CS400 Compiler Construction
Fall 2008, Dr. Sheldon Liang

Homework & Quizzes #02
(25 points)

Due Date: One Week Away from today
(Look at schedule in the syllabus)

Your Name: Your Score:

Objectives (Context-free grammar):

¢~ A Context Free Grammar (CFQG) is a set of recursive rewriting
rules (or productions) used to generate patterns of strings. To be
familiar with parse tree of a CFG helps to understand the principle of
how to verify if a variety of expressions or statements if
grammatically right or wrong:

& the root s labeled by the start symbol
@ Each leaf is labeled by a terminal
@& Each interior node is labeled by a nonterminal.

Questions and points

Number of questions: [10]
Positive points per question: [2.5]
Negative points per question: [0.5]

Make sure your name is on this handout before turning it in

ﬁ Since we stress “learning through lecturing and reading”, some questions

designed for homework & quizzes stimulate students to listen, think, and read the
text in our lectures. Be careful to find answer from the handouts and text or lab-

testing (that is, seeking answer through program). +

1/4 Session 1: Walkthrough: A miniature Compiler and Construction

Cﬁoyaz‘erz, 4. 7{7%2@52’5 and” ﬂ’arsz’ng

Grammatical Derivations and Parse Trees
Leftmost, rightmost derivations and their relationship to parse trees of a CFG.
Postfix form, syntax trees, translation of simple expressions.

1. The parse tree below represents a rightmost derivation according to the grammar S - AB,
A 2 aSla, B 2 bA.

Which of the following is a right-sentential form in this derivation?

[Ja)aaBba [|b)aSB []c) Aba []d) aababA

2. Here is a parse tree that uses some unknown grammar G.

Which of the following productions is surely one of those for grammar G?

[JaaB>b
[lb)S>B
[Jc)S > AbA
[]d)B > bA

2/4 Session 1: Walkthrough: A miniature Compiler and Construction

3. Here is a grammar for postfix expressions using the common four binary arithmetic
operators:
S > SS+|SS-|SS*|SS/ | a

Find a leftmost derivation for the terminal string aa-aa*/. Then, identify one of the steps (left-
sentential forms) in the derivation from the list below.

[Ja)aS-S/ []b)aa-Sa*/ [Jc)aa-SS/ []d)Sa/

4. Here is a grammar for postfix expressions using the common four binary arithmetic
operators:
S > SS+|SS-|SS*|SS/ | a

Find a rightmost derivation for the terminal string aa/a+a-. Then, identify one of the steps
(right-sentential forms) in the derivation from the list below.

[] a)aa/S+S- []b)aS+a- [Jc)Sa+a- []d)aS-
5. The parse tree below represents a leftmost derivation according to the grammar
S > AB, A 2 aSla, B 2 bA.
Which of the following is a left-sentential form in this derivation?

[Ja)aaBB []b)aaSBB [Jc)aAbaba [|d)aSbA

6. Translate the infix expression
((a+b)-(c*d))+e

to prefix form. Then, identify the pair of symbols that appear consecutively in your prefix
expression.

[] a) *- [] b)b+ []c) de []d)+e

7. Here is a postfix arithmetic expression:
ab+c-d+*e+

The operator - appearing between c and d can represent either unary or binary minus.
Normally, the other operators, + and *, are only binary operators. Consider translating the
postfix expression into infix, both with - as unary and - as binary. Then, identify the true
statement below.

[] a) - can be unary, and (a+b) is a subexpression of the infix expression.

[] b) - in this postfix expression can be either unary or binary.

[] ©) - can be binary, and ((a+b)-c) is a subexpression of the infix expression.

[] d) - in this postfix expression can be binary but cannot be unary.

8. The following syntax tree:

3/4 Session 1: Walkthrough: A miniature Compiler and Construction

3 +
-/ \/* AN
b /+\ e F
c d
Represents the assignment
a=(b-(ctd)) +e*f;
Convert this tree to (op, argl, arg2, result) quadruples, following these rules:
1. Evaluate the right subtree of a node before the left subtree.

2. Use temporaries t1, t2...., in that order.

Then, identify from the list below, the one quadruple that would appear in your translation.

[] a) (- t2,b,t3)
[] b) (+1t2,¢cd)
[© (+12,t1,t3)
[] e d2)

9. Suppose we use the following simplified translation scheme for assignment statements,
where no error checking is performed.

E>id=E { gen(id.name() "=" E.place) }
E>E1+E2 {E.place = newTemp();

gen(E.place "=" E1.place "+" E1.place) }
E>E1*E2 {E.place = newTemp();

gen(E.place "=" E1.place "*" E1.place) }

E->-E1 { E.place = newTemp();
gen(E.place "=""-" E1.place) }

E->(E1) { E.place = E1.place }

E->id { E.place = id.name() }

Here, name() is a method that returns the name of an id token from the symbol table, and
newTemp() is a function that returns a new temporary. Assume that newTemp() returns T1,
T2,... in order, when in it is called. Function gen(...) emits a line with a three-address
statement, using the constituents inside parentheses, in order.

Apply this translation scheme to the assignment:

x=a*(-b+c)
To be specific, assume that the parse is bottom-up, and a rule is normal precedence for

operators, to resolve conflicts. Then, identify the three-address statement that appears in your
result.

4/4 Session 1: Walkthrough: A miniature Compiler and Construction
[]la)T2=a*TI
[1b)T3=Tl+c
[Jco)T3=a*T2
[]d)T3=T2+c

10. The following syntax tree:

a -/+ *
b/ \+ e/ \f
/Ny

Represents the assignment
a=(b-(ctd)) +e*f;
Convert this tree to (op, argl, arg2) triples, following these rules:

1. Evaluate the right subtree of a node before the left subtree.
2. Number the instructions (1), (2),...

Then, identify from the list below, the one triple, with its instruction number, that would
appear in your translation.

[] a (1) [+ ¢ d]

[153 I[-b(2)]
[] o) @[+ (2),3)]
[]dOG)I[-b,d]

