
Fall 1998 Formal Language Theory Dr. R. Boyer

Turing Machines and Undecidability

Turing Machines

A Turing machine is an automaton with a �nite control and a bidirectional read/write head for pro-
cessing strings on an input tape.
The control unit operates in discrete steps; at each step, it performs two functions dependent on its
current state and the tape symbol currently scanned:

(1) put the control unit in a new state;
(2) Either
(a) Write to the tape, or
(b) Move the tape head right or left one square.

De�nition. A Turing machine (TM) M = (K;�; �; s) is a four-tuple where
K is a �nite set of states, not containing the special state h; the halt state;
� is a �nite alphabet with the blank symbol #, but � does not contain the symbols L nor R:
s 2 K; the start state;
� : K � �! (K [fhg)� (� [fL;Rg); the transition function.

Note: The operation of the TM M is deterministic and will stop only if M enters the halt state or
attempts to move o� the left end of the tape (that is, the machine \hangs").

A con�guration of a TM M represents the current state, the current input symbol scanned, all the
contents of the tape to the left of the current input symbol, and the contents of the tape to the right
of the current input symbol to the strings of blanks. Note that when a �nite string w is placed on the
input tape, the blank symbol # is placed on all spaces to its right. In other words, the con�guration is
an element of the set:

(K [fhg)� �� � �� (��(� n f#g) [feg):

A convenient notation for a con�guration is: (q; w1aw2):

De�nition. If M is a TM and w 2 ��; then M is said to halt on input w if (s;#w#) yields a halted
con�guration, while M hangs on input w if (s;#w#) yields some hanging con�guration.

De�nition. Let �0 and �1 be �nite alphabets not containing the blank symbol #. Let f : ��

0 ! ��

1:
A TM M = (K;�; �; s) is said to compute f if �0;�1 � � and for any string w 2 ��

0; if f(w) = u;
then the con�guration (s;#w#) will yield the con�guration (h;#u#): We say that the function f is
Turing-computable or recursive.

De�nition. A Turing machine M accepts a string w if M halts on the input w: The TM M accepts or
semidecides the language L if

L = fw 2 �� : M accepts wg:

Call the language L recursively enumerable.

De�nition. Let � be a �nite alphabet without # and without the symbols Y;N: Then a language
L � �� is recursive if the function

�L : �� ! fY;Ng

is recursive.

There are several extensions of the basic Turing machine. For example,
(1) Allow a two way in�nite tape;
(2) Allow a k-tape machine.
(3) Allow a two-dimensional tape.

These extensions have the same power of acceptance as the basic Turing machine. The argument rests
on the idea of treating the basic one tape as having several distinct tracks for models (1), (2), and

1

Week Ten :Turing Machines and Undecidability

(3). For example, for the k-tape machine, the corresponding usual TM will have a single tape with
2k-tracks, where one track is used to encode the contents of one of the tapes of the original machine
and another track is used to record the position of the tape head for that track.

A more serious extension of a deterministic Turing machine is to allow non-deterministism. That is,
we replace the transition function � with a transition relation � :

� � (K � �)� ((K [fhg)� (� [fL;Rg))

where � is a �nite subset. Note: NTM's will only be used as ACCEPTORS.

By using the idea of \dovetailing" and breath �rst search, we can simulate a NTM by a 3-tape TM
where the roles of the tapes are:

tape 1: contains the original input;
tape 2: contains the simulated computation;
tape 3: directs the computation by keeping track of the computation branch that the NTM is

using.

Universal Turing Machine MU

Goal: given any TM M and input w; we want:
(sM ;#w#) will yield (h; uav) if and only if (sMU

; < w >) will yield (h;< uav >);
where < w > denotes the encoding of the string w for the universal TM MU :
Write: MU(< M;w >) + if and only if M(w) + :

Notation: Write M(w) for the TM M with input string w: Write < M;w > for the encoding of M(w)
for the universal TM MU : M(w) + means that the TM M converges on the input w:

Outline of the Construction of UTM MU :

(I) We �x countably in�nite sets: K1 = fq1; q2 ; : : :g; �1 = fa1; a2; : : :g:
Without loss of generality, we assume that every TM M has its state space K � K1 and its alphabet
� � �1:

(II) We give a formal correspondence � between the component symbols of a TM M (states and
input symbols) and strings over a one symbol alphabet fIg: In particular, elements from K [fhg or
�1 [fL;Rg will have distinct representations.

�(qi) = Ii+1;
�(h) = I;
�(L) = I;
�(R) = II;
�(ai) = Ii+2:

(III) We encode the TM M = (K;�; �; s) over a 2-symbol alphabet fc; Ig:
Assume:

K = fqi1 ; qi2 : : : ; qikg and � = faj1 ; aj2 : : : ; ajlg;
where i1 < i2 < : : : < ik and j1 < j2 < : : : jl:
We encode the transition:

�(qip ; air) = (q0; b);
where q0 2 K1 [fhg and b 2 �1 [fL;Rg; as a string Sp;r 2 fc; Ig

� :

Sp;r = cw1 cw2 cw3 w4;

where w1 = �(qip); w2 = �(ajr); w3 = �(q0); w4 = �(b):
We encode the TM M as < M >2 fc; Ig� :

2

Week Ten :Turing Machines and Undecidability

< M >= cS0cS11S12 � � �S1`S21S22 � � �Sk1Sk2 � � � Sk`c:

Note: S0 is the encoding of the start state.

We conclude: < M1 >=<M2 >() M1 =M2:

(IV) If w 2 ��; so w = b1b2 : : : bn; with bi 2 �1; we set
< w >= c�(b1)c�(b2)c : : : c�(bn)c;
and
< M;w >=< M >< w > :

(V) We construct MU via a 4-tape TM, where
tape 1: encodes the tape of M;
tape 2: encodes the TM M itself;
tape 3: encodes the current state;
tape 4: encodes the current input symbol.

Church-Turing Thesis: The formalization of an algorithm corresponds to the existence of a Turing
machine that decides the problem (so it halts on all inputs).

Undecidable Problems

De�nition: We let LU = f< M;w > : M(w) +g:

Proposition. LU is recursively enumerable.

To see this, recall that a language L0 is recursively enumerable if there is a TM M0 such that
L0 = fw 2 �� :M0(w) +g:

That is, M0 halts on the input string w:
Now, by construction, we know that
MU (< M;w >) + if and only if M(w) + :
The desired TM is found by using a preprocessor to MU to guarentee that only inputs of the form
< M;w > are used.

Recall we are still working under the assumption that for any TM M = (K;�; �; s) that K � K1 and
� � �1:
We study the \diagonal" language K; where

K = f<M > : M(w) +; where < w >=< M >g:
That is, K consists of all TM's that halt on their own input. Further, note that:
LU = f< M;w >:M(w) +g = f< M >< w >:M(w) +g;
so K is diagonal in this sense.

Claim: K is recursively enumerable. Use the same reasoning as for LU :

Claim: K; the complement of K; is NOT recursively enumerable:
K = f<M >:M(w) *; where < w >=< M >g:

To see this, suppose K were recursively enumerable. Then there is a Turing machine M� so that
(�) K = L(M�) = f< M >:M(w) *; where < w >=< M >g:

Question: Is < M� >2 K?

Case 1: Assume < M� >2 K:
Now, on one hand, < M� >2 L(M�) means that M�(w) *; where < w >=< M� >; by (*).
On the other hand, w 2 L(M�) always means M�(w) + : In particular, M�(w) + for < w >=< M� > :
Contradiction.

Case 2: Assume < M� >=2 K:

3

Week Ten :Turing Machines and Undecidability

In other words, we assume < M� >2 K: So, M�(w) +; since < w >=< M� > :
On the other hand, by de�nition, L(M�) = fw : M�(w) +g: Hence, < M� >2 L(M�): But by (*),
< M� >2 L(M�) means M�(w) *; where < w >=<M� > : Contradiction.

We conclude: there is no such string < M� >; so there is no such TMM�; that is, K is NOT recursively
enumerable.

Note: K is a language which is recursively enumerable but not recursive.

Proposition. The language LU = f< M;w >: M(w) +g is not recursive.

Suppose there is a decision procedure for LU : That is, there is a recursive function f : fc; Ig� ! fY;Ng
so that f(< M;w >) = Y if and only if M(w) + : Then we can use f to decide K:
Consider f(< M;w >) = f(< M >< w >) = Y if and only if M(w) +; where < w >=< M > :
To �nish up, we use a preprocessor to guarentee that the input to f has the format: < M >< M > :

Proposition 1. It is undecidable that a given TM M halts on the empty tape.

Suppose that the TM M0 decides the language f< M >: M(e) +g: We shall use M0 to decide the
language LU = f< M;w >:M(w) +g:
Given M and w; we construct a TM Mw such that Mw writes the string w on a blank tape, then
simulates M:
Now, M0 yields a decision procedure for LU ; since M(w) + if and only if Mw(e):

Proposition 2. It is undecidable that a TM M halts on some input string.

We show that if this problem were decidable, then the problem given in Proposition 1 would be decidable.
Given a TM M; modify M so it erases any input string, then it will simulate the original TM M: We
call this new TM M 0:
Then M 0 halts on some input string (which is decidable by assumption) if and only if M 0 halts on all
input strings if and only if M halts on the empty string.
We conclude: there exists a string w so M 0(w) + if and only if M(e) + :
So, if the problem of Proposition 2 is decidable, so would the problem of Proposition 1. Contradiction.

Corollary. It is undecidable that a given TM M halts on every input.

Proposition 3. It is undecidable that two given TM's M1 and M2 halt on the same input string.

We alter the TM M1 to be the machine that halts immediately after every input. So, if Proposition 3
were decidable, then the problem of the above Corollary would be decidable. Contradiction.

Note: We can re-phrase the above Propositions.
Proposition 2: it is undecidable if a given program can loop forever on some input;
Proposition 3: it is undecidable if two programs produce the same output given the same input.

Rice's Theorem. Suppose C is a proper non-empty collection of recursively enumerable languages.
Then the following problem is undecidable: given a TM M , is L(M) 2 C?

Note: C may be the class of all regular languages, context free languages, or �nite languages, for
example.

4

