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Abstract

We present a model that represents word

meaning in context by vectors which are

modified according to the words in the tar-

get’s syntactic context. Contextualization

of a vector is realized by reweighting its

components, based on distributional infor-

mation about the context words. Evalua-

tion on a paraphrase ranking task derived

from the SemEval 2007 Lexical Substi-

tution Task shows that our model outper-

forms all previous models on this task. We

show that our model supports a wider range

of applications by evaluating it on a word

sense disambiguation task. Results show

that our model achieves state-of-the-art per-

formance.

1 Introduction

Distributional vector-space models of word mean-

ing have proven helpful for a number of basic natu-

ral language processing tasks, such as word sense

discrimination (Schütze, 1998) and disambiguation

(McCarthy et al., 2004), or modeling of selectional

preferences (Erk, 2007), and have been success-

fully used in a variety of applications like informa-

tion retrieval (Manning et al., 2008) or question

answering (Tellex et al., 2003). Standard distri-

butional models of meaning are attractive because

they are simple, have wide coverage, and, in par-

ticular, can be acquired using unsupervised meth-

ods at virtually no cost. Vector-space models of

meaning lend themselves as a basis for determining

a soft and gradual concept of semantic similarity

(e.g., through the cosine measure), which does not

rely on a fixed set of dictionary senses with their

well-known problems (Kilgarriff, 1997).

The sensitivity of word meaning to the context

of use, however, poses a major challenge for dis-

tributional semantics. Meaning vectors are based

on co-occurrence counts for words across all word

senses and usages. This means that, for instance,

any occurrence of the verb charge, such as in the

expressions charge a fee or charge a battery, is as-

signed the same vector representation, ignoring the

difference of word sense. On the other hand, the

fact that charge and impose are near-synonyms in

charge/impose a fee will not be properly reflected

in their respective meaning vectors, since the for-

mer, but not the latter, includes (context words

reflecting) the “supply electricity” sense of charge.

The problem of modeling context-sensitivity in

a distributional framework has first been addressed

in the seminal paper of Schütze (1998), who uses

second-order bag-of-words vectors for the task of

word sense discrimination. Recently, the issue

has been taken up by several approaches that in-

clude some kind of syntactic information, in part

under the heading of “distributional composition-

ality” (Mitchell and Lapata, 2008; Erk and Padó,

2008), in part as “syntax-sensitive contextualiza-

tion” (Thater et al., 2010). These approaches have

in common that the contextual influence on the

meaning of a target word w is modeled through

vector composition: The meaning of w in context c

is represented by a vector obtained by combining

the vectors of w and c using some operation such

as component-wise multiplication or addition.

The results published during the last couple of

years show a considerable increase of performance,

but at the price of an increasing complexity and

lack of intuitive transparency of the models. In

this paper, we will demonstrate that one can keep

the model simple and at the same time outperform

the state of the art. We achieve this as follows:

First, we take a different, more general view on

the basic operation of contextualization. Like the

aforementioned approaches, we model contextu-

alization as modification of the target vector, but

we do not restrict this operation to variants of vec-

tor composition, but consider a broader range of

1134



operations, which re-weight individual vector com-

ponents. Second, we identify the distributional

similarity score between the words defining the

vector components on the one hand, and the ac-

tual context words in a given syntactic position on

the other hand as the most effective basis for this

re-weighting.

We evaluate our method on two different tasks:

paraphrase ranking and word sense disambigua-

tion. The paraphrase ranking task has been used

in several approaches and provides benchmarks for

our system, and the controlled conditions of the

experiment make it easy to assess the influence of

different design decisions on the performance. In

practical terms, we will use a paraphrase ranking

task derived from the SemEval 2007 Lexical Sub-

stitution Task (McCarthy and Navigli, 2007). We

exceed the state of the art by almost 6% in terms

of generalized average precision.

The application to word sense disambiguation

(WSD) demonstrates that our model is more gener-

ally applicable. We phrase the WSD task as a para-

phrase ranking task: Roughly speaking, finding the

contextually appropriate word sense amounts to

identifying the WordNet synset containing the best

paraphrase candidate for the target. We evaluate

our system on the SemEval 2007 coarse-grained

unsupervised WSD task (Navigli et al., 2007). Our

results are competitive to the results reported in the

literature.

Plan of the paper. We will first review related

work in Section 2, before we present our model in

Section 3. We evaluate our model’s performance

on a paraphrase ranking task in Section 4 and on

the task of word sense disambiguation in Section 5.

Section 6 concludes.

2 Related work

Inspired by earlier work of Kintsch (2001), who

proposes a network algorithm to extract context-

specific vector representations for words in context,

Mitchell and Lapata (2008) investigate the system-

atic combination of distributional representations

of word meaning along syntactic structure. They

propose to represent the meaning of a complex ex-

pression that consists of two syntactically related

words w and w′ by a vector obtained by combin-

ing the word vectors of w and w′, and find that

component-wise multiplication performs best for

the task under consideration. They consider their

proposal primarily under the aspect of composi-

tionality, but it can also be taken to be a method to

contextualize a target word through its dependents.

Erk and Padó (2008) propose structured vector

representations, where each word is characterized

by a standard co-occurrence vector, plus separate

vector representations for the (inverse) selectional

preferences for subject, object, and other syntactic

relations. Contextualization is modeled by combin-

ing, e.g., the basic vector of the target verb with the

selectional preferences of subject and object.

Thater et al. (2010) propose a similar approach,

where word meaning is modeled as a second-order

vector obtained by summing over first-order vec-

tors representing the inverse selectional preferences

of a word’s syntactic arguments. Contextualization

is modeled as above in terms of vector composi-

tion. Among the aforementioned approaches, their

proposal performs best, but at the cost of a rather

complex and unintuitive concept of second-order

co-occurrence vectors.

Other approaches achieve good results without

using vector composition. Dinu and Lapata (2010)

represent word meaning in context by using a la-

tent variable model, where context-dependence is

modeled by conditioning the latent variable on the

context in which a word occurs. Similar proposals

have been made by Reisinger and Mooney (2010a)

and Li et al. (2010).

A different approach has been taken by Erk and

Padó (2010) and Reisinger and Mooney (2010b).

Instead of “refining” vector representations rang-

ing over all words in a corpus by means of vector

composition, they start out from “token” vectors

for individual instances of words in context, and

then group these token vectors into different sense-

specific clusters.

3 The model

We propose a model of word meaning that allows

the computation of vector representations for in-

dividual uses of words, characterizing the specific

meaning of a word in its sentential context. For

instance, the vector of the verb charge in the ex-

pression charge a tax should reflect its monetary

sense, while its vector in the expression charge

a battery should be representative of its “supply

electricity” sense.

We derive a contextualized vector from the basic

meaning vector of a target word by reweighting

its components on the basis of the context of the

occurrence, where we take the context to be made

1135



obj

ob
j

obj

o
b
j

obj

p
re
p

charge

fee

tax
price

battery

corruption

…

…

…

…

subj ob
j

obj

o
b
j

p
re
p

charge

fee

tax
price

battery

corruption

…

…

…

…

subj ob
j

obj

o
b
j

obj

p
re
p

charge

fee

tax
price

battery

corruption

…

…

…

…

subj

(a) (b) (c)

government government government

Figure 1: Graphical representation for a basic vector for charge (a), and two contextualized vectors for

charge in context charge a tax, obtained by (b) a strict and (c) our more sophisticated contextualization

method based on semantic similarity.

up of the direct syntactic dependents of the target

(and its direct inverse dependents). The dimensions

of both basic and contextualized vectors represent

co-occurring words in specific syntactic relations.

Fig. 1a shows the basic vector for charge as an ex-

ample, where we use arrows to indicate the internal

structure of the vector; the weights of the vector

components are omitted for simplicity.

The operation of contextualization reinforces

those dimensions of the basic vector that are

licensed by the context of the specific instance

under consideration. The easiest way of adapting

the vector of a word to its context of use is to retain

only those dimensions corresponding to its syntac-

tic neighbors, which results in an extremely sparse

vector with zero values for most of its dimensions.

For instance, contextualizing the vector for charge

in charge a tax (Fig. 1b) would zero out all (r,w)
components with r 6= OBJ or w 6= tax, retaining

only one non-zero dimension (the one for tax).

As we will see in Section 4, this simple approach

is surprisingly successful. However, we achieve

substantially better results by leveraging semantic

similarity information about the context words. In-

stead of considering only the dimensions of the

context words themselves, we retain dimensions of

those words that are distributionally similar to the

context words, weighted by their similarity score.

The vector for charge in charge a tax will then con-

tain additional non-zero dimensions for all words

similar to tax (Fig. 1c). In a way, similarity-based

contextualization is a formalization of the intuitive

concept of “the meaning of w in the context of a

word like w′.”

Formal description. We assume a set W of

words and a set R of syntactic relations. The latter

includes dependency relation labels such as SUBJ

or OBJ for subject and object, as well as the cor-

responding inverse relations such as SUBJ
−1. We

represent the meaning of any word w ∈ W by a

vector in the vector space V spanned by the set of

basis vectors {e(r,w′) | r ∈ R,w′ ∈W}. Such a vec-

tor records the association strength between w and

any context word w′ occurring in relation r. Specif-

ically, we associate a word w ∈ W with a vector

v(w) ∈V by setting

v(w) := ∑
r∈R,w′∈W

f (w,r,w′) · e(r,w′)

where f is a function that assigns a weight to the

dependency triple (w,r,w′). In the simplest case,

this could be the frequency of w occurring together

with w′ in relation r in a corpus of dependency trees.

In the experiments reported below, we use point-

wise mutual information (Church and Hanks, 1990)

instead, as it proved superior to raw frequency

counts:

PMI(w,r,w′) = log
p(w,w′ | r)

p(w, · | r)p(·,w′ | r)

Here the dots stand for marginalization over the

relevant variables.

Given an occurrence of a word w in the context

of another word wc, related by the syntactic relation

rc, we now define a contextualized version of v(w)
by reweighting the vector components. We set

vrc,wc
(w) := ∑

r∈R,w′∈W

αrc,wc,r,w′ · f (w,r,w′) · e(r,w′)

Here, the weights αrc,wc,r,w′ quantify the degree to

which a vector dimension (r,w′) is compatible with

the observed context (rc,wc). We consider three

alternative definitions of these weights, correspond-

ing to the three cases shown in Figure 1:

No contextualization: αrc,wc,r,w′ := 1

In this case the definition of vrc,wc
(w) coin-

cides with that of v(w).
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Strict contextualization:

αrc,wc,r,w′ := δrc,rδwc,w′

=

{

1 if rc = r and wc = w′

0 else

Here, we only retain the one dimension

(rc,wc) that is licensed by the context and set

all other dimensions to 0.

Similarity-based contextualization:

αrc,wc,r,w′ := δrc,r · sim(wc,w
′)

=

{

sim(wc,w
′) if rc = r

0 else

Here, we generalize over the surface context

and license all words w′ that are semantically

similar to the context word wc.

While any measure of semantic similarity can

be employed, in the experiments reported be-

low we compute the similarity between wc

and w′ as the cosine of the angle between their

basic vector representations v(wc) and v(w′).

Of course, we want to take into account more

than a single context word for a given occurrence

of w. Given context words w1, . . . ,wn and corre-

sponding syntactic relations r1, . . . ,rn, we obtain a

contextualized vector of w by superimposing the

vectors vri,wi
(1 ≤ i ≤ n) through vector addition:

vr1,w1,...,rn,wn
(w) :=

n

∑
i=1

vri,wi
(w)

The resulting vector vr1,w1,...,rn,wn
(w) is our com-

pletely contextualized representation for the

word w that contains information about all context

words.

4 Ranking Paraphrases

In this section, we evaluate to what extent our

model supports the choice of contextually appropri-

ate paraphrases for different uses of a target word.

We follow previous work (Thater et al., 2010; Erk

and Padó, 2010; Dinu and Lapata, 2010) and con-

sider the following task: We are given a target

word w in a sentential context and a set of refer-

ence words w1, . . . ,wk, where each wi is a lexical

paraphrase of w in one of w’s senses. The task is

to rank the candidate words wi according to their

appropriateness as paraphrases of w in the given

context. Ideally, the model will rank, for instance,

levy higher than recharge as a paraphrase of charge

in charge a fee, and lower in charge the battery.

4.1 Experimental Set-up

Gold standard. We derive our gold standard

from the SemEval 2007 lexical substitution task

dataset (McCarthy and Navigli, 2007). The orig-

inal dataset contains 10 instances for each of 201

target words (nouns, verbs, adjectives and adverbs)

in different sentential contexts. For each instance,

five subjects were asked to name appropriate para-

phrases. Table 1 shows an example of three in-

stances of charge together with their gold standard

paraphrases. Each paraphrase comes with a weight,

which corresponds to the number of times it was

chosen by the different subjects.

The original task addresses two subtasks: identi-

fying paraphrase candidates and ranking them ac-

cording to the context. Here, we restrict ourselves

to the second subtask. Following previous work,

we pool all annotated gold-standard paraphrases

of a target word w across all contexts into a set of

paraphrase candidates for w, which our model is

supposed to rank with respect to contextual appro-

priateness for the individual instances of w. We do

not extract multi-word expressions, for which our

model cannot compute vector representations, and

obtain a dataset consisting of 1986 instances for

197 different words. In our derived dataset, each

word type has an average of 17 paraphrases, 3.5

of which are correct (on average) for individual

instances of the word.

Vector space. We draw on dependency trees ob-

tained by parsing the English Gigaword corpus

(LDC2003T05) to build our vector space model.

The corpus consists of news from several newswire

services, and contains over four million documents.

We used the Stanford parser (de Marneffe et al.,

2006) to parse the corpus. The resulting depen-

dency trees were modified in a post-processing step

by folding prepositions into edge labels to make

the relation between a head word and the head

noun of a prepositional phrase explicit. Further-

more, we collapsed particle verb constructions into

single nodes. To facilitate processing and reduce

noise, we excluded all dependency triples that oc-

curred less than 3 times or had a PMI score below 0,

which resulted in a corpus of about 888 million de-

pendency triples accounting for 28 million triple

types.

To further reduce computational costs, we set

higher frequency and PMI thresholds for the com-

putation of the similarity scores used in the contex-

tualization of vectors: in the experiments reported
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Sentence Substitution candidates

Annual fees are charged on a pro-rata basis [. . . ] levy 2; require 1; impose 1; demand 1

Plug in you h 10 in the usb outlet and it will charge

without the plug in adaptor.

recharge 2; supply electricity 1; charge up 1

Pauline Gilmore, 32, was charged with possessing

a blast bomb.

indict 3; accuse of 2; accuse 1

Table 1: Three examples from the lexical substitution task data set for the target word charge.

below, we consider only (vectors based on) depen-

dency triples that occur at least 5 times and have a

PMI score of at least 2. Note that these thresholds

are used only to speed up processing. The effect on

the overall performance is minimal: an experiment

on a randomly chosen 10% subset of the test set

shows that we obtain almost identical scores, but

runtime is reduced by a factor of more than 35.

Scoring. We rank the paraphrase candidates for a

target word in context by the similarity of their ba-

sic vectors to the contextualized vector of the target.

Contextualizing both the target and the paraphrase

candidate has been observed to reduce performance

(Thater et al., 2010; Dinu and Lapata, 2010). Sim-

ilarity is measured in terms of the dot product of

the vectors. In cases where the Stanford parser

produced dependency trees that are inconsistent

with the information about the target word in the

gold standard, or where the contextualized vector

is zero, we use the basic vector of the target as a

fallback. This fallback method applies to 7% of all

instances in the dataset.

Evaluation method. Following previous work

(Thater et al., 2010; Erk and Padó, 2010), we use

Generalized Average Precision (Kishida, 2005) to

compare the ranking predicted by our model with

the gold standard. GAP takes values between 1.0

and 0.0, where a value of 1.0 indicates that all

correct items are ranked before all incorrect ones,

and that higher-weighted items are ranked before

lower-weighted ones. Statistical significance of

differences in performance are computed by ap-

proximate randomization (Chinchor et al., 1993).

4.2 Results

Table 2 shows results for three versions of our

model, corresponding to the three definitions of the

weighting factors that were detailed in Section 3:

(a) No contextualization

POS Random No context Strict Sim.-based

Verb 27.4 38.4 41.6 48.8

Noun 30.1 45.2 47.3 52.9

Adj 28.4 42.2 45.8 51.1

Adv 36.4 51.6 50.6 55.3

All 30.0 43.7 46.0 51.7

Table 2: Results for our model using different con-

textualization methods, compared to a random base-

line.

(b) Strict contextualization

(c) Similarity-based contextualization

In addition, we show the performance of a baseline

that ranks paraphrase candidates randomly.

We observe that similarity-based contextualiza-

tion is very effective, improving performance by

8% compared to the “no context” variant, and still

by almost 6% compared to the strict variant that

uses surface context only. The differences are sta-

tistically significant (p < 0.001).

Figure 2 provides a different view on system

performance. It shows how often the k first can-

didates in the ranking contain at least one gold

standard paraphrase. In particular, we can observe

that similarity-based contextualization predicts a

good top-ranked candidate in 55% of the cases; the

top three contain a correct paraphrases in more than

80% of the cases.

Table 3 compares our model to previous models

that have been evaluated using the Lexical Substitu-

tion Task (LST) dataset. Our model outperforms all

previously proposed methods. Although all mod-

els have been evaluated on test-sets derived from

the LST dataset in essentially the same way, the

datasets differ slightly due to technical details, so

strictly speaking the results cannot be compared

directly. However, since all authors report similar
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Figure 2: The figure shows how often the k first

candidates in the ranking contain at least one gold

standard paraphrase (for k ≤ 10).

Model GAP Random

Erk and Padó (2008) 27.4† N/A

Erk and Padó (2010) 38.6‡ 28.5

Dinu and Lapata (2010) 42.9 30.3

Thater et al. (2010) 46.0 30.0

Our model 51.7 30.0

† Cited from Erk and Padó (2010). The result refers to
a small subset of the Lexical Substitution Task dataset.

‡ Evaluated on nouns, verbs, and adjectives (not adv.).

Table 3: Comparison to previous work

scores for the random baselines, we assume that the

complexity of the subsets used in previous work is

more or less comparable.

Learning curve. The corpus used in our study

is much larger than the British National Corpus

(BNC) that has been used, for instance, in Erk

and Padó’s (2008; 2010) models. To assess the

contribution of the corpus size to the performance

of our model, we randomized the order of depen-

dency trees in the parsed Gigaword corpus and

constructed vector space models using increasing

subsets of the complete corpus with a step size of

5%. The resulting learning curve is shown in Fig-

ure 3. We see that our model performs well even

on small subsets of Gigaword. When we use only

5% of the dependency trees, which is roughly two

third of the size of BNC, we already obtain a GAP

score of 46.0%, which is 5.7% less than our result

with full Gigaword, but 7.4% more than the best

reported BNC-based model.

Syntactic information. Finally, we investigated

the impact of syntactic information by comparing

our model against two variants: (i) a “bag of words”

variant that does not use syntactic information at

40.0!%

43.0!%

46.0!%

49.0!%

52.0!%

0 10 20 30 40 50 60 70 80 90 100

% of Gigaword used

G
A

P

Figure 3: Learning curve: GAP with varying cor-

pus size.

all and (ii) a “syntactically filtered” variant similar

to Padó and Lapata (2007) that uses syntactic infor-

mation but does not explicitly represent syntactic

role information in the vector representations. Vari-

ant (i) is based on co-occurrence statistics on pairs

(w,w′) of content words within a five-word win-

dow; for variant (ii) we consider all pairs (w,w′)
such that w and w′ are linked by some syntactic

relation. Technically, we represent these pairs as

dependency triples involving some arbitrary fixed

syntactic role label.

We observe that syntactic information con-

tributes to the success of our approach both by

selecting relevant context words and by character-

izing their syntactic relations: In terms of GAP, the

“bag of words” variant achieves 48.7%, the “syntac-

tically filtered” variant 50.9%, and our full model

51.7%. The relatively small difference between

the two syntactic variants, while maybe surprising

at first sight, is explained by the fact that in most

cases the syntactic role of a dependency triple is

predictable from the words it connects: For more

than 88% of all dependency triples in Gigaword,

the syntactic role is actually the most frequent one

for the respective pair of words. Yet, the difference

between the two variants is statistically significant

(p < 0.05): The model supports correct decisions

in those cases where syntactic role information mat-

ters.

5 Word Sense Disambiguation

In a second experiment, we applied our model to

the task of word-sense disambiguation. For an in-

dividual instance of a word, we predict the correct

WordNet sense (Fellbaum, 1998) of the target based

on its immediate syntactic context, without relying

on any manually annotated training data. Our sys-

tem is knowledge-based, according to the classifi-

cation of WSD approaches proposed in McCarthy
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(2009) and Navigli (2009). It is a knowledge-lean

system, in contrast to many other systems that ex-

ploit external resources, since it uses only a small

subset of the structural information provided by

WordNet – just as much as is required to adapt our

contextualization model to the WSD task.

The state of the art in knowledge-based WSD

systems not trained on annotated data is defined by

the models of Navigli and Velardi (2005), Ponzetto

and Navigli (2010) and Li et al. (2010). The former

two rely on a rich inventory of additional knowl-

edge resources. Li et al. (2010) restricts itself to

WordNet information in a similar way as our ap-

proach, and therefore is our natural benchmark.

5.1 Method

We frame the task of choosing the right WordNet

sense as a paraphrase ranking task like the one con-

sidered in Section 4, with all possible synonyms of

the target word constituting the set of (lexical) para-

phrase candidates. The basic idea for predicting a

sense of the target word is to choose the synset that

contains the most similar paraphrase. As the Word-

Net synsets of the target word are often singletons,

just containing the target itself, we additionally in-

clude all words from direct hypernym, hyponym,

and similar synsets (WordNet relation “similar to”).

We ignore multiword expressions since our model

does not provide vector representations for them.

While we generally found the richer collection

of candidates to improve system performance, the

inclusion of hypernyms can have a negative ef-

fect on sense discrimination, since different word

senses frequently share the same hypernym. To

counter this effect, we consider the average similar-

ity scores of the best two paraphrase candidates of

each sense rather than relying on the most similar

candidate alone. More technically speaking, we

collect all relevant sense paraphrases ci,1, . . . ,ci,ki

for each sense si of the target word. We compare

the contextualized vector of the target word to the

basic meaning representations of these candidate

words, obtaining a similarity score for each of them.

The score of the sense si is then defined as the aver-

age of the scores of the two top-scoring candidate

words, and the sense with the highest such score

is predicted. Our model fails to predict a sense

for an ambiguous target if the candidate set of any

sense is empty, which can happen in cases where

all applicable sense paraphrases are multiword ex-

pressions.

We will experiment with two instantiations of

this model: the basic version described above,

and a version that additionally integrates informa-

tion about prior sense distributions by multiplying

the score of each synset with its prior probability,

and falls back to the most frequent sense in cases

where the basic model fails to make a prediction.

Prior probabilities are estimated by using sense

frequency information from WordNet.

5.2 Experimental setup

Gold standard. We evaluate our model on the

SemEval 2007 Coarse-grained English All-words

Task (Navigli et al., 2007) test set. The test set

consists of 5,377 words of running text from five

documents from different genres. All open-class

words in this corpus are annotated with coarse-

grained sense labels, which are defined as clusters

of WordNet senses and are obtained by mapping

WordNet 2.1 senses to the Oxford Dictionary of

English (Soanes and Stevenson, 2003). On a subset

of 710 instances an inter-annotator agreement of

93.80% was reported, which can be considered the

upper bound for any WSD system on the data set.

Predicting coarse-grained senses. The method

described in Section 5.1 predicts (fine-grained)

WordNet senses. It can be straightforwardly ex-

tended to the coarse-grained WSD task by picking

the sense cluster containing the top-ranked synset.

We achieved slightly better results by applying a

different method: We normalize the scores of all

synsets so that they sum up to 1, which allows us

to interpret them as a probability distribution. We

then compute probabilities for each sense cluster

by aggregating over its constituent synsets, and pre-

dict the most probable one (which need not be the

one containing the most probable synset).

Baselines. We compare our model against a ran-

dom baseline and the most frequent sense (MFS)

baseline that always predicts the sense with the

highest sense frequency according to WordNet.

5.3 Results

Table 4 summarizes results on the test set in terms

of precision, and compares them to two baselines

and the state-of-the-art system of Li et al. (2010).

Except in the case of our basic system (-MFS) with-

out prior information, which cannot use informa-

tion about most frequent senses as fallback and

covers only 74.6% of the test cases, coverage is

100% and therefore precision coincides with recall.
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Model +MFS -MFS

Random 52.4 52.4

Most frequent sense (MFS) 78.9 —

Li et al. (2010) 81.3‡ 78.8‡

Our Model 80.9 78.7†

Combined system 82.2 78.9

† Covers 74.6% of the dataset.

‡ Results reported here are higher than the results re-
ported by Li et al. (2010). Our results are based on
the scoring script provided by the organizers of the Se-
mEval 2007 shared task. Differences are due to details
such as sensitivity to capitalization when system predic-
tions are compared with the gold standard.

Table 4: Precision of our model on the WSD task,

with (+MFS) and without (-MFS) prior knowledge

about sense distributions, compared to the state-of-

the-art system by Li et al.

We can see that our model’s performance is com-

petitive with the state of the art: In both settings our

model outperforms the two baselines, and reaches

the performance level of the benchmark system of

Li et al. (2010).

Interestingly, the strengths of our and Li el al.’s

systems are complementary. For example, in the

sentence “The diners at my table simply lit more

Gauloises [...],” our model correctly predicts the

sense “person eating a meal” of the target din-

ers, based on the leading sense paraphrase eater.

The system by Li et al. (2010), on the other hand,

predicts the sense “passenger car where food is

served”, which fits the general topic similarly well,

but is highly implausible in the given syntactic con-

text. However, in the sentence “The program text,

or source, was converted into machine instructions

using a special program called a compiler,” the

system by Li et al. (2010) is able to leverage topi-

cal clues to correctly predict the software sense of

compiler, whereas our system ranks the sense para-

phrase author over program and thus incorrectly

predicts the sense “person who compiles encyclo-

pedias.”

Given this complementary nature of the two sys-

tems, we tried to combine them in a straightforward

way, by averaging their predicted probability dis-

tributions (defaulting to Li et al. for instances not

covered by our model). Table 4 shows that the com-

bined system outperforms both individual systems

both with and without MFS information. In the

former case (with MFS), the improvement of 0.9%

is statistically significant (p < 0.01) according to

McNemar’s test.

6 Conclusions and Future Work

We have presented a technically simple and in-

tuitively transparent vector space model of word

meaning in context. Contextualization of a vector

is realized by reweighting its components, using

semantic similarity information about the words

occurring in the target’s local syntactic context.

We evaluated our method on a paraphrase rank-

ing task derived from the SemEval 2007 Lexical

Substitution Task dataset and showed that it sub-

stantially outperforms all previous approaches, ex-

ceeding the state of the art by almost 6% in terms

of generalized average precision. We showed that

our model supports a wider range of application

by evaluating it on a word sense disambiguation

task. The model reaches the performance level of

the state-of-the-art benchmark system of Li et al.

(2010). The combination of the two systems per-

forms significantly better than either system used in

isolation, and outperforms the most-frequent-sense

baseline by over 3%.

The contextualization operation takes only the

words in the targets local syntactic context into ac-

count. A natural direction for future research is to

generalize the contextualization operation so that

the context words themselves can be contextualized

in a recursive fashion and all words in the target’s

complete syntactic environment can contribute in-

formation.

Our present model incorporates syntactic rela-

tions, although semantic information should ideally

be expressed in terms of underlying semantic roles.

We have seen that the use of syntactically struc-

tured vector representations leads to a relatively

small, but statistically significant increase in perfor-

mance, compared to variants of our model that do

not represent rich syntactic information. We expect

that further progress can be made by integrating

semantic role information.
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