
1

No. 1

File system
Case studies: Linux (Ext2) and Windows (NTFS)

Lecture 3
~ Fall, 2007 ~

No. 2

Contents

• Linux File System (Ext2)

• Windows NT (New Technology) File

System (NTFS)

No. 3

Linux File System
General considerations

• Virtual File System (VFS)

• Ext2
• Second Extended Filesystem

• The native FS of Linux

• The first version of Linux were based on the Minix
file system

• Ext2 was introduces in 1994

• Comply with the POSIX interface

• Ext4 – newest version (October 10, 2006)

No. 4

Linux File System
Characteristics

• optional block size at creation of an Ext2 file system
(from 1KB to 4KB)

• good allocation strategy

• support for immutable and for append-only files

• a good implementation of file-updating strategy –
minimize the impact of crashes

• support for automatic consistency checks on the file
system status at boot time (/sbin/e2fsck)

2

No. 5

Linux File System
Disk’s structure

• Each partition is split into block groups

• Pre-allocates disk data blocks to regular files at adjacent
positions in the same block group – reduces file fragmentation

No. 6

Linux File System
Superblock structure

• total number of inodes

• filesystem size in blocks

• free blocks counter

• free inodes counter

• block size

• number of blocks per group

• number of inodes per group

• time of last mount operation

• time of last write operation

• mount operations counter

• number of mount operation before check

• magic signature

• size of on-disk inode structure

• block group number of this superblock

• number of blocks to pre-allocate

No. 7

Linux File System
Group descriptors and bitmap

• block number of block bitmap

• block number of inode bitmap

• block number of first inode table block

• number of free blocks in the group

• number of free inodes in the group

• number of free directories in the group

No. 8

Linux File System
Inode structure

• All inodes have the same size = 128 bytes a 1024
block contains 8 inodes

• Each inode contains
– file type and access rights

– owner identifier

– file length in bytes (32 bits) => 4GB limit (actually 2GB)

– time of last file access

– time that inode last changed

– group identifier

– hard links counter

– number of data blocks of the file

– pointers to data blocks (BAT)

3

No. 9

Linux File System
BAT structure

No. 10

Linux File System
File management system calls

• fd=creat(name, acces_right)
• access_rights: 0644 (rw-r—r--)

• fd=open(name, mode)
• mode: O_RDWR, O_RDONLY, O_APPEND etc.

• n=read(fd, buffer, nbytes)
• n=write(fd, buffer, nbytes)
• pos=lseek(fd, offset, whence)
• close(fd)
• dup, dupd2
• link
• stat, fstat

No. 11

Linux File System
System data structures for open files

1

2

i-node “file2”

i-node “file1”

WRONLY02

RDWR

RDONLY

RDWR

WRONLY

WRONLY

RDONLY

1

1

1

STDERR

STDOUT

STDIN

100

0

0

fd5

fd4

fd3

fd2

fd1

5

6

4

7

3

2

1

0

int fd1, fd2, fd3, fd4, fd5;

char buf[100];

fd1=open(“file1”, O_RDWR);

fd2=open(“file1, O_RDONLY);

fd3=open(“file1”, O_RDWR);

fd4=open(“file2”, O_WRONLY);

fd5=dup(fd4);

Read(fd3, buf, 100);

Standard system files

(automatically open)

User open files

Duplicate file
descriptor

Open Files Table Inodes Table

File Descriptors Table

No. 12

Linux File System
Output redirection of an application

1 i-node “file”

WRONLY1 0

fd

5

6

4

7

3

2

1

0

int fd;

write(1, “msg”, 3);

// write on STDOUT

// (on the screen)

// output redirection

fd=open(“file”, O_WRONLY);

close(1);

dup(fd); //dup2(fd, 1);

write(1, “msg”, 3);

// write into file

Standard files

(automatically open) User open file
Duplicate file
descriptor

Old reference

Removed by close(1)

Inodes TableOpen Files Table

File Descriptors Table

4

No. 13

Linux File System
File holes

• Holes
– portion of a regular file that contains null characters

– not stored in any data block on disk

• Example
• echo –n “X” | dd of=/tmp/hole bs=1024 seek=6

No. 14

Linux File System
Directories’ structure

• Directory entry has a variable length

• Directory entry length acts as a pointer to the next valid directory
entry

• oldfile was deleted, so the previous directory entry seems to be larger
in order to point the next valid directory entry sbin

68

52

40

24

12

0

nibs241234

\0elifdlo17160

\0rsu232867

\0\0\01emoh251653

\0\0..221222

\0\0\0.211221

inode rec_len

name_len file_type

name

No. 15

Windows 2000’s File System
Supported FSs

• Supports several FSs: FAT16, FAT32, NTFS (NT
File System), CD-ROM’s FS

• FAT16
– 16 bits disk partitions of up to 2 GB

• FAT32
– 32 bits disk partitions of up to 2 TB

• NTFS
– 64 bits disk partitions of up to:

• in theory: 264-1clusters (theoretically)
• real (Windows XP): 232-1clusters 16TB volumes for 4KB clusters

No. 16

Windows 2000’s File System
Main Features

• Quickly perform file operations on very large-
capacity storage units

• Build-in security and data compression system

• Transaction-processing model based on
special logs reliability and automatically
recoverability

5

No. 17

Windows 2000’s File System
Characteristics and Concepts

• File names’ length – up to 255

• Path names’ length limited to 32,767

• Supports Unicode characters

• Case sensitive
• Win32 API does not fully support case-sensitivity!

• Hierarchical structure – tree of files and directories
• Paths of files: absolute and relative

• ‘\’ component separator

• A file is a collection of attributes of the form (name, stream of bytes)

• Attribute
• Name specification: file_name:attr_name

• Examples of attributes: file name, file ID, data

• Maximum stream length = 264 bytes

No. 18

Windows 2000’s File System
File System API Calls – for files

• CreateFile: create or open a file; return a handle

• DeleteFile

• CloseHandle

• ReadFile

• WriteFile

• SetFilePointer

• GetFileAttributes

• LockFile: lock a region of the file

• UnlockFile: unlock a previously locked region

No. 19

Windows 2000’s File System
File System API Calls – for directories

• CreateDirectory

• RemoveDirectory

• FindFirstFile
• initialize to start reading the directory entries

• FindNextFile
• read the next directory entry

• MoveFile

• SetCurrentDirectory

No. 20

Windows 2000’s File System
Files and directories access rights

6

No. 21

Windows 2000’s File System
Volume structure (1)

• The basic NTFS disk unit is a volume

• Volume generally corresponds to a logical disk
partition

• The fundamental unit of allocation on the hard disk is
a cluster (block)

• Each volume is a linear sequence of fixed-sized
blocks (clusters)

• Block size: 512 bytes – 64KB, depending on the
volume size

No. 22

Windows 2000’s File System
Volume structure (2)

Partition size Sectors per cluster Cluster size

512 MB or less 1 512 bytes

513 MB - 1024 MB (1GB) 2 1K

1025 MB - 2048 MB (2GB) 4 2K

2049 MB - 4096 MB (4GB) 8 4K

4097 MB - 8192 MB (8GB) 16 8K

8193 MB – 16,384 MB (16GB) 32 16K

16,385 MB - 32,768 MB (32GB) 64 32K

> 32, 768 MB 128 64K

Default block size depending on the volume size

No. 23

Windows 2000’s File System
Volume structure (3)

• NTFS compression cannot be used when the
cluster size is greater than 4KB

• 4KB is the most used
• good compromise between large and small blocks

• Each block is referred to by its offset or
address (a 64 bits number) 264 clusters

• Supposing a cluster size of 1K that means a
264 * 1K = 16 million TB hard disk size

No. 24

Windows 2000’s File System
Volume structure (4)

• The first information on an NTFS volume is the
Partition Boot Sector (PBS)

• PBS starts at sector 0 and can be up to 16
sectors

• BIOS Parameter Block (BPB) and Extended BPB

• Code that is the OS loader (NTLDR)

• A duplicate of the Partition Boot Sector
• at the end of the volume (Windows NT version 4.0)

• in the logical center of the volume (Windows NT version
3.51 and earlier)

7

No. 25

Windows 2000’s File System
Partition Boot Sector

End of Sector MarkerW ORD0 x0 1 FE

Bootstrap Code 4 2 6 bytes0 x5 4

Extended BPB 4 8 bytes0 x2 4

BPB2 5 bytes0 x0 B

OEM I D LONGLONG0 x0 3

Jum p I nstruct ion 3 bytes0 x0 0

Field Nam eField LengthByte Offset

No. 26

Windows 2000’s File System
BPB and Extended BPB

Checksum0 x0 0 0 0 0 0 0 0DW ORD0 x5 0

Volum e Ser ia l Num ber0 x1 4 A5 1 B7 4 C9 1 B7 4 1 CLONGLONG0 x4 8

Clusters Per I ndex Block0 x0 1 0 0 0 0 0 0DW ORD0 x4 4

Clusters Per File Record
Segm ent

0 xF6 0 0 0 0 0 0DW ORD0 x4 0

Logical Cluster Num ber for
the f ile $ MFTMirr

0 x5 4 FF0 7 0 0 0 0 0 0 0 0 0 0LONGLONG0 x3 8

Logical Cluster Num ber for
the f ile $ MFT

0 x0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0LONGLONG0 x3 0

Total Sectors0 x4 AF5 7 F0 0 0 0 0 0 0 0 0 0LONGLONG0 x2 8

Hidden Sectors0 x3 F0 0 0 0 0 0DW ORD0 x1 C

Num ber Of Heads0 xFF0 0W ORD0 x1 A

Sectors Per Track0 x3 F0 0W ORD0 x1 8

alw ays 00 x0 0 0 0W ORD0 x1 6

Media Descr iptor0 xF8BYTE0 x1 5

alw ays 00 x0 0 0 0 0 03 BYTES0 x1 0

Reserved Sectors0 x0 0 0 0W ORD0 x0 E

Sectors Per Cluster0 x0 8BYTE0 x0 D

Bytes Per Sector0 x0 0 0 2W ORD0 x0 B

Field Nam eSam ple ValueField LengthByte Offset

No. 27

Windows 2000’s File System
NTFS General Structure

• Everything on the volume is a file and
everything in a file is an attribute

• Every sector on an NTFS volume that is
allocated belongs to some file, even the
system metadata

• The main file on every volume is called MFT
(Master File Table)

No. 28

Windows 2000’s File System
Master File Table (MFT)

• Organized as a linear sequence of 1KB records

• A record for each file or directory
• file name, time stamps, addresses of blocks

• Contains information about all the files and folders on the
NTFS volume

• MFT is itself a file it must not be in a fixed place on the
HDD

• The first 16 records are reserved for metadata files

• The address of the first block of MFT is stored in the boot
block at installation

8

No. 29

Windows 2000’s File System
System Metadata Files

16User file1

Security descriptors for all files.9$Secure

Case conversion table.10$UpCase

A bitmap for keeping track of used and free blocks.6$Bitmap

Bootstrap loader, if the volume is bootable.7$Boot

Attribute definitions file: attribute names, numbers, and descriptions4$AttrDef

Volume file: name, volume dirty flag, NTFS version etc3$Volume

Log file use to recover from crashes.2$LogFile

A list of all contents of the NTFS volume.0$MFT

Mirror of part of MFT1$MFTMirr

…….

$Extend

$BadClus

$.

File

12-15

11

8

5

MFT Record

Reserved for future use.

Extensions: $Quota, $ObjId, $Reparse, $UsnJrnl

Bad cluster file: the list of all bad clusters on the volume.

Root directory

Purpose

No. 30

Windows 2000’s File System
MFT File Record

• A MFT Record
• Header

• A sequence of (attr_header, attr_value) pairs

Free spaceThe sequence of attributesMFT Record Header

• Each file has at least one MFT record
• Small files and small directories need one record

• Large files and small directories need more records
» the first = base record

» the others = extended records

No. 31

Windows 2000’s File System
The header of MFT File Record

• Magic number

• Sequence number: incremented each time the record is reused for a new file

• Count of references to the file

• Flags: 00 – free, 01 – used, 02 – directory

• Number of bytes used in the record

• The identifier of the base record
• 0 – for base records

• (an index or sequence number) – for extended records

• A pointer to the first attribute in the record

• A pointer to the first free byte in the record

No. 32

Windows 2000’s File System
The attribute types – NTFS

13

12

11

10

9

8

7

6

5

4

3

2

1

No

Include information such as owner, timestamps, flag bits, link count etc.$STANDARD_INFORMATION

Stream data; may be repeatable$DATA

Controls logging to $LogFile$LOGGED_UTILITY_STREAM

Used for very large directories$BITMAP

Used for very large directories$INDEX_ALLOCATION

Used for directories$INDEX_ROOT

Volume version (used only in $Volume)$VOLUME_INFORMATION

Name of this volume (used only in $Volume)$VOLUME_NAME

Used for mounting and symbolic links$REPARSE_POINT

64-bit file identifier unique on this volume$OBJECT_ID

Obsolete. Security information is now in $Extend$Secure$SECURITY_DESCRIPTOR

Repeatable attribute for short (MS-DOS) or long (max 255) Unicode name$FILE_NAME

Location of extension MFT records, if attributes don’t fit in MFT record.$ATTRIBUTE_LIST

DescriptionAttribute type

9

No. 33

Windows 2000’s File System
The attributes of MFT record

• A file = a sequence of attributes
• An attribute = header + value (stream)
• Resident attribute – its value fits in MFT record

– Its value fits in the MFT record beside its header
– Attributes that are always resident

• $FILE_NAME, $STANDARD_INFORMATION, and $SECURITY

– Immediate files (few hundred size)
• $DATA attribute is resident

• Nonresident attributes – its value doesn’t fit
• Are allocated one or more disk clusters elsewhere on the disk

• Some attributes may be repeated, but all attributes must
appear in a fixed order in the MFT record

No. 34

Windows 2000’s File System
The attributes’ header – resident

SIZE = 24 bytes

Length of the stream410

Offset to the stream214

Indexed flag216

Identifier2E

Compressed flag2C

Offset to the stream2A

Name length19

Non-resident flag18

Length44

Type40

DescriptionLengthOffset

No. 35

Windows 2000’s File System
The attributes’ header – nonresident

SIZE = 64 bytes

Starting VCN810

Last VCN818

Offset to the run list220

Number of compression engine.222

Real size of the stream830

Initialized data size for the stream838

Allocated size of the stream828

Identifier2E

Compressed flag2C

Offset to the stream2A

Name length19

Non-resident flag18

Length44

Type40

DescriptionLengthOffset

No. 36

Windows 2000’s File System
The attributes’ value (stream)

• For resident attribute
• The value follows the attribute header in MFT record

• For non-resident attribute
• Large size streams (example: large files)

• Need for extra clusters allocation – the stream

• Need for extra data mapping VCN onto LCN – in header
– VCN (Virtual Cluster Number) = a relative cluster offset within the

attribute's data

– LCN (Logical Cluster Number) = the location on the disk where the
data resides

• Mapping information is a sequence of records based on runs of
consecutives blocks

10

No. 37

Windows 2000’s File System
The nonresident attributes’ stream (1)

MFT entry of a small file

No. 38

Windows 2000’s File System
The nonresident attributes’ stream (2)

• Record = header + sequence of (start LCN, count) pairs

• Header
– VCN of the first block within the file

– VCN of the first uncovered block

• Files without holes - written in order from beginning to end

– need one record

• Files with holes – not continuously written from beginning to end

– need more records
– For example: if only blocks 0-49 and 60-79 are defined two records

with (0,50) and (60, 80) headers

No. 39

Windows 2000’s File System
The nonresident attributes’ stream (3)

For large or highly fragmented files an $ATTRIBUTE_LIST is
used for extended records

No. 40

Windows 2000’s File System
Special features of NTFS5 (1)

• Attribute indexing
– A generalization of the method used for directories

– NTFS5 uses general indexing to manage security descriptors,
quota information, reparse points, and file object identifiers

• Reparse points
– associate data and code with a file or directory

– used to implement mount points, NTFS junctions, and
Hierarchical Storage Management (HSM)

• Quota tracking

11

No. 41

Windows 2000’s File System
Special features of NTFS5 (2)

• Distributed link tracking
– DLT automatically updates shell links (shortcuts) to point at moved link sources

– link source's original and final locations must both be on NTFS5 volumes in the same
domain

– based on unique IDs associated to files

• Sparse files
– unused portions can be indicated as being empty release disk space

• Alternate data streams
– a way to embed files within other files

– every file contains an embedded file that has no name - default or unnamed data stream

– Example: Summary information
– echo hello > file.txt:alternatestream

– more < file.txt:alternatestream

No. 42

Bibliography

[Tann01]

Andrew Tannenbaum, “Modern Operating Systems”, second edition, Prentice Hall, 2001, pg. 830 – 842, pg.
732 – 744

[R98]

Mark Russinovich, “Inside NTFS”, January 1998, www.winnetmag.com

[R00-1]

Mark Russinovich, “Inside Win2K NTFS, Part 1”, November 2000, www.winnetmag.com

[R00-2]

Mark Russinovich, “Inside Win2K NTFS, Part 2”, Winter 2000, www.winnetmag.com

[BC01]

D. Bovet, M. Cesati, “Understanding Linux Kernel”, O’Reilly, 2001, pg. 495 – 523

[WWW]

www.ntfs.com

