
Contents

1 Lab Exercise 01. Vector Images: Configurations, Objects and

Templates

Course: "Web technologies", Spring 2007.

Due: Monday, March 5th, 2007

Purpose: The purpose of this exercise is to introduce Spring MVC application with a simple component

architecture, Velocity templates and RDF data access. It transforms data from an RDF datasource

into SVG or raster images via Velocity templates. This application could serve as a command-line

or a Web application programmatically generating vector images from simple configuration data and

HTTP requests.

Download: Use Anonymous checkout from BerliOS SVN (a Subversion client should be installed prior

to this): https://developer.berlios.de/svn/?group_id=7959. See http://subversion.tigris.org/; it is suffi-

cient to use Subclipse (an SVN plugin for Eclipse IDE).

1.1 Background

Vector and raster images each have their advantages; for comparison see Vector vs. Raster graphics. The

software of this lab exercise will generate a range of simple images from their descriptions with RDF. (RDF

is a general, non-presentational way to describe objects and their relationships. The data model of an RDF

is a directed graph with labeled nodes and edges (these labels are URLs). The RDF can be written either

as XML (this is used in all the W3C specification documents) or in the so called N3 notation, which is

easier to create by hand, especially when compared to the XML syntax for RDF, which is the only format

explained in most RDF specifications.

The processing chain by the software is the following:

1. Read RDF data e.g. with Jena library,

2. Initialize components. Component properties may depend on the defaults remembered at the application-

wide context, some more specific contexts (e.g. user role, user specific settings, session settings, etc.),

current model of image descriptions (all this information is recorded in description.n3). For the

Web application the property values may depend also on the HTTP request parameters and actions

(e.g. rotate, scale, hide, translate, etc.) performed on these components.

3. Transform the components to SVG vector graphics via Velocity templates

4. Optionally, filter the SVG to rasterize the graphics to PNG, which has better browser support.

The Web application also contains a separate HTML page, which provides links to all the preconfig-

ured images and allows setting their properties and performing actions from Web forms.

1.2 Preparing for the Exercise

Get familiar with running simple Java command-line applications from Eclipse, get an SVN snapshot

from the BerliOS project KLUCIS and run it from Eclipse. Run JUnit tests and verify that all of them

work properly. Download Spring framework, build and deploy on Tomcat and/or JBoss some of the

Spring samle applications (e.g. "countries"). Make sure that you understand Spring’s configuration file

countries-servlet.xml and the web.xml configured for Spring’s DispatcherServlet.

1

Install Adobe SVG Viewer 3.x plugin for Internet Explorer. Verify that you can view some SVG files (SVG

samples are included with Batik distribution). Read some RDF specifications and familiarize yourselves

with N3 syntax for RDF. More detailed instructions how to run the KLUCIS project are given in the

Seminar 01.

1.3 Design Problem

1. Propose and implement "abstract" JUnit tests for the contract of AbstractComponentFactory.localGetComponent(...

so that these tests are run for all subtypes of ComponentFactory, but they need not be repeated in

all the respective test classes. I.e. implement an approach to test contract of abstract method and to

define these tests in one location only (the principle is "Don’t repeat yourself" or "DRY"). In partic-

ular you must check that after localGetComponent() returns the "id" property for the component

is properly initialized. Read more about Abstract test cases.

2. Propose and implement JUnit tests to check that warnings are logged in case when there is a re-

peated property in KlucisDAO.getCascadedProperty(). Right now the JUnit tests are not sen-

sitive against the messages being logged, even though the contract of a class includes its behav-

ior regarding the logger. Your tests should check that the log warning text matches certain regu-

lar expression. A regular expression is a way to describe strings satisfying some pattern (see e.g.

java.util.regex.Pattern). In particular, check that if the same property is repeated for the

same resource, then the following warning message is logged:

"Non-unique property ’[^’]+’ for resource ’[^’]+’"

where we do NOT care about the name of the property or the resource. (Even though the test-

case may know the property and the resource, asserting them in the log message could make the

testcase brittle. In fact, the property may be output either as a full URL, or a QName - e.g. "KLU-

CIS:hasColor", "klucis:hasColor" and "http://www.webkursi.lv/schema/20061008/klucis#hasColor"

- may all be valid ways to write the property. Similarly the resource may be a URL or a QName, or

a blank node.

3. Implement a separate controller, which for all requests matching certain URL pattern outputs the

PNG image obtained from the SVG through rasterization/transcoding. For example, the pattern could

be /klucis/main/PngImage/*, so that, for example "bilde_15" can be requested as http://localhost:8080/klucisDemo/klucis

You will probably need Apache Batik library to do this. Classes SaveAsJPEG and SaveAsPNG show

sample code to do offline transformations for SVG, but your approach (e.g. filter) should do this

server-side. Each transcoding/rasterization to PNG typically takes about 1-2 seconds to complete.

Do not worry about the performance. The PNG filter could be configured similarly to the XSLTFilter:

<filter-mapping>
<filter-name>PngFilter</filter-name>
<url-pattern>/klucis/main/PngImage/*</url-pattern>

</filter-mapping>

4. You will notice that the factory code in the package lv.webkursi.klucis.component.geom2d

is very predictable. Propose a method to generate this code from annotations (e.g. RectangleFactory

code should be generated from annotations for Rectangle properties). You may use either Java 1.5

annotations or XDoclet approach or anything else to do that. You can add one extra precompilation

step to the Ant buildfile, which would perform the code generation before everything is compiled

and before the JAR is archived.

5. Currently there is a possibility to do recursive render of Velocity views (i.e. call merge of one

Velocity view inside another). The approach works both for command-line and for Web application.

There is one drawback though - sometimes components have many properties, and all these are added

individually. For example in Rectangle.lifecycleEvent() there are many quite predictable

lines:

2

addObject("_offsetX", offsetX);
addObject("_offsetY", offsetY);
addObject("_showRectangle", showRectangle);
addObject("_width", getCoreWidth());
addObject("_height", getCoreHeight());
if (!label.equals("")) {

addObject("_label", label);
}
addObject("_content", content);
addObject("_rotate", -rotate);

This enables the Velocity template to refer to all these variables as $_width etc. The alternative,

which you should implement, is to add just the reference to the underlying component (e.g. for the

key "_component"), and all the properties could be just extracted by "$_component.getXxx()" meth-

ods. So, in Rectangle.lifecycleEvent() we would write just one addObject() command,

e.g.:

addObject("_component", this);

And in the Velocity template we could write something like $_component.getWidth() instead of

$_width.

6. Implement a few more components to enable drawing the flags (similar to the ones 17a.gif, ...

17e.gif). These images should be displayed in response to the following URLs - http://localhost:8080/klucisDemo/01/main/b

etc.

7. Currently, if several versions of the same shape is being output, it is repeated. Implement an opti-

mized version, which would output each component once and use SVG refid mechanism, if neces-

sary. (Compare house1.svg and house2.svg from Seminar 01 Demo).

1.4 Resources

Do not worry, if there are too many frameworks and libraries used by this project. Most of the libraries are

used in a simple and straightforward way, and the usage samples are provided.

1.4.1 What to Install

J2SDK, Ant (or optionally Maven), Eclipse (possibly with Subclipse, Velocity and XMLBuddy plugins),

Editplus/Scite plain text editors, Firefox or Adobe SVG plugin for MS Internet Explorer. See Installation

instructions.

1.4.2 Spring

Spring framework is used to set up a Web application, which uses Spring’s pre-built MVC (Model-View-

Controller) solution along with Spring’s other Dependency Injection mechanisms. A step-by-step tutorial

is available - see [Spring_Ris]. It is recommended that you configure Spring starting with some minimal

configuration and then gradually add more things to it as they become necessary rather than start from

some huge application, which contains all kinds of things, which do not make immediate sense.

1.4.3 CVSDude

To collaborate more effectively, your team might want to set up version control system for your team. One

possibility is CVSDude - it has limited space, so it is better NOT to check in JAR files, but only your own

code.

3

1.4.4 Provided Code

A prototype Spring MVC application is already in place - it has fully configured web.xml and Spring’s

configuration files for each of the two dispatcher servlets. It already contains most of the code for the less

obvious Java libraries doing the Velocity configuration, RDF data access, and SVG rasterization.

1.5 Mechanics

There are 2 Spring configuration files. One Spring config file is for the command-line version of the pro-

gram trunk/bat/context.xml. Another is for the Web version of the program - trunk/klucis_demo/src/main/webapp/WEB

Both files contain configurations of the beans participating in the mini framework.

1.6 Expectations

1.6.1 Deliverables

• Your application (including all source code and tests), which passes all the provided JUnit and Sele-

nium tests.

• Provide brief description of your aproach (some explanation regarding the analysis and design) for

Factory class generation (Design Problem #4), the picture 17_N generation (Design Problem #6)

and using the SVG refid (Design Problem #7). This presentation should contain the full names and

e-mails of all your team members (i.e. 1..3 people) on its first slide. Write this presentation to a MS

PowerPoint-compatible file presentation.ppt and place this file under klucisTrunk/docs.

• Before submitting your project, please run "ant submit" to create the file lab01.zip, which you can

send as attachment to the instructor’s e-mail, namely kalvis.apsitis at the domain gmail.com. The

Ant target "submit" was missing in the original KLUCIS distribution. Please see "Errata" section

below for how to resolve the situation.

1.6.2 Prerequisite knowledge

Familiarity with SVG vector graphics, Spring configurations and RDF in N3 notation.

1.6.3 What is learned during this exercise

How to set up Java/Eclipse/Maven/Subversion environment, how to develop simple Spring MVC applica-

tions, how to use Velocity templates to create simple markup (HTML and SVG), how to access RDF data

from Java code and how to generate bitmap images on the fly.

1.6.4 Guidelines for Evaluation

• 20 grade points total - 2 for each of the design/implementation problems (i.e. 14 for all 7 de-

sign/implementation problems). Your team can also get up to 6 grade points for the write-up of

the presentation presentation.apt.

1.7 Bibliography

[W3C_SVG_03] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 Specification. W3C,

Ed. Jon Ferraiolo et al., 2003-01-14. http://www.w3.org/TR/SVG11/.

[Eis_SVG_02] Eisenberg, J.David. SVG Essentials. O’Reilly, 2002.

4

[Ris_Spring_03] Risberg, Thomas. Developing a Spring Framework MVC application step-by-step. 2003-

06-30. http://www.springframework.org/docs/MVC-step-by-step/Spring-MVC-step-by-step.html.

[Ber_N3_05] Berners-Lee, Tim. Primer: Getting into RDF & Semantic Web using N3. W3C, 2005-08-16.

http://www.w3.org/2000/10/swap/Primer.html.

[Velocity] The Apache Software Foundation. Velocity User Guide. Jakarta.Apache.Org, 2005. http://jakarta.apache.org/velocity/docs

guide.html.

[Jena] Hewlett-Packard Development Company, LP. Semantic Web Framework Jena. Jena.Sourceforge.Net,

2006-06-15. http://jena.sourceforge.net/documentation.html.

[Batik] The Apache Software Foundation. Batik SVG Toolkit. Xmlgraphics.Apache.Org, 2005. http://xmlgraphics.apache.org/batik/.

[APT] Shafie, Hussein et al. APT User Guide. Www.Pixware.Fr, 2005-06-13. http://www.xmlmind.com/_aptconvert/docs/userguide

1.8 Errata

The missing "ant submit" target: The buildfile in the project root directory - klucisTrunk/build.xml

now contains the "submit" target. Please make sure that your submission of Lab01 is produced by

something like this (please read the subsection "Mechanics" above). The Ant code looks like this:

<project name="klucisTrunk" basedir="." default="clean">
...
<target name="submit" description="Create a ZIP file ready for submission">
<ant antfile="build.xml" dir="klucis_core" target="clean"/>
<ant antfile="build.xml" dir="klucis_demo" target="clean"/>
<delete dir="target/submit" failonerror="false"/>
<mkdir dir="target/submit"/>
<copy todir="target/submit">
<fileset dir="." includes="**/*"

excludes="target/**,bin/**,.*,**/*.jar,**/*.zip,**/*.log">
</fileset>

</copy>
<zip destfile="target/lab01.zip">
<fileset dir="target/submit"/>

</zip>
</target>

...
</project>

i.e. it executes "clean" target in both subprojects (klucis_core and klucis_demo), it creates an empty

staging directory "target/submit"; it copies everything under klucisCore to this directory, except for

dependent files, any JARs, ZIPs and logfiles. Then it creates a new zip file lab01.zip in the target

directory. To execute this task, either copy-paste the above target to your klucisTrunk/build.xml

or perform the Subversion update on this build.xml file from the BerliOS repository.

This lab01.zip can be submitted by any member of your team. Please do not forget to tell me, what

are ALL members from your team (otherwise I won’t know who should get the grade!).

2 Lab Exercise 02. Quiz App: MVC Pattern and Data Access

Course: "Web technologies", Spring 2007.

Due: Monday, April 16th, 2007

Code Freeze: The Lab02 description and its sample Java code in BerliOS won’t change after Monday

26th, 23:59 (i.e. at that point all the requirements become finalized). Before this date you can suggest

5

all kinds of improvements; after that date only the errors will be changed (and documented under

"Errata").

Purpose: The purpose of this exercise is to learn more about Spring and Hibernate to make data access to

relational databases.

2.1 Special Thanks

A few Master program students have contributed to this exercise. Thanks to Anete Ozola for providing

her application Mtest.lv written in RubyRails. Vladimirs Potapovs suggested the Spring’s solution for an

internationalization filter. (Prior to that a more complicated custom solution was used to support UTF-8

encoding for Web forms.) Here is the solution (see also the file edu_demo/webapp/WEB-INF/web.xml):

...
<filter>

<filter-name>CharacterEncodingFilter</filter-name>
<filter-class>

org.springframework.web.filter.CharacterEncodingFilter</filter-class>
<init-param>

<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>
<init-param>

<param-name>forceEncoding</param-name>
<param-value>true</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>CharacterEncodingFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
...

2.2 Background

A simple multiple-choice testing application illustrates how a domain model can be mapped to a relational

database, and how a Spring MVC application may be used to be the Web layer for that database application.

The domain model (the design of lv.webkursi.mtest.lab02.domain) is available as an image in PNG and

SVG formats.

2.3 Preparing for the Exercise

In this exercise you will create a Java analogue to an existing application done in Ruby/Rails. Here are

instructions how to run the RubyRails prototype application Mtest.lv:

6

RubyRails instal\={a}cijas instrukciju sk. www.rubyonrails.com.
Aptuvena solju seciiba:

(1) Instaleet Ruby (piemeeram ruby186-25.exe no
http://rubyforge.org/frs/?group_id=167).

(2) Ja atrodaties aiz PROXY servera,
tad DOS lodzinjaa uzstaadiet pagaidu mainiigo:
set HTTP_PROXY=http://your.proxyserver.url:8080
Preteejaa gadiijumaa izlaidiet sho instrukciju.

(3) Izpildiet DOS komandu:
gem install rails --include-dependencies

P\={e}c Ruby un Rails instal\={e}\v{s}anas
var sagatavot un izpild\={\i}t mtest.lv aplik\={a}ciju:

(4) Palaist BAT failu initialize-db-and-run-webrick.bat.
\v{S}is .bat faili\c{n}\v{s}:
-izveido localhost datub\={a}zi ’mtest’ (mysql login/parole root/root)
-izveido lietot\={a}ju Admin (mtest login/PAROLE admin/admin)
-ieraksta datub\={a}z\={e} p\={a}ris testa modu\c{l}us
-start\={e} Webrick (http://localhost:3000)

2.4 Design Problem

1. Consider the RubyRails application as a sample and add functionality to create new modules ("Testa

moduļi"), add questions ("Jautājumi") to the modules, create assignments ("Testa sagataves") and

take tests ("Veikt testus"). (The database schema is somewhat different for the Ruby application, e.g.

it allows some enum fields - "status" and "visibility" for test modules, etc. You may assume for the

sake of simplicity that everything is public and visible, i.e. you do not need to implement these enum

fields, unless you want to.).

2. Create a utility program (a Java console application with its main() method), which can import ques-

tions annotated as XML (see csdd_fragmenti.xml) into the MySQL database "portaledu".

3. Create functionality to upload images for the tests. Each image belongs to a certain testmodule and

has a unique name within that module. Image size does not exceed 64K, so you can use the regular

MySQL BLOBs to store the image data. Currently Image objects are partly mapped to the database

using Hibernate (see ContentItem.hbm.xml mapping), but the binary BLOB is not mapped. You

may choose to implement the access to BLOB via normal JDBC. There is a command-line utility

lv.webkursi.mtest.lab02.dao.BlobDemo, which inserts into a database table some JPEG images. You

may use this as a code sample (notice that it is easy to get a JDBC connection from a Hibernate

session object).

4. Whenever the application displays a list of something (e.g. "/person/listall", "/module/listall", etc.),

implement a paging functionality - results should be displayed in pages - 20 results per page.

5. Implement reasonable security restrictions - links/buttons like "Edit" and "Delete" should not allow

the non-admin users to update data in table Person and QuestionType. Each user sees only his/her

own testmodules, but can take assignments made by anyone else.

6. Have a correct and efficient process of obtaining/releasing database connections. Namely, use con-

nection pool instead of "drivermanager" (see commented section in file mtest-servlet.xml).

Also, call the "close()" method on various instances of CommonDao, when the beans, which need

them become garbage or are unloaded by the Web container. (This way your application will not

crash or run out of memory as often as it does now.)

7

2.5 Resources

2.5.1 Provided Code

Check out the code from the following BerliOS repository (e.g. with Subclipse): https://kalvis@svn.berlios.de/svnroot/repos/klucis/p

It should not ask for any passwords, if you access that repository in read-only mode.

2.6 Mechanics

You will mostly edit files under the packages lv.webkursi.mtest.lab02.* under the "edu_core", and

also all kinds of files under the "edu_demo". There should be very few dependencies from "lv.webkursi.mtest.lab02.*"

packages to any "lv.webkursi.mtest.core" (the latter deals with RDF data processing and is not needed for

this exercise).

• The JUnit tests can be run by executing all test methods under portalEdu\edu_core\src\test\java.

• The Selenium tests for lab02 can be executed from the URL http://localhost:9080/eduDemo/tests/.

Select the link "Run MTest tests".

• In case you need to modify something under the "lv.webkursi.mtest.core.*" packages, also execute

the other Selenium test suite - pick the link "Click here to run PortalEdu tests" in the above Web

address.

2.7 Expectations

In this exercise a special attention will be paid to the completeness to your test suites. Make sure that all the

DAO methods you need are tested (i.e. you would need tests for the new DAO methods regarding Assign-

ments, Sessions and Answers, which persist the domain objects from the package lv.webkursi.mtest.lab02.domain),

and also JUnit tests for various other objects, e.g. validators.

Your Selenium tests would need to cover all kinds of normal behaviors and also abnormal ones (invalid

form submissions, someone attempting to do something without proper authorization, e.g. a non-admin

user doing admin functionality, etc.)

2.7.1 Deliverables

As before, you are requested to write a presentation lab02.ppt, which you can include under "portalE-

duTrunk/doc" directory. This presentation should contain short description of all your main activities and

design solutions taken for this exercise and also the full names of all participants in your team. Having a

PPT presentation is mandatory; submissions, which do not contain it will be rejected.

When you are finished doing all the things described under "Design Problem", please run the Ant task "ant

submit" in the root directory of "portalEduTrunk". It should create a file lab02.not_a_zip, which one of

your team can send as a regular e-mail attachment to the "kalvis.apsitis" account at "gmail.com". (The file

actually IS a ZIP file, but it has a different extension to bypass checking for executable BAT files, which

may be contained in this attachment.)

2.7.2 Prerequisite knowledge

It is recommended that you understand Hibernate and Spring MVC before attempting this exercise.

8

2.7.3 What is learned during this exercise

Design and configuration for a typical Spring/Hibernate database application; also its development steps

and testing.

2.7.4 Guidelines for evaluation

Each of the 6 exercises in "Design problems" is worth 3 points. Points may be reduced, if your code is

not properly object-oriented (e.g. if you write the command-line utility as a huge main() method), also, if

the code is not well readable and does not properly handle resources (like database connections, uploaded

image files, etc.), is potentially insecure or iniefficient. Also, if the JUnit/Selenium tests are incomplete.

The remaining 2 points will be given for the PPT presentation.

2.8 Bibliography

• Good resources to learn Hibernate and Spring is their standard documentation (one can unpack the

distributions of spring-framework-2.0.2-with-dependencies.zipand hibernate-3.2.2.ga.zip

to a local directory.

• For advanced Spring features the textbook Apress - Expert Spring Mvc And Web Flow -

Feb 2006 is recommended.

2.9 Errata

2.9.1 Remarks regarding Unix and similar environments

Mārtiņš Barinskis atzı̄mē sekojošas izmaiņas, ja darbina Mtest.lv (t.i. Ruby/Rails aplikāciju) uz Unix-veida

platformas.

• Lai palaistu ROR aplikāciju, MTest direktorijā ir jāraksta sekojoša komandrinda: "ruby script/server".

Tad tiek izmesta kļūda "Permission denied", kas bija saistı̄ta ar FastCGI moduli. Problēma atrisinājās

ar sekojošu komandrindu:

chmod 755 public/dispatch.fcgi

acı̄mredzot, kaut kas bija noticis ar šı̄ faila piekļuves tiesı̄bām.

• Vajadzēja mazliet pamainı̄t arı̄ simple_import.rb scriptu, lai tas izpildı̄tos. Sākotnēji Ruby žēlojās

par to, ka neatrod active_record moduli. Lai to laistu ārpus ROR ietvara, vajag iekļaut papildus mod-

uli - ’rubygems’. Man viss aizgāja ar sekojošu simple_import.rb skripta sākuma daļu:

#!/usr/local/bin/ruby
require ’rubygems’
require ’active_record’
require ’rexml/document’
require ’logger’

9

