
UNIVERSITY OF OSLO
Department of Informatics

Improving Disk I/O
Performance on Linux

Master thesis

Carl Henrik Lunde

May 2009





Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview of Disk Storage 5
2.1 The Rotating Disk Drive . . . . . . . . . . . . . . . . . . . . . 6
2.2 The I/O Scheduler . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Basic I/O Scheduling Algorithms . . . . . . . . . . . 9
2.2.2 Existing I/O Schedulers in Linux . . . . . . . . . . . . 10

The Deadline I/O Scheduler . . . . . . . . . . . . . . 10
Anticipatory I/O Scheduler (AS) . . . . . . . . . . . . 12
Complete Fairness Queueing (CFQ) I/O Scheduler . 14

2.2.3 Performance of Linux Schedulers . . . . . . . . . . . . 16
Analyzing and Visualization Tool . . . . . . . . . . . 16
Using the Visualization . . . . . . . . . . . . . . . . . 18
The Base Workload . . . . . . . . . . . . . . . . . . . . 22
Deadline I/O Scheduler Performance . . . . . . . . . 23
Anticipatory I/O Scheduler (AS) Performance . . . . 25
Complete Fairness Queueing (CFQ) Performance . . 27

2.3 The ext4 File System . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 The Virtual File System . . . . . . . . . . . . . . . . . 33
2.3.2 Disk Layout . . . . . . . . . . . . . . . . . . . . . . . . 34

Group Descriptors . . . . . . . . . . . . . . . . . . . . 34
Inode and Block Bitmaps . . . . . . . . . . . . . . . . 35
Virtual Block Groups (flex bg) . . . . . . . . . . . . . 35

2.3.3 Inodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Directories . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Large, Indexed Directories . . . . . . . . . . . . . . . . 36
2.3.6 Name Look-up . . . . . . . . . . . . . . . . . . . . . . 39

i



2.3.7 Extents . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.8 Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 42

Inode Allocation . . . . . . . . . . . . . . . . . . . . . 42
Extent Allocation . . . . . . . . . . . . . . . . . . . . . 42
Dirent Allocation . . . . . . . . . . . . . . . . . . . . . 44

2.3.9 Journaling . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.10 Readahead and Caching . . . . . . . . . . . . . . . . . 46

File Data Readahead . . . . . . . . . . . . . . . . . . . 46
Inode Readahead . . . . . . . . . . . . . . . . . . . . . 47

2.3.11 Implications of the File System Design . . . . . . . . . 48
Metadata / Inodes . . . . . . . . . . . . . . . . . . . . 49
File Data Placement . . . . . . . . . . . . . . . . . . . 49
Evaluation of Data Ordering Cost . . . . . . . . . . . 49

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Adding Quality of Service (QoS) to CFQ 53
3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Non-intrusive . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 Bandwidth (QoS) . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Request Deadlines (QoS) . . . . . . . . . . . . . . . . . 54
3.1.4 Work-conservation . . . . . . . . . . . . . . . . . . . . 55
3.1.5 Global Throughput . . . . . . . . . . . . . . . . . . . . 55
3.1.6 Admission Control . . . . . . . . . . . . . . . . . . . . 55

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Bandwidth Management . . . . . . . . . . . . . . . . 56
3.2.2 Deadline Support . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Inter-process Elevator . . . . . . . . . . . . . . . . . . 58
3.2.4 Queue Selection . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Performance Limitations and Need for QoS . . . . . . 60
3.3.2 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Best Effort Readers Should Not Affect Reserved Read-
ers . . . . . . . . . . . . . . . . . . . . . . . . 64

Greedy Reserved Readers . . . . . . . . . . . . . . . . 66
Other Potential Problems . . . . . . . . . . . . . . . . 66

3.3.3 Work-conservation . . . . . . . . . . . . . . . . . . . . 67
Over-provisioning . . . . . . . . . . . . . . . . . . . . 67
Work-conservation with Non-Greedy Best Effort Read-

ers . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.4 Request Deadlines / Variable Round Support . . . . 69

3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 70

ii



4 Scheduling in User Space 71
4.1 Applicability of User Space Scheduling . . . . . . . . . . . . 71
4.2 Available Information . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Metadata Placement . . . . . . . . . . . . . . . . . . . 74
4.2.2 File Data Placement . . . . . . . . . . . . . . . . . . . 75

4.3 Implementation of User Space Scheduling . . . . . . . . . . . 77
4.4 Future Proofing Lower Layer Assumptions . . . . . . . . . . 77

4.4.1 Placement Assumptions . . . . . . . . . . . . . . . . . 77
4.4.2 Rotational Disk . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Case Study: The tar “Tape” Archive Program . . . . . . . . 79
4.5.1 GNU Tar . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Design and Implementation . . . . . . . . . . . . . . . 81
4.5.3 Testing and Evaluation . . . . . . . . . . . . . . . . . . 82
4.5.4 Verification by Visualizing Seeks . . . . . . . . . . . . 82
4.5.5 Partial Sorting . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.6 Aging vs. Improvement . . . . . . . . . . . . . . . . . 85
4.5.7 File Systems, Directory Sizes and Aging . . . . . . . . 86

4.6 Discussion: Alternatives . . . . . . . . . . . . . . . . . . . . . 89
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion and Future Work 93

A Creating a Controlled Test Environment 97
A.1 The Aging Script . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Aging Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Source Code 101

C List of acronyms 103

iii



iv



Abstract

Motivated by increasing use of server consolidation, we have investigated
the performance of disk I/O in Linux under various workloads. The tests
identified several inefficiencies in the disk I/O scheduler, and that not all
performance problems can be solved on the I/O scheduler layer. We have
therefore attacked the problem on two levels: by modifying the I/O sched-
uler, and by developing user space techniques that reduce seeking for cer-
tain classes of applications. Our modifications to the I/O scheduler intro-
duce a new priority class with QoS support for bandwidth and deadline
requirements, while at the same time improving performance compared to
the existing classes. The experimental results show that our I/O scheduler
class can handle more multimedia streams without deadline misses, and
that our user space techniques improve performance on workloads such
as file archiving. With our experiments we have found that the number
of concurrent media streams can be increased by 17%, and that archiving
tasks ran almost 5 times faster in the best case. Our limited set of exper-
iments has not revealed any performance disadvantages of the proposed
techniques.
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Chapter 1

Introduction

1.1 Background and Motivation

Improvements in latency and bandwidth of disks lag that of CPU, RAM
and Internet connections, while at the same time the disk capacity in-
creases at a higher rate than the bandwidth and latency improves [1].
These facts put more pressure on the disk than ever before, and it also
opens the opportunity to spend more of resources such as RAM and CPU
on reaching the latency and throughput requirements from the disk.

Today, the Linux kernel is used for a wide variety of tasks, and re-
cently is has become more popular to consolidate multiple applications
into fewer servers. Consolidation may yield cost and environmental sav-
ings [2], but it also introduces new challenges as shared resources become
more contended than before, and the amount of data on a single disk in-
creases. Because the applications serve different purposes, they have dif-
ferent requirements. For example: a video has strict requirements for la-
tency and bandwidth, an image for a web page must be returned within a
short amount of time, while batch jobs such as backups and other tasks do
not have any special requirements, but they should share resources fairly.

1.2 Problem Definition

In this thesis, we will study how we can improve the performance of I/O
on rotating disk devices, while maintaining latency requirements of mul-
timedia. The current Real-Time (RT) scheduling class in Linux does not
have any knowledge of latency requirements, and must therefore dispatch
requests in First-In, First-Out (FIFO) order. By allowing applications to
specify latency requirements we can delay requests if it yields a better I/O

1



2 Improving Disk I/O Performance on Linux

schedule. An additional problem with the Real-Time (RT) class is that any
misbehaving, or simply work conserving task, may starve the system. In
a consolidated environment it is even more important to avoid this situa-
tion, as the number of affected applications increases.

We cannot require all users and applications to specify bandwidth and
latency requirements, which means that it is also important to support
a fair best effort class. Having a special purpose QoS scheduler is not
acceptable.

Existing implementations of I/O schedulers tend to focus on one type
of load, and not respect the requirements of general purpose systems, such
as fairness. This is less user friendly and leaves the user with an additional
task, choosing an I/O scheduler. By adapting an existing scheduler we aim
to avoid this problem.

While much work already has been done on the I/O scheduler level,
we will also take a look at all the other layers involved in disk I/O, to see if
there are possibilities for multi-layer improvements. Specifically, we want
to study the I/O patterns for applications which reads multiple files, but
never have more than one I/O request pending. It is not possible for the
I/O scheduler to improve the performance of such applications. Recent
changes in file system programming interfaces expose more information
about data location, which provide interesting opportunities. Typical ap-
plications for this includes backup software and data indexing software.

1.3 Main Contributions

We show that there is still potential for improving the performance of I/O
bound tasks in GNU/Linux, on both the I/O scheduler layer and the ap-
plication layer. We have made a tool for visualizing I/O from multiple per-
spectives at the same time, which we consider valuable for I/O scheduler
development and analysis. We show that a general purpose I/O scheduler
can be modified to better support hard latency and bandwidth require-
ments from multimedia, while at the same time improving performance
and maintaining the original properties.

Finally, we have shown that taking I/O scheduling to another layer
is possible, and that some specialized tasks such as backup software can
improve throughput by using this technique.
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1.4 Outline

In chapter 2 we give a detailed analysis of the I/O schedulers shipped
with Linux 2.6.29, how the file system works, and how the file system and
user space applications limit the options of the I/O scheduler. We provide
a new visualization of the interactions between the layers involved in I/O.
The goal is to find potential improvements and issues which we can study
further.

In chapter 3 we design, implement and evaluate what we consider a
practical solution which addresses some of the concerns we have with the
existing I/O scheduler solution available in Linux as written in chapter 2.

In chapter 4 we look at how applications may mitigate the problem
found in chapter 2, and we design and implement a solution. Finally, in
chapter 5, we provide a short conclusion and summary of the thesis.
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Chapter 2

Overview of Disk Storage

In this chapter, we will take an in-depth look at the layers involved in disk
input/output in a typical GNU/Linux installation. Our goal is to identify
problems related to system performance and QoS for multimedia streams.
We believe it is not possible to look at only one layer in order to understand
and improve the current situation, so we will not only study the disk and
I/O scheduler, but also the file system.

Applications

File system

Page cache

I/O scheduler

Disk

K
er

n
el

Figure 2.1: Layers involved in block I/O

As shown in figure 2.1, there are five components that heavily influence
the I/O schedule:

• The applications running in user space. They initiate I/O transfers
through system calls such as read() and write(), and by accessing
memory pages mapped to files.

• The file system which translates the requests from user space into
one or more block I/O requests. The file system also implements
block allocation strategies, which determine the physical placement
on disk and potential fragmentation.
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6 Improving Disk I/O Performance on Linux

• The page cache which is responsible for caching the set of disk blocks
which are most likely to be used again.

• The I/O scheduler which sorts, merges and prioritizes the I/O re-
quests and dispatches them to the disk.

• The disk which services the requests. It often provides another layer
of caching. With advanced features such as Native Command Queuing
(NCQ)/Tagged Command Queuing (TCQ) disks may queue several
requests, and reorder them to minimize seeks and increase perfor-
mance. The behaviour is vendor-specific.

To limit the scope of this thesis we will not study the subject of caching.

2.1 The Rotating Disk Drive

Since the personal computer was introduced, and still today, the most pop-
ular storage medium has been rotating hard disk drives, with data stored
on both surfaces of the platters on a rotating spindle.

The disk drive is divided into multiple areas; heads, cylinders and sec-
tors, as shown in figure 2.2. A cylinder consists of the tracks with the same
diameter on all the platters. A set of arms are locked together, with one
arm for each surface. An arm reads and records data to any position on a
surface by moving the heads to the correct cylinder, and then wait for the
sector in question to arrive under the head due to disk rotation. Data is
written as 0 or 1 bits by magnetizing the platter, and read back by sensing
magnetism.

Because the track density decreases as the diameter increases, drives
are often divided into zones with an increasing number of sectors per
track. As mentioned, three steps must be performed for a sector to be
read or written, and the execution time is the sum of the three steps:

Seek time The time required for the arm to settle at the right track. This
is determined by seek distance, disk diameter and disk arm perfor-
mance.

Rotational delay The time required for the right sector to appear under
the head. Rotational delay is determined by spindle speed.

Transfer time How long it takes for the sector to be read. This is deter-
mined by the density at the given zone, and spindle speed.
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Head
Sector
TrackZone 0

Zone 1

Figure 2.2: Rotating disk drive

The dominating factors are the seek time and rotational delay. For a
random read operation, we must assume half a rotation in rotational de-
lay, and the average value of all possible combinations of seek lengths. A
modern high performance 15000 RPM server disk drive like the Seagate
Cheetah 15k.6 [3] has a specified average read time of 3.4 ms. For this
drive, we can calculate the average rotational delay to 2 ms as shown be-
low:

60 s/min · 1000 ms/s

15000 RPM
·
1

2
= 2 ms

Desktop drives (typically 7200 RPM) and laptop drives (often 5400
RPM) are slower, with average read times ranging from 14 ms to 8.5 ms.
The transfer time for a contiguous read, however, is another matter. When
the arm is aligned correctly, each track may be read at the speed at which
the platters rotate. Between each track there is a slight delay for the arm
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Figure 2.3: Performance effects of zoning on 3.5” rotating disk

to re-align. As a consequence of the zones, the maximum transfer rate is
often higher on the outer tracks of the disk, because the platter rotates at
a constant speed. The logical address of the outer track is lowest, which
means that the beginning of the disk is stored on the fastest (outer) track.
We have measured the effects of zoning on the disk in our test environ-
ment, the results can be seen in figure 2.3. Based on this figure we believe
our disk has 16-17 zones. Vendors typically specify sustained data rates of
50-120 MiB/s, depending on form factor, rotational speed and data den-
sity.

In our test environment, we have a Seagate Barracuda 7200.11 disk [4]
(model number ST3500320AS). A summary of the specifications from the
product manual is shown in table 2.1. This is a workstation-class disk,
connected to the computer through a SATA bus at 3 Gb/s speed. The
computer is a Mac Pro running Linux, and it has 10 GB RAM, and two
Intel Xeon Quad Core CPUs running at 2.8 GHz. No tests in this thesis
will rely on caching or CPU power.
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Drive specification

Sustained data transfer rate OD 105 Mbytes/sec max
Average latency 4.15 ms
Track-to-track seek time (read) < 0.8 ms typical
Average seek (read) 8.5 ms typical
Heads 4
Disks 2
Spindle speed 7200 RPM
Cache buffer 32 MiB
Capacity 465 GiB

Table 2.1: Drive specification

2.2 The I/O Scheduler

The next component in the I/O path (figure 2.1) is the I/O scheduler, and
all I/O requests to the disk pass through it. The scheduler implements
policies which determine when I/O requests should be dispatched to the
disk, and in which order. The I/O scheduler must make a balanced choice
between global throughput, latency and priority.

As shown in the previous section, servicing one individual random
request may take as long 10 milliseconds, while during 10 milliseconds
a modern computer Central Processing Unit (CPU) runs 30 million clock
cycles. This means that there could be an opportunity to spend some CPU
time to plan the I/O to improve overall system performance, and that is
one of the tasks of the I/O scheduler. The other task is to implement a
policy for how the shared disk resource should be divided amongst the
processes on the system.

2.2.1 Basic I/O Scheduling Algorithms

The simplest I/O scheduler simply forwards each request to the disk in
the same order as they arrive, i.e., First-Come, First-Served (FCFS) [5].
The performance with FCFS suffers because it does not attempt to reduce
seeks. In the Linux kernel, a variant of this strategy is implemented as
the No Operation (NOOP) I/O scheduler. It is not truly an FCFS sched-
uler as requests may be merged with other requests ahead in the queue, if
they are physically consecutive. The NOOP I/O scheduler is not designed
for rotating hard disks, but for random access devices such as Solid State
Drives (SSDs).

Next in the evolution chain is Shortest Seek First (SSF) [5], which, as
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the name implies, always picks the request which is closest to the current
request. This reduces average response time considerably. The problem
with SSF is that it is tends to be very unfair: If requests are random all
over the disk, and the system is heavily loaded, we may easily end up
with a situation where the requests near both edges of the disk may never
be served, or at least get long service times.

A fairer alternative to SSF is the elevator algorithm [5]. The first vari-
ant is SCAN [5], which services requests in one direction at a time. First,
requests are serviced only if they have a sector number larger then the pre-
viously serviced requests. When there are no more requests to serve with
a larger sector number, the direction is reversed. SCAN does also have a
tendency to serve requests near the middle of the disk faster and more of-
ten, so a fairer alternative may be needed. Circular SCAN (C-SCAN) only
services requests in one direction, which sacrifices some performance for
improved fairness. When the queue depth is very large, C-SCAN performs
better than SCAN.

2.2.2 Existing I/O Schedulers in Linux

The Linux 2.6 kernel has a pluggable scheduler framework. Each block
device has its own scheduler, and it can be changed at runtime by writing
the scheduler name to a special sysfs file, called /sys/block/<blockdev>

/queue/scheduler.
This allows the user to select different schedulers depending on the

properties of the block device, e.g., a user may want the NOOP scheduler
for a flash disk and the anticipatory scheduler for a CD-ROM player. The
schedulers have several tunable parameters, and in this section, we will
highlight them by writing in a fixed width font such as “back seek max”,
which means that there is a tunable parameter for the scheduler in /sys/

block/<blockdev>/queue/iosched/back_seek_max. As with choosing a
scheduler, the parameters may be tuned during runtime by writing to the
special file.

The Deadline I/O Scheduler

The deadline I/O scheduler [6] is a C-SCAN based I/O scheduler with the
addition of soft deadlines to prevent starvation and to prevent requests
from being delayed too long. The scheduler maintains two queue types:

The elevator is a queue sorted by sector, and serviced mostly like a C-
SCAN elevator. It is implemented by a Red-Black tree [7, 8], a self-
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Figure 2.4: Queues in the Deadline I/O Scheduler

balancing binary search tree.

The deadline list, a FIFO queue for deadlines implemented as a standard
Linux kernel linked list [9]. The deadlines are only implemented
to prevent starvation, and do not allow service differentiation, be-
cause all processes get the same deadline. This allows for fast O(1)
insertion in the deadline FIFO queue, because requests are always
appended to the tail of the list.

Each I/O request is put in both the elevator queue and the deadline
FIFO, and there are two instances of each queue, one for each data di-
rection (read/write), which allows the scheduler to prioritize reads and
writes differently. In figure 2.4, we have shown how a read request at sec-
tor 33 with deadline 30 would be appended to the read FIFO queue, and
inserted somewhere in the middle of the read elevator, sorted by sector.

Normally, one of the elevator queues is serviced, up to 16 requests in
a row (tunable with fifo batch). When the batch is over, or there are no
more requests to batch from the current elevator, a new data direction is
chosen. The data direction defaults to reads—writes are only serviced if
there have been pending writes two times (writes starved) when choos-
ing a data direction.

After choosing data direction, the head of the FIFO deadline queue
is checked for deadline expiry. If there are no expired deadlines in the
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chosen direction, the previous batch will be continued if possible, i.e., if the
current data direction is the same as for the previous batch. Otherwise, the
deadline FIFO will be conferred to, and a new batch will be started (from
the sorted list) at the request with the shortest deadline.

By default, the deadline for a write request is 5 seconds (write expire),
while a read request has a deadline of 0.5 seconds (read expire), and the
read queue is serviced up to two times before the write queue is consid-
ered. The reason for this clear preference of reads is that writes easily can
starve reads [6], and writes are usually asynchronous, while reads are syn-
chronous and blocking the process waiting for the result.

In addition to ordering requests, another important task of Linux I/O
schedulers is request merging. The file systems and Virtual File System
(VFS) layer in Linux tend to split large read() operations from user space
into smaller requests, often one file system block at a time, when sending
them to the I/O scheduler. The I/O scheduler may merge these smaller
requests into larger requests before dispatching them to the disk. A re-
quest may be merged with a request from a different process, but only if
the data direction (read/write) is the same, and there may not be a gap
between the two original requests. The Deadline I/O Scheduler uses the
sorted queues to check if merging is possible.

The Deadline I/O Scheduler does not have any QoS support: I/O
deadlines are global, so it is not possible to prioritize one process over
another. Although it is possible to change the priority of reads relative to
writes, this is usually not sufficient. It is also important to note that the
deadlines are soft, and exist only to prevent starvation.

Anticipatory I/O Scheduler (AS)

The Anticipatory I/O Scheduler [6, 11] tries to solve a problem with the
Deadline I/O Scheduler; the global throughput is often low, especially in
streaming scenarios, and when there is high spatial locality. The anticipa-
tory scheduling algorithm was introduced in [10], and it blames the low
global throughput on trashing, due to so called “deceptive idleness”. The
problem with the Deadline I/O Scheduler is that it is forced to make de-
cisions too early. To solve this, the Anticipatory I/O Scheduler introduces
small delays before dispatching seeking requests. This is to make sure the
current process gets time to dispatch a new request after processing the
latest completed request. Then the scheduler gets full view of all possible
options, which often results in a better schedule.

When a request is completed, the scheduler checks the sorted request
queue. If the next request in the elevator is either from the same process as



Improving Disk I/O Performance on Linux 13

seek

layout

time

head

 disk

8ms

3ms
0.2ms

8ms

arrive

arrive

request request
chosen pending

etc . . .

Figure 2.5: (a) anticipatory scheduling (b) trashing due to deceptive idle-
ness [10]

previously serviced, or the next request is within a few thousand sectors, it
will be serviced directly. Otherwise, the scheduler confers to the process’
I/O interval statistics: if the process is likely to issue a new I/O request
shortly, the scheduler waits a small amount of time (antic expire, default
6 ms), in anticipation of a new I/O request close to the current disk head
position. This solves the trashing problem with the Deadline I/O Sched-
uler as shown in figure 2.5.

The queues in the Anticipatory I/O Scheduler are the same as shown in
figure 2.4. In addition to the anticipation, the Anticipatory I/O Scheduler
is different from the Deadline I/O Scheduler because the elevator is not as
strict: backwards seeks are allowed, but only if they are relatively short.

There may be many reasons for deceptive idleness, where waiting for
the next request is likely to be beneficial, such as:

VFS think time The function mpage_readpages is used by many Linux
file systems for multi-block buffered I/O, such as through the read

system call. The function ends up calling submit_bio many times in
a loop, which means the I/O scheduler only sees a part of the pic-
ture when the first I/O request arrives, but shortly after one or more
consecutive requests will arrive.

File system think time The file system may need to look up indirect blocks
or extent maps to get the physical location of the next logical block
in a large read request. This means that the process is blocked doing
synchronous I/O, and the file system needs a few microseconds to
parse the data before the next request can be issued.
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Process buffering and data dependencies Many processes issue small reads
at a time, parse the result, and continue reading. This may be be-
cause the data needs to be parsed to know when to stop or what
data to read next, or because the process wants to keep a low mem-
ory profile. Another example is processes reading multiple files in
the same directory, if the file system allocator has done a good job,
they should be located close to each other.

CFQ I/O Scheduler

Real-Time (RT)

Best Effort (BE)

Idle

P
ri

o
ri

ty

Figure 2.6: Priority classes in CFQ

The CFQ I/O scheduler is the default I/O scheduler in Linux, and it
tries to satisfy several goals:

• Keep complete fairness among I/O requests in the same class by as-
signing time slices to each process. Fairness is on a time basis, not
throughput, which means that a process performing random I/O
gets lower throughput than a process with sequential I/O.

• Provide some level of QoS by dividing processes into I/O contexts
in different classes, as shown in figure 2.6.

• Give relatively high throughput, the assumption is that requests from
an individual process tend to be close together (spatial locality). By
waiting for more requests from the same process the scheduler hopes
to avoid long seeks.

• Latency is kept proportional to system load by scheduling each pro-
cess periodically.

The CFQ I/O Scheduler maintains queues per process, and each process
is served periodically. The active process gets exclusive access to the un-
derlying block device for the duration of the time slice, unless preempted.
This is an alternative approach to solving the problem with deceptive idle-
ness. The length of the time slice is calculated by the priority level, while



Improving Disk I/O Performance on Linux 15

Priority 7 6 5 4 3 2 1 0

Slice length 40 60 80 100 120 140 160 180
Slice offset, busy=4 420 360 300 240 180 120 60 0
Slice offset, busy=5 560 480 400 320 240 160 80 0

Table 2.2: Varying number of busy queues and priority level decide slice
length and offset. Values are calculated for the default base slice, 100 ms

the period also depends on the number of other processes with pending
requests, as shown in table 2.2.

A process may belong to one out of three I/O priority classes:

Real-Time (RT) Processes from the RT scheduling class are giving first
access to the disk every time. The RT class has eight priority levels,
which control how the disk time is divided between the RT class
processes, with 0 being the highest and 7 the lowest priority. Because
RT processes may starve processes with lower priorities, only the
root user may set this priority level.

Best Effort (BE) The BE I/O class is serviced when there are no RT re-
quests queued, and as with RT there are eight priority levels (0-7).
Priority four is default, but if a specific CPU priority is set, the CPU
priority may map to a lower or higher I/O priority. The BE schedul-
ing class is the default for new processes. If the RT class always has
pending requests, the BE class will be starved.

Idle When the RT and BE queues are empty, requests are picked from the
idle class. Because the idle class may be starved on heavily loaded
systems, only the root user may assign processes to the idle class.

The CFQ Service Tree is a list of all the active queues (processes). It
is first ordered by I/O class (RT > BE > Idle), and then expected service
time (when the time slice should start, approximately). The service time
is merely a guideline, not a hard deadline. As can be seen in table 2.2, if
there are four busy queues with the default priority and default time slice,
they will each be assigned a 100 ms time slice, and a 240 ms deadline—
but if all processes are busy the scheduling time will be 300 ms, so some
overbooking is done. A process does not preempt another process when
its deadline expires.

The scheduler is work conserving; if the scheduler considers the active
process as idle, it will prematurely end the time slice, store the residual
time, and move on to the next process. A time slice in the BE class may also
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be preempted if a request arrives in the RT class. For both cases of preemp-
tion, the next time the original process is scheduled it will be scheduled a
little earlier the next round1.

For each process, requests are stored much like in the Deadline I/O
Scheduler (figure 2.4), but instead of separating writes from reads, CFQ
separates synchronous requests from asynchronous request2. The sorted
tree is serviced as long as the deadline of the request at the head of FIFO
queue has not expired.

It should be noted that older literature [6] describes a different imple-
mentation of the CFQ I/O scheduler, which used a staircase round robin
service of 64 queues. A process was assigned to a queue by hashing the
thread group identifier. The algorithm we describe was introduced in
Linux 2.6.22 and is up to date as of 2.6.29.

2.2.3 Performance of Linux Schedulers

Analyzing and Visualization Tool

Disk

I/O scheduler

Relay ChannelsFile System

Applications blktrace

blkparse

Visualizer

Kernel

Figure 2.7: blktrace and visualization tool

As we delve into the analyzing of the I/O schedulers available in the
Linux-kernel, we will show some visualizations of how they service re-
quests, with a focus on how the performance is seen from user space ap-

1This functionality is currently not working
2Typically, writes are asynchronous, and the CFQ I/O scheduler considers all reads as

synchronous
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plication. We have developed a program for visualizing the events hap-
pening in user space, in the kernel, and in the disk.

Our goal is to quickly observe the events in each layer, how they in-
teract and also to provide enough information to study even small details
such as NCQ. To gather information from these components, we have
used the existing blktrace mechanism [12, 13], with some modifications.
blktrace is a block layer I/O tracing tool written by Jens Axboe, the cur-
rent maintainer of the Linux Block Layer.

blktrace has defined many trace points within the kernel block layer
code and inside the I/O schedulers. They remain inactive until activated
by an ioctl system call by a user space client. When active, the trace
points emit events to user space through a low overhead mechanism called
the relay file system. Data is transferred to user space as binary data
streams, one per CPU, and is later interpreted by the blkparse utility.

There are roughly 20 different events emitted by blktrace, of which
we only use a few. Events are identified by a single character, such as D

for “dispatch”. Below we list the events we use, for a full list refer to the
blkparse(1) manual page [14].

• Request queued (Q in blkparse). We use this to track I/O request
ownership, because other events, such as dispatch and completion,
run in an arbitrary process context.

• I/O scheduler request dispatch (D in blkparse). This event is issued
when the I/O scheduler moves a request from a queue inside the
I/O scheduler and to the dispatch queue, so that the disk can service
the request.

• Disk I/O completion (C in blkparse). This happens when the disk
has serviced a request. For a write operation this means that the data
has been written to the platter (or at least buffered), and for a read
operation that the data is stored in host memory.

• Virtual File System (VFS) operations such as read() and write().
We have patched blktrace to emit these events as text messages (m
in blkparse), because we consider them very relevant to understand
the I/O schedule from an application point of view. blktrace origi-
nally only supports events happening on request queues.

As we can see in listing 2.1, the blkparse output is very verbose. The
first 10 lines show that process 8593 enters the read() system call, and
queues 512 blocks3 of data to read, starting at sector 831107423. At 2.01

3In this context, a block is 512 bytes
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the disk returns 256 blocks from sector 33655111, and the application 8598
queues another 256 block request at 33655623, which is dispatched im-
mediately. This cycle repeats until time 2.0158, where we see the read()

system call has completed for process 8598. The process almost instantly
enters another read(), which is sequential to the previous request, so the
I/O scheduler dispatches the request immediately. The first process, 8593,
is still blocked and the trace does not show how long it had to wait.

The point of this example is to show that blkparse is very useful to
study the finer details of the I/O scheduler, but it is not suited to get
an understanding of the big picture, where patterns may take seconds to
emerge.

Using the Visualization

In figure 2.8, we present an annotated graph which is created by our visu-
alization tool. We get a view of four seconds showing how the I/O sched-
uler dispatches I/O requests for each process, how the disk head must
move and for how long each process is blocked. This is the same load
we will use for all schedulers. While the scenario may be a bit special, it
is well suited to highlight the behaviour of each scheduler. Numbers in

parentheses below reference the same number in the figure 2.8, e.g., 1 .

Process information (0) We provide information about the process name,
average bandwidth, requested bandwidth and request size. The process
name indicates the type of job, Sn indicates a stream with contiguous re-
quests, while Rn is a process doing random reads. MFn is a multi-file
reading process, which does file system calls such as open(), readdir(),
read() and stat(). As the multi-file process is always best effort, we pro-
vide information about average bandwidth and the number of files pro-
cessed.

read() histogram (1) There are two histograms for each process, located
to the right of the process information. The first histogram we have high-
lighted is the read() histogram, which shows how long the VFS and I/O
scheduler uses to serve the read() requests. During this time the process
is blocked, and from the application point of view this is the only thing
that matters, not how each individual sector is handled.

Dispatch-to-Completion (D2C) histogram (2) The next histogram shows
the individual block request completion times, the time from a request is
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Blockdev CPU Sequence Time PID Event Sector + blocks

8 ,48 3 0 2.004027488 8593 m N enter vfs_read

8 ,48 3 657 2.004047581 8593 A R 831107423 + 256 <- (8 ,49) 831107360

8 ,48 3 658 2.004047704 8593 Q R 831107423 + 256 [iosched - bench ]

8 ,48 3 659 2.004048864 8593 G R 831107423 + 256 [iosched - bench ]

8 ,48 3 660 2.004049761 8593 I R 831107423 + 256 [iosched - bench ]

8 ,48 3 661 2.004155593 8593 A R 831107679 + 256 <- (8 ,49) 831107616

8 ,48 3 662 2.004155696 8593 Q R 831107679 + 256 [iosched - bench ]

8 ,48 3 663 2.004156385 8593 M R 831107679 + 256 [iosched - bench ]

8 ,48 3 664 2.004157215 8593 U N [iosched - bench ] 7

8 ,48 2 599 2.010858781 8598 C R 33655111 + 256 [0]

8 ,48 2 600 2.010983458 8598 A R 33655623 + 256 <- (8 ,49) 33655560

8 ,48 2 601 2.010983593 8598 Q R 33655623 + 256 [iosched - bench ]

8 ,48 2 602 2.010984420 8598 G R 33655623 + 256 [iosched - bench ]

8 ,48 2 603 2.010985094 8598 I R 33655623 + 256 [iosched - bench ]

8 ,48 2 604 2.010988047 8598 D R 33655623 + 256 [iosched - bench ]

8 ,48 2 605 2.010990666 8598 U N [iosched - bench ] 7

8 ,48 1 530 2.012061299 8598 C R 33655367 + 256 [0]

8 ,48 1 531 2.012182151 8598 A R 33655879 + 256 <- (8 ,49) 33655816

8 ,48 1 532 2.012182705 8598 Q R 33655879 + 256 [iosched - bench ]

8 ,48 1 533 2.012183893 8598 G R 33655879 + 256 [iosched - bench ]

8 ,48 1 534 2.012184605 8598 I R 33655879 + 256 [iosched - bench ]

8 ,48 1 535 2.012187585 8598 D R 33655879 + 256 [iosched - bench ]

8 ,48 1 536 2.012190294 8598 U N [iosched - bench ] 7

8 ,48 3 665 2.012834865 8598 C R 33655623 + 256 [0]

8 ,48 3 666 2.012948913 8598 A R 33656135 + 256 <- (8 ,49) 33656072

8 ,48 3 667 2.012949078 8598 Q R 33656135 + 256 [iosched - bench ]

8 ,48 3 668 2.012949913 8598 G R 33656135 + 256 [iosched - bench ]

8 ,48 3 669 2.012950555 8598 I R 33656135 + 256 [iosched - bench ]

8 ,48 3 670 2.012953502 8598 D R 33656135 + 256 [iosched - bench ]

8 ,48 3 671 2.012956161 8598 U N [iosched - bench ] 7

8 ,48 4 579 2.013823914 8598 C R 33655879 + 256 [0]

8 ,48 4 580 2.013944217 8598 A R 33656391 + 256 <- (8 ,49) 33656328

8 ,48 4 581 2.013944375 8598 Q R 33656391 + 256 [iosched - bench ]

8 ,48 4 582 2.013945518 8598 G R 33656391 + 256 [iosched - bench ]

8 ,48 4 583 2.013946170 8598 I R 33656391 + 256 [iosched - bench ]

8 ,48 4 584 2.013949706 8598 D R 33656391 + 256 [iosched - bench ]

8 ,48 4 585 2.013952260 8598 U N [iosched - bench ] 7

8 ,48 5 569 2.014811161 8598 C R 33656135 + 256 [0]

8 ,48 5 570 2.014930361 8598 A R 33656647 + 256 <- (8 ,49) 33656584

8 ,48 5 571 2.014930489 8598 Q R 33656647 + 256 [iosched - bench ]

8 ,48 5 572 2.014931361 8598 G R 33656647 + 256 [iosched - bench ]

8 ,48 5 573 2.014932053 8598 I R 33656647 + 256 [iosched - bench ]

8 ,48 5 574 2.014935063 8598 D R 33656647 + 256 [iosched - bench ]

8 ,48 5 575 2.014938063 8598 U N [iosched - bench ] 7

8 ,48 6 652 2.015804419 8598 C R 33656391 + 256 [0]

8 ,48 6 653 2.015926600 8598 A R 33656903 + 256 <- (8 ,49) 33656840

8 ,48 6 654 2.015926798 8598 Q R 33656903 + 256 [iosched - bench ]

8 ,48 6 655 2.015927800 8598 G R 33656903 + 256 [iosched - bench ]

8 ,48 6 656 2.015928484 8598 I R 33656903 + 256 [iosched - bench ]

8 ,48 6 657 2.015931482 8598 D R 33656903 + 256 [iosched - bench ]

8 ,48 6 658 2.015934236 8598 U N [iosched - bench ] 7

8 ,48 0 624 2.016789937 8598 C R 33656647 + 256 [0]

8 ,48 0 0 2.016891686 8598 m N leave vfs_read

8 ,48 0 0 2.016908007 8598 m N enter vfs_read

8 ,48 0 625 2.016928340 8598 A R 33657159 + 256 <- (8 ,49) 33657096

8 ,48 0 626 2.016928466 8598 Q R 33657159 + 256 [iosched - bench ]

8 ,48 0 627 2.016929298 8598 G R 33657159 + 256 [iosched - bench ]

8 ,48 0 628 2.016930012 8598 I R 33657159 + 256 [iosched - bench ]

8 ,48 0 629 2.016933714 8598 D R 33657159 + 256 [iosched - bench ]

8 ,48 0 630 2.016936375 8598 U N [iosched - bench ] 7

8 ,48 2 606 2.019041130 8598 C R 33656903 + 256 [0]

8 ,48 2 607 2.019164273 8598 A R 33657415 + 256 <- (8 ,49) 33657352

8 ,48 2 608 2.019164441 8598 Q R 33657415 + 256 [iosched - bench ]

8 ,48 2 609 2.019165180 8598 G R 33657415 + 256 [iosched - bench ]

8 ,48 2 610 2.019165850 8598 I R 33657415 + 256 [iosched - bench ]

8 ,48 2 611 2.019168867 8598 D R 33657415 + 256 [iosched - bench ]

8 ,48 2 612 2.019171584 8598 U N [iosched - bench ] 7

8 ,48 1 537 2.020029800 8598 C R 33657159 + 256 [0]

Listing 2.1: 20 ms of blkparse output
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Figure 2.8: Annotated visualization
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Figure 2.9: Read system call and I/O requests

dispatched (sent to the disk) until it has completed (data is ready). It does
not include the time spent in queues inside the I/O scheduler.

A left-weighted histogram indicates that mosts requests are sequential
and require few seeks. The histogram is limited to 20ms, any request with
a longer D2C time is shown as 20 ms. This is mostly seen when NCQ is
enabled. Note that request sizes are not taken into consideration for these
histograms.

VFS I/O system calls (3) On the right hand side there is a time line for
each process. Upon entering a system call, a gray vertical line is drawn,
and while the process is blocked we render the body blue. When the
requests are done, another gray vertical gray line is drawn. This is the
user space perspective on the schedule. Typical blocking calls are read(),
open() and stat(). A large view of a read() system call is shown in fig-
ure 2.9.

Scheduler I/O requests (3) Block requests are plotted as thin lines in the
time line for the process responsible for the request. When dispatched
from the kernel a line starts in the top, and upon completion the line ends.
This means that the angle of each line shows clearly how much time was
spent between dispatch and completion, and it also allows us to see when
requests are delayed by the NCQ mechanism in the disk.

We have also divided requests into three classes and color coded them
according to the dispatch-to-completion (D2C) time:

Cached requests are colored green, and are detected by a very low D2C
time, below 1 ms. This is most likely due to readahead caching in the
disk.

Sequential requests, 1 to 5 ms, are orange. This should cover transfer
time and track to track seeks for most disks.

Seeks are colored red, over 5 ms
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Estimated disk head position
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Figure 2.10: C-SCAN elevator visualized

These classifications are only meant for hints, and the classification
only makes sense for rotating disks, not solid state disks. As there are
often many requests with similar behavior, we have merged consecutive
requests within the same class from the same process, which are then ren-
dered as a parallelogram.

In figure 2.9, we have zoomed in on one read() request, and we can see
how the process is blocked for a while before the requests are dispatched.
We can see that once the requests have completed, the system call returns.
We also see that one of the requests required a seek: it is highlighted in red
and the angle indicates how long the disk used to process the request. In
this case, it might indicate that the file was fragmented.

Disk head position (4) We plot the estimated disk head position by draw-
ing lines between the sector offset for the disk completion events. It is an
estimate, because we do not know exactly how the disk works, but we
assume that for any logical sector address a and b,

a < b ⇒ cylinder(a) ≤ cylinder(b)

As shown in figure 2.10, this gives a good indication on what kind of
elevator algorithm, if any, is used. The bottom of the Y-axis indicates the
outermost cylinder.

Bandwidth graph (5) The bandwidth graph shows the average through-
put for the block device. When the scheduler supports bandwidth reser-
vation/QoS, we have indicated the reserved bandwidth with a red line.

The Base Workload

We have created a mixed workload which highlights the behaviour of each
scheduler. We want to evaluate the performance, latency and fairness of
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Parameters Performance
Scheduler NCQ Bandwidth (KB/s) Bandwidth % Latency (random I/O)

cfq (long slices) Off 65528 100 341
anticipatory Off 62527 95.29 266
anticipatory 15 60803 92.66 413
anticipatory 31 59989 91.42 377

cfq Off 56550 86.18 74
cfq 31 42654 65.00 101
cfq 15 40222 61.29 76

deadline 31 32069 48.87 91
deadline 15 31754 48.39 79

noop 15 31498 48.00 86
noop 31 31462 47.94 78

deadline Off 23094 35.19 83
noop Off 20795 31.69 92

Table 2.3: Results of mixed load on different scheduler configurations

each scheduler. The load includes high-bandwidth streaming requests
(Sn), random requests (Rn), and a backup process reading multiple files
(MFn). The random requests are confined to one 8 GiB large “database
file”, while the backup process traverses a full directory tree and accesses
data wherever the file system has allocated it.

Deadline I/O Scheduler Performance

The mixed load benchmark presented in figure 2.11 shows that through-
put is low when multiple streaming requests (S0−S3).The visualization of
the estimated disk head position shows that the elevator works, requests
are handled only as the elevator goes up (C-SCAN). However, in the same
graph we can also see that the elevator does approximately 16 passes over
the disk every second, which is very expensive. The reason for this is not
directly apparent from the scheduling algorithm, but by looking at the I/O
visualization, we can see that requests are not batched properly, the sched-
uler quickly switches between streams and does not handle one sequential
read() request at a time.

Further inspection of the blktrace output, shown in listing 2.2, reveals
the problem:

1. Process A queues up two sequential I/Os (Q)

2. The I/O scheduler dispatches the requests (D)

3. The request is completed and is returned to the FS (C)
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MF0 102.0 KiB/s 131 files

R0 41.0/40 KiB/s 4 KiB

R1 41.0/40 KiB/s 4 KiB

S0 5.1/8 MiB/s 4096 KiB

S1 5.1/8 MiB/s 4096 KiB

S2 4.7/16 MiB/s 8192 KiB

S3 10.2/16 MiB/s 8192 KiB

Figure 2.11: Deadline scheduler example

Dev CPU Seq Time Event Sector + Size

1: 8,16 5 462 3.586650236 Q R 90177087 + 256 [Process A]

8,16 5 466 3.586724886 Q R 90177343 + 256 [Process A]

[...]

2: 8,16 1 487 3.643737421 D R 90177087 + 512

[...]

3: 8,16 5 469 3.646509764 C R 90177087 + 512

4: 8,16 5 470 3.646582420 D R 323194943 + 1024

5: 8,16 5 472 3.646662913 Q R 90177599 + 256 [Process A]

8,16 5 476 3.646757798 Q R 90177855 + 256 [Process A]

Listing 2.2: Deadline blktrace output



Improving Disk I/O Performance on Linux 25
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S0 8.0/8 MiB/s 4096 KiB

S1 8.3/8 MiB/s 4096 KiB

S2 16.5/16 MiB/s 8192 KiB

S3 16.2/16 MiB/s 8192 KiB

Figure 2.12: Anticipatory I/O Schedule example

4. The I/O scheduler is asked to dispatch another request, and picks
the next request from the queue (D)

5. Process A queues up two new requests, sequential to the previously
completed request (Q)

When the deadline scheduler chooses the next I/O request to serve in
step 4, the file system has not yet queued up the next block in the read()

operation for process A. 80 microseconds later, the file system queues up
the request for the process, but at that time, it is too late, and the elevator
has left. The Deadline I/O scheduler does not support backwards seeking
at all, even though it is possible that the blocks succeeding the previous
request are stored in the disk drive cache due to read ahead.

Anticipatory I/O Scheduler (AS) Performance

We see that the disk head position graph for the Anticipatory I/O Sched-
uler in figure 2.12 looks very nice, and indeed the bandwidth requirements
of most streams are satisfied. This means that the anticipation algorithm
pays off in this example. The streaming processes get a consistent and low
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Figure 2.13: CFQ I/O Schedule example

read() time, and many read() system calls are serviced without interrup-
tion.

We can also see that the random reading processes, which are confined
to 8 GiB files, sometimes are serviced multiple times in a row. This means
that the anticipation logic considers it worth waiting for the process, be-
cause it has low inter-arrival times (low think time), and the 8 GiB large
data file is small enough to consider it as short seeks (better than switching
to another file).

The major problem here is that the multi-file I/O process MF0 is almost
starved. We can see that the process is allowed only one to two I/Os on each
round of the elevator. This is because the file system has placed the files all
around the file system, and the process accesses different types of data (file
metadata, directory data and file data) which are spread around the disk.
The process is only serviced when either the elevator passes by, or when
a deadline has expired (more than 125 milliseconds have passed since the
last request was queued).
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Figure 2.14: Estimated cylinders of streams

Complete Fairness Queueing (CFQ) Performance

The overall performance of CFQ is on par with what we found with the
Anticipatory I/O Scheduler, but one difference is worth noting: The multi-
file process (MF0) got far more work done, on the expense of the two high-
bandwidth streams (S2 and S3).

The definition of fairness in CFQ is that two processes with the same
priority will get the same amount of disk time. It may then be a bit confus-
ing to see the difference in throughput of two streaming processes, S2 and
S3 in figure 2.13. S3 gets much lower throughput—even though they are
in the same priority class and request the same bandwidth. This is entirely
due to zoning (shown in figure 2.3), the file used by S3 is stored on one of
the inner tracks of the disk. In figure 2.14, we have shown the estimated
physical cylinder, by using the logical address of the first block in each file.
This shows one of the issues with the time based QoS system in CFQ.

Another issue is that a proportional share scheduler does not give any ab-
solute guarantees; when priority N might be satisfactory with three read-
ers, it may turn out to be too little when another reader is added, and each
proportion consequently shrinks. In figure 2.13 we can see that the default
priority level was not enough for S2 and S3, they were unable to read 16
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MiB/s. While giving a process the highest priority level (0) and/or using
the RT class could work, we would then run into a new issue. If the pro-
cess read data faster than expected, it would starve other processes and
as a consequence they would miss their deadlines. It is difficult, if not
impossible, to combine the existing CFQ RT class with work conservation.
A process does not know whether it can read more data (to fill buffers)
without disturbing other processes.

The disk seek graph in figure 2.13 shows that there are three issues
preventing maximum global throughput:

Lack of ordering between processes The seek graph shows that there is
no elevator on a larger level, the ordering of time slices is only due to I/O
priority and is otherwise arbitrary. This may be considered a regression,
as it was not an issue with the Anticipatory I/O Scheduler.

In figure 2.15, we have indicated how a high priority best effort task
would be inserted (the black arrow) when the current time is 200. As we
can see, this is only based on service time and class, the sector is not con-
sidered at all.

For schedules involving four or more processes, this adds unnecessary
long seeks. With a schedule of only three processes, all the six possi-
ble schedules are already ordered as C-SCAN (but may be reverse). Fig-
ure 2.16 shows how the aggregate bandwidth varies with all possible per-
mutations of 7 streams4. The best order (0, 1, 3, 4, 6, 5, 2–which is SCAN
order) gives 71.8 MiB/s while the worst order (0, 6, 1, 4, 3, 2, 5) gives 67.8
MiB/s. Because CFQ does not have a top-level elevator, we cannot know
which permutation of ordering we get. If, however, the scheduler had a
top-level elevator doing C-SCAN ordering, we would probably get bet-
ter global throughput. With variable round time it will not be possible to
service all processes in one round at a time, but some reordering could be
done in order to improve performance.

The lack of reordering might either be because it is assumed that the
number of busy queues will most often be less than four, or that the gain
shown in figure 2.16 is not worth it, considering the added complexity and
response time jitter which reordering might create.

No collaboration With two or more processes seeking across the same
area (with seeking I/O like the MF0 process) global throughput could be

4There are 6! different permutations, because we have removed all permutations
which are rotations of another permutation. E.g., (2, 3, 1) and (3, 1, 2) are rotations of
(1, 2, 3)
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Figure 2.15: Insertion of a new best effort priority level 1 task into a CFQ
Service Tree
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Figure 2.17: Collaborative I/O versus strict separation between processes

improved by interleaving requests for both processes in order to minimize
total seek length. Currently, CFQ gives exclusive access to one process
during a time slice. An illustration of this issue is shown in figure 2.17.

However, with realistic benchmarks based on the original work load
we have not been able to show any significant loss of throughput: We let
two tar-processes archive two different directories, in which the file data
and inodes in both directories were interleaved. The fact that we did not
find a significant difference between CFQ and the other schedulers may ei-
ther mean that the collaboration effect is not achieved with the three other
schedulers, that the test is not good enough, or that the gain of collabora-
tive I/O is low.

With what we consider a very unrealistic scenario we did manage to
provoke worst-case behaviour in CFQ, as shown in figure 2.18. We have
N processes performing random reads alternating between the innermost
and outermost cylinder, so with a good scheduler there will be an increase
in I/Os per second for each additional process.

No re-ordering for the multi-file process An important observation is
that the multi-file process does a lot of seeking, and the CFQ scheduler
does not do anything about that. This issue is twofold:

• Because the scheduler uses time slices with exclusive access, any po-
tential in improvement due to collaboration is not utilized, as we
already explained in earlier in this section. Solving this is also diffi-
cult because we could end up with the same lack of fairness as in the
other schedulers we have discussed.

• The process uses synchronous I/O, so there is never more than one
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Figure 2.18: Collaborative I/O performance

pending request at a time. This means that the scheduler cannot do any
reordering. In section 2.3 we will study the cause of the seeking, and
a proposed solution is implemented and evaluated in chapter 4.

In chapter 3 we will try to solve the QoS and performance problems
we have found with CFQ in a streaming scenario.

Related Work In this section, we give a short summary of currently active
approaches to bandwidth management for the Linux kernel:

dm-ioband This is a bandwidth controller which is implemented above
the I/O scheduler. Bandwidth allocation is proportional share, so
like with CFQ there are no guarantees. The can only give her process
a large relative priority and hope that it is enough. Dm-ioband is
work-conserving, because tokens are refilled when all the processes
with I/O pending have used all their tokens.

cgroup io-throttle As the name says, cgroup io-throttle is only throttling
I/O, it does not reserve any bandwidth for your process. This could
be worked around by assigning a low bandwidth to the default group,
but this is not a sufficient solution. If a process in the default group is
seeking, it will consume a lot of disk time without using up its tokens.
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Io-throttle is implemented at a high level; inside the VFS and mem-
ory management code. Another problem is that the controller is not
work-conserving, so the system will not be fully utilized. Recently
a form of work-conservation was added, by disabling throttling as
long as the disk utilization is below a certain level.

BFQ This is a modification of the CFQ I/O Scheduler that uses bandwidth
instead of disk time [15]. We argue that both are needed, and that
disk time is a better alternative for sharing the disk between multiple
processes. Each process will have to be assigned a low bandwidth to
prevent starvation if a process is seeking a lot. The problem with this
is that sequential reading processes, such as media streams, are often
preempted, and the global throughput suffers.

IO Controller This is another proportional weight framework, which uses
the code from BFQ for fairness. It does not attempt to reserve band-
width or support variable deadlines.

The general problem here is that these approaches do not consider me-
dia streams, and are mostly designed to solve problems with virtualiza-
tion and that it is too easy to create a lot of asynchronous write operations,
which also consume memory until written to disk. We would also argue
that bandwidth control should be done inside the I/O scheduler for better
efficiency. More information about this subject is found at [16].
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Physical media

Figure 2.19: The position of the file system and VFS in the I/O path

2.3 The ext4 File System

In this section, we will study the on-disk layout of the ext4 file system5, in
particular we will focus on the disk access patterns when looking up files,
reading meta-data and data. This is important because it affects I/O per-
formance. We assume some knowledge of Unix file system concepts [17].
After reading this chapter you should have a good understanding of the
ext4 file system layout. We have chosen the ext4 file system because it
will most likely become the most widely deployed Linux file system when
the next versions of GNU/Linux distributions are released. The structures
and concepts introduced in this chapter will be the foundation for the tech-
niques used in chapter 4.

2.3.1 The Virtual File System

The Virtual File System (VFS) is an abstraction layer inside the kernel that
provides a common interface to the different file system implementations.
The VFS is sometimes called the Virtual File Switch, and it allows multiple
file systems to co-exist. In Unix, file systems are all sharing a common
name space, so they all make part of the same tree structure, as opposed
to in Microsoft Windows where each drive has its own root, like C: and
D:.

When a user space application enters the write() method, which takes
a file handle and some data as parameters, the generic function vfs write()

5As ext4 is a highly backwards compatible file system, it has many feature flags
which may be enabled and disabled. In this chapter, we assume that the default features
sparse super, extents, dir index, and flex bg are enabled, and that the file system was
freshly created, not upgraded from ext2 or ext3. Some of our observations may also be
specific to Linux 2.6.28.
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Parameter Value

Block size 4 KiB
Blocks per group 32768 (128 MiB)
Inodes per group 8192
Inode size 256 B
Flex group size 16 block groups (every 2 GiB)
Max extent size 215 blocks (128 MiB)
Sparse block groups 50 GB FS 12
Sparse block groups 500 GB FS 17

Table 2.4: mkfs.ext4 defaults in version 1.41.3

is executed. This function uses the file handle to invoke the file system
specific file implementation of the write() method. In figure 2.19 we have
shown the call path when the ext4 file system is used.

2.3.2 Disk Layout

Boot block Block group 0 Block group 1 Block group 2 Block group n

Super block Group Descriptor Table Other data blocks Data blocks

1 block n blocks n blocks n blocks

Sparse block group Normal block group

Figure 2.20: ext4 File System Layout

The ext4 file system divides the disk into a set of block groups, which
are logical groups of sequential blocks [18]. Each group has the same size,
which is determined during file system creation. The default values for the
current version of the file system builder mkfs.ext4 are shown in table 2.4.

Group Descriptors

Each block group is described by a Group Descriptor, stored in the Group
Descriptor Table (GDT). A group descriptor contains pointers to data and
inode allocation bitmaps, a pointer to an inode table and usage accounting
for the bitmaps.
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When the file system is mounted, the superblock and GDT are read
from disk and stored in RAM. The original superblock and GDT are stored
in the beginning of block group 0. Because the superblock and GDT data
are crucial for file system recovery, they are checksummed and backups
are stored in group 1 and groups that are powers of 3, 5, and 7. The block
groups which contain backup data are called sparse groups.6

To allow file system expansion at a later time, the mkfs.ext4 program
reserves space for some additional Group Descriptors.

Inode and Block Bitmaps

To indicate whether a block or inode is free or allocated, the file system
uses bitmaps. The bitmaps work as expected, e.g., bit 0, byte 0 is for block
0, bit 5 byte 0 is for block 5, bit 1 byte 1 is for block 9 etc. If the bit is set,
the block is in use.

Each block group has one bitmap for inodes and another for data blocks,
which are both one block in size. This puts an upper bound on the num-
ber of blocks in a block group to the number of bits in a block, which is
8 · bytes per block, i.e., 128 MiB for the default 4 KiB block size.

Virtual Block Groups (flex bg)

For better I/O performance, the bitmaps and inode tables are collected
together in every N th block group, making virtual block groups which are
N times as large. The default flex bg size is 16, so block group 0 contains
the bitmaps for group 0 to 15, and block group 16 contains the bitmaps for
group 16 to 31. In many ways, setting flex bg to N makes block groups N
times as large, effectively lifting the performance limitations imposed by
the many block groups needed for large file systems.

The meta-data blocks in the virtual block groups are clustered by type,
so the N block bitmaps are stored first, then the inode bitmaps, and finally
the inode tables.

2.3.3 Inodes

An inode data structure contains meta-data about a file or directory. The
most important fields in the inode is owner, access permission, modifica-
tion times and pointers to the data blocks. In ext4 the inodes may be 128

6In the original ext2 file system, all block groups were sparse groups. As file systems
grew, the overhead became too much, and the sparse super feature was added.
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or 256 bytes large, the latter is default. The full data structure for ext4 on
Linux is shown in listing 2.3.

The data blocks for storing the inode tables are pre-allocated at file sys-
tem creation, and the number of inodes is fixed after that—unless the file
system is re-sized. The default ratio is one inode for every 8 KiB of disk
space, which should be more than enough for most uses.

Inodes are accessed by inode number. Given an inode number you can
calculate the block where the inode is stored directly, without reading any
other data from the disk (we need the GDT but it is always stored in RAM).

2.3.4 Directories

A directory links file names to inodes, so we may refer to files using paths
instead of numbers.

dirent0 dirent1 dirent2 dirent3 direntn

Figure 2.21: Variable sized directory entries on disk

Directories are stored as linked lists of directory entries, which is a data
structure with inode number, name and type (see listing 2.4). The direc-
tories are linked lists because they are packed (the string name is variable
length on disk), which prevents random access to the directory entries
meaning that the list must be traversed and searched. The records are
padded to multiples of four bytes.

When an entry is deleted the padding of the preceding entry is ex-
panded to include the deleted entry. This can be seen in figure 2.22—
where file-4 has been deleted. Allocation of directory entries will be
discussed in section 2.3.8.

2.3.5 Large, Indexed Directories

The directory layout described in the previous section is compact and ef-
ficient for small directories, but the O(n) performance becomes unaccept-
able as the number of files within a directory grows. Directory indexes
were introduced to solve this issue and give O(log n) performance. When
the storage capacity for the directory entries in a given directory exceeds
one block, the file system transparently switches to the HTree data struc-
ture [19], and sets the inode flag EXT2_INDEX_FL.
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/*

* Structure of an inode on the disk [ simplified - Linux version ]

*/

# define EXT4_N_BLOCKS 15

struct ext4_inode {

__le16 i_mode; // File mode

__le16 i_uid; // Low 16 bits of Owner Uid

__le32 i_size_lo; // Size in bytes

__le32 i_atime; // Access time

__le32 i_ctime; // Inode Change time

__le32 i_mtime; // Modification time

__le32 i_dtime; // Deletion Time

__le16 i_gid; // Low 16 bits of Group Id

__le16 i_links_count; // Links count

__le32 i_blocks_lo; // Blocks count

__le32 i_flags; // File flags

__le32 l_i_version;

__le32 i_block[EXT4_N_BLOCKS ];// Pointers to blocks

__le32 i_generation; // File version (for NFS)

__le32 i_file_acl_lo; // File ACL

__le32 i_size_high;

__le32 i_obso_faddr; // Obsoleted fragment address

__le16 l_i_blocks_high; // were l_i_reserved1

__le16 l_i_file_acl_high;

__le16 l_i_uid_high; // these 2 fields

__le16 l_i_gid_high; // were reserved2 [0]

__u32 l_i_reserved2;

__le16 i_extra_isize;

__le16 i_pad1;

__le32 i_ctime_extra; // extra Change time

__le32 i_mtime_extra; // extra Modification time

__le32 i_atime_extra; // extra Access time

__le32 i_crtime; // File Creation time

__le32 i_crtime_extra; // extra FileCreationtime

__le32 i_version_hi; // high 32 bits for 64- bit version

};

Listing 2.3: Ext4 inode
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# define EXT4_NAME_LEN 255

struct ext4_dir_entry_2 {

__le32 inode; /* Inode number */

__le16 rec_len; /* Directory entry length */

__u8 name_len; /* Name length */

__u8 file_type;

char name[EXT4_NAME_LEN ]; /* File name */

};

Listing 2.4: Ext4 directory entry

Hexadecimal values String values

02 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 | . |

0c 00 02 02 2e 2e 00 00 0b 00 00 00 14 00 0a 02 | .. |

6c 6f 73 74 2b 66 6f 75 6e 64 00 00 0c 00 00 00 |lost+found |

10 00 05 02 64 69 72 2d 31 00 00 00 0d 00 00 00 | dir-1 |

10 00 05 02 64 69 72 2d 32 00 00 00 0e 00 00 00 | dir-2 |

20 00 06 01 66 69 6c 65 2d 33 00 00 0f 00 00 00 | file-3 |

10 00 06 01 66 69 6c 65 2d 34 00 00 10 00 00 00 | file-4 |

94 0f 06 01 66 69 6c 65 2d 35 00 00 00 00 00 00 | file-5 |

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |

Figure 2.22: Packed directory entries on disk, colors indicates inodes,
record lengths, name size, type, names, padding, and deleted.

The HTree is a BTree-like data-structure, currently limited to two levels.
The tree is indexed by a 31 or 63-bit hash of the file name. There are three
hash functions available as of Linux 2.6.28, which hash function to use is
set in the superblock. The default hash function is half-MD4.

In the first data block of the directory file, we find the root of the HTree,
which references the leaf blocks—they are also parts of the directory file.
Each leaf block is responsible for a range of hashes. In figure 2.23, we can
see that directory entries with hashes between 0x00000000 and 0x0784f05a
are found in data block 1. The leaf block is identified by the 31 most sig-
nificant bits of the first hash in the range, while the least significant bit is
used to indicate a collision which has been split (in which case the next
block range may also have to be examined).

Within the root block we find fixed size entries of 8 bytes; four byte
hash and four byte file block number. The entries are sorted, so look-up
may be done by binary search. At this point we know which data block
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0x00000000 0x0784f05a 0x0f6e72e2 0x171aac72 0xf841ecc6

HTree root, file block 0

Unsorted dirents Unsorted dirents Unsorted dirents Unsorted dirents

Leaf, file block 1 Leaf, file block 2 Leaf, file block 3 Leaf, file block N

Figure 2.23: ext4 Directory HTree

contains the directory entry, so we need to read the directory block from
disk and perform a normal linear search as in section 2.3.4.

The single level tree structure scales to directories with about 75 000
names in them—for larger directories a two level structure is used.

2.3.6 Name Look-up

The process of resolving a full path name to a file or directory, such as
/home/chlunde/master/main.tex, is a recursive process. The VFS layer in
Linux starts by looking up the inode of the root directory, /, which in ext4
has a fixed inode number of 2. From there on any path may be resolved
by looking up the next name (first home) in the current directory file to get
the inode number of the next component, until we have reached the last
directory or file name.

For performance reasons Linux implements a cache for name look-
ups, called the dentry cache (dcache). The cache uses a Least Recently
Used (LRU) based replacement policy, it is file system independent and
implemented in fs/dcache.c. A hash table is used for look-up via the
d lookup function.

All dentry objects in the dcache keep a reference to the backing inode,
which effectively forces it to be kept in memory. This means that if a path
is in the dcache, the inodes will also be cached [20].

2.3.7 Extents

An extent is a range of up to 215 contiguous blocks of file data, i.e., up to
128 MiB with 4KiB block size. Extents are used by default for all newly cre-
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/*

* This is the extent on -disk structure .

* It’s used at the bottom of the tree.

*/

struct ext4_extent {

__le32 ee_block; // first logical block extent covers

__le16 ee_len; // number of blocks covered by extent

__le16 ee_start_hi; // high 16 bits of physical block

__le32 ee_start_lo; // low 32 bits of physical block

};

/*

* This is index on -disk structure .

* It’s used at all the levels except the bottom .

*/

struct ext4_extent_idx {

__le32 ei_block; // index covers logical blocks from ’block ’

__le32 ei_leaf_lo; // pointer to the physical block of the next

// level. leaf or next index could be there

__le16 ei_leaf_hi; // high 16 bits of physical block

__u16 ei_unused;

};

/*

* Each block ( leaves and indexes ), even inode - stored has header .

*/

struct ext4_extent_header {

__le16 eh_magic; // probably will support different formats

__le16 eh_entries; // number of valid entries

__le16 eh_max; // capacity of store in entries

__le16 eh_depth; // has tree real underlying blocks ?

__le32 eh_generation; // generation of the tree

};

Listing 2.5: Ext4 extent data structures

ated data files and directories on ext47. When the inode flag EXT4 EXTENTS FL

is set, the head of the 60 byte field i blocks in the inode will be interpreted
as an ext4 extent header, as defined in listing 2.5.

The extents are stored in a variable depth three, in which the depth of
the current node is stored in the header. For small files, a list of extents will
be stored directly in the inode structure as shown in figure 2.24. In this case
we have a leaf node where depth will be 0, and the 60 bytes allow us to

7As a curiosity, we may note that we have observed that the root directory—which is
created by mkfs.ext4, not the kernel file system driver—does not use extents but the old
block pointer structure. Later versions of mkfs.ext4 may change this.
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ext4 inode
ext4 extent header

ext4 extent

ext4 extent

ext4 extent

ext4 extent

leaf node, 60 bytes disk blocks

Figure 2.24: Extent tree with depth=0
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ext4 extent

leaf node, 1 block
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Figure 2.25: Extent tree with depth=1

store an array of up to four ext4 extents. This makes direct addressing for
files up to 512 MiB possible—provided that contiguous space is available
and that the files are non-sparse.

For large, sparse, or fragmented files more extents will be required.
To support this, intermediate index nodes are provided, which are indi-
cated by having a depth deeper than 0 in the header. Inside the inode we
may then have four ext4 extent idx entries. They will point to physical
blocks, either leaves with a table of ext4 extents as in figure 2.25, or an-
other level of intermediate node with a table of ext4 extent idx for even
more extents.

While the 60 bytes in the inode can only hold four ext4 extent idxs
or four ext4 extents, a full 4KiB block may hold 340. This means a single
leaf node may address up to 340 ·128 MiB = 42.5 GiB of data, and one level
extent tree with all four leaves in use can address at most 170 GiB. While a
fully allocated two level extent tree in theory could point to 56 TiB of data,
the actual maximum file size with 4 KiB blocks is 16 TiB, this is due to the
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logical block pointers which are 32 bits.

2.3.8 Allocation

In this section we will look into the allocation algorithms used in ext4.
Because the inode and extent allocation algorithms are subject to change,
somewhat complex, and already well documented in [21], we will not go
into every detail of their behaviour.

Inode Allocation

Ext4 has a new inode allocation policy to exploit the larger virtual block
groups provided by the flex bg feature. This is implemented by the func-
tion find group flex in ialloc.c.

The allocator first checks whether the virtual block group of the parent
directory of the new inode has the following properties:

• It contains at least one free slot in the inode table

• It has more than 10% free data blocks

This results in good locality for directory tree traversal, and also in-
creases the probability that the data blocks for the inode are placed close
by, both for this and existing inodes. It allows for good locality if any of
the inodes grow at a later point.

If this search is unsuccessful, the algorithm checks if the preceding vir-
tual block group matches, hoping that maybe some data have been freed
from that group.

The third option is to pick the lowest numbered block group on the
disk matching the properties. Finally, as a last option, the block group
with the largest free block ratio is picked.

Extent Allocation

The extent allocator has two policies, depending on the current file size
and allocation request size. Both policies take a goal block as a hint, and
return blocks from pools of pre-allocated blocks in memory. The goal block
is located by ext4 ext find goal, which first tries to set the goal close to
an existing data block which is logically near in the file. If there are no such
blocks, the physical block of the best metadata structure is chosen, either
the inode itself or the leaf of the extent tree in which the block would be
inserted.
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In the first policy, used when the files are considered small, the data
blocks are taken from a per-CPU pool. The main purpose of this strategy
is to keep smaller files close together on disk.

When the existing file size plus the allocation request exceed a tunable
threshold value, the large file allocator comes into play. The threshold,
which is compared to the current file size plus the new allocation request,
is tunable in /proc/fs/ext4/<partition>/stream req, the default value
is 16 blocks. The large file allocator pre-allocates blocks per inode instead
of per-CPU, which avoids large file fragmentation.

Buddy Cache If either of the pools are empty, a buddy cache is used
to fill the appropriate pre-allocation space. The buddy cache is like the
buddy memory allocator [22], i.e., all requests are rounded up to a power
of two size on allocation. Then, the algorithm searches for a fitting extent,
or performs a split if necessary.

There are no buddy allocator data structures on disk—they are built
using the block bitmaps when needed and stored using a virtual inode.

For smaller allocation requests, the lower limit of pre-allocation is set
by either the /proc tunable group prealloc (defaults to 512 blocks) or the
RAID stripe size if configured during mount (mount -O strip=<size>).

Delayed allocation Just like the write requests from the file system to
the block layer, block allocation requests from the VFS to the file system
also come one block at a time when using buffered I/O, even if the user
space process issues a multi-block write.

With delayed allocation, the file system merely reserves space. It does
not allocate any physical blocks when the VFS requests data blocks. Later,
when the pages are flushed to disk, pages with no physical mapping are
clustered and then allocated and submitted to the block layer for disk
write.

User space initiated allocation To avoid fragmentation, user space ap-
plications should take advantage of the posix fallocate function, which
allocates data blocks in the specified range of the given file. Upon success-
ful return, subsequent calls to write in the allocated space are guaranteed
not to fail due to lack of disk space.

In the ext4 file system, this library function is backed by the system call
sys fallocate, which allocates large contiguous extents8, and the data

8the file must be extents based
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blocks are not initialized directly but just marked as uninitialized (the
highest bit in the extent length field is set).

On the ext3 file system, the library method posix fallocate behaviour
is often undesirable, because it simply writes blocks of null-bytes to re-
serve storage by using pwrite. This wastes resources, the disk must write
useless data, and the task doing the reservation is blocked during the writ-
ing. As the implementation is generic and not done in the file system, there
is really no guarantee that fragmentation will be avoided by using the sys-
tem calls.

Dirent Allocation

Hexadecimal values String values

02 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 | . |

0c 00 02 02 2e 2e 00 00 0b 00 00 00 14 00 0a 02 | .. |

6c 6f 73 74 2b 66 6f 75 6e 64 00 00 0c 00 00 00 |lost+found |

10 00 05 02 64 69 72 2d 31 00 00 00 0d 00 00 00 | dir-1 |

10 00 05 02 64 69 72 2d 32 00 00 00 0e 00 00 00 | dir-2 |

10 00 06 01 66 69 6c 65 2d 33 00 00 21 00 00 00 | file-3 |

10 00 06 01 66 69 6c 65 2d 36 00 00 10 00 00 00 | file-6 |

10 00 06 01 66 69 6c 65 2d 35 00 00 20 00 00 00 | file-5 |

84 03 0a 01 6c 6f 6e 67 6e 61 6d 65 2d 36 00 00 | longname-6 |

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |

Figure 2.26: Figure 2.22 after insertion of “longname-6” and then “file-6”.
Colors indicate inodes, record lengths, name size, type, names and
padding.

When a name is linked to a file name, a new directory entry is allo-
cated. The allocation of directory entries is rather simple, if the directory
is indexed, the leaf block with the matching hash is located, otherwise
block 0 in the directory file will be used.

A linear scan then locates the next free space (i.e., gray area in fig-
ure 2.22) large enough for the new directory entry. This means a file named
longname-6 would be appended after file-5, while a shorter file name
file-6 would be inserted in the seventh line in the figure, as we have
shown in 2.26.

If the directory entry does not fit within the block a split will be per-
formed, the directory entries are rehashed and divided in two equally
sized lists. The directory index will be updated to refer to the new blocks.
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If the directory index is full and there is only a single level, it will be con-
verted to a two-level structure. Otherwise a new second level index is
added.

No garbage collection or packing is performed except for after a split,
which means there may have been enough room in the original leaf node,
and that the new leaf nodes may be less than 50% full after the split.

Another issue with the lack of garbage collection is that a directory that
was once large will not shrink.

2.3.9 Journaling

The concept of journaling in file systems, or Write Ahead Logging (WAL)
as it is called in database systems, was introduced to improve speed and
reliability during crash recovery. The journal feature of ext4 (introduced
in ext3, see [23]) is a circular buffer in which disk writes are logged before
they are written to the main file system. This allows recovery because at
all times the set of blocks which might be inconsistent is known, and the
blocks are stored in a consistent state; either the new version in the journal,
or the old version on the main file system.

The journaling feature has a large impact on the patterns of disk writes
as seen from the I/O scheduler. While full data journaling increases the
amount of writes by a factor of two, because data is written to both the
journal and the main file system9, the write patterns become much nicer.

The writes to the data journal, which may be either a pre-allocated file
(represented using an inode number stored in the superblock–normally
and extents based file with inode number 8), or a separate block device, are
very sequential due to the nature of the log (append-only circular buffer).

Unless the file system is very small or a custom block or journal size
is used, the journal will be 128 MiB large and stored in the middle of
the file system, in a non-sparse block group without any inode tables and
bitmaps.

After data is written to the journal, the file system may delay writing
the data to the main file system longer than it could have done without
journaling, especially when system calls such as fsync are used.

As shown in [24], the impact of journaling depends on the workload.
For sequential writes, full data journaling may halve the bandwidth, while
metadata journaling has low cost. On the other hand, with highly random

9It should be noted that it is possible to journal only metadata operations through a
mount option
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PG readahead
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Figure 2.27: Readahead state

workloads data journaling may give a factor of 10 in performance gain,
while plain metadata journaling again has little to no overhead.

2.3.10 Readahead and Caching

The basic idea behind readahead is to speculatively read blocks of data
before the application requests them, so the application does not have to
wait for the time consuming task of fetching data from the disk.

File Data Readahead

For readahead to be effective, there must be either predictability in the
I/O patterns from a file, explicit hinting from the application, or even
explicit readahead. The Linux kernel has a file system independent im-
plementation of file data readahead for buffered I/O in mm/readahead.c.
“On-demand readahead” [25] as the current algorithm is called, was in-
troduced in kernel version 2.6.23.

The maximum benefit of readahead is when full pipelining is achieved:
data is always ready before the application needs it. The on-demand reada-
head algorithm tries to achieve this by creating a lookahead-window after
the readahead window. The last page in the readahead window is flagged
with PG readahead. When the flagged page is accessed through the page
cache, the window ranges will be updated. This ensures there is data to
process while fetching new data from disk.

In each struct file there is accounting data for the readahead algo-
rithm, as show in listing 2.6. An application may influence the behaviour
of the readahead algorithm by explicitly hinting what kind of I/O pattern
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/*

* Track a single file ’s readahead state

*/

struct file_ra_state {

pgoff_t start; /* where readahead started */

unsigned int size; /* # of readahead pages */

unsigned int async_size; /* do asynchronous readahead when

there are only # of pages ahead */

unsigned int ra_pages; /* Maximum readahead window */

int mmap_miss; /* Cache miss stat for mmap accesses */

loff_t prev_pos; /* Cache last read () position */

};

Listing 2.6: Readahead-state in file handle

it has. The system call posix fadvise is used for declaring the file access
pattern. Three of the flags are of interest for us here:

POSIX FADV NORMAL The default behaviour. Heuristics will deter-
mine if readahead is to be done.

POSIX FADV SEQUENTIAL The application notifies that accesses are
expected to be sequential, so the Linux kernel doubles the maximum
readahead size.

POSIX FADV RANDOM Accesses are expected to be random so reada-
head will be disabled.

For explicit readahead, an application may either use the system call
readahead, or the flag POSIX FADV WILLNEED to posix fadvice. Both oper-
ations initiate asynchronous I/O of pages in the requested range to popu-
late the page cache.

Inode Readahead

In section 2.3.5, we explained that directory entries are stored in a random
order when there are many files in the same directory. One problem with
this is that if one wants to read all the inodes which the directory holds,
and read them in the order returned from the file system, the disk will
have to do a lot of seeking. Inode readahead tries to mitigate this issue.

When an inode needs to be fetched from disk the ext4 file system does
not only read the block which contains the inode, but it also issues reada-
head requests for a larger part of the inode table. This is a spatial locality
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b0 b1 b31 b32 b33 b34 b63 b64 b65 b95

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15

Inode table in block 33

Blocks stored in page cache

Inode stored in inode cache

Figure 2.28: ext4 inode readahead

speculation from the file system, and if correct, the latency for nearby in-
odes is greatly reduced. Recall from section 2.3.8 that the inode allocation
strategy is to place inodes close to the parent inode. The latency penalty
for the larger read request is is relatively low. Another consideration is that
we most likely will have to flush some other pages from the page cache to
store the new data.

In figure 2.28 we show what happens when the fifth inode stored in
block 33 is needed. The file system requests 32 blocks from the disk,
aligned to 32. The blocks will be placed in the page cache, while the inode,
once read from disk, will be placed in the inode cache.

The number of blocks to be read may be tuned at mount time by setting
the mount option inode readahead blks, or at any later time by using the
/proc file with the same name. The default value is 32 blocks, which on a
standard file system means that blocks for 4096/256 · 32 = 512 inodes will
be cached.

Only the requested inode will be parsed and stored in the inode cache,
the other blocks will end up in the page cache and are parsed only if re-
quested at a later time.

2.3.11 Implications of the File System Design

In this section, we will give a short summary of how the ext4 file system
design will affect the access pattern of an application, and we will focus
on applications reading multiple files. The issue with these applications
is that they require seeking because of how the file system has allocated
the data, and the I/O scheduler cannot reorder the I/O, because such ap-
plications only have one pending request at a time. Examples of such
applications include zip, recursive copy and text indexing.
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Metadata / Inodes

Small, new directories will often have files ordered by inode number, and
the data is likely to have the same order as the inodes. However, when
the directory grows and needs more than one block, the order effectively
becomes random due to the hashing (see section 2.3.5). Within one file
system block there could be a better ordering, but currently it is arbitrary.
Even smaller directories have this issue, because when files are deleted
and new are created, the listing will be unordered. As a consequence,
reading the metadata for all files in a directory often becomes more expen-
sive over time. The ext4 file system has introduced “inode readahead” to
mitigate this issue somewhat, but it depends on spatial locality for related
inodes, and with time it is likely that this property is reduced. Therefore,
reading all metadata in a directory tree will likely be an operation requir-
ing multiple disk seeks.

File Data Placement

In section 2.3.8, we explained how data blocks for new files were placed
close to the corresponding inode, which again is allocated close to the par-
ent directory inode, as long as there is room for data in that virtual block
group. However, when the space in that block group has been used, an-
other block group is used. This means that we may have to seek back and
forth between block groups when we have new and old files in a directory.
Another issue is that when we read multiple files, we jump back and forth
between file data and meta data for each file we read.

Evaluation of Data Ordering Cost

blktrace

btreorder

btreplay

Figure 2.29: Trace replay data flow

In this section, we will try to quantify the cost of the order in which
a program issues I/O. This will show us if there is any potential in opti-
mizing a program by reordering requests. To do this, we have developed
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a tool which couples with blktrace (the I/O tracing tool introduced in
section 2.2.3). blktrace records all data I/O requests, so we can use the
output to evaluate the performance of alternative orderings of the same
requests. We use the existing btreplay tool to replay the trace, as shown
in figure 2.29.

Our cost evaluation tool reorders the I/O request by sector number, in
order to minimize seeks. We will define “best case performance” as the
same I/O operations as the current implementation requires, done with-
out any inter-request latency and dispatched sorted by block number. Be-
cause we run the trace on the same disk, with data placed by the file sys-
tem, we get a more accurate result than if we had used a pure software
simulation.

Because there often will be some data dependencies and processing
time required, it will probably not be possible to achieve the performance
of all data read with one arm stroke, but it will still be a good indicator of
whether optimizing the I/O pattern of the system is worthwhile.

To simulate data dependencies, a situation where some data must be
read before other data, we allow the evaluated software to inject barriers
into the trace. Barriers are inserted by writing the literal string “barrier”
to /sys/kernel/debug/block/<blockdev>/msg. Our reordering-program
considers the barriers as ordering constraints: all requests logged before
the barrier must be executed before the requests found after the barrier.

Implementation and Usage The evaluation method requires the user to
benchmark the evaluated software while running blktrace to record all
I/O operations. Then the user can run our reordering-program to create a
new, sorted trace. To avoid data corruption, our program will issue write
operations as reads, which tend to be somewhat faster than writes. Be-
cause we want to define an upper limit of the performance, this is not an
issue. The sorted trace is replayed using the btreplay program.

Evaluating the tar Program In figure 2.30, we have shown the execution
time of the unmodified GNU Tar program, the reordered trace, and how
long it would take to read the same amount of data if it was allocated as
one file. The result shows us that we can remove up to 35% of the run-
time by reordering the I/O for the particular directory we archived (250
files spread over 8 subdirectories on an ext4 file system). We expect the
improvement factor to increase as the number of files increases, and de-
crease for smaller file sets. The actual possible improvement is less than
this, because we did not put any barriers in the trace, and there are data
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As one file Sorted (no seeks) GNU Tar

Figure 2.30: Potential in improvement for 250 files, total 7.88 MiB

dependencies (directories must be read to find new files, inodes must be
read to find the file data location). Additionally, the CPU time of the appli-
cation is not considered. Although some of the problems discussed here
have been ext4 specific, such as hashing, the general concept should be
valid for most file systems with directories and files.

The number for “As one file” shows us how long it would take to read
the data if it was done as one sequential read of a file without any gaps. We
cannot reach this performance without modifying the allocator algorithms
in the file system, which we consider out of scope for this thesis.

2.4 Summary

We have shown how the I/O schedulers have evolved in Linux, and that
there is currently no satisfactory QoS system for handling concurrent me-
dia streams with bandwidth and latency requirements. We have also shown
how the file system stores data, so we know what data needs to be read in
order to fetch metadata and file data. While the file allocator may try to
keep related information close together, it cannot predict all usage cases,
consequently there is bound to be seeking. In the next chapter, we will
implement I/O scheduler changes in order to improve performance and
QoS support, and in chapter 4, we will look at how applications can solve
many of the seeking issues the file system creates—and which the sched-
uler cannot do anything about.
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Chapter 3

Adding QoS to CFQ

In this chapter, we will design, implement and evaluate a QoS class for
the CFQ I/O scheduler. Our main concern with the CFQ I/O scheduler
is that proportional share is not a good match for multimedia with hard
requirements for latency and bandwidth. We propose a solution to this by
adding a new priority class to CFQ.

The main problem with the existing solutions is that they are often spe-
cial purpose schedulers, which are not suited for server consolidation,
where one wants to mix proportional share with fixed rate and dead-
line requirements. There are no available solutions included in Linux
2.6.29. There are several projects working on similar problems, but they
are mostly for virtualization solutions, and instead of guaranteeing at least
a certain bandwidth, they throttle to a bandwidth, without any work-
conservation. This would mean that we would have to configure throttling
of all processes if we wanted to guarantee a bandwidth for a single process.
We do not consider this desirable on a multimedia/content server.

3.1 Design

With this in mind, we design a new QoS class for the CFQ I/O Scheduler,
which we call Bandwidth (BW), which reserves bandwidth in terms of
bytes per second in contrast to proportional disk time. The solution has
the following design requirements and properties:

3.1.1 Non-intrusive

The implementation should not change the behaviour of the existing RT,
BE and Idle classes of the scheduler. If there are no active BW class streams,

53
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Figure 3.1: Priority levels in modified CFQ

the system should work as it does today. The class should be placed be-
tween the RT and BE classes, any real-time requests should be able to pre-
empt the BW class.

3.1.2 Bandwidth (QoS)

An application must be able to request a specific bandwidth, and this
bandwidth should be delivered to the application at the expense of any
BE-class readers. The bandwidth should be measured by throughput as
bytes per second, not with disk time and not proportional to load. In gen-
eral, a process should not disturb other processes if it tries to use more
bandwidth than it has reserved, and a BW process within its reserved
bandwidth should not be affected by any BE process.

3.1.3 Request Deadlines (QoS)

To control buffer requirements in the client, an individual process may
specify a deadline for its requests. The deadlines will only be soft, for
two reasons: We do not implement proper admission control in the I/O
scheduler, and we do not estimate the cost of I/O operations. There are
still several advantages over the deadline support in the existing Linux
I/O schedulers, which will make this solution far better for multimedia.

Deadlines in best effort CFQ are only relative to other requests the pro-
cess has made, they do not affect when a process’ queue is scheduled. In
the Anticipatory I/O Scheduler and Deadline I/O Scheduler, deadlines
are attached to requests from the VFS when they are queued. This means
that if a read() has been split in two separate requests, the requests may
be assigned two different deadlines. This is a problem if for example a
read() operation needs to fetch an extent map block:
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Consider an example where the scheduler operates with a 200 ms dead-
line, and we ask for 1 MB of data, which crosses boundaries of two extents.
The first half, including the extent map, may be scheduled, e.g., after 150
ms. When the extent map is returned, a new request will be sent to the
scheduler, with a new deadline of 200 ms, effectively setting a 350 ms
deadline in this example. To avoid this, we do not assign a new dead-
line for consecutive requests with little idle time in between (at most 2
ms). This allows the VFS to parse the extent map and dispatch the new
request.

3.1.4 Work-conservation

Any reserved bandwidth which is unused should be redistributed fairly
amongst BE class readers, because it is important to support work-conservation
to maximize global throughput. If no BE-class readers have requests queued,
the BW-class readers who have exceeded their reserved bandwidth, but
have pending requests, should be able to consume all the available band-
width, as shown in figure 3.1.

There might be a number of reasons why a stream may reserve more
bandwidth than it requests, for example Variable Bit-Rate (VBR) video and
buffering. Conversely, VBR and caching might mean that the consumed
bandwidth is less than the reserved bandwidth.

For simplicity, we only enter work-conservation in the BW class when
there are no BE class readers with requests pending. A more complex
implementation might treat a BW reader as a BE reader when they have
exceeded the reserved bandwidth. We have not defined a policy for fair
sharing of the extra bandwidth between BW class readers in the current
design.

3.1.5 Global Throughput

To the extent allowed by the request deadlines and other requirements of
the system, the scheduler should optimize the requests for higher global
throughput by using an elevator.

3.1.6 Admission Control

A key component for getting a QoS system to work is admission control,
a component which receives the QoS-requirements from an application
(and characteristics about the round time, which file is going to be read,



56 Improving Disk I/O Performance on Linux

etc), and judges whether the I/O scheduler will be able to serve the stream
within the parameters. If we grant all requests for bandwidth and low
latency, the promises will be broken.

Because we allow the RT class to preempt BW queues, an admission
control system must also control RT class streams. To limit the scope of this
thesis, we will not implement any admission control, we think this should
be implemented outside the kernel I/O scheduler. There are several rea-
sons for implementing the admission control in user space. For example,
the admission control component could keep information about the per-
formance properties of the disks in the system, and also know where files
are positioned to take zoning into account.

A simple solution would be a daemon running as root, which an un-
privileged process could contact using Inter-Process Communication (IPC)
when it wants to reserve bandwidth. If the request is granted, the ioprio set

system call would allow the daemon to change the I/O priority of the re-
questing process.

3.2 Implementation

In this section, we will describe how we have chosen to implement the
requirements and properties outlined from the “Design” section.

3.2.1 Bandwidth Management

Managing bandwidth with token buckets is a normal strategy for QoS and
data rate control in networking systems. It has also been used before in
disk scheduling, such as in the APEX I/O Scheduler [26]. Token bucket
allows bursts, which are needed for good performance in a streaming sce-
nario. If we instead used the leaky bucket, it is likely that we would run
into the same seeking problem [27] as we showed with the Deadline I/O
Scheduler. Even though bursts are allowed, we get good control over av-
erage bandwidth.

We have introduced four new variables to the per-process cfq_queue

data structure. They are only valid if the process is in the bandwidth class:

bw last update The time, measured in internal clock ticks (“jiffies”), since
we last gave tokens to this process. In the Linux kernel, the constant
HZ defines how many clock ticks there are per second. On our sys-
tem, this has a value of 1000, which allows for millisecond granular-
ity.
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bw iorate The average rate, measured in bytes per second, at which this
process is allowed to do I/O (unless we are in work-conservation
mode). More specifically, it is the rate at which tokens are added to
the bucket. This value is set by the user to control the bandwidth.

bw tokens The number of tokens in the bucket. Each token represents one
byte. We have chosen a signed integer for this value, so the number
of tokens may become negative. This will be explained later. When
a process queues its first I/O request, we fill the bucket with one
second worth of tokens.

bw bucket size The maximum value of bw tokens, i.e., how many tokens
we may have in the bucket. This value is set by the user and controls
the burstiness allowed. It is important that the round time is consid-
ered when setting the bucket size. If a process has a round time of
two seconds, i.e., it issues a read() request every other second, the
bucket size must minimum be twice the I/O rate.

bw delay The maximum delay from a request has been queued until it
should be dispatched, i.e., the deadline. This value is controlled by
the user, who must also consider execution time of the request, and
any other requests which might expire at the same time, when he/she
wants to control the time each read() request may take. By setting a
longer deadline the I/O scheduler with get more room for optimiz-
ing the I/O schedule, i.e., to dispatch requests in an order different
from FIFO/Earliest Deadline First (EDF).

Management of the bw tokens variable is fairly simple: When a request
is dispatched, we remove the same amount of tokens from bw tokens as
the size of the request, converted to bytes. When we want to check if there
are tokens available in the bucket, e.g., before dispatching a request, we
must first check if any time has passed since we last updated the bucket.
The new number of tokens is calculated as:

bw tokens = bw tokens +
bw iorate · (jiffies − bw last update)

HZ

However, if the number of tokens is larger than bw bucket size, we set
the number of tokens to this value. If we are in work-conservation mode,
the number of tokens may be negative. Consider a case where a process
has been allowed to dispatch 40 MiB of I/O in one second, because no one
else used the system. If the iorate of the process was only 1 MiB/s this
would mean that the bucket would have -39 MiB tokens. If the system
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then became 100% utilized with best effort processes we would not be
allowed to schedule until 39 seconds have passed and there were tokens
in the bucket again. While this is fair regarding the average bandwidth, 1
MiB/s, it would often be undesirable and could be considered unfair. To
limit this effect we only allow the bucket to have bucket size

2
negative

tokens after work-conservation. By allowing the user to adjust the limit,
this effect can be tuned, or completely disabled.

3.2.2 Deadline Support

For deadline support, we modify the original service tree, which we have
named deadline_service_tree. The tree is sorted by queue type and
deadline, which means that we can peek at the leftmost leaf to check if
a deadline is reached. The first-level sorting (on classes) is as expected,
RT, BW, BE, and lastly Idle, as shown in figure 3.1. The leftmost leaf of the
deadline tree is checked to see if the either if a BW deadline has expired,
or if there is an active RT queue. Either way this task will be serviced. In
any other case, the sector sorted tree is used to pick the next queue.

We already mentioned the user-controllable per-process variable bw -

delay. When a new request is dispatched, we use this value to insert the
process into the deadline service tree. This is the weakest part of our im-
plementation, we do not consider our neighbours when inserting a process
into the deadline tree. If we have bad luck, there may be several processes
with a deadline the same millisecond. This means deadlines are only best
effort. We still argue that per-process deadlines in a higher priority QoS
class are far better than the existing best effort alternatives.

An important consideration is to find a good deadline after a process
has been in work-conservation mode (i.e., got higher bandwidth than re-
quested). We already mentioned limiting the number of negative tokens to
half a bucket. The deadline for a process with negative tokens is calculated
as the time when the number of tokens becomes zero plus the bw delay

variable.

deadline = jiffies +
−bw tokens · HZ

iorate
+ bw delay

3.2.3 Inter-process Elevator

Because requests in the BW class will have known deadlines, we have
more flexibility for the scheduler than the RT class. To increase global
throughput, we try to minimize seeks by servicing requests in C-SCAN-
order for as long as possible, until a deadline is reached. We introduce a
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new data structure for each block device, which contains all active queues
ordered by the lowest request in the queue. For performance reasons, we
will use a Red-Black tree [7], a self-balancing binary tree with O(log n)
look-up and insertion. We call this the sort_service_tree. We only insert
BW class processes into this tree, as they are the only processes we are able
to reorder without disturbing the fairness of the existing implementation.

3.2.4 Queue Selection

The queue selection algorithm runs whenever a new request may be dis-
patched to the underlying dispatch queue. Before doing so, a check is
performed to see if the currently active queue should be expired or pre-
empted. This will happen if any of the following conditions are true:

• The current queue is time sliced, and the time slice has expired

• The current queue is a BW class queue with a negative amount of
tokens, and any of the following:

– the next deadline is up

– the next process is a BE process

• There is an active Real-Time queue (preemption)

• There is an active BW queue with tokens in its bucket (preemption)

• The current process has no I/O queued, and process history says
that it is not likely to issue new non-seeky requests shortly, a small
(typically 2-8 ms) delay is done to wait for new I/O. This is the antic-
ipation implementation in CFQ, also known as the idle window. For
BW class readers we have limited the anticipation to 2 ms because
we expect only to wait for the VFS layer, not the process itself.

If none of these cases are true, we dispatch I/O for the current process
or wait for it to queue new requests.

The queue selection (implemented in cfq_set_active_queue) is done
in the following order:

1. The RT queue with the lowest deadline

2. The process at the head of the deadline service tree, if its scheduling
deadline has expired. Note that in the presence of a BW class, the
head will never be a best effort process, because they are ordered by
class before deadline.
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3. The BE class with the shortest deadline, if no BW class process has
tokens left

4. The BW class in C-SCAN elevator order (or SSF, if configured to do
so). The elevator starts wherever the disk head is assumed to be.
This means that if an RT stream preempted a BW stream, and po-
sitioned the disk head in a completely different place, the elevator
would continue in the new place, not the preempted stream.

5. The head of the deadline service tree

This order was chosen because it attempts to achieve all the qualities
we specified in the design section.

3.3 Evaluation

We have done a performance evaluation of the new BW class compared
to the existing solutions available in Linux 2.6.29. We have methodically
designed scenarios to confirm or disprove that the implementation fulfils
the design requirements.

To create a realistic multimedia scenario we consider a server which
provides streaming video to multiple clients. High definition video (1080p)
on the most popular storage format today (Blu-ray) has a theoretical max-
imum bitrate of 48 Mbit/s. We believe that the average bitrate for most
high definition movies are around 25 Mbit/s (3 MiB/s), so we have cho-
sen this bitrate for our video streams. To make sure the scheduler could
handle different bandwidths, we added another class of video streams,
CBR video at 1 MiB/s, which is at the upper side of DVD bandwidth.

In this section, we have used the word “greedy reader” for a process
which consumes data at a rate faster than the disk can provide, for exam-
ple the program md5sum consumed 325 MiB/s on our system, while the
data rate of the disk is around 50-110 MiB/s.

3.3.1 Performance Limitations and Need for QoS

In the first scenario, we wanted to investigate what the maximum number
of reserved readers is, that we could add while still maintaining deadlines.
Each reserved reader had a deadline of one second for each request, so the
scheduler had to serve each stream once per second.

We also wanted to evaluate how the priority methods available in the
scheduler would allow us to run other jobs concurrently at best effort, so
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we also added three processes doing random reads of 4 KiB, at most 20
times per second. Another set of best effort readers was added to see how
streaming processes would impact the system performance and reserved
readers, so we added five processes doing streaming at up to 4 MiB/s
with a block size of 64 KiB. Note that we do not evaluate the performance
of these streams: we are pushing the reservations to the maximum, with
the consequence that they will be starved. If this is considered a problem,
the admission control system must deny reservations before this happens.

Streams CFQ AS Deadline noop
1 MiB/s 3 MiB/s BW SSF BW C-SCAN RT

16 10 0 0 0 479 345 281
17 10 0 0 0 482 330 398
18 10 0 0 0 492 300 783
19 10 0 0 0 512 276 1061
20 10 0 0 179 505 288 1123
21 10 0 0 186 531 381 1075
22 10 0 0 276 517 947 1061
23 10 0 0 N/A 549 1233 1064
24 10 0 0 N/A 553 1276 1054
25 10 182 188 N/A 536 1279 1033

Table 3.1: Deadline misses with 1 s deadline / round

The results are shown in table 3.1. We started with 10 1080p-streams
and 16 DVD streams, which all the CFQ-based solutions could handle, but
the lack of any QoS in AS, Deadline and noop meant that they were unable
to handle the RT streams any differently from the others, so the deadlines
are missed. This shows that a priority mechanism is needed and useful in
this scenario.

As we increased the number of DVD streams to 20, the RT class in
CFQ failed to maintain the deadlines. We contribute this mainly to the
fact that the RT class serves the streams in a FIFO-like order, without any
high-level elevator. We can see that the BW class we created, which does
reorder streams, can handle 5 more streams. In figure 3.4 we have shown
how the elevators affect the disk head position. The conclusion is that it
is worth adding re-ordering between streams, which in this case allowed
us to have 17% more streams. The design goal of achieving higher global
throughput has been achieved.

When the number of streams was increased to 33, we discovered a new
problem with the RT class: one stream was completely starved (no I/O).
This is the reason for “N/A” in the table. Similar behaviour occurs for BW
but at a later time. Proper admission control should, however, never allow
this to happen, so we do not consider this a problem with the schedulers.
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Estimated disk head position

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

64 MiB/s

Aggregate bandwidth

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

0-1s

read()

0-20ms

D2C Reads and I/Os

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

S4 −0.0/4 MiB/s 64 KiB

S3 −0.0/4 MiB/s 64 KiB

S2 −0.0/4 MiB/s 64 KiB

S1 −0.0/4 MiB/s 64 KiB

S0 0.0/4 MiB/s 64 KiB

SD21 1.0/1 MiB/s 1024 KiB 11

SD20 1.0/1 MiB/s 1024 KiB 10

SD19 1.0/1 MiB/s 1024 KiB 10

SD18 1.0/1 MiB/s 1024 KiB 11

SD17 1.0/1 MiB/s 1024 KiB 8

SD16 1.0/1 MiB/s 1024 KiB 8

SD15 1.0/1 MiB/s 1024 KiB 8

SD14 1.0/1 MiB/s 1024 KiB 10

SD13 1.0/1 MiB/s 1024 KiB 8

SD12 1.0/1 MiB/s 1024 KiB 9

SD11 1.0/1 MiB/s 1024 KiB 7

SD10 1.0/1 MiB/s 1024 KiB 10

SD9 1.0/1 MiB/s 1024 KiB 11

SD8 1.0/1 MiB/s 1024 KiB 9

SD7 1.0/1 MiB/s 1024 KiB 8

SD6 1.0/1 MiB/s 1024 KiB 7

SD5 1.0/1 MiB/s 1024 KiB 7

SD4 1.0/1 MiB/s 1024 KiB 9

SD3 1.0/1 MiB/s 1024 KiB 8

SD2 1.0/1 MiB/s 1024 KiB 8

SD1 1.0/1 MiB/s 1024 KiB 8

SD0 1.0/1 MiB/s 1024 KiB 10

DB2 0.0/80 KiB/s 4 KiB

DB1 0.0/80 KiB/s 4 KiB

DB0 0.0/80 KiB/s 4 KiB

HD9 3.0/3 MiB/s 3072 KiB 7

HD8 3.0/3 MiB/s 3072 KiB 10

HD7 3.0/3 MiB/s 3072 KiB 10

HD6 3.0/3 MiB/s 3072 KiB 11

HD5 3.0/3 MiB/s 3072 KiB 9

HD4 3.0/3 MiB/s 3072 KiB 9

HD3 3.0/3 MiB/s 3072 KiB 8

HD2 3.0/3 MiB/s 3072 KiB 9

HD1 3.0/3 MiB/s 3072 KiB 12

HD0 3.0/3 MiB/s 3072 KiB 9

Figure 3.2: CFQ RT streams ends up with deadline misses
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Estimated disk head position

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

64 MiB/s

Aggregate bandwidth

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

0-1s

read()

0-20ms

D2C Reads and I/Os

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

S4 −0.0/4 MiB/s 64 KiB

S3 −0.0/4 MiB/s 64 KiB

S2 −0.0/4 MiB/s 64 KiB

S1 −0.0/4 MiB/s 64 KiB

S0 0.0/4 MiB/s 64 KiB

SD23 1.0/1 MiB/s 1024 KiB

SD22 1.0/1 MiB/s 1024 KiB

SD21 1.0/1 MiB/s 1024 KiB

SD20 1.0/1 MiB/s 1024 KiB

SD19 1.0/1 MiB/s 1024 KiB

SD18 1.0/1 MiB/s 1024 KiB

SD17 1.0/1 MiB/s 1024 KiB

SD16 1.0/1 MiB/s 1024 KiB

SD15 1.0/1 MiB/s 1024 KiB

SD14 1.0/1 MiB/s 1024 KiB

SD13 1.0/1 MiB/s 1024 KiB

SD12 1.0/1 MiB/s 1024 KiB

SD11 1.0/1 MiB/s 1024 KiB

SD10 1.0/1 MiB/s 1024 KiB

SD9 1.0/1 MiB/s 1024 KiB

SD8 1.0/1 MiB/s 1024 KiB

SD7 1.0/1 MiB/s 1024 KiB

SD6 1.0/1 MiB/s 1024 KiB

SD5 1.0/1 MiB/s 1024 KiB

SD4 1.0/1 MiB/s 1024 KiB

SD3 1.0/1 MiB/s 1024 KiB

SD2 1.0/1 MiB/s 1024 KiB

SD1 1.0/1 MiB/s 1024 KiB

SD0 1.0/1 MiB/s 1024 KiB

DB2 0.0/80 KiB/s 4 KiB

DB1 0.0/80 KiB/s 4 KiB

DB0 0.0/80 KiB/s 4 KiB

HD9 3.0/3 MiB/s 3072 KiB

HD8 3.0/3 MiB/s 3072 KiB

HD7 3.0/3 MiB/s 3072 KiB

HD6 3.0/3 MiB/s 3072 KiB

HD5 3.0/3 MiB/s 3072 KiB

HD4 3.0/3 MiB/s 3072 KiB

HD3 3.0/3 MiB/s 3072 KiB

HD2 3.0/3 MiB/s 3072 KiB

HD1 3.0/3 MiB/s 3072 KiB

HD0 3.0/3 MiB/s 3072 KiB

Figure 3.3: CFQ BW streams handled within deadline (C-SCAN)
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0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

(a) CFQ RT (no elevator)

Estimated disk head position

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

(b) CFQ BW SSF

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

(c) CFQ BW C-SCAN

Figure 3.4: Disk head position with 34 media streams

3.3.2 Isolation

As put in the design requirements, there are two types of isolation we want
from our system:

Best Effort Readers Should Not Affect Reserved Readers

If a BW schedule runs without any deadline misses in an isolated system
where there are zero best effort readers, it should also do so in the presence
of an arbitrary amount of best effort readers.

The first test to see if this goal has been reached, is a simple benchmark
based on the previous section: we remove all best effort readers from the
first scenario with deadline misses (35 reserved readers). If the number
of deadline misses is consistently less, we know the goal has not been
reached. The result in figure 3.5 shows little change in deadline misses
when we remove all the best effort readers.

Another test for the same requirement is to have a scenario where best
effort classes are scheduled more often, so we can verify that the preemp-
tion is working. We create a scenario where the base time slice of a BE
class is one full second, i.e., the best effort readers would get exclusive
access to the disk for one full second each. This would cause severe dead-
line misses when we set the scheduling deadline to 50 ms for two BW class
readers at 3 MiB/s. A danger with preemption is that it may break the fair-
ness property of the best effort class. We will therefore run this test with
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Figure 3.5: Boxplot of deadline misses for BW streams with (“Full”) and
without BE presence (“Isolated”). 60 runs of each scenario

and without BW readers to see if we find any hints that the non-intrusive
design goal has been breached.

Stream Latency Bandwidth
< 100 ms 100-1000 ms 1000 ms+

Video BW3 A 100 % 0 % 0 % 3.0 MiB/s
Video BW3 B 100 % 0 % 0 % 3.0 MiB/s
Greedy BE4 A 96.43 % 0.42 % 3.15 % 48.73 MiB/s
Greedy BE4 B 96.91 % 0 % 3.09 % 49.65 MiB/s

Table 3.2: 3 MiB/s streams in BW class preempting long time best effort
slices

The results in table 3.2 shows that preemption works; otherwise there
would be latency of over 500 ms visible, as it is when we use the highest
priority best effort class in table 3.3. There does not seem to be a major
impact on the performance or fairness of the interrupted streams, but this
may also be due to the fact that random unfairness will even out in the
long run. As expected, the latency of the best effort streams was slightly
worse when they were preempted.
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Stream Latency Bandwidth
< 100 ms 100-1000 ms 1000 ms+

Video BE0 A 16.67 % 60 % 23.33 % 3.0 MiB/s
Video BE0 B 13.33 % 63.34 % 23.33 % 3.0 MiB/s
Greedy BE4 A 97.19 % 0.20 % 2.61 % 51.01 MiB/s
Greedy BE4 B 97.01 % 0 % 2.99 % 47.88 MiB/s

Table 3.3: 3 MiB/s streams suffers with highest priority best effort

Greedy Reserved Readers

A greedy BW class stream should not get more bandwidth than reserved
if it would affect any best effort reader. To measure this, we have created
a scenario with two greedy streams: one best effort and another reserved
reader at 3 MiB/s. The initial bucket size for the reserved reader was 3
MiB.

The result was that the reserved reader got 3.08 MiB/s and the best ef-
fort class got 100.1 MiB/s. This means that the BW stream class got slightly
higher bandwidth than it theoretically should, but within reasonable lim-
its. As the main goal of limiting the bandwidth of the process is to prevent
denial of service or starvation, as would happen if this was an RT class
stream, we are satisfied with the result.

Other Potential Problems

It should be noted that these tests were run with the default 512 KiB max-
imum request size. The hardware on our system, which has LBA48 sup-
port, can handle up to 32 MiB large requests. The preemption does not
preempt requests which are dispatched to the disk drive, consequently
our process would not be able to dispatch the request before the request
has completed by the disk. For very slow disk drives, such a large request
will take some time. A system administrator must have this in mind if
changing the block device queue tunable max_sectors_kb.

If a feature such as NCQ/TCQ is enabled, a similar issue arises: Sev-
eral commands may be queued, and we have no impact on ordering of
execution. The best we could do is to not insert a lower priority request
while we are waiting for real time requests. During early testing of our
system, we noticed that the firmware of our particular disks could delay
requests by as much as 1 second. This is an issue for any QoS scheduler.

When a bandwidth-class queue preempts a best effort queue, we need
two seeks; one to go to the stream, and then another one to go back to
the best effort class later. Preemption might not always be necessary to
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reach the deadline goals; and if that is the case, the preemption caused
one more seek than required, which leads to worse performance. With the
current design of the deadline list it is not possible to know whether we
can postpone scheduling the reserved reader until the currently executing
queue has expired. One of the reasons is that we do not have any estimate
of how long each reserved reader can run each time.

3.3.3 Work-conservation

Over-provisioning

There are two work-conservation scenarios we must test when a reserva-
tion reader has requested more bandwidth than it uses (over-provisioning).
In both scenarios, we must have at least one greedy reader to reach 100%
utilization. We have used two greedy readers in order to check for fairness
as well.

In the first scenario, the greedy readers are in the BE class with the
default priority level (4), and in the second scenario they have a reserved
bandwidth of 4 MiB/s and a scheduling deadline of 500 ms. To measure
global throughput without our BW class, we have a baseline with only
best effort readers as shown in table 3.4.

Stream Reserved Requested Result Latency
Video BE4 8 MiB/s 8.0 MiB/s 313 ms max
Greedy A BE4 ∞ 26.5 MiB/s 253 ms max
Greedy B BE4 ∞ 26.5 MiB/s 243 ms max

Table 3.4: Baseline for over-provisioning evaluation

In both tests, the over-provisioning BW class reader has reserved 32
MiB/s, but it will only consume 8 MiB/s. It performs reads four times per
second (2 MiB blocks) and has requested a 200 ms scheduling deadline.

Stream Reserved Requested Result Latency
Video 32 MiB/s 8 MiB/s 8.0 MiB/s 190 ms max (42 ms avg)
Greedy A BE4 ∞ 25.5 MiB/s 779 ms max
Greedy B BE4 ∞ 30.5 MiB/s 700 ms max

Table 3.5: Over-provisioning has little effect on global throughput with
best effort readers

The results in table 3.5 and 3.6 both show aggregate bandwidth equal to
or slightly above the baseline in table 3.4, i.e., utilization around 100%. The
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Stream Reserved Requested Result Latency
Video 32 MiB/s 8 MiB/s 8.0 MiB/s 179 ms max (60 ms avg)
Greedy A 4 MiB/s ∞ 4.1 MiB/s 787 ms max (487 ms avg)
Greedy B 4 MiB/s ∞ 55.2 MiB/s 128 ms max (36 ms avg)

Table 3.6: Over-provisioning for BW class

conclusion is that work-conservation works even with over-provisioning,
otherwise a drop in aggregate bandwidth should be visible. In this case,
we reserved 24 MiB/s more than we used.

Fairness amongst the best effort readers in table 3.5 is slightly skewed.
This may be an indication that the preemption algorithm does not give the
preempted task sufficiently extra time on the next schedule.

When a process is allowed to be greedy beyond reservation, our design
stops considering deadlines in the normal way. The deadline is set to the
time when a claim for this bandwidth would be legitimate, i.e., when the
number of tokens in the bucket is positive. This is why the deadlines for
“Greedy A” in table 3.6 may seem broken, but because it has received more
bandwidth than it requested, its buffers should cover the extra latency. We
do, however, limit how many negative tokens we count, in order to limit
the worst case scheduling delay in such a scenario.

Work-conservation with Non-Greedy Best Effort Readers

In the previous section, we studied work-conservation with over-provisioning.
It is also important to consider another scenario, where we have best effort
readers with limited bandwidth usage, and one or more greedy readers in
the BW class.

We have created a scenario similar to the previous section, but limited
the best effort readers to 8 MiB/s. The reserved reader still reserves 32
MiB/s, but will use anything it can get. The result should be that both
best effort readers should get 8 MiB/s, because we know they can get that
if the BW class was throttled at 32 MiB/s.

Stream Reserved Requested Result Latency
Greedy 32 MiB/s ∞ 63.5 MiB/s 138 ms max (31 ms avg)
Video A BE4 8 MiB/s 8.0 MiB/s 676 ms max (48 ms avg)
Video B BE4 8 MiB/s 8.0 MiB/s 739 ms max (65 ms avg)

Table 3.7: Work-conservation for BW class

Table 3.7 shows that work-conservation works, the aggregate through-
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put is well above the baseline. The other important goal here is that the
work-conservation does not affect the performance of the best effort read-
ers.

3.3.4 Request Deadlines / Variable Round Support

The last test is a schedule with a mix of 10 video streams and two best
effort streams. We want to show how the scheduling deadline affects la-
tency. In table 3.8, we have two streams with a scheduling deadline of 200
ms, and we see that data sometimes is returned more than 250 ms after the
scheduling deadline for the two low-latency videos (A and B). The worst
case was 283 ms (83 ms after the scheduling deadline). The user must con-
sider the load in the BW class to estimate when the data will be returned.
Our tests indicate that the data can be returned up to 300 ms after the
scheduling deadline with a very heavy load, so as a rule of thumb, one
could subtract 300 ms from the real deadline when setting a scheduling
deadline.

The scheduling deadline is still an effective method for requesting lower
latency service. In table 3.9, we lowered the scheduling delay to 50 ms, and
the result is that we always get data within 250 ms. The performance of
the other streams did not change much, therefore they are not included.

Stream Bandwidth Latency
Reserved Result Requested < 250 ms 250-500 ms 500-1000 ms

Video A 3 MiB/s 3.0 MiB/s 200 ms 98.3 % 1.67 % 0 %
Video B 1 MiB/s 1.0 MiB/s 200 ms 91.6 % 8.33 % 0 %
Video C 1 MiB/s 1.0 MiB/s 800 ms 75.0 % 25.00 % 0 %
Video D 1 MiB/s 1.0 MiB/s 800 ms 98.3 % 1.67 % 0 %
Video E 1 MiB/s 1.0 MiB/s 800 ms 90.0 % 10.00 % 0 %
Video F 1 MiB/s 1.0 MiB/s 800 ms 26.7 % 73.33 % 0 %
Video G 3 MiB/s 3.0 MiB/s 800 ms 93.3 % 6.67 % 0 %
Video H 3 MiB/s 3.0 MiB/s 800 ms 96.7 % 3.33 % 0 %
Video I 3 MiB/s 3.0 MiB/s 800 ms 61.7 % 38.33 % 0 %
Video J 3 MiB/s 3.0 MiB/s 800 ms 46.7 % 53.33 % 0 %
Greedy A ∞ 21.3 MiB/s N/A 52.5 % 21.88 % 21 %
Greedy B ∞ 24.2 MiB/s N/A 58.6 % 20.44 % 19 %

Table 3.8: Latency vs. scheduling deadline
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Stream Bandwidth Latency
Reserved Result Requested < 50 ms 50-100 ms 100-125 ms

Video A 3 MiB/s 3.0 MiB/s 50 ms 45.00 % 46.67 % 8.33 %
Video B 1 MiB/s 1.0 MiB/s 50 ms 41.66 % 56.67 % 1.67 %

· · ·

Table 3.9: All data returned within 75 ms after scheduling deadline. The
rest of the system performed similar to table 3.8

3.4 Conclusion and Future Work

We have shown that the BW class implements all our design goals in a
satisfactory way. The BW class gives higher throughput than CFQ in a
streaming scenario, and it is able to meet deadlines and bandwidth re-
quirements as long as reasonable limits are set.

Some of the benchmark highlights problems with the design, which
had larger worst case effects than expected, others were known in ad-
vance:

Best effort deadlines The deadlines are best effort, and we do not detect
multiple deadlines around the same time.

“Scheduling deadline” We interpret deadlines as the time for when a re-
quest should be scheduled, not when data should be ready. Both of
these issues require the user to add some slack when setting the
deadline.

Fairness in BW work-conservation Table 3.6 highlights a problem with
work-conservation in the BW class: the extra bandwidth is not fairly
divided between the greedy processes. As this was not a design goal,
it should not be surprising, but it is worth noting that this happened
by using C-SCAN, not just SSF.

Solid State Disk For Solid State Drives (SSDs) an EDF-based scheduler
could be better—as seeks do not matter.



Chapter 4

Scheduling in User Space

In chapter 2, we identified an I/O scheduling problem which the I/O
scheduler was unable to do anything about: because there was at most
one request pending at any time, the scheduler could not do anything but
dispatch the request directly. In figure 2.30, we showed that the time dif-
ference between a fully ordered read of all the data, and the order used
today, was very large. We also studied how the file system works, so we
know where data is stored, and we know that there are several reasons
why this will cause seeking. In this chapter, we will put the pieces to-
gether and implement an alternative approach to this problem, through
scheduling in user space. By scheduling in user space we mean that we
will request data in the order which we believe causes least seeks. We will
do the scheduling in user space because we believe this is the easiest way
to achieve the best performance. Our goal is to improve the performance
in the direction of the theoretical limit, while keeping the software simple
and clean.

This chapter starts with a discussion of what kind of programs this
technique can be applied to. Then, we will look into the information avail-
able for scheduling in user space, before we do a case study of the “tar”
program. In the case study, we will design, implement and evaluate this
technique. Finally, we will have a discussion around why we ended up
with this solution, and the implications this has.

4.1 Applicability of User Space Scheduling

In order to increase performance by reordering requests, we obviously
need an application that at times has multiple I/O operations to choose
from. The potential improvement in execution time will generally depend

71
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on how many I/O operations that can be reordered. This will often be a
problem for applications depending on external input, such as interactive
applications and databases; there is no way to know what data to read
until a user requests it.

There is also a problem for applications with data dependencies; where
one I/O operation decides which operation to do next, or where one write
operation must be written to disk before another for consistency reasons.
As an example of the former case, consider a binary search in a database
index; the database only knows about one operation, read the middle block,
while the next operation, read the left branch or read the right branch, depends
on the data found by the first operation in the middle block. Other exam-
ples of dependencies are that we need to read a directory block to find a
file’s inode number, and to read the file inode before we can read the file
data. In the utility we presented in section 2.3.11, we implemented basic
functionality for data dependencies. A more advanced approach would
include a full graph of dependencies, but using such a utility would likely
be rather cumbersome because producing the graph is not a straight for-
ward procedure.

For large files, we believe that there is usually not enough external frag-
mentation in modern Linux file systems to warrant reordering of requests
within the same file. This will likely require intrusive changes in program
flow, and yield relatively low performance gains. This means that we are
limited to improving applications reading multiple files, and the smaller
files, the more gain possible.

Another relevant question is whether it is likely that files are cached,
i.e., if they have been recently used. A compiler such as gcc—or rather
the preprocessor cpp—may seem like a good candidate, because it reads
many small header files (around 20 for many standard C headers i GNU
libc, almost 100 for GTK+). But in most workflows, header files will be
cached and therefore the average gain over time will be low.

The last issue is whether the architecture of the program allows the
change without refactoring the program. If the software needs to be rewrit-
ten completely, it is usually not worth it unless we expect a considerable
gain in performance. We have used these guidelines to categorize a set of
commonly used software into good and bad candidates for optimization,
as shown in table 4.1.

Some of the programs, such as ps, hardly reads any files, except for li-
braries, which are most likely found in the page cache. The vim, man and
less programs only read one file, so there are no files to reorder. The cat

program may read multiple files, but they must be output in a specific or-
der. This means that there are situations where improving cat is possible,
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Good candidates Bad candidates

cp -r Firefox

zip vim

rsync ps

tar cat

scp -r man

rm -r locate

find less

mv

du

Tracker

File Manager

ls -l

Table 4.1: Common Linux Software

but it would require buffering.
Most of good candidates for optimization through user space schedul-

ing (see table 4.1) behave almost identically , i.e., they must read all data
and metadata for a full directory tree, most of the job is known ahead, and
it typically involves a large number of files. Most graphical file managers
include these operations, and others, like thumbnail generation, which can
be improved in the same way.

A few of the programs listed as good candidates, such as ls -l and du,
only need to read metadata, which the ext4 file system has improved with
inode readahead (section 2.3.10), but still some improvement should be
possible. It is also important that such core utilities have a low overhead
because they are often critical during recovery of overloaded systems.

find reads metadata just like du, but it is also often used to execute
external software on a subset of files. If we believe this external program
will read the files, it would be beneficial to order them so they are read in
disk order.

4.2 Available Information

To do scheduling in user space, we need to know as much as possible
about the physical placement of the data on the storage device. If the phys-
ical location is not available, we may at least be able to get the relative
placement. We can then use this information to decide which operation to
do next.
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struct dirent {

ino_t d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file */

char d_name [256]; /* filename */

};

Listing 4.1: Linux struct dirent

4.2.1 Metadata Placement

Path traversal in Unix is done by using the readdir function (the system
call is named getdents), which returns the struct dirent data structure.
The opendir function, which uses the open system call, reads the directory
inode, while readdir reads the data blocks of the directory file.

The attributes available in a struct dirent in Linux are shown in list-
ing 4.1. As the listing shows, the kernel exposes information inode num-
bers in the d_ino attribute. In [28], it is proposed to get metadata for files
in a directory by sorting the entries by inode number. This is proposed as
a solution to the random order caused by hashing, and this reduces the
number of seeks within a directory.

There is currently no method for mapping an inode number to a block
offset, but this is not a major problem: In the file system implementations
we consider here, ext4 and XFS, the ordering between inode blocks is the
same as inode numbers. More formally, for any file a and b, we know that

inode(a) < inode(b) ⇒ block(inode(a)) ≤ block(inode(b)) (4.1)

This does not help us if we want to decide whether a data block opera-
tion should be scheduled before an inode block operation. As we remem-
ber from section 2.3.3 the inodes are clustered in groups, which are spread
out all over the disk, with normal data blocks in between. This means
that an optimal schedule would be to order all data in the same queue, and
then read them with one full disk arm stroke. By using file system spe-
cific information such as the flexible block group size we can calculate the
physical location, but we think this would usually not be a good idea. It is
very file system specific and error prone, and we also believe the potential
performance gain does not make it worthwhile.

Some file systems, such as ext4, also include the directory entry type
(regular file, directory, link etc.) in the d_type attribute. If d_type has the
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struct fiemap {

u64 fm_start; /* logical offset ( inclusive ) at

* which to start mapping (in) */

u64 fm_length; /* logical length of mapping which

* userspace cares about (in) */

u32 fm_flags; /* FIEMAP_FLAG_ * flags for request (in/out) */

u32 fm_mapped_extents; /* number of extents that were

* mapped (out) */

u32 fm_extent_count; /* size of fm_extents array (in) */

u32 fm_reserved;

struct fiemap_extent fm_extents [0]; /* array of mapped extents (out) */

};

struct fiemap_extent {

u64 fe_logical; /* logical offset in bytes for the start of

* the extent */

u64 fe_physical; /* physical offset in bytes for the start

* of the extent */

u64 fe_length; /* length in bytes for the extent */

u32 fe_flags; /* FIEMAP_EXTENT_ * flags for this extent */

u32 fe_device; /* device number for extent */

};

Listing 4.2: FIEMAP related data structures

value DT_UNKNOWN we must read the file inode to get this information. The
d_type attribute is often useful if we are only doing path traversal. If we
for example are looking for a named file within a directory tree, we only
need to fetch the inodes for directories, and we can do this by looking for
the type DT_DIR. On file systems without d_type, such as XFS, this process
would require reading all inodes, including file inodes.

4.2.2 File Data Placement

A new system call was introduced with the ext4 file system, the FIEMAP [29]
ioctl. It allows users to get the extent mapping of any file which the user
can read. This means that we can avoid unnecessary long seeks by reading
the file data in the same order as it is found on the disk. For older file
systems, such as ext2/3 and XFS, there is similar functionality in FIBMAP,
which returns the position of the requested logical block instead of a range
of data, but this system call requires root privileges because of security
problems [30]. FIEMAP is expected to be available for most file systems in a
future version of the Linux kernel.

The FIEMAP data structures are shown in listing 4.2. An example of how
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/* Return the physical location of the first logical block

* in a file.

*/

u64 firstblock(int fd) {

u64 retval;

struct fiemap *fiemap = malloc(sizeof(struct fiemap)

+ sizeof(struct fiemap_extent ));

if (! fiemap)

err(EXIT_FAILURE , "Out of memory")

fiemap ->fm_start = 0; /* First logical block */

fiemap ->fm_length = 4096; /* We need to request at least one block */

fiemap ->fm_flags = 0;

fiemap ->fm_extent_count = 1; /* We have allocated 1 fiemap_extent */

if (ioctl(fd, FIEMAP , fiemap) < 0 || fiemap ->fm_mapped_extents == 0) {

/* Here we should check errno and do a graceful recovery

* for example consider using FIBMAP or inode number */

retval = 0;

} else {

retval = fiemap ->fm_extents [0]. fe_physical;

}

free(fiemap );

return retval;

}

Listing 4.3: Using FIEMAP



Improving Disk I/O Performance on Linux 77

to use them with the FIEMAP ioctl is shown in listing 4.3, where we have
implemented a function which returns the position of the first logical block
of a file.

4.3 Implementation of User Space Scheduling

Our user space scheduling implementation uses a two-pass traversal over
a directory tree, where the first pass fetches meta data and directories in C-
SCAN order, and the second pass fetches file data in the order of the first
data block of each file. Due to lack of information about directory data
position, they are read in inode order during the first pass. If the Linux
kernel API is extended to include this information, we could probably im-
prove performance slightly more. Pseudo-code for the traversal algorithm
is shown in listing 4.6. We will go into more detail in a practical example
in section 4.5.

The user of the library implements the filtering, i.e., she decides which
directories to enter and which files to read. During the second pass the
user is called for each file to read, at the time which we consider it optimal
to read that file. In listing 4.4 we have shown the complete implementation
of the program du, which calculates the disk usage of a directory tree.

4.4 Future Proofing Lower Layer Assumptions

One problem with optimizing in the application layer is that we must
make assumptions about the behaviour in lower layers, such as file system
and disk. In this section, we discuss how to prevent this from becoming a
problem in the future.

4.4.1 Placement Assumptions

The property in equation 4.1 may not hold for other file systems, especially
those with dynamic inode allocation, like btrfs [31]. In [32], this feature is dis-
cussed for ext4, but it will break compatibility so it will likely be postponed
until a new generation of the Linux extended file system is developed (i.e.,
ext5 or later).

For such file systems, we do not know the effect of inode sorting, it
might be less efficient than using the inodes in the order in which they are
received from the file system. If we fear this problem, one solution would
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# include <iostream >

# include <libdir.h>

# define LINUX_STAT_BLOCK_SIZE 512

struct qdu : public libdir :: traverser {

size_t total_size;

qdu() : total_size (0) {}

bool add_directory(const libdir :: dentry& de) {

total_size += de.stat (). st_blocks;

return true; /* Enter directory */

}

/* Called when file metadata is ready */

bool add_file(const libdir :: dentry& de) {

/* Sum sizes */

total_size += de.stat (). st_blocks;

/* We don ’t want to read the file data */

return false; /* Don ’t read file ( add_file_data ) */

}

/* Iff we return true from add_file ,

* this will be called when it is a good time for

* reading file data. Not used for du */

void add_file_data(const libdir :: dentry& de) { }

};

int main(int argc , char *argv []) {

qdu du;

du.walk(argv [1]);

std::cout << "Size: " << (du.total_size * LINUX_STAT_BLOCK_SIZE)

/ 1024 / 1024 << std::endl;

}

Listing 4.4: Using the traverser API
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be to detect the file system type and disable sorting if it is an unknown file
system, or a file system where sorting is known to be less efficient.

We can implement this check by using the statfs system call every
time we find a new st_dev after calling stat. As we are unlikely to cross
file system boundaries many times, this check will not have any noticeable
overhead. One of the attributes of the statfs output is f_type, and we can
use this value upon either a white list or a black list.

4.4.2 Rotational Disk

If the underlying block device is not a rotational disk, but a solid state
drive, reordering does not help because there is no disk head to move.
Doing reordering means that we spend unnecessary CPU cycles while the
storage device may potentially be idling. We can avoid this by checking
for a non-rotational device, which can be done by reading the file /sys/

block/<blockdev>/queue/rotational. If it has the value “0”, no sorting
should be used.

4.5 Case Study: The tar “Tape” Archive Program

The tar program is archiving utility designed to store a copy of a directory
tree with data files and metadata into an archive file. In this section, we
will look at how we can create an optimized version of this program, based
on the information we have written earlier in this chapter and chapter 2.

4.5.1 GNU Tar

tar is an old Unix utility that has been around for decades, so there are
several implementations available. GNU Tar [33], which we tested, is the
default implementation in GNU/Linux distributions. The pseudo-code
for the traversal strategy in this implementation is shown in listing 4.5.

As we can see the utility does not use any metadata information to read
the files, directories and metadata in a specific order, it always does a post-
order traversal of the directory tree, and adds files in the order returned
from the C functions seen in table 4.5.1.

Because GNU Tar was not developed as a two-part program, a tar li-
brary and a command line front end, we chose instead to use BSD Tar [34]
as a reference implementation. BSD Tar includes the library libarchive

that contains all functionality required for writing archives.
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def archive(path):

for file in path:

stat file

read file

add to archive

for subdirectory in path:

stat subdirectory

add to archive

archive(subdirectory)

Listing 4.5: GNU Tar traversal algorithm

C function Description Reads/writes

fstat Get metadata inode
(change times, mode, device and inode)

fopen Open file inode
fread Read from file data, block mapa

fwrite Write to file data, block map
fclose Close file
opendir Open directory inode
readdir Get directory entry data, (block map)
closedir Close directory
ioctl FIBMAP Get block position block map
ioctl FIEMAP Get extent positions block map

a By block map we mean direct blocks, indirect blocks and extent lists, depending
on implementation. For small files/directories, we may find this information within the
inode.

Table 4.2: Operations and data types
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def archive(path):

next = path

do

stat next

if is_directory:

add to archive(next)

for file in next:

inode_cscan_queue.add(next)

else:

FIEMAP next

block_sort_queue.add(next)

while (next = inode_cscan_queue.next ())

flush ()

def flush ():

for file in block_sort_queue:

add to archive

Listing 4.6: Our new tar traversal algorithm

4.5.2 Design and Implementation

We do not aim to implement a complete version with all the functionality
of tar, just the standard function of creating a new archive of all the con-
tents in a directory tree. To get access to standard data structures such as
trees, we chose C++ as the implementation language. The algorithm of
our implementation is shown in listing 4.6.

We have chosen to first traverse the directory tree, and then read all
the files. The directory tree is traversed in inode order, but we do not con-
sider the location of directory data blocks. This because it is currently not
possible to use FIEMAP on directories, just files. It also keeps the imple-
mentation simple, and we believe that the relative gain is low (there are
generally more files than directories). Because new inodes are discovered
during traversal, we cannot pre-sort the list. Therefore we use a C-SCAN
elevator that stores all unchecked paths sorted by inode number. The in-
ode number is a part of the information from the readdir function.

The file list is a sorted list, ordered by block number. The block number
is retrieved by using FIEMAP on the file, as shown in listing 4.3. Because
the block queue does not change while traversing it, a simple sorted list is
used.

If an upper bound of memory is wanted, the flush() method may be
called at any time, e.g., for every 1000 files or when N MiB RAM has been
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Figure 4.1: Speed improvement in context

used. We store a couple of hundred bytes for each file, such as file name,
parent directory, inode and block number. In our tests we did not use any
limit on memory, so around 6 MiB of memory was used for the largest
directory tree (22 500 directory entries).

4.5.3 Testing and Evaluation

By running our new version on a large directory tree (22 500 files, the
Linux kernel source) on the ext4 file system, we get an average runtime
of 17.98 seconds for five runs. This is fairly close to the best case schedule
(as defined in section 2.3.11): We have removed 78.2% of the original run-
time of 82.6 seconds, while the upper limit is 83.8%. In figure 4.1, we have
put the numbers in context. We used the same disk in all tests in this thesis
(see table 2.1). Remember that “One sweep” is somewhat faster than the-
oretically possible, because we have several data dependencies (directory
data blocks must be read to find new files and subdirectories, inodes must
be read to find file data). The “As one file” number is not possible to reach
by scheduling in user space, since it requires the file system allocator to
place the files and metadata very tight, which it has not done. Because
we have only tested our software on one directory, further evaluation and
verification is required.

4.5.4 Verification by Visualizing Seeks

In figure 4.2, we illustrate the runtime and seek footprint of the two dif-
ferent implementations, by showing the maximum and minimum disk
sector accessed for 100 millisecond intervals. The data for the figure was
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Figure 4.2: Upper and lower bound of disk head every 100 ms

recorded using blktrace. We could not include the full seek pattern, be-
cause there were too many seeks for the GNU Tar implementation. There-
fore, we ended up showing only the upper and lower bound of the disk
head, even though the finer details are lost.

As we can see, the footprint of the improved solution is radically dif-
ferent from the original solution. Almost all seeks are going in the same
direction, except for some directory blocks which need to be read before
new inodes are discovered. Our implementation orders directories by in-
ode number, which may be one of the reasons for the seeking done during
the directory traversal the first few seconds.

After the directory tree has been traversed, there does not seem to be
any unnecessary seeks at all. This means that the file system allocator did
not have to resort to any file fragmentation in order to fit the file on the
file system. Both XFS and ext4 have implemented delayed allocation, so
the full size of the file is known before the physical blocks of the file are
allocated.
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Figure 4.3: Sorting alternatives compared (reading 1000 files)

4.5.5 Partial Sorting

The implementation we have tested so far read the full directory tree and
ensured that both metadata (inodes) and file data were read in the correct
order. In figure 4.3, we have shown the performance of various alternative
implementations of tar with only partial sorting, i.e., sorting only by in-
ode number, or sorting only one directory at a time. These tests were ran
on a directory tree with 1000 files. The alternative algorithms we tested
were:

Unordered This implementation read all the metadata for all files in a di-
rectory in the order which they were retrieved from the file system.
Then it read the file data in the same order, before recursively repeat-
ing the procedure for each subdirectory.

Inode sort This implementation sorted the directory entries by inode be-
fore reading the metadata. It also read the file data in the same order,
i.e., sorted by inode.

Full inode sort This implementation traversed the full directory tree be-
fore reading all the metadata ordered by inode, and then it read all
the file data ordered by inode.

Inode+block sort This implementation read all the metadata for a direc-
tory ordered by inode. Then it read all the file data for the file in the
directory, ordered by the position of the first block of each file. This
procedure was repeated for for each subdirectory.
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Full inode+block sort This implementation traversed the full directory
tree and read all the metadata ordered by inode. Then it read all
the file data ordered by the first block of each file.

The numbers clearly shows us that doing all steps of the procedure
gives the best performance, but also that even the simplest change, order-
ing directory entries by inode, helps a lot. This means that there is usually
a high correlation between the inode number and the position of the file
data.

4.5.6 Aging vs. Improvement
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Figure 4.4: Performance as file system ages

An interesting subject is how the performance improvement changes
as a file system ages. To test this, we ran our improved tar and GNU
Tar 5 times throughout the aging procedure, which is described in ap-
pendix A.1. In short, our aging procedure replays development activity
on the kernel source tree by incrementally checking out new versions. The
archiving processes were run on a full Linux kernel source, i.e., about 22
500 files, and we used the ext4 file system. In figure 4.4 we have shown
the average runtime for the 5 runs.

The amount of change in each in step in the aging procedure is dif-
ferent, which is why step 1, 2, 10 and 17 are especially steep for GNU
Tar. What is interesting to see in this graph, is that the age has much less
impact on the improved implementation. As the file system ages, the im-
provement factor increases from 3.95 to 4.75.
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Figure 4.5: XFS vs. ext4, vs. directory size vs. age

File count 100 250 500 1000 5000 22500
Average size 8 KiB 24 KiB 10 KiB 10 KiB 21 KiB 18 KiB

Table 4.3: Average file size for the different data sets

4.5.7 File Systems, Directory Sizes and Aging

In figure 4.5, we show the results of comparing the runtime from GNU Tar
with our improved implementation, e.g., mean time of GNU Tar divided
by the mean time of our implementation. A value above 1 means that our
implementation was faster.

The tests were run 5 times, and average runtime was used. Each test
was run on 16 different directories (which were created in the same way,
but at different times). We also ran the tests on 16 aged directories, i.e.,
each data point is the average of 80 runs. We did not run the tests on
smaller directories because the runtime was already very low (between
0.05 and 0.5 seconds). In total, each implementation was tested on 384
different directories.

The goal of this test was to evaluate the impact of directory size, file
system and aging. The tests reveals that we can expect more improvement
on the ext4 file system than on XFS. Directories on XFS which have had
little activity after creation (“clean” directories) are difficult to improve,
for the smallest directory (100 files), we only got a 10% improvement on
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the average values. The same data can be seen in figure 4.6, but there with
absolute timings for both implementations. In this plot, we have named
our implementation “qtar”, and GNU Tar is written as “tar”. Note that the
variance for the boxplot mainly shows variance in the file system allocator,
not variance in runtime with the same directory.

An important observation from this test is that the average runtime for
the improved implementation was better for all directories we tested, by
at least 10%.
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Figure 4.6: Absolute timings (each boxplot represents two implementa-
tions on 16 directories with 5 runs)
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4.6 Discussion: Alternatives

The general opinion is that I/O scheduling belongs in the I/O scheduler,
so we need to explain why this is not a feasible solution for optimal per-
formance, at least with the APIs available in Linux today.

The main argument against doing scheduling in user space is that it
adds complexity. This is true, like all optimization techniques, user space
scheduling is a two sided sword, where you get better performance but
more complex logic. This technique may be compared to using specialized
multimedia operations in the video decoder. Therefore, we believe that for
some software, user space scheduling can be justified:

• This is the core functionality of the software (e.g., backup software)

• The software has many users, so the total time saved would over-
weight the additional software complexity

• Performance in the software is critical

Another argument is that the properties of the underlying storage de-
vice may be different, i.e., this technique does not apply to solid state disks.
It is likely that sorting would only slow down the application. We have al-
ready discussed and proposed a solution to this in section 4.4.

A solution where the kernel does the sorting could be implemented
in several ways. An application can ensure that the I/O scheduler has
multiple files to choose between by using the existing asynchronous APIs.
There are several problems with this solution, which leads us to believe
that such a solution would be slower and more complex:

Complexity The application must now handle multiple buffers and mul-
tiple pending asynchronous requests, which is more complex than
sorting a list of files.

Performance limited by memory The performance depends on how deep
the I/O queue is, i.e., how many operations there are to choose from.
For file data, we must allocate buffers for all the files we want to have
pending. The buffers must be as large as the complete file, if we use
smaller buffers we may end up with more seeks, because requests
for one file are interleaved with the requests from other files.

If we want a queue depth of 500, and the average file size is 20 KiB,
we would need 4 MiB RAM. If we use 200 bytes ram per file for the
user space solution, we could get the equivalent of a queue depth of
around 20 000 with the same memory limitation.
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Performance limited by scheduler The I/O scheduler assigns deadlines
to these operations. The deadlines are there to prevent starvation,
but in this case we want to delay requests as long as possible if we
can prevent seeks.

Performance for metadata Another performance issue is the lack of asyn-
chronous APIs for metadata operations. There are several projects
for implementing such APIs, such as fibrils [35].

We have tested one of these, but ran into another issue: Locking in-
side the kernel effectively serializes operations such as open and stat

on files in the same directory, the operations hold the lock i mutex on
the parent directory of the file. This means that the I/O requests will
arrive one at a time, so the scheduler will not be in a better position
to make decisions than before.

An alternative, which does not require modifying applications, is to
alter the order in which files are returned from the kernel in the readdir

operation [28]. This helps to some extent, but there are issues with this
solution too:

No full tree sorting We will be limited to sorting the files for one direc-
tory at a time, while our proposed implementation sorts all files we
are going to read. As shown in figure 4.3, not traversing the full di-
rectory tree decreases the performance significantly.

Decrease in performance of unrelated software The sorting would be done
for all software, including software which is only interested in file
names. This would add a slight overhead for such programs. There
would be unnecessary sorting done, which requires CPU time, and
because we need to support seeking within a directory, a complete
copy of the directory must be kept in RAM.

Sorting on inode only We are limited to sorting on inode only, because
we need to read all metadata to sort by block number. As shown
in figure 4.3, just sorting by inode number is much slower than also
sorting by block number.

One might argue that readdir could fetch metadata for all files, but
this will add an unacceptable penalty for software which is only in-
terested in the file names and not in reading the files.

A special purpose kernel API could be implemented for this operation,
but it is not a viable solution, because we would need to move user space



Improving Disk I/O Performance on Linux 91

logic into the kernel. For example: A file manager which generates pre-
views of all files in a directory would only be interested in the embedded
thumbnails for JPEG images (a small part of the file), and the first page of
a multi-page document.

4.7 Summary

We have discussed how to identify programs which can be optimized
by user space scheduling, and what information is available for doing
scheduling in user space. We then showed how to avoid a potential neg-
ative performance impact in case of any unanticipated future develop-
ments, such as new file systems. In listing 4.4, we showed that it is possible
to create an abstraction which hides the complexity of use space schedul-
ing.

In section 4.5, we did a case study where we designed, implemented
and evaluated the technique by implementing an archive program. We
evaluated the technique in a wide range of scenarios, and the numbers
always showed improvements, especially for larger directories. Finally,
we discussed alternative approaches and why we ended up doing the
scheduling in user space.
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Chapter 5

Conclusion and Future Work

In this thesis we have studied the major components that affect disk I/O
scheduling, and suggested improvements on multiple layers. We have
shown that there is potential for improvements both in the Linux I/O
scheduler, but also that there are times when the low level I/O scheduler
is not enough. We have therefore introduced user space scheduling, and
shown its potential.

I/O schedule visualization In chapter 2, we designed and implemented
a new way of illustrating I/O schedules, giving a good overview
when studying or debugging schedulers, file systems, applications
and interaction between the layers.

This created the foundation for the next two chapters which allowed
us to improve both the I/O scheduler and application layer. The util-
ity was helpful both for locating problems with the existing solutions
and during development of the software in this thesis.

QoS and performance improvements for CFQ In chapter 3 we implemented
a practical approach for improving performance and QoS support in
a scenario where the CFQ scheduler is used in an environment with
bandwidth or deadline-sensitive applications such as multimedia.

Our results have shown that we get better performance by using a
C-SCAN elevator between the streams. We have also shown that our
new class gives the user control over latency and bandwidth (QoS).
This class provides the user an efficient control of not only band-
width, but also latency.

User space scheduling In the previous chapter we claimed that the op-
tions for the file system allocator and I/O scheduler are limited, and

93
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that applications that read multiple smaller files and want maximum
performance can achieve this by doing scheduling in user space.
We have created a utility for evaluating the potential gain, written
a guide for implementing the technique and shown a practical ex-
ample with a considerable improvement.

The results show that there is a very large potential gain in perfor-
mance compared to naive directory tree traversal. This should be
a valuable contribution to specialized software such as backup pro-
grams.

While writing this thesis, we got several ideas for future work and
ideas for new directions. A few of them are problems with the existing
implementation, others are simply related ideas but that were considered
out of scope for this thesis.

• In the BW class, two measures should be taken in order to decrease
deadline misses:

– Estimate the time it would take to service each process

– Calculate the deadline for scheduling based on this information
and other pending processes

• A desktop client version of the graphs shown in chapter 2, preferably
in real time with little overhead.

• Fairness in the work conservation mode of the CFQ BW class should
be implemented.

• A more extensible API for setting I/O priority/QoS parameters is
needed, perhaps by integration with cgroups [36].

• If a solid state disk device is detected, the BW class should not use
the sorted tree, just the deadline tree, and the anticipation should be
disabled.

• We would like to see some of the core utilities in operating system
utilizing the technique from chapter 4, and also graphical file man-
agers.

• We did not look at improving the file system allocator and write pat-
terns, but there are several ideas that would be interesting to inves-
tigate. In some cases file access patterns are known in advance, and
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repeated many times. If the file system allowed manual, or at least
hinted, file and inode placement, one could potentially optimize for
the normal access pattern. Some examples include:

– All the files read when starting the software “Firefox” could be
allocated back-to-back, allowing faster startup. This could ei-
ther be done by the program package installer, or by observing
application access patterns.

– Another example would be to place specific files near the outer
edge of the disk for faster throughput, or closer to the center for
lower latency.

– Inode tables seems like they are optimized for the rather special
case of hardlinks, so placing inodes inside directory tree files
could be an alternative.

– Meta data and file data for active files, which are written to of-
ten, such as log files, could be placed close to the file system
journal.

In conclusion, we have shown that I/O performance is not something
that only the I/O scheduler can improve upon, but that all the layers up to
the application layer make up a big impact on the disk I/O performance.
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Appendix A

Creating a Controlled Test
Environment

Because file system behaviour often changes as it ages, we need to run
our tests on an aged file system. Such a system could be created using
traces, or by using a script. We have chosen to use a script because this
gives us complete control over what kind of files we have and how they
are created.

A.1 The Aging Script

Our script creates four types of work loads:

1. Large files created quickly with no concurrent activity

2. Directory trees created quickly and then never touched again

3. Directory trees with large amounts of file creations and deletions in-
terleaved with activity on other files over time

4. Large files grown over time

The directory trees are created by checking repeatedly checking out
newer versions of the Linux source code, from version 2.6.17 to 2.6.18-rc1,
via all release candidates up to 2.6.18, and so on until 2.6.20. In total 24
different versions are checkout out. This could be considered as replaying
a trace. In total this aging procedure creates 60 885 and deletes 39 510 files
for each Linux source directory.

We also create clean checkouts of the Linux kernel source, without any
aging. This means the file system has very good opportunity to locate
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Figure A.1: Distance between inode and corresponding file

related files close to each other, so this directory may be considered the
“worst case” for our testing. By using only parts of this directory tree, e.g.
linux-2.6/fs, we can control the number of files and subdirectories.

For the media streams we create the file with no concurrent activity, 40
files of 8 GiB each were created. We also create some large files over time
to fill the file system up to 93%, to make sure some of the inner tracks are
accessed too,

During this aging procedure our file system utilizes up to 80% of the
disk capacity. We keep the utilization below this limit because we are not
interested in measuring the performance of the block allocator under pres-
sure, we just want a realistic aged file system for our benchmarks.

The resulting file system allows us to test different kinds of files cre-
ated in realistic environment, and shows us how the different allocation
strategies influence our algorithms.

A.2 Aging Effects

To see how effective the aging procedure have been, and how different a
clean directory is to an aged, we measured the distance between different
in both data sets. A few selected observations are shown as ECDF plots.

Figure A.1 shows that the file data for a file in the clean directory is al-
ways within 2 GiB of the block containing the inode, which is pretty close.
The dirty directory, created at a later point in time, shows that inodes are
often allocated far away from the data: 60% of the inodes are 76 GiB or
farther away from the corresponding file data.
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Figure A.2: Distance between data blocks of sibling files

If we fetch all metadata (inodes) during directory traversal it is inter-
esting to see how far away the inodes are from the directory data blocks,
which is the data we need to read to find the inode number. We observe
that for both the clean and aged directory 99% of the blocks are very close.
This is most likely due to the fact that few directories are created during
the aging process, the directory structure in the Linux kernel history is
almost static.

Figure A.2 shows that for the clean directory, 100% of the files in each
directory a median distance for the first data block within 2 GiB. With the
dirty directory we have the same issue as before, almost 60% of the siblings
has a median distance of over 76 GiB.

In conclusion, we can see that aging has a big impact on data place-
ment. This makes it important to do evaluation on both new and aged
directories.
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Appendix B

Source Code

Kernel patches and source code are available at the following address:
http://www.ping.uio.no/˜chlunde/master/
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Appendix C

List of acronyms

AS Anticipatory I/O Scheduler

BE Best Effort

BW Bandwidth

C-SCAN Circular SCAN

CFQ Complete Fairness Queueing

CPU Central Processing Unit

EDF Earliest Deadline First

FCFS First-Come, First-Served

FIFO First-In, First-Out

GDT Group Descriptor Table

IPC Inter-Process Communication

LBA48 48 bit Logical Block Addressing

LRU Least Recently Used

NCQ Native Command Queuing

NOOP No Operation

QoS Quality of Service

D2C Dispatch-to-Completion

103



104 Improving Disk I/O Performance on Linux

RT Real-Time

SSD Solid State Drive

SSF Shortest Seek First

TCQ Tagged Command Queuing

VBR Variable Bit-Rate

VFS Virtual File System

WAL Write Ahead Logging

dcache dentry cache
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