
Uppsala University

Information Technology

Scientific Computing

2005-02-02

Finite Element Methods: Analysis and

Applications

Assignment 2: Variational forms in Femlab

Femlab is a general-purpose finite-element package developed by Comsol in Sweden.
The software can be used in several ways. There is a nice Graphical User Interface
to interactively build the application, and there are also predefined templates and
interfaces for specific applications. But equations and boundary conditions can also be
specified at a lower level: in terms of the coefficients in a very general system of partial
differential equations (coefficient form), in terms of flux functions in a conservation-
law formulation (general form), or directly as the variational form used for the finite-
element discretization (weak form).
Femlab can be run on its own, but here we will use the Matlab interface to Femlab,

and write the application in terms of a m-file.
Femlab is installed at the Unix system at the IT-department, and you have access

to the Femlab commands as soon as you start Matlab. The Matlab desktop tend to be
slow on Unix systems, which is why it may be a good idea to start Matlab from the Unix
prompt with

triangeln> matlab -nodesktop

The Femlab commands are used similarly as Matlab commands; for instance, you can
as usual type help whatever to get help with the command whatever.
Some commands gave problem when running Femlab under Matlab 7.0; use the

default Matlab version which should be Matlab 6.5.

Initialization

All data used for setting up a “Femlab model” is collected in the Femlab structure,
which is the main data type used as in- and output of the Femlab commands. When
setting up a new application, it is good practice always to start by clearing the variable
name you have in mind for the Femlab structure, for instance,

clear fem;

Below, we will define fields of the structure fem that will contain all the informa-
tion that Femlab needs. For instance, fem.geom, fem.mesh, and fem.equ will contain
information on the geometry, the mesh, and the equation.

Geometry definitions

Femlab can operate in one, two, or three space dimensions. You can create two-
dimensional solid objects enclosed by circles, rectangles, squares, and ellipses. These
can be inserted as geometry objects into the Femlab structure. For example,

fem.geom = circ2(0.5, 1, 2);

1

creates a disc object enclosed by a circle with radius 2 centered at x = 0.5, y = 1 and
inserts it as the geometry object in the Femlab structure. To plot the geometry, do

geomplot(fem);

The circle will look like an ellipse. To avoid this, type

axis(’equal’);

which produces equally-spaced tick marks in the x and y directions. To see how solid
objects enclosed by rectangles, squares, and ellipses are created, type help rect2, help
square2, and help ellip2.
New solid objects can be created by point-set operations such as as union, intersec-

tion, and difference through the operators +, *, and -. For example, the commands

c2 = circ2(0, 0, 2);

c1 = circ2(0, 0, 0.6);

r1 = rect2(-2.5, 2.5, -2.5, 0);

r2 = rect2(0.75,2.5,-1,0);

g = r1*(c2 - c1) + r2;

fem.geom = geomdel(g);

geomplot(fem);

axis(’equal’);

creates the discs C2 and C1, the rectangular objects R1 and R2 and the machine-part-
like object G = R1 ∩ (C2 \C1)∪ R2. The command geomdel(g) deletes the internal
borders between the parts ofG. This is important whenmeshing and defining boundary
conditions. (To see the difference, plot g before and after applying geomdel.)
The boundary of a geometry object is subdivided into a number of boundary seg-

ments. The command

geomplot(fem,’EdgeLabels’, ’on’);

makes visible the numbering of these segments. This numbering is used to set different
boundary conditions on different parts of the boundary.

Meshing

If the Femlab structure fem contains a geometry object fem.geom, a triangular mesh is
generated simply by typing

fem.mesh = meshinit(fem);

To plot the mesh, type

meshplot(fem);

axis(’equal’);

To control the size of the triangles, you can set an optional property hmax,

fem.mesh = meshinit(fem, ’hmax’, 0.2);

which causes each triangle-side not to exceed, in this case, 0.2.

2

The variational form

We consider setting up the definitions needed to solve the Poisson problem

−1u = 1 in�,

u = 0 on ∂�.

Corresponding variational problem is

Find u ∈ H 1

0 (�) such that∫
�

∇v ·∇u d� =

∫
�

v d� ∀v∈ H 1

0 (�).
(1)

The commands

fem.sdim = {’x’ ’y’};

and

fem.dim = ’u’;

specify the names of the spatial coordinates and the unknown. The above names are
the default ones for scalar equations in two space dimensions, so if you are happy with
these, you do not have to specify fem.sdim and fem.dim at all.
To specify that we want to give the equation in variational form, set

fem.form = ’weak’;

Then, the command

fem.equ.weak = ’u_test-ux_test*ux-uy_test*uy’;

specifies the variational form (1).

• A text string in fem.equ.weak thus contains the argument for domain integrals.

• Note that all terms in the variational form (1) are moved to the right-hand side
when specifying fem.equ.weak.

• ux and uy means derivative of u with respect to x and y. (Here the name of
the unknown variable and the spatial coordinates should be according to the
definitions of fem.dim and fem.sdim)

• The addition _test after an unknown variable indicates test function.

If needed, you can add a boundary integral to the variational form by giving the
integral argument as a string in the field fem.bnd.weak. (However, there are no bound-
ary integrals in variational form (1).) In such boundary expressions, the symbols nx
and ny are used to access the x- and y-components of the outward-directed unit nor-
mal. Setting fem.bnd.weak to a single string expressions specifies a integral over the
whole boundary. If you want to have different expressions at different portions of the
boundary, you need to use the numbering of the boundary segments discussed above.
Assume for instance that the boundary consists of 3 boundary segments. To specify
different integral expressions for these three boundary segments, set

3

fem.bnd.weak = {{string1},{string2},{string3}};

where string1, string2, string3 are strings containing the symbolic expressions for
the integrals over boundary segments 1, 2, and 3, respectively. The string ’0’ specifies
that the boundary integral should not include corresponding segment.
The above sets up the variational form in a finite-element subspace to H 1(�),

which would be correct if a “natural” boundary condition would be specified on the
domain boundary. However, problem (1) is defined in H 1

0
(�), so we need to specify the

“essential” boundary condition u = 0 on ∂�. This condition is regarded by Femlab as a
boundary constraint on u and is specified by the command

fem.bnd.constr = ’u’;

which specifies that u should vanish on the boundary. More complicated essential
boundary conditions are specified again by referring to the numbering of the boundary
segments. If 3 segments comprise the boundary, the command

fem.bnd.constr = {{’u-x’},{’u-1’},{’0’}};

specifies that u = x on boundary segment 1, u = 1 on boundary segment 2, and that
there are no constraints on boundary segment 3 (that is, the natural boundary condition
applies on segment 3)
Finally, do the following commands:

fem.xmesh = meshextend(fem);

fem.sol = femlin(fem);

postsurf(fem,’u’,’triz’,’u’)

The function meshextend performs various preprocessing, femlin solves the linear
system, and postsurf visualizes the result.

To do

In the domain depicted in figure 1, fluid with zero temperature is coming in on the
top and escaping through boundary Ŵ1. The boundary Ŵ0 is held at zero temperature,
whereas constant heating is applied to boundary Ŵh. Denoting the temperature field by
u and the given velocity field byU , the system

−ν1u + (U ·∇)u = 0 in�,

u = 0 on Ŵ0,

∂u

∂n
= 0 on Ŵ1,

∂u

∂n
= 1 on Ŵh.

(2)

models the situation.
Set up and solve problem (2) in Femlab by specifying the variational form as de-

scribed above. The divergence-free velocity field U should correspond to a constant

4

2

0.6
¡
0

Ω

¡
1

¡
0

¡
h

Figure 1: The domain form the advection–diffusion problem

rotation around the origin in the counter-clockwise direction such that at each point in
�, |U| = r, where r is the distance to the origin.
Solve the problem for different values of the thermal diffusivity ν. Study particularly

what happens for small values of ν and discuss bothmathematically and physically what
happens.

5

