Course: __MAT096-Foundations of Algebra II
Module: __Graphing Linear Equations_(10.1-10.5)

Course: _MAT096-Foundations of Algebra II

Module: __Graphing Inequalities_(10.7)

Course: __MAT096-Foundations of Algebra II
Module: ___Rules of Exponents and Scientific Notation_(12.1-12.2)

Course: __MAT096-Foundations of Algebra II

Module:

\qquad Perform Operations on Polynomials_(12.3-12.7)

	Objectives	Questions	Materials	Content	Skills	Assessments
Perform Operations on Polynomials	Find and combine like terms. Perform addition and subtraction of polynomials. Multiply polynomials using the distributive property and special products where applicable. Divide polynomials	How are like terms combined to add and subtract polynomial expressions? How are polynomials multiplied? How are polynomials divided?	Monomial cards Vocabulary sheet for Chapter 12. Powerpoint: Slides 29, 31-47. Algebra tiles. 0-9 tiles. Multiplying polynomials 0-9 sheet.	Definitions: - Terms - Like terms - Coefficient - Polynomial - Degree of a polynomial Distributive property. Vertical and Horizontal formats for multiplying binomials/ polynomials. Long division.	Find like terms $\begin{aligned} & \text { Distribute -1: } \\ & -(a+b+c)= \\ & -a-b-c \end{aligned}$	 Classroom observation Summative: Chapter 12 exam from book Weekly pulse (3 questions) in Blackboard Journal

Course: __MAT096-Foundations of Algebra II

Module: ___Factor Polynomials (Ch 13.1-13.5)

	Objectives	Questions	Materials	Content	Skills	Assessments
Factor Polynomials	Find the greatest common factor (gcf) of a list of numbers and a list of terms. Factor out the gcf from the terms of a polynomial. Factor trinomials of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, including using grouping. Recognize and Factor trinomials that are perfect square trinomials or the difference of two squares. Analyze and apply the method of factoring to use in a given situation.	How is a polynomial factored? Where is factoring polynomials used?	Sum-product game (used as warmup at least 3 times prior to factoring). Powerpoint from Adam \& Pia (student version). A-G algebra tile "packs". Graph paper. Word problems pack.	Definitions of: -prime factor -greatest common factor -prime polynomial	Recognize common factors in numbers. Recognize common factors in terms. Choose a factoring strategy (see pg. 1013) including the X method.	 Homework Classroom observation Summative: Quiz on Skills Self Assessment: Weekly pulse (3 questions) in Blackboard Journal

Course: __MAT096-Foundations of Algebra II
Module: ___ Solving Quadratic Equations by Factoring, Ouadratic Equations and Problem Solving (Ch

13.6-13.7)

	Objectives	Questions	Materials	Content	Skills	Assessments
Solving Quadratic Equations by Factoring; Quadratic Equations, and Problem Solving	Solve quadratic equations by factoring. Solve equations with degree greater than two by factoring. Solve problems that can be modeled by quadratic equations.	How do you know what the factors of a number(say, 12 or 0) are? In solving a quadratic equation, why is the equation re-written so that one side is equal to zero? How does the graph of a polynomial exhibit the "zeroes" or "solutions" of the polynomial? How can a polynomial application be modeled? And from the model, how do you know which solution(s) apply to the situation?	Discovery Activity: Keeping Bruin Out (11)	define the zerofactor property	factoring quadratic equations Solving linear equations	Formative: Homework Classroom observation Summative: Chapter 13 Test (publisher) Self-Assessment: Weekly Pulse (3 questions) in Blackboard Journal

Course: __MAT096-Foundations of Algebra II
Module: ___Add, Subtract, Multiply, and Divide Rational Expressions (Ch 14.1-14.4)

Course: __MAT096-Foundations of Algebra II

Module: ___Simplify Complex Fractions (Ch 14.7)

	Objectives	Questions	Materials	Content	Skills	Assessments
Simplify Complex Fractions	Simplify complex fractions.	What operation is indicated by a fraction bar? With a complex fraction, how do you decide what operations to do in what order?	3×5 cards containing operations with rational expressions (2 + 6/x; $1-9 / x$, etc) Fraction bar "template" for use with above 3×5 cards. Problems from mini-lecture 14.7 (publisher's instructor resources)	methods for simplifying complex fractions: Method 1: simplify numerator and denominator separately, then divide or simplify Method 2: Find the LCD of all fractions, then multiply the numerator and denominator by the LCD. Then, divide or simplify.	Finding the least common denominator of a complex fraction. Fraction division.	Formative: Homework \& Classroom Observation Summative: Quiz on Skills Self-Assessment: Weekly Pulse (3 questions)

Course: __MAT096-Foundations of Algebra II
Module: ___Solving Equations Containing Rational Expressions and Problem Solving
_(Ch14.5-14.6)

	Objectives	Questions	Materials	Content	Skills	Assessments
Solving Equations Containing Rational Expressions and Using them to Solve Problems	Solve Equations containing rational expressions, including for a specified variable. Solve problems about numbers, work and distance.	What values result in the rational expression being undefined? What do the letters in a formula mean? Given an application problem, how do you determine the letter that is the variable in a formula that may be used to solve the problem?	Problems from mini-lecture 14.5 \& 14.6 (publisher's instructor resources)	formulas: $\mathrm{d}=\mathrm{rt}$	Solving proportions. Solving an equation containing several variables for one variable in terms of the others, i.e. solve $x+y=h$ for y in terms of $\mathbf{x} \& \mathrm{~h}$. Reading an application problem, identifying a formula that could be used to solve the problem, noting how the values given can be used in the formula, and identifying the actual variable to solve for.	 Classroom Observation Summative: Chapter 14 Test (publisher) Self-Assessment: Weekly Pulse (3 questions in Blackboard Journal)

Course: __MAT096-Foundations of Algebra II
Module: ___Simplify Roots and Radical Expressions (Ch 15.1-15.4)

	Objectives	Questions	Materials	Content	Skills	Assessments
Simplify Roots and Radical Expression s	Find nth roots Approximate sq roots Simplify radicals including radicals containing variables Add, Subtract, Multiply and Divide Radicals Rationalize Denominators including using conjugates	What are like terms? What are like radicals? When is a root exact? approximate? "perfect"? When is an nth root a real number? When is it not a real number? How can a denominator be rewritten mathematically to eliminate a radical sign?	.ppt from the text Squares and square roots table (to be completed) 0-9 cards \& find the missing squares puzzle.	define: real number rational number irrational number imaginary number index radical sign radicand positive/principal sq root negative sq root conjugate Prime factors "Perfect" square and cube roots like radicals Product Rule for Radicals Quotient Rule for Radicals	Finding exact roots using prime factors. Finding approximate roots with a calculator Finding the conjugate	Formative: Homework Classroom Observation Summative: ?? Self-Assessment: Weekly Pulse (3 questions in Blackboard Journal

Course:

 MAT096-Foundations of Algebra IIModule: ___Radical Equations and Problem Solving (Ch 15.5-15.6)

	Objectives	Questions	Materials	Content	Skills	Assessments
Radical Equations and Problem Solving	Solve a Radical Equation containingSquare Roots. Use the Pythagorean Theorem to Solve Problems. Solve Problems using Formulas containing Radicals.	How can roots be used to solve a quadratic equation?	Discovery Activity: Draw the picture for a story. Identify the sides of the right triangle formed in the picture. Identify the diagonal. Discovery Activity: The Pythagorean Shortcut Handout: Solve a radical equation containing square roots.	Squaring Property of Equality The Pythagorean Theorem	Determining the method to use in solving an equation containing radicals. Identifying extraneous solutions.	Formative: Homework Classroom Observation Summative: Chapter 15 test (publisher) Self-Assessment: Weekly Pulse (3 questions in Reflective Journal)

