBeans.

