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ABSTRACT

Identifying similar or identical code fragments becomes much
more challenging in code theft cases where plagiarizers can
use various automated code transformation techniques to
hide stolen code from being detected. Previous works in this
field are largely limited in that (1) most of them cannot han-
dle advanced obfuscation techniques; (2) the methods based
on source code analysis are less practical since the source
code of suspicious programs is typically not available until
strong evidences are collected; and (3) those depending on
the features of specific operating systems or programming
languages have limited applicability.

Based on an observation that some critical runtime val-
ues are hard to be replaced or eliminated by semantics-
preserving transformation techniques, we introduce a novel
approach to dynamic characterization of executable programs.
Leveraging such invariant values, our technique is resilient to
various control and data obfuscation techniques. We show
how the values can be extracted and refined to expose the
critical values and how we can apply this runtime property
to help solve problems in software plagiarism detection. We
have implemented a prototype with a dynamic taint analyzer
atop a generic processor emulator. Our experimental re-
sults show that the value-based method successfully discrim-
inates 34 plagiarisms obfuscated by SandMark, plagiarisms
heavily obfuscated by KlassMaster, programs obfuscated by
Thicket, and executables obfuscated by Loco/Diablo.
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1. INTRODUCTION
Identifying same or similar code fragments among differ-

ent programs or in the same program is very important in
some applications. For example, duplicated codes found in
the same program may degrade efficiency in both develop-
ment phase (e.g., they can confuse programmers and lead to
potential errors) and execution phase (e.g., duplicated code
can degrade cache performance). In this case, code identi-
fication techniques such as clone detection [1, 3, 18, 19, 16,
12, 15, 14] can be used to discover and refactor the identical
code fragments to improve the program. For another exam-
ple, same or similar code found in different programs may
lead us to even more serious issues. If those programs have
been individually developed by different programmers, and
if they do not embed any public domain code in common,
duplicated code can be an indication of software plagiarism
or code theft. In code theft cases, determining the sameness
of two code fragments becomes much more difficult since pla-
giarizers can use various code transformation techniques in-
cluding code obfuscation techniques [8, 9, 37] to hide stolen
code from detection. In order to handle such cases, code
characterization and identification techniques must be able
to detect the identical code (i.e., two code fragments belong-
ing to the same lineage) without being easily circumvented
by code transformation techniques.

Previous works are largely insufficient in meeting all of the
following three highly desired requirements: (R1) Resiliency
to automated semantics-preserving obfuscation tools [7, 21,
32, 40]; (R2) Ability to directly work on binary executables
of suspected programs since, in some applications such as
code theft cases, the source code of suspect software prod-
ucts often cannot be obtained until some strong evidences
are collected;(R3) Platform independence, e.g., independent
from operating systems and programming languages. As we
can see in the related work section, the existing schemes
can be broken down into four classes to see their limitations
with respect to the aforementioned three requirements: (C1)
static source code comparison methods [20, 33, 39, 17, 36,
28, 29, 13]; (C2) static executable code comparison methods
[23]; (C3) dynamic control flow based methods [24]; (C4) dy-
namic API based methods [30, 34, 35]. First, Class C1, C2
and C3 do not satisfy requirement R1 because they are vul-
nerable to semantics-preserving obfuscation techniques such
as outlining and ordering transformation. Second, C1 does
not meet R2 because it has to access source code. Third,
the existing C3 and C4 schemes do not satisfy R3 because
they rely on features of Windows or Java.
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To address the above issues, we introduce a novel ap-
proach to dynamic characterization of executable programs.
After we examined various runtime properties of executable
programs, we found an interesting observation that some
runtime values of a program are hard to be replaced or elim-
inated by semantics-preserving transformation techniques
such as optimization techniques, obfuscation techniques, dif-
ferent compilers, etc. We call such values core-values.

To investigate the resilience of core values (to semantics-
preserving code transformation), we generated e1..5, five dif-
ferent versions of executable files of test program p written in
C, by compiling p with each of the five optimization switches
of GCC (-O0, -O1, -O2, -O3, and -Os). From each of e1..5
given the same test input, we extracted a value sequence, a
sequence of values (4-bit, 8-bit, 16-bit, or 32-bit) written as
computation results of arithmetic instructions and bit-wise
instructions in the execution path. As a way of retaining (in
the value sequence) only the values derived from input, we
implemented a dynamic taint analyzer.1 When we analyzed
the value sequences of e1..5, we found that some values sur-
vived all of the five optimization switches. Moreover, the
sequence of the values surviving all of the five optimiza-
tion switches was enclosed almost perfectly by the value se-
quences of executables generated by compiling p with dif-
ferent compilers (we tested Tiny C Compiler [4] and Open
Watcom C Compiler [26]). This indicates that core-values
do exist and we can use them to check whether two code
fragments belong to the same lineage.

In this paper, we show (1) how we extract the values
revealing core-values; and (2) how we can apply this run-
time property to solve problems in software plagiarism de-
tection. We implemented a value extractor with a specific
dynamic taint analyzer and value refinement techniques atop
a generic processor emulator, as part of our value-based pro-
gram characterization method. As a machine code analyzer
which directly works on binary executables, our technique
satisfies R2. Because our technique analyzes generic charac-
teristics of machine instructions, it satisfies R3. Regarding
R1, we implemented a value-based software plagiarism de-
tection method (VaPD) that uses similarity measuring algo-
rithms based on sequences constructed from the extracted
values. We evaluated it through a set of real world obfus-
cators including two commercial products, Zelix Pty Ltd.’s
KlassMaster [40] and Semantic Designs Inc.’s Thicket [32].
Our experimental results indicate that the VaPD success-
fully discriminated 34 plagiarisms obfuscated by SandMark
[7] (totally 39 obfuscators, but 5 of them failed to obfuscate
our test programs); plagiarisms heavily obfuscated by Klass-
Master,2 programs obfuscated by the Thicket C obfuscator,
and executables obfuscated by Control Flow Flattening im-
plemented in the Loco/Diablo link-time optimizer [21].

Contributions: (1) We present a novel code characteriza-
tion method based on runtime values. To our best knowl-
edge, our work is the first one exploring the existence of
the core-values. (2) By exploiting runtime values that can
hardly be changed or replaced, our code characterization
technique is resilient to various control and data obfuscation

1We also have noticed that there are studies on identifying
and overcoming limitations of dynamic taint analysis. Please
note that dealing with those limitations is out of our scope.
2Since SandMark and KlassMaster work on Java bytecode,
we use GCJ, GNU ahead-of-time compiler for Java, to con-
vert obfuscated programs to x86 native executables.

techniques. (3) Our plagiarism detection method (VaPD)
does not require access to source code of suspicious pro-
grams, thus it could greatly reduce plaintiff’s risks through
providing strong evidences before filing a lawsuit related to
intellectual property.

2. STATE OF THE ART
We roughly group the literature into the following three

categories.
Code Obfuscation Techniques: Code obfuscation is a
semantics-preserving transformation to hinder figuring out
the original form of the resulting code. A generic code ob-
fuscation technique is not as simple as adding x before com-
putation and subtracting x after the computation. Coll-
berg et al. [8] provided an extensive discussion on automated
code obfuscation techniques. They classify code obfuscation
techniques in the following categories depending on the fea-
ture that each technique targets: data obfuscation, control
obfuscation, layout obfuscation, and preventive transforma-
tions. Collberg et al. also introduced Opaque Predicates [9]
to thwart static disassembly. Other techniques such as indi-
rect branches, control-flow flattening, and function-pointer
aliasing were introduced by Wang [37].

Several code obfuscation tools are available. SandMark
[7] is one of such tools implementing 39 obfuscators applica-
ble to Java bytecode. Array representation and orientation,
functions, in-memory representation of variables, order of in-
structions, and control and data dependence are just a small
set of the features that SandMark can alter. Another Java
obfuscator is Zelix KlassMaster [40]. It implements compre-
hensive flow obfuscation techniques, making it a heavy duty
obfuscator. Semantics is the only characteristic guaranteed
to be preserved across the obfuscation.
Static Analysis Based Plagiarism Detection: The ex-
isting static analysis techniques except for the birthmark-
based techniques are closely related to the clone detection
[1, 3, 18, 19, 16, 12, 15, 14, 31]. While possessing common
interests with the clone detection, the plagiarism detection
is different in that (1) we must deal with code obfuscation
techniques which are often employed with a malicious in-
tention; (2) source code analysis of the suspicious program
is not possible in most cases. Static analysis techniques for
software plagiarism detection can be classified into five cate-
gories: string-based [1], AST-based [39, 17, 36], token-based
[28, 29, 13], PDG-based [20], and birthmark-based [23, 33].
String-based: Each line of source code is considered as a
string. A code fragment is labeled as plagiarism if the corre-
sponding sequence of strings matches certain code fragment
from original program. AST-based: The abstract syntax
trees (AST) are constructed from two programs. If the two
ASTs have common subtrees, plagiarism may exist. Token-
based: A program is first parsed to a sequence of tokens.
The sequences of tokens are then compared to find plagia-
rism. PDG-based: A program dependency graph (PDG)
represents the control flow and data flow relations between
the statements in a program procedure. To find plagiarism,
two PDGs are constructed and compared to find a relaxed
subgraph isomorphism. Birthmark-based: A software birth-
mark is a unique characteristic of a program that can be
used to determine the program’s identity. Two birthmarks
are extracted from two programs and compared.

None of the above techniques is resilient to code obfus-
cation. String-based schemes are vulnerable even to sim-
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Table 1: Proportion of refined value sequences of
GCC compiled executables that overlap value se-
quences of TCC and WCC compiled executables.

Compiler
Optimization

bzip2 gzip oggenc
switches tested

TCC NA 100% 100% 92%
WCC 20 switches 100% 100% > 91%

(avg. 95%)

ple identifier renaming. AST-based schemes are resilient to
identifier renaming, but weak against statement reordering
and control replacement. Token-based schemes are weak
against junk code insertion and statement reordering. Be-
cause PDGs contain semantic information of programs, PDG-
based schemes are more robust than the other three types
of the existing schemes. However, the PDG-based meth-
ods are still vulnerable to many semantics-preserving trans-
formations such as inlining/outlining functions and opaque
predicates. The existing birthmark-based schemes are vul-
nerable to either obfuscation techniques mentioned in [23]
or some well-known obfuscation such as statement reorder-
ing and junk instruction insertion. Moreover, all existing
techniques except for [23, 31] need to access source code.
Dynamic Analysis Based Plagiarism Detection: Myles
and Collberg [24] proposed a whole program path (WPP)
based dynamic birthmark. WPP was originally used to
represent the dynamic control flow of a program. WPP
birthmarks are robust to some control flow obfuscation such
as opaque predicates insertion, but are still vulnerable to
many semantics-preserving transformations such as flatten-
ing and loop unwinding. Tamada et al. [34, 35] also in-
troduced two types of dynamic birthmarks for Windows
applications: Sequence of API Function Calls Birthmark
(EXESEQ) and Frequency of API Function Calls Birth-
mark (EXEFREQ). In EXESEQ, the sequence of Windows
API calls are recorded during the execution of a program.
These sequences are directly compared to find the similarity.
In EXEFREQ, the frequency of each Windows API call is
recorded during the execution of a program. The frequency
distribution is used as a birthmark. Schuler et al. [30] pro-
posed a dynamic birthmark for Java. The call sequences
to Java standard API are recorded and the short sequences
at object level are used as a birthmark. Their experiments
showed that their API birthmarks are more robust to obfus-
cation than WPP birthmarks. These birthmarks, however,
can only identify the same source code compiled by differ-
ent compilers with different options, and the performance
against real obfuscation techniques is questionable. For ex-
ample, attackers may simply embed some of API implemen-
tations into their program so that fewer API calls will be ob-
served. Wang et al. [38] proposed a system call based birth-
mark, addressing the problems with API based techniques.
However, the proposed technique cannot be applied to com-
putation oriented softwares containing few system calls, and
is sill vulnerable to injecting transparent system calls in the
middle of an edge on the system call dependence graph.

3. CORE VALUES
The runtime values of a program are defined as values

from the output operands of the machine instructions ex-
ecuted. While examining the runtime values of executable

programs, we observed that some runtime values of a pro-
gram could not be changed through automated semantics-
preserving transformation techniques such as optimization,
obfuscation, different compilers, etc. We call such invariant
values core-values.

Core-values of a program are constructed from runtime
values that are pivotal for the program to transform its in-
put to desired output. We can practically eliminate non-
core values from the runtime values to retain core-values.
To identify non-core values, we leverage taint analysis and
easily accessible semantics-preserving transformation tech-
niques such as optimization techniques implemented in com-
pilers. Let vP be a runtime value of program P taking I

as input, and f be a semantics-preserving transformation.
Then, the non-core values have the following properties: (1)
If vP is not derived from I, vP is not a core-value of P ; (2)
If vP is not in the set of runtime values of f(P ), vP is not a
core-value of P .

To examine the existence of core-values, we perform a
dynamic analysis on three test programs gzip, bzip2, and
oggenc: Gzip and bzip2 are well-known compression utili-
ties, and oggenc is a OggVorbis audio format encoder. For
the dataset to be used as the input to the programs, we gen-
erate ten wav audio files (seven 16KB files, two 24KB files,
and one 8KB file), cropped from a 43.5MB wav file contain-
ing an 8’37”-long speech. In each set of experiments, we use
these ten inputs, and take the average outcome as the final
result. With each of the three programs, we generate five dif-
ferent versions of executable files by compiling it with each
of the following optimization switches of GCC: -O0, -O1, -
O2, -O3, and -Os. From each of the executables given the
same input, we extract a value sequence, a sequence of values
(4-bit, 8-bit, 16-bit, or 32-bit) that are the computation re-
sults of arithmetic and bit-wise instructions in the execution
path. We also implement refinement techniques (Section 4.1
and 4.2) including a dynamic taint analyzer to retain only
the values derived from input in the sequence. Then, we re-
fine the value sequences by computing their longest common
subsequence, which contains the runtime values that survive
all of the five optimization switches.

To verify that the refined value sequences are not from
compiler-specific common routines, we compare the refined
value sequences against the value sequences extracted from
the same programs compiled by different compilers, Tiny
C Compiler (TCC) and Open Watcom C Compiler (WCC).
Compared to GCC, TCC uses different compiler components
such as parser and optimizer, and support library (libtcc.a),
however the code it produces borrows GCC’s runtime li-
braries (libc.so). WCC is a self-contained development suite
implementing its own C libraries. Therefore, the code it pro-
duces does not need to use GCC’s runtime libraries. Also,
WCC provides plenty of optimization options, and we test
all the 20 optimization switches to examine the refined value
sequences. As shown in Table 1, the longest common subse-
quence of the five sequences are enclosed almost completely
by the value sequences of executables generated by compil-
ing the same test program with TCC and WCC. Although
92% and 95% matches shown in the cases of oggenc indicate
that the refined value sequences still contain some non-core
values, these are much higher scores than those between ir-
relevant programs: as we will show shortly, the scores be-
tween irrelevant programs range from 0% to 11% in our ex-
periments.
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Table 2: Proportion of refined value sequences that
overlap value sequences of executables obfuscated by
Thicket and control flow flattening

Obfuscator bzip2 gzip oggenc
Thicket C Obfuscator 100% 100% 95%

Control Flow Flattening 100% 100% 100%

We further investigate the core-values through real obfus-
cation tools. For a source code obfuscation tool, we use Se-
mantic Designs, Inc.’s Thicket C obfuscator that implements
abstract syntax tree (AST) based code transformation. Its
features include, but not limited to, identifier scrambling,
format scrambling, loop rewriting, and if-then-else rewrit-
ing. As a more advanced obfuscation technique, we use con-
trol flow flattening [37] implemented in Loco based on Diablo
link-time optimizer [21]. Control flow flattening can trans-
form statements ‘s1; s2;’ into ‘i=1; while(i) {switch(i)

{case 1: s1; i++; break; case 2: s2; i=0; break;}}’ of
which the control flow graph is hugely different from the orig-
inal. As shown in Table 2, again our refined value sequences
are almost completely enclosed by the value sequences of
obfuscated executables.

To see overlapping portion of value sequences of different
programs, we compare the refined value sequences of bzip2,
gzip, and oggenc against irrelevant pairs (i.e., the refined
value sequence of bzip2 to value sequence of oggenc opti-
mized with -O1). In 30 comparison cases (three test pro-
grams, each of which has two irrelevant peers, five optimiza-
tion switches), the value sequences of each program contain
only 0% to 11% of the refined value sequences of different
programs. This indicates that the core-values do exist and
we can use them to identify the sameness of codes.

4. DESIGN
Software theft has become a very serious concern to soft-

ware companies and open source communities. In the pres-
ence of automated semantics-preserving code transformation
tools [40, 21, 7, 32], the existing code characterization tech-
niques may face an impediment to finding sameness of pla-
giarized code and the original. In this section, we discuss
how we apply our technique to software plagiarism detection.
Later, we evaluate our method against such code obfuscation
tools in the context of software plagiarism detection.
Scope of Our Work: We consider the following types of
software plagiarisms in the presence of automated obfusca-
tors: whole-program plagiarism, where the plagiarizer copies
the whole or majority of the plaintiff program and wraps it
in a modified interface, and core-part plagiarism, where the
plagiarizer copies only a part such as a module or an engine
of the plaintiff program. Our main purpose of VaPD is to
develop a practical solution to real-world problems of the
whole-program software plagiarism detection, in which no
source code of the suspect program is available. VaPD can
also be a useful tool to solve many partial plagiarism cases
where the plaintiff can provide the information about which
part of his program is likely to be plagiarized. We present
applicability of our technique to core-part plagiarism detec-
tion in the discussion section. We note that if the plagiarized
code is very small or functionally trivial, VaPD would not
be an appropriate tool.

4.1 Value Sequence Extraction
Since not all values associated with the execution of a

program are core-values, we establish the following require-
ments for a value to be added into a value sequence: The
value should be output of a value-updating instruction and
be closely related to the program’s semantics.

Informally, a computer is a state machine that makes state
transition based on input and a sequence of machine instruc-
tions. After every single execution of a machine instruc-
tion, the state is updated with the outcome of the instruc-
tion. Because the sequence of state updates reflects how the
program computes, the sequence of state-updating values is
closely related to the program’s semantics. As such, in value-
based characterization, we are interested only in the state
transitions made by value-updating instructions. More for-
mally, we can conceptualize the state-update as the change
of data stored in devices such as RAM and registers after
each instruction is performed, and we call the changed data
a state-updating value. We further define a value-updating
instruction as a machine instruction that does not always
preserve input in its output. Being an output of a value-
updating instruction is a sufficient condition to be a state-
updating value. Therefore, we exclude output values of non-
value-updating instructions from a value sequence. In our
x86 implementation, the value-updating instructions are the
standard mathematical operations (add, sub, etc.), the logi-
cal operators (and, or, etc.), bitshift arithmetic and logical
(shl, shr, etc.), and rotate operations (ror, rcl, etc.).

The above technique helps dramatically reduce the size
of a value sequence; however, in practice it is still challeng-
ing to analyze all values produced by all the value-updating
instructions. Therefore, we must apply further restrictions
to refine value sequences. There are two classes of values
computed by value-updating instructions: Class-1 includes
those derived from input of the program, and Class-2 con-
sists of those that are not. For example, when program P

is processing input I in environment E, some instructions
take values derived from input I as their input, but some
others take input from environment E such as program load
location, stack pointer, size of stack frame, etc. Since the se-
mantics is a formal representation of the way that a program
processes the input, it is obvious that the values in Class-1
are more closely related with the semantics of a program. So,
we include only the values of Class-1 in a value sequence. To
identify the values included in Class-1, we run a program in a
virtual machine environment and perform a dynamic taint
analysis [25]. We start with tainting the input, and then
our analyzer in the virtual machine propagates the taint
to every byte in registers, memory cells, and files derived
from the input. Registers and memory cells appearing in
destination operands of all the instructions that take input
from tainted registers or tainted memory locations are also
tainted, and the output values of value-updating instruc-
tions are appended into the value sequence. In the example
of JLex used as a case study in this paper, the value se-
quences contain less than 7,000 values after applying taint
analysis, which is significantly shorter, approximately 1

250
of

the original sequences.

4.2 Value Sequence Refinement
In this section, we discuss heuristics to refine value se-

quences. An initial value sequence constructed through the
dynamic taint analysis may still contain a number of non-
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Table 3: Applicability of value sequence refinement
techniques.

Refinement technique
Plaintiff Suspect
program program

Sequential refinement
√

Optimization-based refinement
√

Address removal
√ √
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Figure 1: Sequential refinement example (EAX is
initially tainted)

core values produced by intermediate or insubstantial com-
putational steps. We need to eliminate those values to make
the value sequence (1) as close to core-values as possible;
and (2) capable of characterizing larger programs. We be-
lieve a number of heuristics such as control/data flow de-
pendence analysis and abnormal code pattern detection can
be adopted to achieve these goals, and below we introduce
some of them. One principle that we consider here is that
we have to be conservative in processing value sequences
of suspect programs. Since some heuristics may be abused
by sophisticated plagiarizers, we summarize applicability of
each heuristic that we will introduce in Table 3.

4.2.1 Sequential Refinement

Inside the value sequence extractor, we implement a re-
finement technique named sequential refinement. Figure 1
shows how GCC compiles “a=1; a=(a+1)*11;.” When vari-
able a is initially tainted, our taint analysis extracts value
sequence s = {4, 5, 10, 11, 22}. Note that sequence s1:4 =
{4, 5, 10, 11}, a subsequence of s is generated by intermedi-
ate steps computing ‘(a+1)× 11’. All the values in s1:4 are
overwritten in register eax without affecting any other mem-
ory locations until line 005. Since instructions after line 005
would never read (or be affected by) the values in s1:4, we
can remove s1:4 from s and retain only {22}. We formalize
this heuristic in the following rule:

Sequential Reduction Rule: Let im,n denote m-th instruc-
tion updating variable (register or memory) n. Then, we
can skip logging output of im,n if n is never read within
range (im,n, im+1,n). Repeat the same process until the first
instruction that reads n and updates a variable ( 6= n) is
executed.

Through out our experiments presented in this paper, av-
erage reduction rate by the sequential refinement is 16%,
and the maximum is 34%. Note that the sequential refine-
ment only applies to plaintiff programs because, in obfus-
cated programs, original values could appear as the results
of the intermediate computational steps.

4.2.2 Optimization-Based Refinement

Only for plaintiff programs, we perform optimization-based
refinement as shown in Figure 2. One of the easiest way to
obtain different executable files that are semantically iden-

tical is to compile the same source code with the same com-
piler with different optimization switches enabled. Moti-
vated by this idea, we use several optimized executables of
the same program to sift non-core values out. With GCC
and its five selected optimization flags (-O0, -O1, -O2, -O3,
and -Os), we can extract five optimized value sequences from
the plaintiff program. Each optimized value sequence has
been processed with the sequential refinement while it is ex-
tracted. Then, we compute a longest common subsequence
of all the optimized value sequences to retain only the com-
mon values in the resulting value sequence. As we do not
assume we have access to the source code of suspect pro-
grams, this refinement heuristic is only applicable to plaintiff
programs.

4.2.3 Address Removal

Memory addresses or pointer values stored in registers or
memory locations are transient. For example, some binary
transformation techniques such as word alignment and local
variable reordering can change pointers to local variables
or offsets in stack; and heap pointers may not be the same
next time the program is executed even with the same input.
Therefore, we do not include pointer values in a refined value
sequence.

In our VaPD prototype, we implement a range checking
based heuristic to detect addresses. Our testbed dynami-
cally monitors the changes of memory pages allocated to the
program being analyzed, and it maintains a list of ranges of
all the allocated pages with write permission enabled. If a
runtime value is found to be within the ranges in the list,
VaPD discards the value, regarding the value as an address.
Although this heuristic may also delete some non-pointer
values, it can remove pointers to stack and to heap with no
exception. Address removal heuristic is applicable to both
plaintiff and suspect programs.

4.3 Similarity Metric
In the literature, there are many metrics for measuring the

degree of similarity of two sequences. In our prototype, we
define it based on the longest common subsequence (LCS).
It should be noted that the definition of the LCS does not
require every subsequence to be a continuous segment of the
mother sequence. For example, both {1, 6, 120} and {2,
24} are valid subsequences of value sequence {1, 2, 6, 24,
120}. Let |LCS (s1, s2)| denote the length of the LCS of
sequence s1 and s2. Given vP , a fully refined value sequence
of a plaintiff program and vS , a value sequence of a suspect
program, similarity score of the suspect program over the
plaintiff program is intuitively defined as:

Sim (vP , vS) =
|LCS (vP , vS)|

|vP |

4.4 Design Overview
Figure 3 shows overall design of VaPD. Here, provided

with executable files of plaintiff program P and suspect pro-
gram S, and common test input I, Value Sequence Extrac-
tor(VSE) extracts vP and vS , the value sequences of P and
S. After refining vP and vS , Similarity Detector computes
Sim (vP , vS), the similarity score of vP and vS . VaPD re-
peats this process with different inputs (say, 10 or 20 inputs),
and claims plagiarism if the average of the scores shows a
significant similarity.
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Figure 2: Optimization-based refinement on plaintiff programs.
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Figure 3: Plagiarism detection process

By default, VaPD uses value sequences vP and vS ex-
tracted through the entire execution of P and S respectively.
However, when it deals with the cases where only part of P
is reused in S, VaPD can extract partial value sequence from
only the suspicious part of P . To extract partial value se-
quences, we insert special system calls into the source code
of P (note that we do not assume access to the source code
of S) to notify VSE when to start (or resume) and when
to stop (or pause) extracting the value sequence. Provided
by the plaintiff with the intelligence about which part of his
program is likely to be plagiarized, we can annotate plain-
tiff’s source code and capture the sequence from the part
that is believed to be stolen.

VSE is a virtual machine that executes given program
instruction by instruction. We implement two operation
modes in VSE: normal mode and partial extraction mode. In
the normal mode, VSE operates as follows. After fetching an
instruction, Taint Analyzer taints the destination operands
if any of the source operands is tainted. After the instruction
is executed by the virtual machine, VSE checks whether the
instruction is a value-updating instruction and whether its
output is tainted; if this is true, the output of the instruc-
tion is added to the value sequence. VSE then fetches and
decodes the next instruction and repeats the same process
until the program is finished. When the program terminates,
VSE stops extracting values and passes completed value se-
quence to VaPD. Note that VSE also performs the address
removal refinement. In the partial extraction mode, VSE
intercepts two special system calls START_EXTRACT() and
STOP_EXTRACT() (system call numbers are 0xFFFFFFFF
and 0xFFFFFFF0 respectively) requested by the test pro-
gram. When VSE starts in the partial extraction mode,
value sequence recording is initially turned off. It starts (or
resumes) recording values when the test program requests
START_EXTRACT() system call, and it stops (or pauses) stor-
ing values when the program calls STOP_EXTRACT() system
call. Using the partial extraction mode, we can extract value
sequences from part of plaintiff programs.Note that the par-
tial extraction mode is to extract partial value sequence of

plaintiff programs. Malicious plagiarizers will not be able to
prevent this mode from excluding plagiarized part in value
sequence extraction process.

To reduce the number of values added into the value se-
quence, VSE does not extract values from dynamic linked
libraries or shared libraries by default. However, if neces-
sary, we can enable VSE to include specific shared libraries
in the value sequence extraction because the virtual machine
knows which libraries are loaded and where they are.

5. EXPERIMENT
We implemented Value Sequence Extractor inside QEMU

0.9.1. During our evaluation of the prototype, we answer
three questions. First, how resilient is VaPD to obfusca-
tion techniques? Second, how likely will it make a false
accusation? Finally, how credible is VaPD when tested
with very similar programs independently implemented to
meet the same specification? We thoroughly test obfusca-
tion resiliency of VaPD using the obfuscators implemented
in SandMark [7], Zelix Pty Ltd.’s KlassMaster [40], and Se-
mantic Designs Inc.’s Thicket C obfuscator [32]. SandMark
and KlassMaster are Java bytecode obfuscators: The lat-
est SandMark includes 15 application obfuscations, 7 class
obfuscations, and 17 method obfuscations; Zelix Pty Ltd.
claims KlassMaster is a heavy duty obfuscator implement-
ing name obfuscation, comprehensive flow obfuscation tech-
niques, and string encryption. The Thicket C obfuscator is a
C source code rewriting tool based on abstract syntax tree.
It performs several obfuscation techniques including iden-
tifier scrambling, format scrambling, replacing/simplifying
statements, loop rewriting, and rewriting if-then-else condi-
tionals [2]. Because VaPD analyzes x86 machine code, we
convert Java byte code (used in SandMark and KlassMaster
experiments) to x86 executable using GCJ 4.1.2, the GNU
ahead-of-time Compiler for Java. As a front-end of GCC,
GCJ benefits from GCC’s optimization features. We also
examine VaPD’s credibility by deliberately using programs
that are similar to but disparate from each other. Experi-
ments are performed on a Linux machine equipped with an
Intel Quad-Core 2.00 GHz CPU and 4GB RAM.

5.1 Case Study I: Obfuscation Tools
We evaluated resiliency of VaPD against advanced ob-

fuscation techniques of SandMark and KlassMaster. Since
SandMark and KlassMaster are Java bytecode obfuscators,
we selected JLex [5], a lexical analyzer generator written
in Java, as the subject of out tests. In this case study, we
set up two cases of experiments: a single-obfuscation exper-
iment, where only one obfuscation technique is applied at
a time, and a multiple-obfuscation experiment, where mul-
tiple obfuscators are applied to one program at once. As
a dynamic analysis based solution, VaPD may not reliably
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Figure 4: Similarity scores (y-axis) of original JLex to obfuscated ones and other programs (x-axis)

Table 4: Names of obfuscation techniques applied to
JLex to generate multiply obfuscated versions
Control obfuscation Data obfuscation

Transparent Branch Inser-
tion, Simple Opaque Predi-
cates, Inliner, Insert Opaque
Predicates, Dynamic Inliner,
Interleave Methods, Method
Merger, Reorder Instructions

Array Folder, Integer Ar-
ray Splitter, Promote Prim-
itive Registers, Variable Re-
assigner, Duplicate Registers,
Boolean Splitter, Merge Lo-
cal Integers

identify (non-)plagiarism based on a single high similarity
score. Hence, in this experiment, we used 20 different in-
puts and compute the average similarity scores.

5.1.1 Impact of Single Obfuscation

In these experiments, original JLex is compared to ob-
fuscated versions of itself. Also, we compare JLex to 11
additional programs (bzip2, cksum, gzip, md5sum, zip, and
openssl computing MD2, MD4, MD5, RMD160, SHA1, and
SHA) totally different from JLex while processing the same
input. The result is shown in Figure 4, where the x-axis
shows suspect program names (JLex’s obfuscated versions3

and other programs), and the y-axis is the similarity scores.
We observed that in all cases of comparing original JLex

to its obfuscated versions (totally 680 comparisons, given
by 34 obfuscators and 20 inputs), the similarity scores mark
1.0. In contrast, the similarity scores between JLex and 11
other programs mark very low scores with average of 0.07.
Only one case mark 0.19, which is still very low considering
that the similarity score for a real plagiarism is 1.0.

Therefore, the results shown in Figure 4 provide us with
clear answers to the questions we raised earlier: Regard-
less of obfuscation techniques, VaPD computed noticeably
high similarity scores between the original and obfuscated
programs, and discernably lower similarity scores between
different programs. In all cases, VaPD can identify the iden-
tical programs with no false accusation with an appropriate
threshold (say 0.90).

5.1.2 Impact of Multiple Obfuscation

We also notice that a plagiarist may attempt to hide
plagiarism by heavily transforming a plagiarized program

3We could not test all 39 obfuscators because some of them
failed in transforming JLex.

through a series of obfuscators. Therefore, evaluating re-
siliency of VaPD against multiple obfuscation techniques ap-
plied to single program is necessary.

Although it is theoretically possible for a series of multiple
obfuscators to transform a program, applying many obfus-
cators to a single program could raise practical issues of
correctness of the target program and efficiency. For exam-
ple, we attempted to apply all the 39 obfuscation techniques
of SandMark to JLex, but after trying several obfuscation
orders, only some of them could be successfully applied. To
address this problem, we selected two groups of obfuscation
techniques, following the classification of Collberg et al. [8]:
data obfuscation and control obfuscation. By transform-
ing JLex through each group of obfuscators, we created two
multiply obfuscated programs JLexcontrol and JLexdata. In
summary, we could apply 8 control obfuscators and 7 data
obfuscators to JLex as shown in Table 4. We also generated
JLexzkm by transforming JLex through KlassMaster with
the most aggressive configuration options enabled.

We compared each of JLexcontrol, JLexdata, and JLexzkm

to original JLex. In all three groups of comparisons between
heavily obfuscated JLex and original JLex, we observe sim-
ilarity score of 1.00. This shows that VaPD is effective in
detecting plagiarisms obfuscated heavily.

5.2 Case Study II: Similar Programs
To investigate the credibility of VaPD on analyzing highly

similar but disparate programs, we cross analyze five indi-
vidual XML parsers: RXP, used by the LT XML toolkit and
the Festival speech synthesis system; Expat XML parser, the
underlying XML parser for the open source Mozilla project
and Perl’s XML::Parser; Libxml2, the XML C parser and
toolkit of Gnome; Xerces-C++ supported by Apache XML
project; and Parsifal XML parser C library. For each of
the five XML parsers, we wrote a simple test program that
parses test input and prints the parser’s internal informa-
tion to the terminal. We cross-compared the refined value
sequences of plaintiff programs to the value sequences of sus-
pect programs through 375 distinct comparison cases given
by five programs, five different optimization switches (O0-3
and Os), and three test inputs.

To our best knowledge, these five XML parsers do not
share code. Since they are all individually developed projects,
it would be a false accusation if VaPD computes a higher
similarity score (say, greater than 0.9) for any of them. Av-
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Table 5: Similarity scores of five XML parsers cross
compared. (P=Plaintiff, S=Suspect)

❍
❍
❍
❍

P
S

expat libxml2 parsifal rxp xercesc

expat 0.12 0.09 0.17 0.03
libxml2 0 0.01 0 0.01
parsifal 0.02 0.1 0.04 0.23
rxp 0.08 0.09 0.08 0.02

xercesc 0 0.02 0.01 0.02

erage and standard deviation of similarity scores of 75 cases
comparing same programs are 1.0 and 0 respectively. Aver-
age and standard deviation of 300 cases comparing different
programs are both 0.06. Table 5 summarizes the results (We
show only average of similarity scores per each program pair
for brevity). In all cases comparing different programs, ex-
cept one case, we observe similarity scores lower than 0.17.
Only one comparison case shows a similarity score of 0.23,
which is still very low. Therefore, it is safe to say VaPD
claims no false accusation in this case study.

5.3 Case Study III: Different Programs
Previously, at the end of Section 3, we presented prelim-

inary results on the likelihood of VaPD raising false accu-
sations by cross-comparing bzip2, gzip, and oggenc. In this
section, we investigate even further by comparing each of
bzip2, gzip, and oggenc against 9 of 11 programs used in
Section 5.1.1—two are excluded because they overlap bzip2
and gzip. Bzip2, gzip, and oggenc used in this experiment
are compiled from self-contained, single compilation-unit C
programs [22], therefore they need no external libraries other
than the standard C library.

From 270 distinct comparisons given by three plaintiff pro-
grams (bzip2, gzip, and oggenc), 9 suspect programs (cksum;
md5sum; openssl computing MD2, MD4, MD5, RMD160,
SHA1, and SHA; and zip), and 10 input files, we observe
similarity scores between 0 and 0.27 except the cases of zip
and gzip pairs in which all the similarity scores are 1.0. Ac-
cording to the documentations of zip and gzip projects, we
found that zip and gzip are based on the same compression
algorithm deflate which is also implemented in the zLib li-
brary. Our source code analysis confirms that the gzip used
in this experiment contains code from zLib 1.1.4 in itself,
and the zip is dynamically linked to the system-wide zLib
1.2.3. Therefore, high similarity scores of zip and gzip pairs
give more credential to VaPD’s detection. In addition, zip
scored very low similarity scores (0.01 to 0.03) against bzip2.
This result is also correct because bzip2 uses a different com-
pression algorithm called block sorting.

6. DISCUSSION

6.1 Obfuscation Transformations and Attacks
Since the value based approach leverages selected runtime

values to characterize a code fragment, it can be affected by
the data obfuscation techniques that can alter majority of
the runtime values. We discuss about the impact of data
obfuscation and potential attacks to VaPD in this section.

6.1.1 Data Transformation

Simple data transformations expose the core-values of the
original program. Figure 5(a) is an example where the orig-

inal values of x are transformed by adding a constant. As-
suming that x is tainted and is 10 at the beginning, the value
sequence of the transformed code is {11, ..., 10, ..., y, 10}.
In this sequence, {..., 10, ..., y} are the values captured from
intermediate data for computing y, and this must appear in
the value sequence of the original code as well. Let us look
at a more complex example, variable encoding transforma-
tion. In general, variable encoding transforms variable v to
αv + β. In Figure 5(b), variable y at line 7 of the original
code is transformed to be y + x. For this transformation,
we apply the same procedure as Drape et al. used [10]. As-
suming that y is tainted at line 2, the refined value sequence
that VaPD extracts from the original code is {1, 2, 6, 24},
and the value sequence extracted from the transformed code
is {2, 1, 1, 2, 4, 1, 2, 5, 8, 2, 6, 12, 16, 6, 24, 34, 39, 24, 120,
135, 120, 24}. Again we see some of the encoded values are
restored to original data at some points during the execu-
tion. Splitting a variable and merging two variables into one
also have similar characteristics. Those invariant values are
very close to the core-values of the original program, and
will be included in the values extracted by VaPD.

6.1.2 Inserting Arbitrary Instructions (Noise)

Under the LCS metrics, injection of a huge amount of
noise might increase the similarity score. If a naive program
happens to generate many noisy values, this will raise the
chance of false accusation. However, for malicious programs
that try to hide their plagiarisms, intentionally injected noise
values will result in a higher chance of being accused. There-
fore, if a plagiarist comes to know the mechanism of VaPD,
he will never try to evade VaPD by injecting random noise.
Moreover, automated noise injection is difficult because if
the noise is not tainted, it will be filtered due to our dy-
namic taint analysis. However, if injected successfully, noise
could dramatically increase the size of an extracted value
sequence, thus slowing down the similarity score computa-
tion, consuming more memory space. We will consider slid-
ing over a stream of values so that we may keep only a small
portion of a value sequence in memory during runtime.

6.1.3 Loop Rewriting

Another possible counterattack is rewriting a loop in a
reverse order. However, automatic loop reversing is very
difficult because they could result in semantically different
programs. So far, we are not aware of such tools to our best
knowledge. Although some specific types of loops that are
not tightly bound with the loop counters could theoretically
be reversed, reversing the loop counter variable only will not
affect the whole value sequence because we can eliminate val-
ues produced by loop counters (by dynamic taint analysis).
One might manually reverse a loop, if at all possible, but its
impact could be very limited in a large program.

6.2 Core-Part Plagiarism
Core-part plagiarism is a harder problem. In such case,

only some part of a program is plagiarized. For example, a
less ethical developer may steal code from some open source
projects and fit the essential module into his project with
obfuscation. Let IPM and ISM be the input to the plagia-
rized module and suspect module respectively, and V(x) be
a value based characteristic such as a value sequence ex-
tracted from x, a program or a module. Then the value
based method can be applied to a subproblem of the core-
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Figure 5: Data Transformation Examples. Underlined codes are added by the transformation.

part plagiarism detection where IPM = ISM. In this case,
we can directly search in V(S) of the suspect program, for
V(PM) of the plaintiff module to check whether the mod-
ule has been plagiarized. For example, in the case of web
browser layout engine plagiarism, given an input URL I,
we can first obtain V(PM) from the plaintiff layout engine
module; then, using the same input I we can obtain V(S)
from the suspect program. If the plaintiff program and the
suspect program use the same layout engine, then V(PM)
and part of V(S) (i.e., V(SM)) to bear significantly similar
patterns. Therefore, we can search for V(PM) in V(S).

6.3 Limitations
Our technique bears the following limitations. First, VaPD

provides the partial extraction mode in which it can ex-
tract value sequences from only a small part of the pro-
gram. Based on this, we discuss about the feasibility of
applying VaPD to the partial plagiarism detection problems
in Section 6.2. However, we have not yet comprehensively
evaluated this issue with real world test subjects.

Second, VaPD may not apply if the program implements
a very simple algorithm. In such cases, the value sequences
can be too short, which increases sensitivity to noises. Our
metric is likely to cause false positives when a very short
value sequence is compared to a much longer one.

Third, as a detection system, there exists a trade-off be-
tween false positives and false negatives. The detection re-
sult of our tool depends on the similarity score threshold.
Unfortunately, without many real-world plagiarism samples,
we are unable to show concrete results on such false rates.
As such, rather than applying our tool to “prove” software
plagiarisms, in practice one may use it to collect initial ev-
idences before taking further investigations, which often in-
volve nontechnical actions.

Fourth, built upon a dynamic taint analyzer, VaPD may
generate much shorter value sequences if tainted data is used
as an index into a translation table, or a plagiarist attempts
anti-taint-analysis techniques [25]. Anti-taint attacks and
some countermeasures (e.g., tainting the program counter
when a tainted conditional is tested [11]) are well summa-
rized by Cavallaro et al. [6].

Fifth, regarding whether one could use reordering to evade
VaPD, the answer is a coin with two sides: On one hand, the
plagiarist cannot do arbitrary or random reordering, which
will very likely distort the semantics of the program. Once
the semantics is distorted, the plagiarist can no longer get
the functionality he intends to steal. On the other hand,
if the plagiarist can find a way to do semantics-preserving
reordering, our LCS based metric in theory may be sensitive

to the attempt. The existing tools we have experimented ac-
tually include some reordering transformations, and VaPD
shows resilience to them. But, we think that (new) auto-
matic reordering transformations could be created to evade
VaPD. To address this threat, we have started looking at the
dependencies between values, leveraging dependence graphs
of the values and the subgraph similarity algorithms. To
preserve the program semantics, these dependencies cannot
be violated. So the orders required by these dependencies
cannot be flipped.

6.4 Future Work
As our future work, we will examine the relationship be-

tween values. A better understanding of the logical con-
nection among the values will enable us to further remove
system noise or less significant values. We will also study
the problems in handling partial plagiarism. We are partic-
ularly interested in the impact of inputs on value sequences.
As a dynamic analysis, VaPD requires the programs being
analyzed to be fed with the same input. This requirement
sometimes is difficult to meet especially in the partial plagia-
rism cases. For example, a software plagiarist may illegally
use a real time computer vision library as a part of their
motion recognition software, whereas the original program
uses the library for different purposes, say face recognition.
In addition, we will study the impact of emulation-based
obfuscators such as Themida and Code Virtualizer [27] on
VaPD’s performance. Such obfuscators encode original pro-
gram into a specially designed bytecode instruction set and
run the bytecode program in an emulator. We believe our
detection method can handle such obfuscators.

7. CONCLUSION
Obfuscation resilient code characterization is important

for many code analysis applications, including code theft
detection. Motivated by an observation that some outcome
values computed by machine instructions survive various
semantics-preserving code transformations, we have proposed
a technique that directly examines executable files and does
not need to access the source code of suspicious programs.
Our results show that the value-based method is effective in
identifying software plagiarism.
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