MATHEMATICAL STATISTICS Fall 2004

QUALIFYING EXAM

\mathbf{NAME} : _	ID:	
·	=	

Instructions: Work four of the following six problems. You may not use notes or any other assistance.

The four problems you have attempted:

- 1. Let Ω be a set. For $A \subset \Omega$ and $B \subset \Omega$, write $A^C = \{\omega \in \Omega : \omega \notin A\}$. Let R be a σ -ring of subsets of Ω , i.e., if $A_1 \in R$ and $A_2 \in R$, then $A_1 \cap A_2^C \in R$ and if $A_1, A_2, \ldots \in R$, then $\bigcup_{i=1}^{\infty} A_i \in R$. For this problem, let R be a nonempty σ -ring that is not a σ -algebra and let $R^1 = \{B : B^C \in R\}$.
 - (a) Prove that if $A \in R$ and $B \in R^1$, then $A \cup B \in R^1$.
 - (b) Prove that if $A_1 \in R$ and $A_2 \in R$, then $A_1 \cap A_2 \in R$.
 - (c) Prove that if $A_1, A_2, \ldots \in R$, then $\bigcap_{i=1}^{\infty} A_i \in R$.
- 2. A bivariate population of (X, Y) is sampled independently on three occasions. On the first, a random sample of size n_0 is taken and only $T = \min\{X, Y\}$ is observed for each pair. On the second, a random sample of size n_1 is taken, and only the X-marginal is observed for each pair. Finally, a random sample of size n_2 is taken, and only the Y-marginal is observed for each pair. Therefore, the combined set of observations is of the form (T, X, Y), where $T = (T_1, \ldots, T_{n_0})$, $X = (X_{11}, \ldots, X_{1n_1})$ and $Y = (Y_{21}, \ldots, Y_{2n_2})$. Assume the following two-parameter probability model for (X, Y):

$$P(X > x, Y > y) = \exp\left[-\frac{1}{\theta}(x^{1/\delta} + y^{1/\delta})^{\delta}\right],$$

 $x > 0, y > 0, \theta > 0, 0 < \delta \le 1$ with unknown parameters θ and δ .

- (a) Find the joint pdf of (T, X, Y).
- (b) Identify the distributions of T_1 , X_{11} and Y_{21} .
- 3. Let Y_1, Y_2, \ldots, Y_n be independent observations with each having the gamma density

$$f(y) = y^{\alpha - 1}e^{-y}/\Gamma(\alpha), \quad 0 < y < \infty, \quad 0 < \alpha < \infty.$$

- (a) Show that for unbiased estimation of α , the Cramer-Rao lower bound is not attained.
- (b) A sequence of estimators $\{T_n\}$ is asymptotically efficient if

$$\lim_{n \to \infty} \frac{\operatorname{Var}(T_n)}{\operatorname{Cramer-Rao Lower Bound}} = 1,$$

and the limit is the asymptotic efficiency. Show that \overline{Y} is an unbiased estimator of α , but it is not asymptotically efficient. Find its asymptotic efficiency.

- 4. Let X_1, \ldots, X_n be iid Bernoulli random variables with $P(X_i = 1) = 1 P(X_i = 0) = p$, 0 . A function <math>g(p) is called <u>estimable</u> if and only if there is a statistic T such that for any p in the interval (0, 1), $E_p(T) = g(p)$.
 - (a) Show that g(p) is estimable if and only if g is a polynomial in p of degree less than or equal to n. You may assume this in part (b).
 - (b) Find the UMVUE of an arbitrary estimable function g(p).
- 5. Let X_1, \ldots, X_n be a random sample from a $N(\theta, \sigma^2)$ population, and suppose that the prior distribution on θ is $N(\mu, \tau^2)$.
 - (a) Find the marginal distribution of \overline{X} .
 - (b) Find $E(\theta|\overline{x})$ and $Var(\theta|\overline{x})$.
 - (c) Find the Bayes estimator of θ under the squared error loss.
- 6. Let X_1, \ldots, X_{n_1} be a random sample from the $N(\mu_1, \sigma^2)$ and let Y_1, \ldots, Y_{n_2} be a random sample from the $N(\mu_2, \sigma^2)$ distribution which is independent of the first random sample. Consider the likelihood ratio level- α test for testing $H_0: \mu_1 = \mu_2 = \mu$ versus $H_1: \mu_1 \neq \mu_2$. Show that the likelihood ratio test is

$$\phi(x) = \begin{cases} 1 & \text{if } F > c, \\ 0 & \text{if } F < c, \end{cases}$$

 $P_{H_0}(F > c) = \alpha$, where

$$F = \frac{n_1(\overline{x} - \hat{\mu})^2 + n_2(\overline{y} - \hat{\mu})^2}{\left[\sum_{i=1}^{n_1} (x_i - \overline{x})^2 + \sum_{i=1}^{n_2} (y_i - \overline{y})^2\right] / (n_1 + n_2 - 2)}$$

and $\hat{\mu}$ is the mle of μ .