\qquad

Introduction:

The diffusion rates (velocities) of HCl and NH_{3} gases will be compared. Hydrogen chloride fumes will come from hydrochloric acid and ammonia fumes will come from aqueous ammonia. Both will be simultaneously introduced into opposite ends of a glass tube. When the gases meet, they will form a white precipitate, $\mathrm{NH}_{4} \mathrm{Cl}$, which will form a ring in the tube.

According to the \qquad theory, gas molecules are in constant motion, hitting each other and the sides of their container with perfectly
\qquad collisions. The temperature of a gas is a measure of the
average \qquad energy of the molecules. The equation for calculating this energy is: $K E=\frac{1}{2} m v^{2}$

If two gases are at the same temperature, the molecules have the same average kinetic energy. This makes KE a (constant, variable). This means that m and v^{2} are
\qquad proportional. Heavier molecules move (slower, faster) than light molecules at the same temperature. Mathematically, the relationship can be stated as:

$$
m_{1} v_{1}^{2}=m_{2} v_{2}^{2} \quad \text { which equals } \quad \frac{v_{1}^{2}}{v_{2}^{2}}=\frac{m_{2}}{m_{1}} \text { which equals } \frac{v_{1}}{v_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}
$$

The last equation is known as Graham's Law of Diffusion.

Procedure:

1. A drop of concentrated hydrochloric acid (a source of HCl fumes) was placed on a cotton swab. A drop of concentrated aqueous ammonia was placed on another cotton swab.
2. The swabs were simultaneously inserted into opposite ends of a glass tube.
3. The glass tube was left undisturbed for two minutes.
4. After two minutes, a white ring was located and the center of the ring was marked.
5. The distance from each end of the tube to the mark was measured.

$$
\mathrm{HCl}: \mathrm{d}_{1}=
$$

$\mathrm{NH}_{3}: \mathrm{d}_{2}=$ \qquad
6. Calculate the ratio $d_{1} / d_{2}=$ \qquad
This is also the ratio of the velocities of the molecules, v_{1} / v_{2}.

7. Calculate the molar masses of the molecules:
$\mathrm{HCl}: \mathrm{m}_{1}=$ \qquad $\mathrm{NH}_{3}: m_{2}=$ \qquad
8. Calculate the ratio:

$$
\begin{array}{||l||}
\hline \sqrt{\frac{m_{2}}{m_{1}}}= \\
\hline
\end{array}
$$

9. Within bounds of experimental error, does $\frac{v_{1}}{v_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}$?

\qquad
