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Abstract. Let D be a complete discrete valuation domain with the unique
maximal ideal p. We suppose that D is an algebra over an algebraically closed
field K and D/p ∼= K. Subamalgam D-suborders Λ• of a tiled D-order Λ
are studied in the paper by means of the integral Tits quadratic form qΛ• :
Zn1+2n3+2

−→ Z. A criterion for a subamalgam D-order Λ• to be of tame
lattice type is given in terms of the Tits quadratic form qΛ• and a forbidden
list Ω1, . . . , Ω17 of minor D-suborders of Λ• presented in the tables.

1. Introduction

Throughout this paper K is an algebraically closed field and D is a complete
discrete valuation domain which is a K-algebra such that D/p ∼= K, where p is the
unique maximal ideal of D. We denote by F = D0 the field of fractions of D.

We recall that a D-order Λ in a finite dimensional semisimple F -algebra C is a
subring Λ of C which is a finitely generated free D-submodule of C and Λ contains
an F -basis of C [5]. We denote by latt(Λ) the category of right Λ-lattices, that is,
finitely generated right Λ-modules which are free as D-modules. It is well-known
that any D-order is a semiperfect ring and the category latt(Λ) has the finite unique
decomposition property [32, Section 1.1].

A D-order Λ is said to be of finite lattice type if the category latt(Λ) has
finitely many isomorphism classes of indecomposable modules. A D-order Λ is said
to be of tame lattice type if the indecomposable Λ-lattices of any fixed D-rank
form a finite set of at most one-parameter families (see [9], [34, Section 3], [39,
Section 7]). The definitions are presented at the end of this section.

It was shown by the author in [40] that the weak positivity of the reduced Tits
quadratic form (1.4) associated with the subamalgam D-order Λ• (1.3) of tiled
D-order Λ (1.1) is a necessary and sufficient condition for finite lattice type.

Our main result of this paper is the characterization given in Theorem 1.5 below
of D-orders Λ• (1.3) of tame lattice type in terms of the associated Tits quadratic
form (1.4) defined below, and by presenting in Section 1A a list of minimal forbidden
minor D-suborders of Λ•.

We shall use here the terminology and notation introduced in [40]. We denote
by Mm(D) the full m × m matrix ring with coefficients in D. We suppose that
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n, n1, n2 > 0 and n3 ≥ 0 are natural numbers and Λ is a tiled D-suborder of
Mn(D) of the form

Λ =




D 1D2 . . . 1Dn

p D . . . 2Dn

...
...

. . .
...

p p . . . n−1Dn

p p . . . D








n(1.1)

such that

(a) iDj is either D or p, and
(b) Λ admits a three-partition

Λ =




Λ1 X Mn1
(D)

Mn3×n1
(p) Λ3 Y

Mn1
(p) Mn1×n3

(p) Λ2



}n1

}n3

}n2

(1.2)

where Λ2 = Λ1, n1 = n2, n1 + n2 + n3 = n and Λ3 is a hereditary n3 × n3 matrix
D-order

Λ3 =




D D . . . D D
p D . . . D D
...

...
. . .

...
...

p p . . . D D
p p . . . p D








n3

In particular, iDj = D holds in Λ for 1 ≤ i ≤ n1 and n1 + n3 + 1 ≤ j ≤ n.
Note that 1 = ε1 + ε3 + ε2, where ε1, ε3 and ε2 are the matrix idempotents

of Λ corresponding to the identity elements of Λ1, Λ3 and Λ2, respectively. By a
three-partite subamalgam of Λ we shall mean the D-suborder

Λ• =
{
λ = [λij ]; ε1λε1 − ε2λε2 ∈Mn1

(p)
}

(1.3)

of Λ consisting of all matrices λ = [λij ] of Λ such that the left upper corner n1×n1

submatrix ε1λε1 of λ is congruent modulo Mn1
(p) to the right lower corner n1×n1

submatrix ε2λε2 of λ.
To any such D-order Λ• we have associated in [40] the reduced Tits quadratic

form

qΛ• : Zn1+2n3+2 −−−−−→ Z(1.4)

in the indeterminates x∗, x+, x1, . . . , xn1+n3
, xn1+1, . . . , xn1+n3

defined by the for-
mula

qΛ•(x1, . . . ,xn1+n3
, xn1+1, . . . , xn1+n3

, x∗, x+)

= x2
∗ + x2

+ +

n1+n3∑

j=1

x2
j +

n1+n3∑

j=n1+1

x2
j

+
∑

iDj=D
1≤i<j≤n1+n3

xixj +
∑

s<t

xsxt +
∑

tDs=D
n1<t≤n1+n3<s

xs−n1−n3
xt

− x+

( n1+n3∑

j=1

xj

)
− x∗

( n1∑

j=1

xj +

n1+n3∑

j=n1+1

xj

)
.
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Our main result of this paper is the following theorem.

Theorem 1.5. Let K be an algebraically closed field and D a complete discrete

valuation domain which is a K-algebra such that D/p ∼= K, where p is the unique

maximal ideal of D.

Let Λ be a three-partite D-order of the form (1.2) and let Λ• be the subamalgam

(1.3) of Λ ⊆ Mn(D), where Λ1 = Λ2 ⊆ Mn1
(D), Λ3 ⊆ Mn3

(D) and n1, n3 are as

above. If the part X or the part Y of the D-order Λ in (1.2) consists of matrices

with coefficients in p, then the following conditions are equivalent.

(a) The D-order Λ• is of tame lattice type.

(b) The integral reduced Tits quadratic form qΛ• : Zn1+2n3+2 −→ Z (1.4) is

weakly non-negative, that is, qΛ•(z) ≥ 0 for any vector z ∈ Nn1+2n3+2.

(c) Either n3 = 0 and the D-order Λ1 in (1.2) does not contain minor D-

suborders of one of the forms

∆0 =




D p p

p D p

p p D


 , ∆1 =




D p D
p D p

p p D


 ,

∆2 =




D D p

p D p

p p D


 , ∆3 =




D p p

p D D
p p D


 ,

or else n3 ≥ 1, Λ1 is hereditary of the form



D D . . . D D
p D . . . D D
...

...
. . .

...
...

p p . . . D D
p p . . . p D




(1.6)

and the three-partite subamalgam D-orders Λ• and rt(Λ)• (1.7) do not contain three-

partite minor D-suborders dominated by any of the 17 three-partite subamalgam

D-orders listed in the tables of Section 1A.

(d) The two-peak poset (I∗+Λ• , ZΛ•) with zero-relations associated with Λ• in (3.3)
does not contain as a two-peak subposet with zero-relations any of the 13 forms

shown in Figure 1 (the dotted line in F̂4 means a zero-relation).

We recall from [40] that, given a matrix λ ∈ Mn(D), we define the reflection
transpose of λ to be the transpose matrix rt(λ) ∈ Mn(D) of λ with respect to
the non-main diagonal. Given any D-order Λ, we define the reflection transpose
of Λ (resp. of Λ•) to be the D-orders

rt(Λ) = {rt(λ); λ ∈ Λ} (resp. rt(Λ•) = {rt(λ); λ ∈ Λ•}).(1.7)

It is easy to see that rt(Λ•) = rt(Λ)• and the map λ 7→ rt(λ) defines the ring
anti-isomorphisms Λ

≃
−→ rt(Λ) and Λ• ≃

−→ rt(Λ•).
If 1 ≤ i1 < · · · < is ≤ n1, we say that the order ∆ is an (i1, . . . , is)-minor

D-suborder of Λ1 in (1.2) if ∆ is obtained from Λ1 by omitting the ijth row and
the ijth column for j = 1, . . . , s.

A three-partite order Ω is said to be a three-partite minor D-suborder of
Λ• if Ω is a minor D-suborder of Λ• obtained by omitting rows and columns simul-
taneously in parts Λ1 and Λ2; that is, we omit any i-th row and any i-th column
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Figure 1.

of Λ•, where 1 ≤ i ≤ n1, and simultaneously we omit the (n1 + n3 + i)-th row and
the (n1 + n3 + i)-th column of Λ•.

A three-partite subamalgam D-order Λ• (1.3) is said to be dominated by a

three-partite subamalgam D-order Λ
•

if Λ• is a three-partite D-suborder of Λ
•

of
the same size (1.2) and Λ1 = Λ1, Λ2 = Λ2, Λ3 = Λ3, X ⊆ X , Y ⊆ Y (see [40], [44,
p. 69]).

Let us recall from [9], [32, Section 15.12] and [34, Section 3] the definition of
an order of tame lattice type. Let Ω be an arbitrary D-order in a semisimple D0-
algebra C, where D is a complete discrete valuation domain which is an algebra
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over an algebraically closed field K and D/p ∼= K. Then Ω is said to be of tame
lattice type (or the category latt(Ω) is said to be of tame representation type) if
for any number r ∈ N there exist a non-zero polynomial h ∈ K[y] and a family of
additive functors

(−)⊗A M (1), . . . , (−)⊗A M (s) : ind1(A) −−−−−−−−−→ latt(Ω),(1.8)

where A = K[y, h−1], ind1(A) is the full subcategory of mod (A) consisting of
one dimensional A-modules, and M (1), . . .M (s) are A-Ω-bimodules satisfying the
following conditions:

(P0) The left A-modules AM (1), . . . , AM (s) are flat.
(P1) All but finitely many indecomposable Ω-lattices of D-rank r are isomorphic

to lattices in Im (−)⊗A M (1) ∪ . . . ∪ Im (−)⊗A M (s).

(P2) M
(1)
Ω , . . . , M

(s)
Ω viewed as D-modules are torsion-free.

(P3) AM
(1)
Ω , . . . , AM

(s)
Ω are finitely generated as A-Ω-bimodules.

This means that the functors (1.8) form an almost parameterizing family (see [32,
Definition 14.13]) for the category indr(latt(Ω)) of indecomposable Ω-lattices of
D-rank r.

Given an integer r ≥ 1, we define µ1
latt(Ω)(r) to be the minimal number s of

functors (1.8) satisfying the above conditions. The D-order Ω of tame lattice type
is defined to be of polynomial growth [34, Section 3] if there exists an integer
g ≥ 1 such that µ1

latt(Ω)(r) ≤ rg for all integers r ≥ 2 (compare with [32, p. 291]).

It was proved in [9] that the tame-wild dichotomy holds for D-orders Ω under
the assumption on D made above. The reader is referred to [9], [34, Section 3], [39,
Section 7] for various definitions and discussion of orders of tame lattice type and
of wild lattice type.

Our main result, Theorem 1.5, is proved in Section 4 by applying a technique
developed in [35] and [40]. In particular, we apply the covering technique for
bipartite stratified posets developed by the author in [31], and a reduction functor H
(3.5) from latt(Λ•) to K-linear socle projective representations of a two-peak poset
(I∗+Λ• , ZΛ•) (3.3) with zero-relations associated with Λ• in [40]. Then we apply a
criterion for tame prinjective type of two-peak posets given in [17] and [18].

In Section 2 we collect basic facts on K-linear socle projective representations of
a multi-peak posets with zero-relations we need in this paper.

In Section 3 we associate with Λ• a two-peak poset (I∗+Λ• , ZΛ•) with zero-relations
(see (3.3)), and we prove in Theorem 3.4 main properties of our reduction functor
H : latt(Λ•)→ (I∗+Λ• , ZΛ•) -spr.

By applying [40, Theorem 6.1] we get a structure of the Auslander-Reiten quiver
Γ(latt(Λ•)) of latt(Λ•) (see Remark 3.12).

A simple criterion for a tame lattice type D-order Λ• (1.3) to be of polynomial
growth is given by the author in [42, Theorem 1.5]. Tame lattice type subamal-
gam D-orders Λ• (1.3) of non-polynomial growth are completely described in [42,
Theorem 6.2 and Corollary 6.3].

The main results of this paper were presented at the AMS-IMS-SIAM Joint
Summer Research Conference “Trends in the Representation Theory of Finite Di-
mensional Algebras” at the University of Washington, Seattle, in July 1997 (see
[41, Theorem 4.2]). They were also presented at the Euroconference “Interactions
between Ring Theory and Representations of Algebras”, Murcia, 12-17 January
1998 (see [10] and [43, Section 8]).
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1A. Tables of Minimal Three-Partite Subamalgams
of Tiled D-orders of Wild Lattice Type

We use here the notation introduced in Section 1; that is, we present three-partite
tiled D-orders Ωj , and the three-partition is indicated by vertical and horizontal
lines. The subamalgam Ω•

j is obtained from Ωj by the identification modulo p =
rad(D) the left upper corner block of Ωj with the right lower corner block of Ωj .
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2. Filtered Socle Projective Representations
of Posets with Zero-Relations

We recall from [46] and [32, Chapter 13] that the study of tiled orders is reduced
to the study of representations of infinite posets having a unique maximal element.
A similar idea applies in the study of some categories of Cohen-Macaulay modules
and of abelian groups (see [1], [2], [3], [38], [43]).

We shall prove the main theorems of the paper by reducing the problem for lat-
tices over three-partite subamalgams of tiled D-orders to a corresponding problem
for K-linear socle projective representations of two-peak posets (that is, exactly
two maximal elements) with zero-relations that was studied in [31] and [40], where
K = D/p. Our reduction extends the reduction given in [35, Section 2] and in-
volves the reduction functors defined in [11] and [27], and the covering technique
for bipartite stratified posets developed by the author in [31].

Throughout we shall denote by (I;�) a finite poset, that is, a finite partially
ordered set (I;�) with the partial order �. We shall write i ≺ j if i � j and i 6= j.
For the sake of simplicity we write I instead of (I,�). We denote by max I the set
of all maximal elements of I and I will be called an r-peak poset if |max I| = r.

Given a poset I, we denote by KI the incidence algebra of I [32], that is, the
subalgebra of the full matrix algebra MI(K) consisting of all I × I square matrices
λ = [λpq]p,q∈I such that λpq = 0 if p 6� q in (I; �).

For i � j we denote by eij ∈ KI the matrix having 1 at the i-j-th position
and zeros elsewhere. Given j in I, we denote by ej = ejj the standard primitive
idempotent of KI corresponding to j.

The algebra KI is basic, and the standard matrix idempotents ei, i ∈ I, form a
complete set of primitive orthogonal idempotents of KI. Moreover, KI is of finite
global dimension and the right socle of KI is isomorphic to a direct sum of copies
of the right ideals epKI, p ∈ max I, called the right peaks of KI [33].

We shall denote by modsp(KI) the category of socle projective right KI-
modules [28], that is, the full subcategory of mod(KI) consisting of modules X
such that the socle soc(X) of X is projective and isomorphic to a direct sum of
copies of the right ideals epKI, p ∈ max I.n

In our definition of a main reduction functor we shall also need a notion of a
poset with zero-relations (see [40]), as follows.

Definition 2.1. A zero-relation in a poset I is a pair (i0, j0) of elements of I
such that i0 ≺ j0.

A set of zero-relations in I is a set Z satisfying the following two conditions:
(Z1) Z consists of zero-relations (i0, j0) of I.
(Z2) If (i0, j0) ∈ Z and i1 � i0 � j0 � j1, then (i1, j1) ∈ Z.

A right multipeak (or precisely r-peak) poset with zero-relations is a pair
(I, Z), where I is a poset, r = |max I|, and Z is a set of zero-relations satisfying
the following condition (see [30, p. 118]):

(Z3) For every i ∈ I \max I there exists p ∈ max I such that (i, p) 6∈ Z.
In case the set Z is empty we shall write I instead of (I, Z).

A right multipeak poset (I ′, Z′) with zero-relations is said to be a peak subposet
of (I, Z) if I ′ is a subposet of I, Z′ is the restriction of Z to I ′ and max I ′ =
I ′ ∩ (max I).
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Given a right r-peak poset (I, Z) with zero-relations, we define the incidence
K-algebra of (I, Z) to be the K-algebra

K(I, Z) = {λ = [λij ]i,j∈I ∈ KI; λij = 0, for (i, j) ∈ Z} ⊆ KI(2.2)

consisting of all I × I square matrices λ = [λij ]i,j∈I ∈ MI(K) such that λij = 0 if
i 6� j in (I; �), or if (i, j) ∈ Z. The addition in K(I, Z) is the usual matrix addition,
whereas the multiplication of two matrices λ = [λij ]i,j∈I and λ′ = [λ′

ij ]i,j∈I in
K(I, Z) is the matrix λ′′ = [λ′′

ij ]i,j∈I , where

λ′′
ij =





∑
i�s�j

λisλ
′
sj if i � j and (i, j) /∈ Z,

0 if i 6� j or (i, j) ∈ Z.

In case the set Z is empty we get KI = K(I, Z).
Note that in case the set Z is not empty the algebra K(I, Z) is not a subalgebra

of the matrix algebra KI ⊆MI(K).
The incidence algebra K(I, Z) is basic, and the standard matrix idempotents ei,

i ∈ I, form a complete set of primitive orthogonal idempotents of K(I, Z). It is
easy to see that K(I, Z) is a factor K-algebra of KI modulo the ideal generated
by all matrices eij ∈ KI such that (i, j) ∈ Z. It follows that the global dimension
of K(I, Z) is finite (see [33, Lemma 2.1]) and, in view of (Z3), the right socle
of K(I, Z) is isomorphic to a direct sum of copies of the right ideals epK(I, Z),
p ∈ max I, called the right peaks of K(I, Z) (see [28]).

We shall denote by modsp K(I, Z) the category of socle projective right
K(I, Z)-modules, that is, the full subcategory of mod K(I, Z) consisting of mod-
ules X such that the socle soc(X) of X is projective and isomorphic to a direct
sum of copies of the right ideals epK(I, Z), p ∈ max I (see [28]).

The category modsp K(I, Z) is closed under extensions, direct sums and sum-
mands in mod K(I, Z), and has Auslander-Reiten sequences, source maps and
sink maps, enough relative projective and enough relative injective objects (see
[23]).

Throughout we shall denote by repK(I, Z) the category of K-linear representa-
tion of (I, Z), that is, the systems

(Xi, jhi)i,j∈I, i≺j

of finite dimensional K-vector spaces Xj connected by K-linear maps jhi : Xi → Xj

satisfying the following conditions:

• ihi is the identity map on Xi for any i ∈ I,
• jhi = 0 if (i, j) ∈ Z,
• thj · jhi = thi if i � j � t.

It is well known that there exists a K-linear equivalence of categories

mod K(I, Z)
≃

−−−−−−→ repK(I, Z)(2.3)

defined as follows. If X is a module in mod K(I, Z), we define the representation
(Xi, jhi)i,j∈I,i≺j in repK(I, Z) by setting Xi = Xei, and we take for jhi : Xi → Xj

the K-linear map defined by the multiplication by eij ∈ K(I, Z). Conversely, if
the system (Xi, jhi)i,j∈I,i≺j in repK(I, Z) is given, we set X =

⊕
i∈I Xi and we

define the multiplication · : X ×K(I, Z)→ X by xi · eij = jhi(xi) for xi ∈ Xi and
i � j, (i, j) /∈ Z. Throughout we shall identify the categories mod K(I, Z) and
repK(I, Z) along the functor X 7→ (Xi, jhi)i,j∈I,i≺j (2.3).
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The module X is socle projective if and only if X viewed as a K-linear representa-
tion X = (Xi, jhi)i,j∈I,i≺j of (I, Z) is socle projective, that is, if

⋂
p∈max I Ker phi =

0 for any i ∈ I \max I (see [28]). It is often useful to deal with filtered forms of
socle projective K-linear representations of (I, Z). For this purpose we introduced
in [40] the following definition (see also [47], [48]) .

Definition 2.4. Let K be a field and let (I, Z) be a right multipeak poset with zero-
relations. A peak (I, Z)-space (or a filtered socle projective representation
of (I, Z)) over the field K is the system M = (Mj)j∈I of finite dimensional K-vector
spaces Mj satisfying the following four conditions.

(a) For any j ∈ I the K-space Mj is a K-subspace of M• =
⊕

p∈max I Mp.

(b) The inclusion Mp ⊆ M• is the standard p-coordinate embedding for any
p ∈ max I.

(c) πj(Mi) ⊆ Mj for all i ≺ j in I, where πj : M• → M• is the composed
K-linear endomorphism

M•
π′

j

−→
⊕

j�p∈max I

Mp →֒ M•

of M• and π′
j is the direct summand projection.

(d) If p ∈ max I and either i � p or i ≺ p and (i, p) ∈ Z, then πp(Mi) = 0.
A morphism f : M →M′ from M to M′ is a system f = (fp)p∈max I of K-linear
maps fp : Mp →M ′

p, p ∈ max I, such that
(⊕

p∈max I fp

)
(Mj) ⊆M ′

j for all j ∈ I.

We denote by (I, Z) -spr the category of peak I-spaces (or filtered socle pro-
jective representations of (I, Z)) over the field K. The direct sum and the indecom-
posablity in the category (I, Z) -spr are defined in an obvious way.

A sequence 0 → M′ → M → M′′ → 0 in the category (I, Z) -spr is said to be
exact if the sequence 0→M ′

j →Mj →M ′′
j → 0 of vector spaces is exact for every

j ∈ I.
In case the set Z is empty the category (I, Z) -spr is the category I -spr of peak

I-spaces (or socle projective representations of I) introduced in [33].
Let us present an alternative definition of peak (I, Z)-spaces. For this purpose

we assume that M = (Mj)j∈I is system of finite dimensional K-vector spaces Mj.
We associate with M = (Mj)j∈I the K-linear representation

M• = (M•
j , iπ

•
j )j∈I,i�j(2.5)

of the poset I, where

M•
j =

⊕

j≺p∈max I
(j,p)/∈Z

Mp ⊆M• =
⊕

j≺p∈max I

Mp(2.6)

and if the relation i � j holds in I we define iπ
•
j : M•

i −→ M•
j to be the composed

K-linear map

M•
i ⊆M•

π′

j

−→ M•
j ,

where π′
j is the direct summand projection.

The following useful fact is easily verified.

Lemma 2.7. Let K be a field and let (I, Z) be a right multipeak poset with zero-

relations. Assume that M = (Mj)j∈I is a system of finite dimensional K-vector

spaces Mj and M• = (M•
j , iπ

•
j )j∈I,i� is the K-linear representation associated with

M above.
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(a) If i ∈ I and j � t � s, then iπ
•
i = id and sπ

•
t · tπ

•
j = sπ

•
j . If (i, j) ∈ Z then

iπ
•
j = 0.
(b) The system M = (Mj)j∈I is a peak (I, Z)-space if and only if the following

two conditions are satisfied:

(i) Mj ⊆M•
j ⊆M• for all j ∈ I, and

(ii) jπ
•
i (Mi) ⊆ Mj if i � j—that is, there is a unique factorisation jπi : Mi →

Mj making the diagram

Mi ⊆ M•
iyjπi

yjπ•

i

Mj ⊆ M•
j

(2.8)

commutative.

It is easy to see that (I, Z) -spr is an additive category with the finite unique
decomposition property [32, Section 1.1], and the K-linear functor

ρ : (I, Z) -spr
≃

−−−−−−→ modsp K(I, Z),(2.9)

M 7→ M̂ = (Mj; jπi)i≺j , is an equivalence of categories, where jπi : Mi → Mj is
the unique K-linear map making the diagram (2.8) commutative. The quasi-inverse
of ρ is the restriction to the category modsp K(I, Z) of the adjustment functor
(see [28], [23], [32, (11.32)], [33])

θ : mod K(I, Z) −−−−−−→ K(I, Z) -spr(2.10)

associating to X = (Xi, jhi)i,j∈I,i≺j the peak (I, Z)-space M(X) = (M(X)j)j∈I ,
where

M(X)j =

{
Xj for j ∈ max I,

Im [(phj)p∈max I : Xj →
⊕

p∈max I Xp] for j ∈ I \max I.

Corollary 2.11. (a) The category (I, Z) -spr is an additive K-category with the

finite unique decomposition property [32, Section 1.1].
(b) Every object in (I, Z) -spr has a projective cover.

(c) The category (I, Z) -spr has Auslander-Reiten sequences, source maps and

sink maps, enough projective objects and enough relative injective objects [23].

Proof. In view of the equivalence (2.9) the corollary follows by applying the results
in [23] to the bipartite algebra R = K(I, Z) equipped with the bipartition

R = K(I∗+Λ• , ZΛ•) =

(
A M
0 B

)
,

where

A = K(I∗+Λ• \max I∗+Λ• , ZΛ•) ∼= e−Re− ∼= R/ soc(RR),

B = K(max I∗+Λ• ) ∼= e+Re+
∼= K ×K × · · · ×K (|max I∗+Λ• |-times),

e− =
∑

j∈I∗+

Λ• \max I∗+

Λ•

ej , e+ =
∑

p∈max I∗+

Λ•

ep,

and the vector space

M =
⊕

p∈max I∗+

Λ•

⊕

j≺p
(j,p)/∈ZΛ•

eipK ∼= e−Re+
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is viewed as an A-B-bimodule in an obvious way and multiplication is given by the
usual matrix multiplication formula

(
a m
0 b

) (
a′ m′

0 b′

)
=

(
aa′ am′ + mb′

0 bb′

)
,

for a, a′ ∈ A, b, b′ ∈ B and m, m′ ∈M .
Note that (I, Z) -spr ∼= modsp K(I, Z) is the category modic(R) of injectively

cogenerated modules in the notation of [23].

Following [32, Section 14.4], we say that the categories modsp K(I, Z) ∼=
(I, Z) -spr are of tame representation type if for any number r ∈ N there exist
a non-zero polynomial h ∈ K[y] and a family of additive functors

(−)⊗S N (1), . . . , (−)⊗S N (s) : ind1(S) −−−−−−−−−→ modsp K(I, Z),(2.12)

where S = K[y, h−1], N (1), . . . , N (s) are A-K(I, Z)-bimodules satisfying the fol-
lowing conditions:

(T0) The left A-modules SN (1), . . . , SN (s) are finitely generated.
(T1) All but finitely many indecomposable modules in modsp K(I, Z) of K-

dimension r are isomorphic to modules in Im (−)⊗S N (1) ∪ · · · ∪ Im (−)⊗S N (s).
This means that the functors (2.12) form an almost parameterizing family (see

[32, Definition 14.13]) for the category indr(modsp K(I, Z)) of indecomposable mod-
ules X in modsp K(I, Z) such that dimK X = r.

Given an integer r ≥ 1, we define µ1
modsp K(I,Z)(r) to be the minimal number s

of functors (2.12) satisfying the above conditions. The categories modsp K(I, Z) ∼=
(I, Z) -spr of tame representation type are defined to be of polynomial growth
[34] if there exists an integer g ≥ 1 such that µ1

modsp K(I,Z)(r) ≤ rg for all integers

r ≥ 2 (compare with [32, p. 291]).
Following [23] and [33, (3.1)] we associate to any r-peak poset (I, Z) with zero-

relations the integral bilinear form b(I,Z) : ZI × ZI −−−−−→ Z,

b(I,Z)(x, y) =
∑

j∈I

xjyj +
∑

i≺j /∈max I
(i,j)/∈Z

yixj −
∑

p∈max I

∑

i≺p
(i,p)/∈Z

xiyp.(2.13)

and the integral Tits quadratic form q(I,Z) : ZI −−−−−→ Z, q(I,Z)(z) = b(I,Z)(z, z).
The following result is useful in applications.

Theorem 2.14. Let (I, Z) be a multi-peak poset with zero-relations and let b(I,Z) :

ZI × ZI → Z be the bilinear form (2.13).
(a) For any pair X and Y of modules in prin K(I, Z) (see [40, Section 3]) the

following equality holds:

b(I,Z)(cdnX, cdnY ) = dimK HomK(I,Z)(X, Y )− dimK Ext1K(I,Z)(X, Y )(2.15)

(b) If the category (I, Z) -spr is of tame representation type then the Tits qua-

dratic form q(I,Z) : ZI → Z (see (2.13)) is weakly non-negative.

Proof. The statement (a) follows from [23, Proposition 4.4].
(b) We recall from [41, Proposition 2.7] that there exists an adjustment functor

θI : prin K(I, Z) −−−−−−−−−→ modsp K(I, Z) ∼= (I, Z) -spr
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which preserves and reflects tame representation type. Hence the tameness of the
category (I, Z) -spr yields the tameness of modsp K(I, Z), and consequently the
tameness of the category prin K(I, Z). Then (b) is a consequence of [23, Proposi-
tion 4.2] (see also [15, Theorem 3.18]).

We shall often use a reflection duality for the category (I, Z) -spr introduced for
socle projective modules in [30]. We shall present it here in a more convenient form.

For this purpose we associate with any s-peak poset (I, Z) with zero-relations,
s ≥ 1, the reflection-dual s-peak poset (I•, Z•) with zero-relations defined as follows.

Definition 2.16. Assume that (I, Z) is an s-peak poset with zero-relations, and
let max I = {p1, . . . , ps}.

(a) We define a left-right s-peak poset with zero-relations (Î , Ẑ), where

Î = {p−1 , . . . , p−s } ∪ I

is a poset enlargement of I by a set {p−1 , . . . , p−s } of minimal elements. The partial

order � in Î is an extension of the partial order � in I by the relations

p−h ≺ j ⇔ there exists i � j in I such that i ≺ ph in I and (i, ph) /∈ Z

for any ph ∈ max I. We define the set Ẑ of zero-relations in Î to be the set generated
by the union of Z and the set consisting of the following relations:
• (p−h , pt) for all h 6= t, and

• (p−h , j), where p−h ≺ j holds in (Î ,�), whereas j ≺ ph does not hold in (I,�).
(b) We define the reflection-dual s-peak poset with zero-relations

(I, Z)• = (I•, Z•)(2.17)

to the poset (I, Z) to be the poset I• = (Î \max I)op dual to (Î \max I,�). We

take for Z• the dual of the restriction of Ẑ to Î \max I.

Example 2.18. Let

where Z = {(•, p2)} consists of one zero-relation (•, p2). Then

where Ẑ = {(•, p2), (p
−
1 , p2), (p

−
2 , p1)} and the dotted lines mean zero-relations. The

reflection-dual (I•, Z•) of (I, Z) is the two-peak poset without zero-relations
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that is, the set Z• is empty. Note also that the two-peak poset F̂5 in Theorem 1.5

(d) is a reflection-dual to F̂4.

Following [30, 2.6] and [32, Chapter 5], we define a pair of reflection duality
functors

(I, Z) -spr
D•

←−−−−−−
−−−−−−→

D•

(I, Z)• -spr(2.19)

as follows. Given M = (Mi)i∈I in (I, Z) -spr, we define D•(M) = (M̃i)i∈I• , where

M̃p− = M∗
p = HomK(Mp, K) for p ∈ max I, and M̃j is the image of the K-dual

vector space to the cokernel M j of the embedding

uj : Mj →֒M•
j =

⊕

j�p∈max I
(j,p)/∈Z

Mp

under the composed map

(Coker uj)
∗

v∗

j

−→ (M•
j )∗ →֒ M̃• =

⊕

p−∈max I•

M̃p−

and v∗j is the K-dual map to the cokernel epimorphism vj : M•
j → Coker uj for

j ∈ I \max I. The functor D• is defined on morphisms in a natural way.
One has to note that D•(M) is an object of (I, Z)• -spr. This easily follows by

applying Lemma 2.7 and the following equalities:

M•
j =

⊕

j�p∈max I
(j,p)/∈Z

Mp =
⊕

j�p−∈min Î

(p−,j)/∈Ẑ

Mp = (M̃•
j )∗(*)

It follows that the K-dual space to M•
j is just the space M̃•

j , and the exact sequence

0−→Mj
uj

−→M•
j

vj

−→M j −→ 0(**)

with M j = Coker uj induces the embedding M̃j
∼= M

∗

j

v∗

j

−→ (M•
j )∗ = M̃•

j required
in Lemma 2.7 (i). Moreover, if i � j in I, then according to Lemma 2.8 (ii) there
is a commutative diagram

0 −→ Mi
ui−→ M•

i
vi−→ M i −→ 0yjπi

yjπ•

i

yjπi

0 −→ Mj
uj

−→ M•
j

vj

−→ M j −→ 0

By the above equalities the dual diagram defines just the commutative diagram

(2.8) for the system D•(M) = (M̃i)i∈I• . This proves that D•(M) = (M̃i)i∈I• is an
object of (I, Z)• -spr, as we required.
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Since there is a natural isomorphism ((I, Z)•)• ∼= (I, Z) of posets with zero-
relations, then the above construction applied to (I, Z)• defines the inverse reflection
duality functor D• : (I, Z)• -spr −→ (I, Z) -spr.

Let us summarize the main facts about the reflection dualities in the following
proposition.

Proposition 2.20. Let (I, Z) be a poset with zero-relations and let (I, Z)• be its

reflection-dual poset with zero-relations (2.17). Then the following statements hold.

(a) There is an isomorphism ((I, Z)•)• ∼= (I, Z) of posets with zero-relations.

(b) If v ∈ NI is given and v• ∈ NI•

is such that v•j = vj for j ∈ I \max I, and

v•j = vp for j = p−, p ∈ max I, then q(I,Z)•(v
•) = q(I,Z)(v).

(c) The reflection duality functors (2.19) are dualities of categories inverse to

each other. Moreover, they have the following properties:

(i) A sequence 0 → M → N → L → is exact in the category (I, Z) -spr if and

only if 0 → D•(M) → D•(N) → D•(L) → is an exact sequence in the category

(I, Z)• -spr.
(ii) The functor D• carries relative injective objects to projective objects.

(iii) If M = (Mj)j∈I is an object of (I, Z) -spr and dimM = (dimK Mj)j∈I ,

then

dimD•(M) = s•(dimM)

where s• : ZI −−−−−→ ZI• ∼= ZI is the group isomorphism defined by the formula

s•(w)j =




−wj +

∑
j≺p∈max I

wp if j ∈ I \max I,

wp if j = p−, p ∈ max I.

(d) The category (I, Z) -spr is of tame (resp. wild) representation type if and

only if the category (I, Z)• -spr is of tame representation type.

Proof. Statements (a) and (b) follow from the definitions. For (b) we note that
the relation j ≺ p ∈ max I holds in I and (j, p) /∈ Z if and only if the relation
j ≺ p− ∈ max I• holds in I• and (j, p−) /∈ Z•.

(c) For any j ∈ I look at the exact sequence 0 → Mj
uj

−→M•
j

vj

−→M j → 0 with

M j = Coker uj. Since the K-dual to the map uj induces the embedding

M̃j
∼= M

∗

j

v∗

j

−→ (M•
j )∗ = M̃•

j(***)

required in Lemma 2.8 (i), then by applying the definition of D• to D•(M) =

(M̃j)j∈I we easily conclude that D•(D•(M)) ∼= M, and the isomorphism is functo-
rial with respect to morphisms M→ N.

The proof of (i) and (ii) is routine, we leave it to the reader. For the proof of (iii)

we recall from (∗) and (∗ ∗ ∗) above that M̃p− = M∗
p for p ∈ max I and M̃j

∼= M
∗

j ,

M̃•
j = (M•

j )∗ =
⊕

j�p∈max I
(j,p)/∈Z

M∗
p for j ∈ I \max I, where D•(M) = (M̃j)j∈I . Let

w = dimM = (dimK Mj)j∈I . It follows that dimK M̃p− = dimK Mp = s•(w)p−

for p ∈ max I. In view of the exact sequence (∗) above, given j ∈ I \max I we get

dimK M̃j = dimK M j = − dimK Mj + dimK M•
j

= − dimK Mj +
∑

j�p∈max I
(j,p)/∈Z

dimK Mp = −wj +
∑

j�p∈max I
(j,p)/∈Z

wp = s•(w)j .
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This proves (iii) and finishes the proof of (c).
(d) Assume to the contrary that the category (I, Z) -spr is of tame representation

type, whereas the category (I, Z)• -spr is not of tame representation type. Since the
tame-wild dichotomy holds, then (I, Z)• -spr ∼= modsp K(I, Z) is of wild representa-
tion type and there exists a representation embedding functor F : mod Γ3(K)→
(I, Z)• -spr in the sense of [34], where

Γ3(K) =

(
K K3

0 K

)

is a generalized Kronecker K-algebra. Since Γ3(K) is self-dual and according to (c)
the functor D• is an exact equivalence of categories, then the composed functor

mod Γ3(K)
D
−→ (mod Γ3(K)op)op ∼= (mod Γ3(K))op

F op

y
((I, Z)• -spr)op

D•

−→ (I, Z) -spr

is a representation embedding functor, where D = HomK(−, K) is the standard
duality functor. It follows from [34, Theorem 2.7] that the category (I, Z) -spr is of
wild representation type, and according to the tame-wild dichotomy the category
(I, Z) -spr is not of tame representation type, contrary to our assumption. The
remaining part of (d) follows from the tame-wild dichotomy (see [9], [39]). This
finishes the proof.

Remark 2.21. It follows from [30, Proposition 2.5(c) and (2.6)] or from a straight-
forward analysis that the reflection duality functor D• (2.19) can be alternatively
described as follows.

Any object M of (I, Z) -spr can be viewed as an object of the category (Î , Ẑ) -spr

via the obvious embedding functor (I, Z) -spr ⊆ (Î , Ẑ) -spr ∼= modsp K(Î, Ẑ). It

is easy to see that the injective envelope Ê(M) of M in modK(Î , Ẑ) is a socle

projective module and is isomorphic to an object of (Î , Ẑ) -spr. Consider the short

exact sequence 0→M→ Ê(M)→M→ 0 in mod K(I, Z)
≃

−−−−−−→ repK(I, Z)

(see (2.3)). It is clear that Mp = 0 for all p ∈ max Î, and therefore the system

M
∗

= (M
∗

j ) of K-dual vector spaces M
∗

j is a peak (I, Z)•-space isomorphic with
D•(M).

Remark 2.22. The class of multi-peak posets with zero-relations defined above is
the smallest subclass in the class of all multi-peak bound quivers [30] containing
multi-peak posets without zero-relations and closed under the reflection duality
operation (2.17).

3. A Reduction to Two-Peak Poset Representations

With any D-order Λ• (1.3) we associate in (3.3) below (see [40, Section 4]) a
two-peak poset (I∗+Λ• , Z) with zero-relations, and we shall reduce the study of the

category latt(Λ•) to the study of the category (I∗+Λ• , Z) -spr.
Suppose that Λ, Λ1, Λ2 and Λ3 are tiled D-orders in (1.2). In order to define

(I∗+Λ• , ZΛ•) we consider the poset (IΛ;�) (see [45]), where

IΛ = {1, . . . , n} and i ≺ j⇔iDj = D.(3.1)
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First we associate with Λ• the combinatorial object

IΛ•,σ = (IΛ,�, I ′, C, I ′′, σ : I ′ → I ′′)(3.2)

where (IΛ,�) is the poset (3.1), C = IΛ3
= {n1 +1 ≺ . . . ≺ n1 +n3− 1 ≺ n1 +n3},

I ′ = IΛ1
= {1, 2, . . . , n1} and I ′′ = IΛ2

= {n1 + n3 + 1, . . . , n− 1, n} are viewed as
subposets of IΛ such that IΛ = I ′ ∪C ∪ I ′′ is a splitting decomposition of IΛ in the
sense of [32, Section 8.1], and σ : I ′ → I ′′ is the poset isomorphism defined by the
formula σ(j) = n1 + n3 + j. It is clear that IΛ•,σ is a bipartite stratified poset in
the sense of [29], [31] and [32, Section 17.8], or a completed poset in the sense of
[22].

Let C′ = {c′; c ∈ C} be a chain isomorphic with C. We construct two one-peak
enlargements

(C ∪ I ′′)∗ = C ∪ I ′′ ∪ {∗} and (I ′ ∪ C)+ = I ′ ∪ C′ ∪ {+}

of the posets C ∪ I ′′ and I ′ ∪ C ≡ I ′ ∪ C′ by the unique maximal points ∗ and +,
and by the new relations i ≺ ∗ and s ≺ + for all i ∈ C ∪ I ′′ and all s ∈ I ′ ∪ C′.

We associate with the D-order Λ• (1.3) the two-peak poset with zero-relations

(I∗+Λ• , ZΛ•) =

(
(C ∪ I ′′)∗ ∪I′′≡I′ (I ′ ∪C)+, ZΛ•

)
(3.3)

where I∗+Λ• is obtained from the disjoint union (C∪I ′′)∗∪(I ′∪C)+ of (C ∪I ′′)∗ and
(I ′ ∪C)+ by making the identification j ≡ σ(j) for any element j ∈ I ′ ⊆ (I ′ ∪C)+.
The set ZΛ• consists of all a pairs (c, c′1) such that c ∈ C ⊆ (C ∪ I ′′)∗, c′1 ∈ C′ ⊆
(I ′ ∪ C)+ and the relations c ≺ s, σ(s) ≺ c1 hold in IΛ for some s ∈ I ′. Here we
use the convention +′ = +.

It is easy to see that I∗+Λ• is a poset and max I∗+Λ• = {∗, +}. We call (I∗+Λ• , ZΛ•) a
poset with zero-relations associated with the D-order Λ•.

Now we are able to prove our main reduction theorem.

Theorem 3.4. Let K be an algebraically closed field, D a complete discrete valu-

ation domain which is a K-algebra, and p is the unique maximal ideal of D. We

assume that D/p ∼= K. Let Λ be the D-order (1.1) with the three-partition (1.2) and

Λ1 = Λ2 ⊆ Mn1
(D), Λ3 ⊆ Mn3

(D) and n1, n3 as in Section 1. Let Λ• be the sub-

amalgam D-order (1.3) and let (I∗+Λ• , ZΛ•) be the two-peak poset with zero-relations

(3.3) associated with Λ•.

(a) The Tits quadratic forms qΛ• (1.4) and q(I∗+

Λ• ,ZΛ• ) in (2.13) coincide.

(b) There exists an additive reduction functor

H : latt(Λ•) −−−−−−−−−→ (I∗+Λ• , ZΛ•) -spr ∼= modsp K(I∗+Λ• , ZΛ•)(3.5)

with the following properties:

(i) H is full, reflects isomorphisms and preserves the indecomposability.

(ii) The image Im H of H consists up to isomorphism of all objects of the

category (I∗+Λ• , Z) -spr having no direct summand of one of the following two types:

• the simple projective representation P∗ = e∗K(I∗+Λ• , Z) corresponding to the

peak idempotent e∗, and

• any of the hereditary sp-injective representations H−
n3
→֒ H−

n3−1 →֒ · · · →֒ H−
0

defined in [40, (4.12)].
(iii) H preserves and reflects tame representation type, wild representation type,

and the polynomial growth property; that is, latt(Λ•) is of tame representation

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4862 DANIEL SIMSON

type (resp. wild, or of polynomial growth) if and only if (I∗+Λ• , ZΛ•) -spr is of tame

representation type (resp. wild, or of polynomial growth).

Proof. Statement (a) follows by a straightforward analysis.
(b) We take for the functor H the reduction functor constructed in [40, Defini-

tion 4.11] and defined to be the composed functor

latt(Λ•)
F
−→ modsp R

G
−→ modsp KJρ

f−

y
modsp K(I∗+Λ• , ZΛ•)

ρ
−1

−→ (I∗+Λ• , ZΛ•) -spr

(3.6)

where ρ, f−, G and F are the functors shown in (2.9), (3.7), (3.9) and in the
diagram (3.11) below, and are defined as follows.

1◦ The functor F. Consider the finite dimensional K-algebra

R =

(
Λ•/π Γ/π

0 Γ/π

)
,

where Γ = Mn(D) and π = Mn(p). Note that Γ is a hereditary D-order containing
Λ• and π is a two-sided ideal contained in the Jacobson radical rad(Γ) of Γ. It is
also an ideal of Λ• contained in rad(Λ•). It is easy to see that R is a right peak
K-algebra, that is, R has a unique simple right ideal P∗ up to isomorphism (see
[32]). We take for F the reduction functor

F : latt(Λ•) −−−−−→ modsp R(3.7)

defined [11] and [27] by the formula F(X) = (X/Xπ, XΓ/Xπ, u), where XΓ is the
Γ-submodule of X ⊗D F generated by X (see [24]), F = D0 is the field of fractions
of D and u : X/Xπ→ XΓ/Xπ is the Λ/π-monomorphism induced by the natural
monomorphism X →֒ XΓ. We view F(X) as a right R-module in a natural way
(see [11] and [27]).

By [11] and [27], the reduction functor F is full, reflects isomorphisms, preserves
indecomposability, and Im F contains up to isomorphism all indecomposable objects
of modsp R except from the unique simple right ideal P∗ of R.

It follows from [39, Theorem 7.19] that F preserves and reflects tame represen-
tation type, wild representation type, and the polynomial growth property. For
note that [39, Theorem 7.19] applies, because in the case we consider here Γ/π is
a simple K-algebra and according to [39, Proposition 4.5] the category modsp R is
equivalent with the category mod pr R of projectively adjusted R-modules.

2◦ The functor G. Let J = I∗Λ = IΛ ∪ {∗} be the poset obtained from IΛ by
adding the unique maximal element ∗ with new relations i ≺ ∗ for all i ∈ IΛ.
Consider the set

NJ := {(i, j); i � j in J} ⊆ J × J

and define a binary equivalence relation ρ on NJ by setting

(i, j)ρ(s, t) ⇔ (i, j) = (s, t) or i, s ∈ I ′ = IΛ1
, j, t ∈ I ′′ = IΛ2

, j = σ(i), t = σ(s),

where σ : I ′ → I ′′ given by σ(i) = i + n1 + n3 is a poset isomorphism. Then we
have defined a bipartite stratified poset

Jρ = (J, ρ)(3.8)
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in the sense of [29] and [31, Definition 4.1]. The bipartition J = J ′ + C + J ′′′ is
given by taking J ′ = I ′, C = IΛ3

and J ′′′ = (I ′′)∗. We recall from [29] and [31]
that the incidence K-algebra of Jρ is the subalgebra KJρ of KJ consisting of all
matrices λ = [λpq]p,q∈J such that λij = λst if (i, j), (s, t) ∈ NJ and (i, j)ρ(s, t). It
was shown in [31] that KJρ is a basic right peak K-algebra and the right socle of
KJρ is isomorphic to a direct sum of the simple projective right ideal P ′

∗ = e∗KJρ,
called a right peak of KJρ. A simple analysis shows that the algebra R defined
above is Morita equivalent with the incidence algebra KJρ. The idea of the proof
of this fact is explained by Example 3.9 in [38, p. 95]. We define a K-linear functor

G : modsp R
≃

−−−−−−−→ modsp KJρ(3.9)

to be the Morita equivalence restricted to socle projective modules. It is clear that
G preserves and reflects finite representation type, tameness, wildness, and the
polynomial growth property.

3◦ The functor f−. Let (Q, Ω) = (Q(Jρ), Ω(Jρ)) be the bound quiver associated
with Jρ in [31, Definition 2.5]. It follows from [31, Proposition 2.8] that there exists
a K-algebra isomorphism K(Q, Ω) ∼= KJρ. Let

f : (Q̃, Ω̃) −−−−−→ (Q, Ω)

be the bound quiver Galois covering [31, (3.1)] of (Q, Ω). It follows from [31,
Proposition 3.8] that f is a universal covering with the covering group Z. Moreover,
it follows from the construction that

(I∗+Λ• , ZΛ•) ∼= J∗+
ρ

,(3.10)

where J∗+
ρ

is the two-peak bound subquiver of the quiver (Q̃, Ω̃) associated with

Jρ in [31, (4.3)] and (I∗+Λ• , ZΛ•) is the poset with zero-relations associated with
Λ• by the formula (3.3). By [31, Theorem 4.19] the push-down functor fλ :

mod K(Q̃, Ω̃)→ mod K(Q, Ω) induces the push-down functor

modsp K(Q̃, Ω̃)
fsp

−−−−−→ modsp K(Q, Ω) ∼= modsp KJρ,

and we get the following diagram:

modsp K(Q, Ω)
fsp

←−−−−−− modsp K(Q̃, Ω̃)

∼=

x
xΦ

modsp KJρ

f+

←−−−−−−
−−−−−−→

f−

modsp K(I∗+Λ• , ZΛ•)
xG◦F ∼=

xρ

latt(Λ•)
H

−−−−−−→ (I∗+Λ• , ZΛ•) -spr

(3.11)

where (under the identification J∗+
ρ
≡ (I∗+Λ• , ZΛ•)) f+ is the glueing functor [31,

(4.14)], Φ = Tv ◦ Lξ is the embedding defined in [31, Proposition 4.23], f− is the
section functor [31, (5.1)], and ρ is the equivalence of categories defined in (2.9).
The idea of this construction is explained by Example 3.9 in [38, p. 95].

According to [31, Proposition 4.23], the category modsp K(Q̃, Ω̃) is locally coor-

dinate support finite and every indecomposable module of modsp K(Q̃, Ω̃) is con-
tained in the image of the functor Φ, up to a Z-shift. It then follows from [31,
Theorem 4.27] and the main results of Dowbor and Skowroński in [7] and [8] (see
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also [6]) that the push-down functor fsp, and hence the functors f+ and f− as well,
preserve and reflect tameness, wildness and the polynomial growth property (apply
[31, Proposition 5.4 and Theorem 5.8]).

Hence we easily conclude that the composed functor H (3.5) has the properties
stated in (i) and (iii) of the theorem. Since the statement (ii) was proved in [40,
Theorem 4.14], the proof of the theorem is complete.

Remark 3.12. (a) It follows from [40, Theorem 6.1] that the Auslander-Reiten
quiver of the category (I∗+Λ• , ZΛ•) -spr has the form presented in Figure 3.13. If

(I∗+Λ• , ZΛ•) -spr is of finite lattice type then the part R in Figure 3.13 is empty,
P(Λ•) = I(Λ•), and P(Λ•) is finite.

(b) In view of [40, Theorem 6.1] we have a description of the Auslander-Reiten
quiver Γ(latt(Λ•)) of latt(Λ•). By applying the reduction functor

H : latt(Λ•)→ (I∗+Λ• , ZΛ•) -spr

(3.6) the Auslander-Reiten quiver Γ(latt(Λ•)) is obtained from the Auslander-
Reiten quiver Γ((I∗+Λ• , ZΛ•) -spr) of (I∗+Λ• , ZΛ•) -spr by the following two simple glue-
ings:

1◦ The identification of a hereditary projective section

P+
n3
→֒ P+

n3−1 →֒ · · · →֒ P+
0

of irreducible monomorphisms from the beginning of the unique preprojective com-
ponent P(Λ•) in (I∗+Λ• , ZΛ•) -spr containing the simple projective module P+

n3

∼=
e+K(I∗+Λ• , ZΛ•) with a hereditary sp-injective section

H−
n3
→֒ H−

n3−1 →֒ · · · →֒ H−
0

of irreducible monomorphisms from the end the unique preinjective component
I(Λ•) in (I∗+Λ• , ZΛ•) -spr containing the injective envelope H−

0 of the simple projec-

tive module e∗K(I∗+Λ• , ZΛ•).

2◦ The identification of the simple projective module P∗ = e∗K(I∗+Λ• , ZΛ•) with
the injective envelope E(P+

n3
) of the simple projective module

P+
n3

∼= e+K(I∗+Λ• , ZΛ•)

in the category (I∗+Λ• , ZΛ•) -spr ∼= modsp K(I∗+Λ• , ZΛ•).
The reader is referred to [40, Section 6] for details. The glueing procedure of

quiver 3.13 is explained in Example 6.6 of [40] (see also [25, pp. 451–455] and [26]).

Figure 3.13. The shape of Auslander-Reiten quiver of the cate-
gory (I∗+Λ• , ZΛ•) -spr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TITS FORM AND TAMENESS OF THREE-PARTITE SUBAMALGAM ORDERS 4865

We finish this section by the following useful result concerning the existence of
preprojective components.

Proposition 3.14. Let (I∗+Λ• , ZΛ•) be the poset with zero-relations (3.3) associated

with the three-partite subamalgam D-order Λ• (1.3).
(a) Every point of the poset with zero-relations (I∗+Λ• , ZΛ•) is separating in the

sense of Bongartz [4] (see also [13], [31, Section 4]).

(b) There exist a preprojective component P̃(I∗+

Λ• ,ZΛ• ) in prin K(I∗+Λ• , ZΛ•) and

a preprojective component P(I∗+

Λ• ,ZΛ• ) in the category (I∗+Λ• , ZΛ•) -spr such that the

adjustment functor (2.10)

θ : prin K(I∗+Λ• , ZΛ•) −−−−−−−→ (I∗+Λ• , ZΛ•) -spr

carries P̃(I∗+

Λ• ,ZΛ• ) to P(I∗+

Λ• ,ZΛ• ).

(c) The preprojective components P̃(I∗+

Λ• ,ZΛ•) and P(I∗+

Λ• ,ZΛ• ) can be constructed

by Algorithm 4.4 in [19].

Proof. The existence of a preprojective component P̃(I∗+

Λ• ,ZΛ•) in the category

prin K(I∗+Λ• , ZΛ•) and statement (a) follow from [31, Proposition 4.9] applied to the

bipartite stratified poset IΛ•,σ (3.2), because the algebra K(I∗+Λ• , ZΛ•) is obtained
from IΛ•,σ by a construction required in [31, Proposition 4.9] and the arguments
of Bongartz [4] apply (see also [13] and [19, Algorithm 4.4]). By [23, Lemma 3.12,
Theorem 3.13] and properties of the adjustment functor θ proved there, the im-

age P(I∗+

Λ• ,ZΛ•) of P̃(I∗+

Λ• ,ZΛ• ) under θ is a preprojective component in the category

(I∗+Λ• , ZΛ•) -spr. Note that the arguments given for [19, Algorithm 4.4] and in [32,
Theorem 11.68 and Corollary 11.76] for the case of one-peak posets extend to our
situation.

4. Proof of Main Results

Throughout this section K is an algebraically closed field and D is a complete
discrete valuation domain which is a K-algebra such that D/p ∼= K, where p is the
unique maximal ideal of D.

We start with the following useful reflection duality result.

Proposition 4.1. Let Λ• be a subamalgam D-suborder (1.3) of the tiled order Λ
(1.2), let Γ• = rt(Λ•) be the reflection transpose order (1.7) of Λ•, let (I∗+Λ• , ZΛ•) be

the two-peak poset with zero-relations (3.3), and let (I∗+Λ• , ZΛ•)• be its reflection-dual

(2.17). Then the following statements hold.

(a) There is a D-algebra isomorphism Γ• ∼= (Λ•)op and an isomorphism

(I∗+Λ• , ZΛ•)• ∼= (I∗+Γ• , ZΓ•)

of two-peak posets with zero-relations.

(b) There exists a commutative diagram

latt(Λ•)
H

−−−−−−−→ (I∗+Λ• , ZΛ•) -spr

∼=

yDΛ
∼=

yD̃•

latt(Γ•)
H

−−−−−−−→ (I∗+Γ• , ZΓ•) -spr

(4.2)
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where H is the composed reduction functor (3.6), DΛ = HomD(−, D) is the standard

D-duality, and D̃• is the composed duality functor

(I∗+Λ• , ZΛ•) -spr
D•

−−−−−−−→ (I∗+Λ• , ZΛ•)• -spr ∼= (I∗+Γ• , ZΓ•) -spr

induced by the reflection duality (2.19).
(c) The D-order Λ• is of tame lattice type if and only if the D-order Λ• is of

tame lattice type.

Proof. Statements (a) and (b) follow directly from the definitions. The details are
left to the reader. Statement (c) follows by applying the tame-wild dichotomy for
D-orders proved in [9], because the arguments used in the proof of Proposition 2.20
(d) easily extend to our case.

We shall need the following two simple lemmas.

Lemma 4.3. Let Ω be a D-order in a semisimple K-algebra C and let e ∈ Ω be

an idempotent. Then eΩe is a D-order in the semisimple K-algebra eCe, and the

following statements hold.

(a) The functors

latt(eΩe)
Le←−−−−−−

−−−−−−→
rese

latt(Ω)

defined by the formulas rese(X) = Xe, Le(Y ) = HomeΩe(Ωe, Y ) have the following

properties:

(i) The functor Le is a fully faithful embedding, rese Le
∼= id, and Le is right

adjoint to rese, that is, there is a natural isomorphism

HomΩ(X, Le(Y )) ∼= HomeΩe(rese(X), Y )

for every Ω-lattice X and every eΩe-lattice Y .

(ii) The restriction functor rese is exact, and Le is left exact and preserves the

indecomposability.

(b) If the D-order Ω is of finite lattice type, then the D-order eΩe is of finite

lattice type.

(c) If the D-order Ω is of tame lattice type (resp. tame of polynomial growth),
then the D-order eΩe is of tame lattice type (resp. tame of polynomial growth).

(d) If the D-order eΩe is of wild lattice type, then the D-order Ω is of wild lattice

type.

Proof. Statement (a) is well-known and follows by the arguments applied in the
proof of [32, Theorem 17.46]. The details are left to the reader. We only remark
that the module Le(X) is finitely generated and D-torsionfree, if X is finitely
generated and D-torsionfree.

It follows from (a) that the functor Le carries indecomposable modules to in-
decomposable modules and carries nonisomomorphic modules to nonisomomorphic
ones. Hence (b) easily follows.

(c) Assume that Ω is of tame lattice type and the functors

(−)⊗A M (1), . . . , (−)⊗A M (s) : ind1(A) −−−−−−−−−→ latt(Ω)

(1.8) form an almost parameterizing family for the category indr(latt(Ω)) of inde-
composable Ω-lattices of D-rank r. Since the restriction functor rese(−) = (−)e is
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exact, a simple analysis shows that the functors

(−)⊗A M (1)e, . . . , (−)⊗A M (s)e : ind1(A) −−−−−−−−−→ latt(eΩe)

form an almost parameterizing family for the category indr(latt(eΩe)) of indecom-
posable eΩe-lattices of D-rank r. This proves that eΩe is of tame lattice type. The
polynomial growth version follows in a similar way.

The statement (d) follows immediately from (c) by applying the tame-wild di-
chotomy for D-orders proved in [9].

Lemma 4.4. Assume that Λ ⊆ Ω are D-orders in a semisimple K-algebra C.

(a) If Λ is of finite lattice type, then Ω is of finite lattice type.

(b) If Λ is of tame lattice type, then Ω is of tame lattice type.

(d) If Ω is of wild lattice type, then Λ is of wild lattice type.

Proof. It is easy to check that the forgetful functor resΛ : latt(Ω) −→ latt(Λ)
(associating with any Γ-module X the vector space X viewed as Λ-module) is full,
faithful and exact (see [5, p. 532, Ex. 2]). Hence (a) and (c) easily follow. The
statement (b) follows immediately from (c), because of the tame-wild dichotomy
for D-orders proved in [9].

Proof of Theorem 1.5. (a)⇒(b). It follows from Theorem 3.4 (a) that the Tits
quadratic forms qΛ• (1.4) and q(I∗+

Λ• ,ZΛ• )(z) = b(I∗+

Λ• ,ZΛ• )(z, z) in (2.13) coincide.

Then the implication (a)⇒(b) follows from Theorem 3.4 (iii) and Theorem 2.14.
(b)⇒(d). Let (L, Z) be any of the two-peak posets with zero-relations listed

in Theorem 1.5 (d). We claim that there exists a vector v(L,Z) ∈ NL such that
q(L,Z)(v(L,Z)) < 0. In case Z is empty the claim follows from [16, Theorem 1.3],
because the two-peak posets without zero-relations listed in Theorem 1.5 (d) are
the hypercritical ones presented in Table 1 of [16, pp. 509–511]. It remains to prove

the claim if (L, Z) is the poset F̂4 with one zero-relation. Since obviously F̂4 = F̂•
5

is reflection-dual to the poset F̂5, then we can take for vF̂4
the vector v•

F̂5

defined

in Proposition 2.20 (b), because it is shown there that qF̂4
(v•

F̂5

) = qF̂5
(vF̂5

) < 0.

Since according to Theorem 3.4 (a) the quadratic forms qΛ• and q(I∗+

Λ• ,ZΛ• ) coincide,

the implication (b)⇒(d) follows.

(d)⇒(a). We consider three cases.

Case 1◦. n3 = 0. It follows that the sets C, C′ and ZΛ• in the definition of
(I∗+Λ• , ZΛ•) (3.3) are empty. By condition (d) of the theorem the two-peak poset

I∗+Λ• does not contain as a two-peak subposet the posets F̂2
0 and F̂3

0 . Thus I∗+Λ• is a
peak subposet of a two-peak garland

G∗+m :
◦ −→ ◦ → · · · → ◦ −→ ◦ −→ ∗
րց · · · րց րց

◦ −→ ◦ → · · · → ◦ −→ ◦ −→ +

(2m-points),

m ≥ 1.
(4.5)

It follows from the proof of the implication (c)⇒(a) in [29, Proposition 4.13] or from
[37, Theorem 5.2] (see also [36]) that the category G∗+m -spr is of tame representa-
tion type. Further, if m ≥ 3, G∗+m -spr is of non-polynomial growth (see also [18,
Lemma 3.1]). It follows from [40, Proposition 2.9] that the category (I∗+Λ• , ZΛ•) -spr
is of tame representation type. Hence, in view of Theorem 3.4(iii), the category
latt(Λ•) is of tame representation type, and (a) follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4868 DANIEL SIMSON

Table 4.6. One-peak enlargements of hypercritical posets of Nazarova

Case 2◦. n3 ≥ 1 and the part Y of Λ in (1.2) consists of matrices with coefficients
in p. It follows from the definition of (I∗+Λ• , ZΛ•) (3.3) that the chains C and C′ are
not empty, C is incomparable with all elements of I ′ ≡ I ′′, and the set ZΛ• of zero-
relations is empty. Hence we conclude that the poset I ′ ∼= I ′′ is linearly ordered,
because otherwise the poset C ∪ I ′′ contains a triple of incomparable points and

therefore the poset I∗+Λ• contains a two-peak subposet isomorphic with F̂1
0 , contrary

to the assumption (d).
This shows that in this case the two-peak poset I∗+Λ• is thin in the sense of [18,

Definition 3.1], and according to [18, Theorem 1.3] the following three statements
are equivalent:

(a′) The category I∗+Λ -spr is of tame representation type.
(b′) The Tits quadratic form qI∗+

Λ•

is weakly non-negative.

(c′) The two-peak poset I∗+Λ• associated with Λ• in (3.3) does not contain as a two-
peak subposet any of the hypercritical two-peak posets presented in [18, Table 1],
and does not contain as a peak subposet any of the one-peak enlargements N ∗

1 ,
N ∗

2 , N ∗
3 , N ∗

4 , N ∗
5 , N ∗

6 of hypercritical Nazarova posets [21] shown in Table 4.6 (see
also [32, Theorem 15.3]).

Note that the poset I∗+Λ• \ (I ′ ∪ {∗, +}) is a disjoint union of two chains C and
C′. Then a case by case inspection of the two peak posets in [17, Table 1] and [18,
Table 1] shows that, for any three-partite subamalgam D-order Λ• (1.3) such that
the poset I ′ = IΛ1

is linearly ordered, the two-peak poset I∗+Λ• does not contain as
a peak subposet any of the one-peak enlargements N ∗

1 , N ∗
2 , N ∗

3 , N ∗
4 , N ∗

5 , N ∗
6 of

hypercritical Nazarova posets, and I∗+Λ• could contain at most the nine hypercritical

posets F̂1
1 , F̂2

1 , F̂2, F̂1
3 , F̂2

3 , F̂5, F̂6, F̂7 and F̂8 listed in Theorem 1.5 from the 41
posets presented in [18, Table 1]. It then follows that under the assumption we
make in Case 2◦, the condition (d) of Theorem 1.5 is equivalent with the condition
(c′) above and therefore (d) implies the tameness of I∗+Λ• -spr. Since ZΛ• is empty,
then in view of Theorem 3.4, this implies that the order Λ• is of tame lattice type,
and (a) follows.

Case 3◦. n3 ≥ 1 and the part X of Λ in (1.2) consists of matrices with coefficients
in p. Let Γ• = rt(Λ•) be the reflection transpose of Λ• (see (1.7)). Since the part
X of Λ in (1.2) consists of matrices with coefficients in p, then the corresponding
part Y of Γ in its three-partition (1.2) consists of matrices with coefficients in p and
by the arguments in Case 2◦ applied to Γ• the set ZΓ• is empty. It follows from
Proposition 4.1 that I∗+Γ• = (I∗+Γ• , ZΓ•) ∼= (I∗+Λ• , ZΛ•)•, and according to (2.19) there
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exists a reflection duality functor

D• : I∗+Γ• -spr −−−−−−→ (I∗+Λ• , ZΛ•)• -spr .

Since the two-peak poset (I∗+Λ• , ZΛ•) with zero-relations does not contains any of

the following thirteen hypercritical posets with zero-relations F̂1
0 , F̂2

0 , F̂3
0 , F̂1

1 , F̂2
1 ,

F̂2, F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7 and F̂8 presented in Theorem 1.5, and since it is easy
to see that this list is closed under the reflection duality operation (I, Z) 7→ (I, Z)•

(2.17), then the Case 2◦ applies to I∗+Γ and therefore the category I∗+Γ• -spr is of
tame representation type. It follows from Proposition 2.20 (d) that the category
(I∗+Λ• , ZΛ•) -spr is of tame representation type and according to Theorem 3.4 the
D-order Λ• is of tame lattice type, and (a) follows.

Consequently we have proved that the statements (a), (b) and (d) of Theorem 1.5
are equivalent.

The proof of the equivalence (c)⇔(d) is divided into two parts.

Case 1◦. n3 = 0. From the construction Λ• 7→ (I∗+Λ• , ZΛ•) in (3.3) the following
three statements are easily derived:

• The sets C and C′ in the definition of I∗+Λ• are empty, the set ZΛ• of zero-

relations is empty, and (I∗+Λ• , ZΛ•) does not contain the following two-peak

posets with zero-relations: F̂1
0 , F̂1

1 , F̂2
1 , F̂2, F̂1

3 , F̂2
3 , F̂4, F̂5, F̂6, F̂7 and F̂8

presented in Theorem 1.5.

• If Λ1 = ∆0, then (I∗+Λ• , ZΛ•) = F̂3
0 . If Λ1 is one of the D-orders ∆1, ∆2, ∆3,

then (I∗+Λ• , ZΛ•) ∼= F̂2
0 .

• The D-order Λ1 in (1.2) does not contain minor D-suborders of the form ∆0

if and only if the two-peak poset I∗+Λ• does not contain as a two-peak subposet

the two-peak poset F̂3
0 presented in Theorem 1.5.

• The D-order Λ1 contains a minor D-suborder of one of the forms ∆1, ∆2,
∆3 if and only if the two-peak poset I∗+Λ• contains as a two-peak subposet the

two-peak poset F̂2
0 presented in Theorem 1.5.

Hence the equivalence (c)⇔(d) easily follows in case n3 = 0.

Case 2◦. n3 ≥ 1. First we note that the following four statements are equivalent:

(i) The D-order Λ1 in (1.2) is hereditary of the form (1.6).
(ii) The poset I ′ = IΛ1

is linearly ordered.
(iii) The poset (I∗+Λ• , ZΛ•) ∼= J∗+

ρ
(see 3.10) with zero-relations does not contain

the poset

F0 :
◦ ◦
↓ ցւ ↓
∗ +

as a two-peak subposet with zero-relations.

(iv) The poset (I∗+Λ• , ZΛ•) with zero-relations does not contain any of the posets F̂1
0 ,

F̂2
0 , F̂3

0 presented in Theorem 1.5 as a two-peak subposet with zero-relations.

The implications (i)⇔(ii)⇔(iii)⇒(iv) are immediate consequence of the construc-
tion Λ• 7→ (I∗+Λ• , ZΛ•) in (3.3).

In order to prove (iv)⇒(iii), assume to the contrary that (I∗+Λ• , ZΛ•) contains the
two-peak poset F0. Since n3 ≥ 1, each of the chains C and C′ in the definition of
(I∗+Λ• , ZΛ•) (3.3) is not empty. Further, since according to our assumption in the
theorem the part X or the part Y of Λ in (1.2) consists of matrices with coefficients

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4870 DANIEL SIMSON

in p, then C or C′ is incomparable with all elements of the subposet I ′ ≡ I ′′ of
(I∗+Λ• , ZΛ•). Since F0 is a two-peak subposet of (I∗+Λ• , ZΛ•), then its extension by a

point of C or a point of C′ is a two-peak subposet of (I∗+Λ• , ZΛ•) isomorphic with
the poset F1

0 , contrary to our assumption in (iv).
Consequently the conditions (i)–(iv) are equivalent, and therefore in order to

finish the proof of (c)⇔(d) in the case n3 ≥ 1 it remains to show that, in case the
D-order Λ1 in (1.2) is hereditary of the form (1.6), the following two conditions are
equivalent:

(c′) The three-partite subamalgam D-orders Λ• and rt(Λ)• (1.7) do not contain
three-partite minor D-suborders dominated by any of the 17 three-partite suba-
malgam D-orders listed in the tables of Section 1A.

(d′) The two-peak poset (I∗+Λ• , ZΛ•) with zero-relations associated with Λ• in (3.3)
does not contain as a two-peak subposet with zero-relations any of the following

ten hypercritical posets with zero-relations: F̂1
1 , F̂2

1 , F̂2, F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7

and F̂8 presented in Theorem 1.5.
Assume that the D-order Λ1 in (1.2) is hereditary of the form (1.6). For the proof

of (d′)⇒(c′) we note first that the two-peak poset with zero-relations (I∗+Λ• , ZΛ•)
associated with Λ• in (3.3) contains as a two-peak subposet with zero-relations any

of the hypercritical posets with zero-relations F̂1
1 , F̂2

1 , F̂2, F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7,

F̂8 presented in Theorem 1.5 if Λ• is one of the D-orders Ω•
1, . . . ,Ω•

17 presented

in the tables of Section 1A. More precisely, if Ω•
j is of type F̂j in the notation of

Section 1, then (I∗+Ω•

j
, ZΩ•

j
) contains F̂j. For example, (I∗+Ω•

1
, ZΩ•

1
) = F̂1

1 . The poset

with zero-relations (I∗+Ω•

2
, ZΩ•

2
) has the form

and ZΩ•

2
= {(c2, c

′
1), (c2, +)}. It follows that the poset with zero-relations (I∗+Ω•

2
, ZΩ•

2
)

contains the poset F̂1
1 as the subposet with zero-relations obtained by omitting the

points c2 and c′1. The proof in the remaining cases is left to the reader.
It follows from Theorem 3.4 (iii) that the D-orders Ω•

1, . . . ,Ω•
17 are of wild lattice

type, because in view of the reflection duality (2.19), Proposition 2.20 (d) and
[16, Theorem 1.3] the category (I∗+Ω•

j
, ZΩ•

j
) -spr is of wild representation type for

j = 1, . . . , 17.
In order to prove (d′)⇒(c′), assume to the contrary that the three-partite D-

order Λ• contains a three-partite minor D-suborder Γ• = eΛ•e, where e ∈ Λ• is an
idempotent, and Γ• is dominated by Ω• ∼= Ω•

j for some j. Then Ω• is of wild lattice
type, and according to Lemmas 4.3 and 4.4 the order Λ• is also of wild lattice type.
By the tame-wild dichotomy and the equivalences (a)⇔(d)⇔(d′) proved above,

(I∗+Λ• , ZΛ•) contains any of the hypercritical posets with zero-relations F̂1
1 , F̂2

1 , F̂2,

F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7, F̂8, contrary to our assumption (d′).
Let us give an alternative and direct proof of the above fact. Since Γ• is a three-

partite minor suborder of Λ•, then (I∗+Λ• , ZΛ•) contains (I∗+Γ• , ZΓ•). Since Ω• = Ω•
j
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dominates Γ•, then (I∗+Ω• , ZΩ•) is obtained from (I∗+Γ• , ZΓ•) by adding new relations
of the forms c ≺ i and j ≺ c′, where i, j ∈ I ′ ≡ I ′′, c ∈ C and c′ ∈ C′. Note that
(I∗+Ω•

j
, ZΩ•

j
) has no relation of the above form for j /∈ {4, 5}. It follows that in this

case (I∗+Ω•

j
, ZΩ•

j
) is contained in (I∗+Λ• , ZΛ•), contrary to our assumption. If j = 4 or

j = 5, a simple analysis shows that either (I∗+Λ• , ZΛ•) contains (I∗+Ω•

j
, ZΩ•

j
), or else

(I∗+Λ• , ZΛ•) contains the poset F̂1
1 , contrary to our assumption. This finishes the

proof of the implication (d′)⇒(c′).
The proof of the implication (c′)⇒(d′) reduces to pure combinatorial poset prop-

erties by applying the constructions

Λ• 7→ IΛ•,σ 7→ (I∗+Λ• , ZΛ•),

where IΛ•,σ = (IΛ,�, I ′, C, I ′′, σ : I ′ → I ′′) is the bipartite stratified poset (3.2)
and (I∗+Λ• , ZΛ•) is the two-peak poset with zero-relations (3.3).

The following properties of the constructions follow directly from the definitions.
(A) The D-order Λ together with its three-partition shown in (1.2) is uniquely

determined by the bipartite stratified poset IΛ•,σ. Hence the three-partite sub-
amalgam D-order Λ• (1.3) is uniquely determined by IΛ•,σ.

(B) A three-partite subamalgam D-order Γ• is a three-partite minor D-suborder
of Λ• if and only if IΓ•,τ is a bipartite stratified subposet of IΛ•,σ.

(C) For any bipartite stratified subposet Jτ = (J,�, J ′, C, J ′′, τ : J ′ → J ′′)
of IΛ•,σ there exists a unique three-partite minor D-suborder Γ of Λ such that
IΓ•,τ = Jτ .

(D) A three-partite D-order Λ′ of the form (1.2) dominates a three-partite D-
order Λ if and only if I ′ = IΛ1

= IΛ′

1
, I ′′ = IΛ2

= IΛ′

2
, C = IΛ3

= IΛ′

3
(a poset

equality) and the partial order relation of IΛ′ is obtained from the partial order
relation of IΛ by adding finitely many new relations i′ � c1, c2 � i′′, where i′ ∈ I ′,
i′′ ∈ I ′′ and c1, c2 ∈ C.

(E) If the two-peak poset with zero-relations (I∗+Λ• , ZΛ•) is given, then the poset

I ′ ≡ I ′′ can be reconstructed as the subposet of I∗+Λ• consisting of all points s such
that s � ∗, s � + and each of the pairs (s, ∗) and (s, +) does not belong to the set
ZΛ• of zero-relations. Moreover, C ∪ C′ = I∗+Λ• \ (I ′ ≡ I ′′) in the notation of (3.3).

It follows that the classification of minimal three-partite subamalgam D-orders
Λ• of wild lattice type can be given by means of bipartite stratified subposets of
IΛ•,σ.

In this way we shall show that if Λ is a three-partite D-order (1.2) and the
associated two-peak poset with zero-relations (I∗+Λ• , ZΛ•) contains one of the hy-

percritical posets with zero-relations F̂1
1 , F̂2

1 , F̂2, F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7, F̂8 as
a two-peak subposet with zero-relations, then the subamalgam D-order Λ• (1.3)
contains a three-partite minor D-suborder Γ• which is dominated by any of the
D-orders Ω•

1, . . . ,Ω•
17 shown in the tables of Section 1A.

For example we assume that Λ is a three-partite D-order of the form (1.2) such
that (I∗+Λ• , ZΛ•) contains the poset

F̂1
1 :

c1 −→ ∗
ր

a4 −→ a3 −→ a2 −→ a1

ց
c′2 −→ +
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and (I∗+Λ• , ZΛ•) does not contain the poset F̂2. We shall show that the subamalgam
D-order Λ• contains a three-partite minor D-suborder Ω• which is dominated by
the D-order Ω•

1 or by Ω•
2 shown in Section 1A.

Look at the bipartite stratified poset IΛ•,σ = (IΛ,�, I ′, C, I ′′, σ : I ′ → I ′′) (3.2).
Recall that C is a chain, the elements c1, c2 belong to C, and c′2 denotes a copy
of c2 in C′ ⊆ I∗+Λ• (see (3.3)). Without loss of generality we may suppose that
a4 � a3 � a2 � a1 is a chain in I ′ and a′

4 � a′
3 � a′

2 � a′
1 is the image of

a4 � a3 � a2 � a1 under the poset isomorphism σ : I ′ → I ′′. It follows from our
assumption on the bipartition (1.2) that a1 � a′

4.
Let Γ be a three-partite minor of Λ (1.2) defined by the rows and columns

numbered by the elements a4, a3, a2, a1, a
′
4, a

′
3, a

′
2, a

′
1, c1, c2. By our assumption

IΓ•,σ = (JΓ,�, J ′, C, J ′′, σ : J ′ → J ′′),

where J ′ = {a4 � a3 � a2 � a1} ⊂ I ′, J ′′ = {a′
4 � a′

3 � a′
2 � a′

1} ⊂ I ′′,
C = {c1, c2} ⊆ C, and σ : J ′ → J ′′ is given by σ(a1) = a′

1, σ(a2) = a′
2, σ(a3) = a′

3

and σ(a4) = a′
4.

It follows from the shape of F̂1
1 that c1 is not comparable with the chain a′

4 →
a′
3 → a′

2 → a′
1 in the poset IΛ and c2 is not comparable with the chain a4 → a3 →

a2 → a1, and either c1 = c2 or else c2 ≺ c1.
In case c1 = c2 we conclude from (A)–(C) and from the shape of the bipartite

stratified poset IΓ•,σ that Γ = Ω1.

Now consider the case c2 ≺ c1. Since (I∗+Γ• , ZΓ•) does not contains the poset F̂2,

it follows from the above observations and (A)–(E) that the poset JΓ = J ′∪C∪J ′′

has the following structure:

with some relations from J ′ to C and from C to J ′′. It follows from (D) that in his
class any D-order Γ is dominated by a unique three-partite D-order Ω corresponding
to the bipartite stratified poset

(see the proof of the implication (d)⇒(c) in [40, Section 5]). It is clear that Ω is
just the D-order Ω2 in the tables of Section 1A.

It follows from the above analysis that, up to domination and minors, the min-

imal three-partite D-orders (1.2) such that (I∗+Λ• , ZΛ•) contains the poset F̂1
1 and

(I∗+Λ• , ZΛ•) does not contain the poset F̂2 are just the D-orders Ω1 and Ω2 shown
in Section 1A.
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By the technique applied above we also prove that if (I∗+Λ• , ZΛ•) contains any of

the hypercritical posets with zero-relations F̂1
1 , F̂2

1 , F̂2, F̂1
3 , F̂2

3 , F̂4, F̂5, F̂6, F̂7, F̂8

(see Theorem 1.5) as a two-peak subposet with zero-relations, then the three-partite
order Λ• contains a three-partite minor D-suborder Γ• dominated by a D-order Ω•

of one of the 17 forms shown in the tables of Section 1A. The details are left to the
reader. This completes the proof of Theorem 1.5.

Question 4.7. Does Theorem 1.5 remain valid if we remove the assumption that the
part X or the part Y of the D-order Λ in (1.2) consists of matrices with coefficients
in p?
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