
Software Design
Specifications

For

Stylo: Stylometry Tool

Prepared By:
Kyle Musal

Aaron Chapin
Andrew Orner

Matthew Tornetta

Advised By:
Rachel Greenstadt

Jeff Salvage

Drexel University

Table of Contents
1. Document History
2. Introduction

2.1. Purpose
2.2. Scope
2.3. Design Goals
2.4. Glossary
2.5. References
2.6. Context Diagram

3. Architecture
3.1. Technologies Used

3.1.1. Python 2.6
3.1.2. TkInter
3.1.3. Orange
3.1.4. (NLTK) Natural Language Tool Kit
3.1.5. NodeBox Linguistics Library
3.1.6. PyCrypto
3.1.7. Text Extraction Tools

3.2. Application Overview
4. Detailed Design

4.1. Program Interface
4.1.1. Command Line Interface

4.1.1.1. Command Line Flags
4.1.1.1.1. -c: Corpus
4.1.1.1.2. -f: Features
4.1.1.1.3. -ff: Feature File
4.1.1.1.4. -i: Input
4.1.1.1.5. -l: List
4.1.1.1.6. -m: Machine Learning Tool
4.1.1.1.7. -o: Output
4.1.1.1.8. -p: Print
4.1.1.1.9. -t: Train
4.1.1.1.10. -d: Training Data Location
4.1.1.1.11. -h: Help

4.1.2. Graphical User Interface
4.1.2.1. Mockup
4.1.2.2. File Menu

4.1.2.2.1. Open Document
4.1.2.2.2. Exit

4.1.2.3. Tools Menu
4.1.2.3.1. Select Corpora
4.1.2.3.2. Select Features

4.1.2.3.3. Manage Plug-Ins
4.1.2.3.4. Manage Machine Learning Tools

4.1.2.4. Help Menu
4.1.2.4.1. Help
4.1.2.4.2. About

4.1.3. Default Run Action
4.3. Business Logic

4.3.1. Author
4.3.2. Sample
4.3.3. Corpus

4.4. Feature Extraction
4.4.1. FeatureExtractor
4.4.2. FeatureFactory
4.4.3. LinguisticFeature
4.4.4. Implemented Features

4.4.4.1. Character Count
4.4.4.2. Word Count
4.4.4.3. Large Word Count
4.4.4.4. Unique Word Count
4.4.4.5. Punctuation Count
4.4.4.6. Sentence Count
4.4.4.7. Percent Large Words
4.4.4.8. Percent Punctuation
4.4.4.9. Percent Word Group Words
4.4.4.10. Average Sentence Length
4.4.4.11. Average Syllables per Word
4.4.4.12. Average Word Length
4.4.4.13. Average Characters Per Paragraph
4.4.4.14. Average Words Per Paragraph
4.4.4.15. Average Sentences Per Paragraph
4.4.4.16. Word Groups
4.4.4.17. Sample Complexity
4.4.4.18. Sample Readability
4.4.4.19. Synonym Classification
4.4.4.20. N-Gram Frequency
4.4.4.21. Lexical Diversity

4.4.5. FeatureSet
4.4.6. FeatureResult

4.5. Machine Learning Tool Interface
4.5.1. MLTAdapter

4.5.1.1. OrangeAdapter
4.5.1.2. WekaAdapter

4.5.2. MLTConfigurationOption
4.6. Plug-In Architecture

4.6.1. Overview
4.6.2. Hook Interfaces
4.6.3. PlugIn Object

4.6.3.1. Function and Variables
4.6.3.2. Description

4.6.4. Available Hooks
4.6.4.1. StyloStart
4.6.4.2. StyloEnd
4.6.4.3. ExtractStart
4.6.4.4. ExtractEnd
4.6.4.5. FeatureStart
4.6.4.6. FeatureStop
4.6.4.7. ClassifyStart
4.6.4.8. ClassifyStop
4.6.4.9. TrainStart
4.6.4.10. TrainStop

4.6.5. PlugIn Categories
4.7. Document Parsing

4.7.1. Sample Parser
4.7.2. DocumentParser Interface

4.7.2.1. PlainTextParser
4.7.2.2. DocParser
4.7.2.3. PdfParser
4.7.2.4. RtfParser

4.8. File System Layout
4.8.1. Corpora Folder

4.8.1.1. Stylo Folder
4.8.1.2. Author Folder
4.8.1.3. Corpus Encryption
4.8.1.4. Default Corpus

4.8.2. PlugIns Folder
4.9. Execution Flow

4.9.1. Feature Extraction
4.9.2. Training

Appendix
A1. Traceability Matrix
A2. Word Groups

1. Document History
Version Date Editor Description

1.0 1/28/2010 MT, AC, KM, AO Initial Version

2. Introduction

2.1. Purpose
The purpose of this document is to describe, in detail, the design and architecture of

Stylo (henceforth referred to as “the software”) in its entirety. These design decisions pertain to
the functionality, performance, and external interfaces of the software. This document will be
used to implement all features as described in the requirements document for the software.

2.2. Scope
This document pertains to the design and architecture of the first release of Stylo and

includes all functional requirements as listed in the requirements document for the software.
This document is intended for the developers and testers of the software.

2.3. Design Goals
The software is designed with the following goals in mind:

● Accuracy: The software’s analysis is as accurate as existing tools, within
reason.

● Ease of Use: The software interface is intuitive and is simple to use by anyone,
regardless of familiarity with stylometry.

● Modularity: Through its plug-in system, the software supports interchanging
graphical toolkits, machine learning tools, and available feature sets used for
analysis.

● Open Source: The software is open source and licensed under the GNU
General Public License.

● Portability: The software can run on a Windows, Linux, or Mac platform without
any loss of functionality or stability.

● Security: Due to the possible sensitivity of works being analysed, the software
does not knowingly transmit any information over the network and stores all data
in an encrypted format.

2.4. Glossary
Bigram: A 2-gram
Corpus (pl. Corpora): A large, structured set of texts from various authors.
Feature: The smallest unit of criteria the software can analyse about a document.
Feature Set: A group of one or more similar features.
Graphical Toolkit: A set of tools for creating a graphical interface for a software.

Machine Learning Tool: A program that can change its behaviour based on sample data; for
example a program that can learn how to recognize patterns or features.

N-Gram: A sub-sequence of n items from a given sequence. For example, the sentence “I
painted the fence red.” has the 2-grams “I painted”, “painted the”, “the fence”, “fence
red”.

Plug-in: A modular extension to the software that adds support for additional functionality of the
software.

Trigram: A 3-gram
Stylometry: The study of author identification through analysis of linguistic style.
Unigram: A 1-gram

2.5. References
Anonymouth: < http://www.cs.drexel.edu/~pv42/thebiz/ >
NLTK: < http://www.nltk.org/ >
NodeBox Linguistics Library: < http://nodebox.net/code/index.php/Linguistics >
OleFileIO_PL: < http://www.decalage.info/python/olefileio >
Orange: < http://orange.biolab.si/ >
PyCrypto: < http://www.dlitz.net/software/pycrypto/ >
pyPdf: < http://pybrary.net/pyPdf/ >
PyRTF: < http://pyrtf.sourceforge.net/ >
Python: < http://www.python.org/ >
TkInter: < http://wiki.python.org/moin/TkInter >
WordNet: < http://wordnet.princeton.edu/ >

2.6. Context Diagram

3. Architecture

3.1. Technologies Used
The software is completely written in Python. By default, the software uses TkInter, the

graphical toolkit that is packaged with Python, for its graphical interface. The software also
uses Orange as its default machine learning interface.

3.1.1. Python 2.6
Python was chosen as the language of choice for the software because of its ability to

be used on a variety of operating systems. It was also chosen because its dynamic nature
allows Stylo to have a plug-in system that does not require recompiling source code. Python’s
simplicity will also enable users with programming knowledge to extend the software with new
linguistic features with little hassle. Python 2.6 is specifically targeted as it is the most standard
Python version across many Unix-Like operating systems.

3.1.2. TkInter
TkInter will be the default GUI framework that the software uses to expose its

functionality to the end user. TkInter was chosen in large part to maintain a similar look and feel
to the Anonymouth project which also will be using TkInter. In addition TkInter is compact and
distributed with Python which will reduce dependencies in some cases.

3.1.3. Orange
Orange was chosen as the machine learning tool for the software because of its native

support for Python. Orange has a strong developer and user base which ensures its active
development.

3.1.4. (NLTK) Natural Language Tool Kit
Natural language processing will play a large part in the work the software will be doing.

As such we needed a feature rich tool kit to use to accomplish the task of processing the natural
language contained in the samples. NLTK’s native support for Python and large feature list
made it the logical choice.

3.1.5. NodeBox Linguistics Library
Some linguistic features require a database of words to compare against or look up

synonyms for. WordNet was the first option we looked into but NodeBox packages the
WordNet database up into a library with some other useful features so we decided to go with
NodeBox.

3.1.6. PyCrypto
The samples included in each corpus as well as the information generated by Stylo

contain potentially sensitive information. To protect this information we are including the option
to encrypt all information stored by Stylo (samples, feature results, authorship results, etc).
PyCrypto is the most fully featured cryptography library for Python and as such will be the
library we’re using.

3.1.7. Text Extraction Tools
Various libraries are needed to access text contain in file types other than plain text.

Each tool that was chosen (pyPdf, OleFileIO_pl, PyRTF) because it was decided they were the
most fully featured, cross platform, and up to date libraries of their class.

3.2. Application Overview

Upon completion, the software will be able to analyse features from selected texts. The
extracted features will then be sent through a machine learning tool and compared against a
corpus (which has previously been trained) in an attempt to attribute ownership of texts to an
author contained in the selected corpus. In addition, the software will be able to communicate
with the Anonymouth software to assist the end user with anonymizing his or her writing.

4. Detailed Design
Unless mentioned otherwise, all classes contain getter and setter methods for private

member variables.

4.1. Program Interface

4.1.1. Command Line Interface
The main Stylo class is the entry point of the software when run through the command

line. This class loads the selected texts, delegates feature extraction and machine learning
analysis to the appropriate subsystems, and returns with the results.

Properties

ActiveCorpus The corpus that is currently active, that will be trained or used
when analyzing a document.

ActiveAdapter The active MLT Adapter that will be used when training or
analyzing a document.

ActiveFeatures The list of active features that will be used for extraction.

Methods

analyze Runs the analyze function on a specific document. Returns
a string giving details of the analysis. Can either be a status
message (“The operation completed successfully”) or, if set by
the user, the full analysis documentation.

extractFeatures Extract the active features from the specified sample.

listFeatures Prints out a help message listing what features are available for
use.

parseArguments Parse the command line arguments to set up the program.

train Trains the default corpus, or a non-default corpus if specified.

4.1.1.1. Command Line Flags

4.1.1.1.1. -c: Corpus
Indicates the path to the corpus to use, if not the current one.

4.1.1.1.2. -f: Features
A semicolon delimited list follows this flag, detailing which features to analyze. If this flag

is not given, all available feature sets are used.

4.1.1.1.3. -ff: Feature File
A path to a text file containing a line-delimited list of features to use for analysis.

4.1.1.1.4. -i: Input
The path to the document, or folder containing the documents, to be analysed.

4.1.1.1.5. -l: List
Outputs a list of the features that can be utilized, for easy reference.

4.1.1.1.6. -m: Machine Learning Tool
Selects the machine learning tool to use for training and analysis.

4.1.1.1.7. -o: Output
Allows the user to specify the path where the analysis results are stored.

4.1.1.1.8. -p: Print
Specifies that output is to be human-readable, instead of serialized.

4.1.1.1.9. -t: Train
Tells the software to only train on the current corpus, rather than analyzing a document.

4.1.1.1.10. -d: Training Data Location
Specifies the path where the training data is stored.

4.1.1.1.11. -h: Help
Displays information about the software and prints out all available command line flags.

4.1.2. Graphical User Interface
The StyloGUI class is the entry point of the software when run as a graphical user

interface. This class acts as a wrapper over the command line interface. The user is presented

with menus and buttons to configure the parameters of the software, and then passes the
appropriate commands to the command line interface. Any output received from the command
line interface is displayed to the user.

Properties

activeDocuments A list showing the documents pending analysis.

statusInformation A text box that is used to print out information to the user. A bar
will appear over this tool box during analysis and training that will
let the user cancel the current operation.

trainButton A button that, when pressed, calls the train() function.

analyzeButton A button that, when pressed, calls the analyze() function.

fileMenu A collection of menu options, such as “Add Document” and “Exit”

toolsMenu A collection of menu options regarding operation of the program,
such as “Manage Features” and “Configure Machine Learning
Tool”

myStyloInstance An instance of the CLI main class, that performs the required
tasks.

close Closes the GUI, cleans up any allocated resources, and exits

addDocument Adds a document to the current corpus.

train Signals the CLI to train on the current corpus. While training is
occurring, this button becomes disabled.

analyze Signals the CLI to begin an analysis procedure. While analysis
is occurring, this button becomes disabled. If analysis is
expected to take longer than two minutes, the user is given an
option to cancel operation right away.

4.1.2.1. Mockup

4.1.2.2. File Menu

4.1.2.2.1. Open Document
Allows the user to browse for and add a document to the list of documents pending

analysis.

4.1.2.2.2. Exit
Exits the software.

4.1.2.3. Tools Menu

4.1.2.3.1. Select Corpora
Allows the user to select a corpora for use in analysis.

4.1.2.3.2. Select Features
Allows the user to select features used for analysis. Selected features will be stored in a

file contained inside of the ‘Stylo’ folder in order to preserve selected features between

sessions. By default all available features are selected.

4.1.2.3.3. Manage Plug-Ins
Allows the user to enable or disable active plug-ins.

4.1.2.3.4. Manage Machine Learning Tools
Allows the user to configure installed machine learning tool adapters. This window

allows the user to select the active machine learning tool, and allows the user to configure each
installed machine learning tool based on its list of configuration options.

4.1.2.4. Help Menu

4.1.2.4.1. Help
Opens a window containing documentation for the software to assist the user in using

the program.

4.1.2.4.2. About
Opens a dialog box containing information about the program, any required license

information, etc.

4.1.3. Default Run Action

If the user does not specify any flags when starting the software, the software runs in
graphical mode.

4.3. Business Logic

4.3.1. Author
The Author class represents an author that is part of a selected corpus.

Properties

Samples List of samples in the selected corpus belonging to this author.

AuthorName Name of this author.

4.3.2. Sample
The Sample class represents a writing sample on which the user wants to perform

analysis

Properties

FeatureResults List of FeatureResults describing this sample. This list is initially empty,
and is only filled upon analysis.

4.3.3. Corpus
The Corpus class represents a corpus of authors.

Properties

Name Name of the corpus.

Authors List of authors contained in this corpus.

UsesEncryption Marks whether this corpus should be stored with encryption.

Path Path that this corpus was stored at.

Methods

LoadCorpus Load a corpus from disk, potentially with an encryption password.

SaveCorpus Saves corpus to disk with the supplied password.

Decrypt Decrypts the corpus using the supplied password.

Encrypt Encrypts the corpus using the supplied password.

4.4. Feature Extraction

4.4.1. FeatureExtractor
The FeatureExtractor class is responsible for starting the feature extraction process on

all selected features.

Properties

ActiveFeatures List of features that are selected for extraction.

Methods

AddFeature Input: LinguisticFeature to be added to list of active features.
Logic: Add feature to list of active features.

AddFeatures Input: List of LinguisticFeatures to be added to the list of active features.
Logic: Add all LinguisticFeatures from input list to list of active features.

GetFeatures Output: Returns list of active features.

RemoveFeature Input: LinguisticFeature to remove from list of active features.
Logic: Removes input LinguisticFeature from list of active features. If list
of active features does not contain input LinguisticFeature, nothing is done.

Extract Input: Sample to perform feature extraction on.
Logic: Perform feature extraction on input sample using all active features.
Output: Collects and returns all FeatureResults that active features
returned from extraction.

4.4.2. FeatureFactory
The FeatureFactory class acts as a single point from which the software can

obtain any LinguisticFeature currently installed using only its name. Because features
are installed as Python modules, there can be no conflict between feature names.

Methods

GetFeature Input: Short name of desired feature
Logic: Finds installed LinguisticFeature with the given short name.
Output: Returns the LinguisticFeature with the given short name.

4.4.3. LinguisticFeature
The LinguisticFeature interface is a common interface that all features and feature sets

derive from.

Properties

Short Name A shortened version of the feature name. This is the name by which the
feature is referenced by command line.

Long Name The full name of the feature. This is used for display purposes.

Description A short description of the feature. This is used for display purposes.

Methods
Extract Input: The sample being analysed.

Output: FeatureResult describing results of analysis of this feature.

4.4.4. Implemented Features
The software comes packaged with the following feature sets.

4.4.4.1. Character Count

Short Name CharCount

Long Name Character Count

Description Number of characters in the sample.

Input Type Plain Text

Return Type Integer

Logic Return a simple count of all characters in a sample.

4.4.4.2. Word Count

Short Name WordCount

Long Name Word Count

Description Number of words in the sample.

Input Type NLTK Text

Return Type Integer

Logic Call len() on NLTK text returns the number of words.

4.4.4.3. Large Word Count

Short Name LargeWordCount

Long Name Large Word Count

Description Number of words in the sample with a length greater than 10.

Input Type NLTK Text

Return Type Integer

Logic Returns a count of the number of words in a sample with a length greater than
10 letters.

4.4.4.4. Unique Word Count

Short Name UniqueWordCount

Long Name Unique Word Count

Description Number of unique words in the sample.

Input Type NLTK Text

Return Type Integer

Logic Call len() on NLTK text returns the number of words.

4.4.4.5. Punctuation Count

Short Name PunctCount

Long Name Punctuation Count

Description Number of each type of punctuation in the sample.

Input Type Plain Text

Return Type List<Integer>

Logic Count the number of occurrences of each of the types of punctuation.

4.4.4.6. Sentence Count

Short Name SentenceCount

Long Name Sentence Count

Description Number of sentences in the sample.

Input Type NLTK Text

Return Type Integer

Logic Count the number of sentences in the sample.

4.4.4.7. Percent Large Words

Short Name PctLargeWords

Long Name Percent of Large Words

Description Percentage of large words in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide number of large words in sample by number of words in the sample.

4.4.4.8. Percent Punctuation

Short Name PctPunctuation

Long Name Percentage of Punctuation

Description Percentage of each punctuation in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide the number of each punctuation by the number of words in the sample.

4.4.4.9. Percent Word Group Words

Short Name PctWordGroups

Long Name Percentage of Word Group Words

Description Percentage of words in the sample that belong to each word group

Input Type NLTK Text

Return Type Integer

Logic Divide total number of words in each word group by the number of words in the
sample. See Appendix A2 for more information on word groups.

4.4.4.10. Average Sentence Length

Short Name AvgSentenceLength

Long Name Average Sentence Length

Description Average number of words per sentence.

Input Type NLTK Text

Return Type Integer

Logic Divide total number of words in the sample by the number of sentences in the
sample.

4.4.4.11. Average Syllables per Word

Short Name AvgSyllablesPerWord

Long Name Average Number of Syllables per Word

Description Average number of syllables per word in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide the total number of syllables in the sample by the word count of the
sample.

4.4.4.12. Average Word Length

Short Name AvgWordLength

Long Name Average Word Length

Description Average length of words in the sample.

Input Type NLTK Text

Return Type Integer

Logic Number of alpha-numeric characters divided by number of words.

4.4.4.13. Average Characters Per Paragraph

Short Name AvgCharactersPerParagraph

Long Name Average Number of Characters per Paragraph

Description Average number of characters per paragraph in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide total characters in sample by number of paragraphs in sample.

4.4.4.14. Average Words Per Paragraph

Short Name AvgWordsPerParagraph

Long Name Average Number of Words per Paragraph

Description Average number of words per paragraph in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide total number of words in sample by number of paragraphs in sample.

4.4.4.15. Average Sentences Per Paragraph

Short Name AvgSentencesPerParagraph

Long Name Average Number of Sentences per Paragraph

Description Average number of sentences per paragraph in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide total number of sentences in sample by number of paragraphs in
sample.

4.4.4.16. Word Groups

Short Name WordGroups

Long Name Number of Words per Word Group

Description Number of words for each defined word group.

Input Type NLTK Text

Return Type Integer

Logic Compute the total number of words in each registered word group. See
Appendix A2 for more information on word groups.

4.4.4.17. Sample Complexity

Short Name Complexity

Long Name Sample Complexity

Description Percentage of unique words in the sample.

Input Type NLTK Text

Return Type Integer

Logic Divide the number of unique words by the total number of words, resulting in a
value between 0 and 1.

4.4.4.18. Sample Readability

Short Name Readability

Long Name Sample Readability

Description Comparison between the size of the document and the percentage of words
with more than 3 syllables.

Input Type NLTK Text

Return Type Integer

Logic 0.4 * (AvgSentenceLength + 100 * NumberWordsWithMoreThan3Syllables /
WordCount)

4.4.4.19. Synonym Classification

Short Name SynClassification

Long Name Synonym Classification

Description Author’s choice of words compared to possible synonyms.

Input Type NLTK Text

Return Type Double

Logic Sum of the products of the number of synonyms for each word and the
minimum number of times that word appears in sample and corpus text.

4.4.4.20. N-Gram Frequency

Short Name NGramFrequency

Long Name N-Gram Frequency

Description The frequency of which all n-grams appear in the sample. By default, this uses
unigrams, bigrams, and trigrams.

Input Type NLTK Text

Return Type Double

Logic For each unique n-gram in the sample, divide the number of times this n-gram
appears by the total number of n-grams of the same size in the document.

4.4.4.21. Lexical Diversity

Short Name LexicalDiversity

Long Name Lexical Diversity

Description Measures the diversity of the words in the sample from 0-1; 0 being no
diversity and 1 being infinite diversity.

Input Type NLTK Text

Return Type Double

Logic Given n : frequency of a word in the sample and N : total number of words
Diversity = 1 - (sum(n * (n-1)) / (N * (N-1)))

4.4.5. FeatureSet
The FeatureSet class contains multiple LinguisticFeatures within itself, and

proxies interface calls to all contained Features.

Properties
Features List of features that this FeatureSet will proxy calls through to.

4.4.6. FeatureResult
Once a LinguisticFeature extracts information from a sample, it stores its result in a

FeatureResult object.

Properties

Name Name of the LinguisticFeature associated with this FeatureResult.

Value Value that the associated LinguisticFeature extracted from the sample.

Weight Relative weight of this feature used in attribution of authorship.

4.5. Machine Learning Tool Interface

4.5.1. MLTAdapter
The MLTAdapter interface will allow adaptation to installed machine learning tools. This

interface does not have a setter for Configuration.

Properties

Configuration Key-Value pair of configuration options. Example options include type of
learning method to use, parameters for analysis, etc. This will be specific
to each adapter.

Methods

Train Input: Corpus to train on
Logic: Trains the machine learning tool against the input corpus.

Classify Input: Sample to classify, corpus to classify against
Logic: If the corpus has not yet been trained, train the corpus first.
Attempt to attribute an author from the input corpus to the input sample.
Output: A list of FeatureResult objects populated based on the result
of classification. The list will contain a special FeatureResult object
containing the predicted author as the Value and predicted accuracy as
the Weight.

ValidateAndSave
Configuration

Input: Key-Value pairs of configuration changes
Output: True if all values are valid and configuration was saved, or False
if configuration was invalid. If configuration was invalid, also returns an
error message.

4.5.1.1. OrangeAdapter
The OrangeAdapter class interfaces specifically with the Orange machine learning

toolkit.

4.5.1.2. WekaAdapter
The WekaAdapter class interfaces specifically with the WEKA machine learning toolkit.

4.5.2. MLTConfigurationOption
The MLTConfigurationOption represents a single configuration option for a machine

learning tool. The specific adapters are responsible for interpreting the value of the option.

Properties

Name Name of this configuration option.

Label Label of this configuration option, to be used for the GUI configuration window.

Value Value of this configuration option.

ValueMin Minimum value that this option can contain. Optional.

ValueMax Maximum value that this option can contain. Optional.

ValidValues List of valid values that this option can contain. Optional.

MaxLength Maximum length of this option’s value. Optional.

Methods

IsValidValue Determines whether the passed in value would be valid.

4.6. Plug-In Architecture

4.6.1. Overview
A plug-in system is being designed into Stylo so that in the future, developers external to

the original team can hook into core functionality with minimal modifications to the code. The
plug-in system would allow for additional, modular features to be added or removed from Stylo
without the need to modify code in other areas.

One of the major issues in the design of the plug-in system is deciding in which order
plug-ins execute when they need to work on the same information. To help alleviate this
competition, Stylo plug-ins will contain a few variables that describe their functionality. We will
then use these variables to decide on what order to execute plug-ins should there be multiple
plug-ins wanting to execute on the same information.

4.6.2. Hook Interfaces

4.6.3. PlugIn Object

4.6.3.1. Function and Variables

Dependencies List of names of other plug-ins that have to run before current one.

NeedsVanillaData Indicates this plug-in needs unmodified data.

ModifiesData Indicates that this plug-in will modify the data it is given.

Register Register a plug-in to receive notification of various events.

UnRegister Remove a plug-in from all events.

4.6.3.2. Description
The PlugIn object is the heart of Stylo and is contained inside a Python package. All

functionality outside of loading and registering plug-ins will be implemented as a plug-in. Plug-
ins must implement one or more of the various interfaces that define a hook. These interfaces
define the method that will be called when that event takes place and if not present, the plug-in
will fail to be executed. Since Python supports multiple inheritance, each plug-in can hook into
any number of the available events.

4.6.4. Available Hooks

4.6.4.1. StyloStart

When Immediately after Stylo starts.

Uses Initialization of plug in that needs access to corpus or sample.

4.6.4.2. StyloEnd

When Before Stylo exits.

Uses Clean up of plug in data before Stylo exits.

4.6.4.3. ExtractStart

When Before feature extraction begins.

Uses Modify sample before doing extraction.

4.6.4.4. ExtractEnd

When At the end of feature extraction

Uses Access feature data before classification is attempted.

4.6.4.5. FeatureStart

When Before the extraction of each feature.

Uses Displaying progress.

4.6.4.6. FeatureStop

When After the extraction of each feature.

Uses Displaying progress.

4.6.4.7. ClassifyStart

When Before classification is started.

Uses Hook in for custom machine learning tool.

4.6.4.8. ClassifyStop

When After classification is done.

Uses Displaying results in various forms.

4.6.4.9. TrainStart

When Before training a corpus.

Uses Hook machine learning tool into training event.

4.6.4.10. TrainStop

When After training a corpus

Uses Perform some action after training is done.

4.6.5. PlugIn Categories

Category Description

Machine Learning Tools used to classify and make a prediction about the author.

Feature Extraction Tools used to extract individual features from a sample.

Visualization Tools used to visualize various data in Stylo

4.7. Document Parsing

4.7.1. Sample Parser
The SampleParser class is responsible for parsing an input document into a Sample

object.

Methods

ParseDocument Input: Path to document to parse
Output: Sample object representing the specified document

4.7.2. DocumentParser Interface
The DocumentParser interface is a common interface between all document parsing

classes.

Methods

Parse Input: Path to document to parse
Output: Sample object representing the specified document

4.7.2.1. PlainTextParser
The PlainText class is responsible for parsing a plain text document.

4.7.2.2. DocParser
The DocParser class is responsible for parsing a DOC document. OleFileIO_PL is used

to extract the text from the DOC file.

4.7.2.3. PdfParser
The PdfParser class is responsible for parsing a PDF document. pyPdf is used to

extract the text from the PDF file.

4.7.2.4. RtfParser
The RtfParser class is responsible for parsing an RTF document. pyRTF is used to

extract the text from the RTF file.

4.8. File System Layout

4.8.1. Corpora Folder
On disk, a corpus is represented as a folder with many sub folders (in the case of an

encrypted corpus, its a single archive). Each corpus’ folder contains two types of folders, stylo
folder and author folders. The name of the folder corresponds to the name of the corpus and
must be unique. The corpora folder contains many individual corpora that are defined by the
user.

4.8.1.1. Stylo Folder
The stylo folder resides inside the corpus’ folder. This folder is different from the author

folders as it contains information generated by Stylo that corresponds to the corpus, such as
training data.

4.8.1.2. Author Folder
The author folder resides inside the corpus’ folder to which it belongs. The name of the

folder corresponds to alias Stylo uses to refer to the author whose documents are inside. This
name need not be the real name of the author. This folder contains any number of samples of
the author’s writing in any file format that Stylo supports.

4.8.1.3. Corpus Encryption
If corpus encryption is enabled, the corpus and all data stored within will be contained

inside of an encrypted zip file. The encryption key will be a user-supplied password for the
corpus. This encryption will use the PyCrypto library.

4.8.1.4. Default Corpus
The software comes with a default corpus to use as an example for training and

classification.

4.8.2. PlugIns Folder

Each plugin is contained in a Python package which sits in the plugins folder. Plugins
must follow the Python package specification.

4.9. Execution Flow

4.9.1. Feature Extraction

4.9.2. Training

Appendix

A1. Traceability Matrix

Requirement Number Design Component

4.2.1 4.5.1, 4.1.1.1.7

4.2.2.1 4.5.1

4.2.2.2 4.5.1

4.2.3.1 4.9.2

4.2.3.2 4.9.2

4.2.3.3 4.1.1.1.8

4.2.4 4.1.3

4.3.1.1.1 4.1.1.1.2

4.3.1.1.2 4.1.1.1.5

4.3.1.1.3 4.1.1.1.4

4.3.1.1.4 4.1.1.1.7

4.3.1.1.5 4.1.1.1.6

4.3.1.1.6 4.1.1.1.1

4.3.1.1.7 4.1.1.1.9

4.3.1.2 4.1.1.1.4

4.3.2.1 4.7.2.1

4.3.2.2 4.7.2.2

4.3.2.3 4.7.2.3

4.3.2.4 4.7.2.4

4.3.2.5 4.7.2

4.3.3.1 4.1.1.1.5

4.4.1.1.1 4.1.2.2.1

4.4.1.1.2 4.1.2.2.2

4.4.1.2.1 4.1.2.3.1

4.4.1.2.2 4.1.2.3.2

4.4.1.2.2.1 4.1.2.3.3

4.4.1.3.1 4.1.2.4.1

4.4.1.3.2 4.1.2.4.2

4.4.2.1 4.1.2

4.4.2.2 4.1.2

4.5.1.1 4.4.4.1

4.5.1.2 4.4.4.21

4.5.1.3 4.4.4.3

4.5.1.4 4.4.4.8

4.5.1.5 4.4.4.10

4.5.1.6 4.4.4.6

4.5.1.7 4.4.4.11

4.5.1.8 4.4.4.4

4.5.1.9 4.4.4.2

4.5.1.10 4.4.4.16

4.5.1.11 4.4.4.12

4.5.1.12 4.4.4.17

4.5.1.13 4.4.4.18

4.5.1.14 4.4.4.13

4.5.1.15 4.4.4.15

4.5.1.16 4.4.4.14

4.5.2 4.1.2.3.2

4.5.3 4.8.2

4.6.1 4.5.1

4.6.1.1 4.5.1

4.6.2 4.4.6

4.6.3.1 4.1.1.1.6, 4.5.1

4.6.3.1.1 4.1.1.1.2, 4.1.1.1.3, 4.1.2.3.2

4.6.3.1.2 4.1.1.1.2, 4.1.2.3.2

4.6.3.1.3 4.8.1.1, 4.9.2

4.6.3.2 4.1.1.1.6, 4.5.1

4.6.3.2.1 4.9.2

4.6.3.3 4.1.1.1.1

4.6.3.3.1 4.8.1.4

4.6.3.3.2 4.1.1.1.1, 4.8.1

5.2 4.6

5.3.1 4.1.2

5.3.2 4.1.2

5.3.3 4.1.2

5.3.4 4.1.2

5.4.1 2.3

5.4.2 2.3

5.4.3 2.3

5.5.1 2.3

5.5.2 2.3, 4.7.4

5.6 2.3

A2. Word Groups

Word Group Name Words Included

Insightful perhaps, think, believe, know, concept,
thought, knew, formulate, thinking, belief,
conceptualize, knowledge, knowing,
concepts, grasp, understand, comprehend

Certainty always, never, certain, definite, every

Sources source, sources, site, sites, paper, papers,
report, reports, article, articles, reference,
references

Time Frame now, currently, present, past, future,
presently, archaic, old, new, out-dated, before

Tentative maybe, might, guess, suppose, can,
sometimes, tentative, perhaps

First Person Pronoun I, me, my, mine, I’ve, I’d, I’m, I’ll, myself

Second Person Pronoun you, your, you’re, yours, thou, yourself,
yourselves

Third Person Singular Pronoun he, she, his, her, him, hers, he’ll, she’ll he’d,
she’d, he’s, she’s, herself, himself

Third Person Plural Pronoun they, their, theirs, they’ll, they’d, they’ve,
theirself, themselves

Object Pronoun it, its, it’s, itself, those, these, that, this

