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Introduction 

 It has now been well established in the empirical finance literature that returns on 

many financial assets exhibit the phenomenon of volatility clustering (see, for instance, 

Pagan and Schwert, 1990). By this we understand that large shocks in asset returns tend 

to be followed by large shocks (of either sign) and small shocks tend to be followed by 

small shocks (Mandelbrot, 1963). The autoregressive conditional heteroskedasticity 

(ARCH) and related class of models (Engle, 1982) have been developed to capture this 

type of phenomenon in asset returns. 

 Since then, several papers have attempted to characterize more extensively both 

the univariate statistical properties of volatility dynamics as well as its relationship with 

other economic variables. Several other papers have also attempted to provide an 

understanding of the underlying economic mechanism that might generate such features 

of returns volatility. See, for instance, Peng and Xiong (2001) for a brief discussion of 

this literature. 

 However, although two decades have passed since the publication of the seminal 

paper on ARCH by Engle (1982) and although the importance of this work has now been 

recognized by the Nobel Foundation (2003) in its award of the Bank of Sweden Prize in 

economic sciences for the 2003 calendar year, there is still no widely accepted economic 

explanation for why returns exhibit the basic phenomenon of volatility clustering. An 

early idea in French and Roll (1986) relates volatility to the arrival of information and the 

reaction of traders to this information. Bookstaber and Pomerantz (1989) develop a 

model of market volatility based on this idea, assuming that information arrives in 

‘discrete packets’ and that it takes time for the market to digest this information and react 
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to it. An extension of this work is the recent paper by Peng and Xiong (2001), wherein 

the effort required to process newly arriving information (assumed constant in 

Bookstaber and Pomerantz, 1989) is endogenized, subject to capacity constraints on the 

information processing capabilities of investors. The idea that market participants face 

information processing capacity constraints originates with Sims (2003). 

 In his paper, Sims (2003) argues that outcomes resulting from information flow 

constraints would resemble those from a situation where market participants face a signal 

extraction problem.  

In this study, we address the basic question: why does the volatility of returns on 

risky assets vary over time, and more specifically, why does this volatility exhibit 

clustering over time? We assume that investors do not observe the fundamental value of a 

firm but only observe noisy data that contain signals about firm performance. They are 

then faced with a signal extraction problem; a problem of trying to filter the observed 

noisy data in order to extract the fundamental value of the firm. Investors then use that 

extracted information to price stocks. Our main contention here is that if the innovations 

driving the fundamental value of the firm and the noise that obscures this fundamental 

value come from non-Gaussian thick-tailed probability distributions, then the implied 

stock returns could exhibit volatility clustering. This is true even though the inherent 

exogenous process driving the fundamental value of the firm over time as well as the 

noise in the accounting data that obscures the fundamental value do not exhibit this 

phenomenon. 

The idea that signal extraction in a non-Gaussian setting generates volatility 

clustering has been explored in an asset pricing model with habit-formation utility 
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function by Veronesi (2002). The stark setting of our framework in this paper serves to 

highlight how much volatility clustering can be generated by signal extraction alone, 

without any contributions coming from intricate investor behavior. We attempt to 

validate our contention in this paper by comparing the characteristics of simulated returns 

data implied by our simple model with the well-documented characteristics of returns 

data observed in real financial markets. 

 It is difficult to provide intuition here for the exact mechanism at work in our 

model that makes this phenomenon happen. We therefore postpone an elaboration on this 

issue to the penultimate section. Prior to that, we formally set out in section 2 the 

information framework of our model and the associated signal extraction problem. In 

section 3, we discuss how to obtain stock prices and returns in our model. In section 4, 

we examine simulated stock returns implied by our model to see whether or not they 

display volatility clusters. In section 5, we provide intuition for our simulation results. 

The final section concludes with a summary and some observations on our study. 

 

2. Information Framework and the Signal Extraction Problem  

 Section 2.1 outlines the information that investors in our model observe and a 

general framework they use for filtering that information. Section 2.2 describes briefly 

the solution to the signal extraction problem. Section 2.3 demonstrates the behavior of the 

filter density within a simulation setup.  
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2.1. Information Framework 

Suppose that tx  is the logarithm of the unobserved fundamental value of the firm 

and that ty  is an observable series that reflects tx  with noise. For instance, ty  could 

include, among other things, the accounting data of the firm, news reports on firm 

performance, and relevant macroeconomic data. Then, we have:  

ttt xy ε+=        (1) 

Here, tε  is the noise in the observed data that obscures the (logarithm of the) 

fundamental value of the firm (per share) at time t . 

Although investors do not observe the fundamental value of the firm tx , they are 

able to infer it probabilistically from the noisy observed data through a filtering (or signal 

extraction) process. In order to make filtering operational, investors need a model for the 

law of motion governing the dynamics of how the fundamental value of the firm evolves 

over time. Assume that investors use a simple random walk without drift as the governing 

law of motion for tx : 

t1tt xx η+= − .      (2) 

Using Equations (1) and (2), investors perform a filtering (or signal extraction) 

procedure on the noisy observed data that enables them to infer: 

{ }tt Yxp   

where { }11ttt y,...,y,yY −≡  is the entire history of noisily observed data available to date. 

Here, { }BAp  denotes the conditional probability density of event A  given that event B  

has occurred. 
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2.2. Non-Gaussian Signal Extraction 

 When the disturbances tε  and tη  in Equations (1) and (2) are both non-Gaussian, 

this is a non-Gaussian filtering situation. Appendix A describes the non-Gaussian 

probability distributions used in this paper. Under non-Gaussian filtering, the exact 

probability distribution of the filter density { }tt Yxp  is also non-Gaussian and is given 

by the Sorenson-Alspach (1971) recursive formulae (see Harvey (1992), p.162-165). 

Appendix B reproduces these recursive formulae and also provides further details on non-

Gaussian filtering. In general, the filter density cannot be fully described by its mean and 

variance alone. The entire distribution can be approximated by numerically evaluating the 

density at a set of abscissa for tx . Appendix B provides details on numerical evaluation 

of the filter density. 

 Having obtained the filter density { }tt Yxp  on a set of grid points for tx , we can 

numerically compute moments of the filter density. We discuss in section 3 how these 

moments can be used to determine stock prices and stock returns.  

 

2.3. Non-Gaussian Filter Density 

In this subsection, we demonstrate that if the observational noise and signal 

shock, tε  and tη  in Equations (1) and (2) above, are drawn from thick-tailed non-

Gaussian probability distributions, then the filter density { }tt Yxp  can exhibit volatility 

clustering even though the shocks themselves are independently and identically 

distributed (iid). 
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 To illustrate this phenomenon, we undertake a simulation study. We draw random 

numbers for tε  in Equation (1) from the symmetric stable distribution )1,0(Sα  and tη  in 

Equation (2) from the symmetric stable distribution ),0(S κα , where κ  is the signal-to-

noise scale ratio.
1
 Assuming that the initial value of tx  in Equation (2) is zero, that is 

0x 0 = , we then use the simulated tη  series to generate a sequence { }T,...,2,1t,x t =  

using Equation (2). We use the simulated tε  series and Equation (1) to generate a 

sequence { }T,...,2,1t,y t = .  

For the simulations we use 8.1=α . This is a typical estimate for the 

characteristic exponent when one fits symmetric stable distributions to macroeconomic 

datasets (for instance, see McCulloch (1996a) and Bidarkota and McCulloch (1998, 

2003) for some examples). The signal-to-noise scale ratio is chosen to be 10=κ . In 

Figure 1, we plot the simulated shocks tη  and tε  along with the raw observable data ty . 

With the simulated sequence { }T,...,2,1t,y t = , we estimate the following model: 

)c,0(S~,xy tttt αεε+=     (3) 

)c,0(S~,xx tt1tt ρηη+= α− .   (4) 

                                                 
1
 Appendix A provides a brief description of symmetric stable distributions and 

McCulloch (1996a) a comprehensive survey on the financial applications of these 

distributions. For generating random numbers from the symmetric stable distribution 

)1,0(Sα , we use the GAUSS program written by J. Huston McCulloch and archived at 

http://www.econ.ohio-state.edu/jhm/jhm.html.  
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Estimation is done by maximum likelihood. The likelihood function is given in Equation 

(B4) of Appendix B.  

Parameter estimates are presented in the first row of Table 1. The characteristic 

exponent α  is estimated to be higher than the true value at 1.93, but the scale parameter 

c  and the signal-to-noise scale ratio ρ  are both estimated to be lower than their true 

values at 6.39 and 1.50, respectively.  

In Figure 2, we plot the estimated mean and standard deviation of the filter 

density { }tt Yxp .
2
 Looking at this figure and Figure 1 closely, it is clear that the filter 

mean tracks the observable data ty  quite well. Also, the filter standard deviation jumps 

up whenever a big realization (positive or negative) of either shock tη  or tε  occurs. It is 

hard to tell from Figure 2, however, whether the jump in the filter standard deviation 

lingers or not after a big shock has occurred.  

 In order to ascertain whether jumps in the filter standard deviation persist over 

time or not, we plot in Figure 3 the sample autocorrelations and partial autocorrelations 

of the squared filter errors, defined as the squared differences between the filter means 

and the tx  series that they estimate. It is obvious from this figure that the squared filter 

errors are indeed autocorrelated. This is indicative of volatility clustering in the filter 

density, since the innovations to tx  are iid. 

 

                                                 
2
 It can be shown that so long as 2/1>α , the filter density { }tt Yxp  has finite variance 

for 2t ≥  in the case of the local level model given in Equations (1) and (2), despite the 

infinite variances of the stable shocks. 
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3. Stock Prices and Returns with Signal Extraction 

In this section, we discuss how to compute stock prices and returns in our model 

economy outlined in section 2.  

In our framework, the mean of the filter density must follow a martingale. To see 

this, note that we have from the Law of Iterated Expectations: 

( )[ ] ( )t1tt1t1t Y|xEY|Y|xEE +++ = .     (5) 

From Equation (2), we have: 

  ( ) ( )ttt1t Y|xEY|xE =+ .      (6) 

Therefore,  

  ( )[ ] ( )ttt1t1t Y|xEY|Y|xEE =++ .     (7) 

In our model economy, the precise price of the asset will depend on how much 

systematic risk is in the filter distribution uncertainty.  If this risk is entirely idiosyncratic, 

the price will be the expected fundamental value (in levels).  However, if investors are 

concerned, say, that accounting rules may distort the value of all firms in some common 

way whose magnitude is unknown, or if some of the relevant data is macroeconomic 

data, the risk may be perceived as systematic, and then will be priced. We do not know 

exactly how much this gets priced, but we can just say that the market price will "reflect" 

(if not equal) the mean of the filter density (even in logs).  Calling this the quasi-price, 

the quasi-returns then are just the changes in the mean of the filter density (abstracting 

from expected returns, dividends, and changing risk premia).  

In the next section, we examine simulated quasi-returns implied by our simple 

model to see whether they exhibit volatility clustering using a variety of formal 

techniques.  
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4. Examination of Quasi-Stock Returns 

Section 4.1 reports some preliminary statistics on these returns. Section 4.2 

estimates a standard GARCH model for these returns. Section 4.3 modifies the standard 

GARCH model by assuming non-Gaussian innovations.  

 

4.1. Preliminary Study of Quasi-Returns 

We continue with the simulation study begun in section 2.3. There, we performed 

signal extraction on simulated observable data, and obtained the filter mean and standard 

deviation for time periods 5001,...,2,1t = . The simulated data and the moments of the 

filter density are plotted in Figures 1 and 2, and were discussed in section 2.3. 

From these 5001 filter means, we compute 5000 quasi-returns (as changes in the 

filter means), referred to simply as returns in the rest of the paper for convenience. We 

discard the first 3000 returns so as to ensure that any effects from the startup of the filter 

are fully eliminated. In what follows, we evaluate the characteristics of the remaining 

2000 returns in order to verify whether or not they exhibit volatility clusters.  

In Figure 4 we plot the implied stock returns. The simple model that we have set 

up in section 2 is designed only to provide an understanding of why returns on risky 

assets exhibit volatility clustering. Without identifying the observable data ty  in our 

framework with concrete information from real financial markets, we do not know what 

process to use to generate artificial data for ty  in our simulations. For the purposes of 

figuring out whether or not our model generates volatility clustering, this is not a 

drawback. However, this also means that the only dimension along which we should test 
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to see whether our model-implied returns are similar to observed returns on stocks is in 

their volatility clustering features. Consequently, for the purposes of validating our 

model, it is immaterial what the mean of implied returns is, as well as the 

autocorrelations of levels of returns. It is also immaterial whether or not implied returns 

exhibit fat tails, as has been well documented in the literature. 

 

4.2. A GARCH Model of Quasi-Returns 

To formally investigate whether the implied returns from the filtering mechanism 

exhibit volatility clustering, we estimate a GARCH model for these returns. This model 

takes the following form: 

t t t t t tr , ~ c z , z ~ iid N(0,2)= µ + ζ ζ    (8) 

2
1t

2
1t

2
t |r|cc µ−δ+β+ω= −−       (9)  

We restrict ω β δ> ≥ ≥0 0 0, and . For simplicity, we select the GARCH(1,1) 

specification above. This has also by far been the most popular parameterization used to 

describe stock return volatility.
3
  

The top panel of Table 2 (labeled Stable Data) reports results from estimating this 

model as well as a restricted homoskedastic model where the scales tc  are constant 

(equal to c ). The GARCH parameter β  is estimated to be 0.49 and the ARCH term δ  is 

                                                 
3 Pagan and Schwert (1990) fit a GARCH(1,2) model for monthly returns from 1834-

1925, while French, Schwert and Stambaugh (1987) fit a similar model to monthly 

returns from 1928-1984. Both these studies find only weak effects of the second MA 

term. See also Pagan (1996). 
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0.02, indicating that the volatility of returns is quite persistent but only mildly sensitive to 

the magnitude of the past innovations to returns. The likelihood ratio (LR) test for the 

null hypothesis of no GARCH (test for β δ= = 0 ) is reported in the last column of Table 

2. Homoskedasticity is easily rejected in favor of GARCH(1,1), and the evidence is 

overwhelming.  

Figure 5 plots the estimated scales from the model in Equations (8) and (9). When 

seen in conjunction with the raw observable data ty  and the behavior of the filter mean 

and standard deviation plotted in Figures 1 and 2 respectively, the figure clearly 

demonstrates both time variation in the volatility of implied returns and its sensitivity to 

large shocks in the observable data. 

 

4.3. A GARCH-Stable Model of Quasi-Returns 

The quasi-returns in our model are unlikely to be Gaussian. Therefore, our model 

of volatility in Equations (8) and (9) is likely to be misspecified. We therefore modify 

that model by assuming that the innovations are symmetric stable. This model takes the 

following form: 

)1,0(Siid~z,zc~,r tttttt αζζ+µ=    (10) 

α
−

α
−

α µ−δ+β+ω= |r|cc 1t1tt .     (11)  

As before, we restrict ω β δ> ≥ ≥0 0 0, and . When tζ  is normal (that is, when 2=α ), 

this model reduces to the familiar GARCH-normal process of section 4.2. Once again, for 

simplicity, we select the GARCH(1,1) specification. A GARCH-stable model similar to 

the one given in Equation (11) has been estimated for bond returns by McCulloch (1985) 

and for daily foreign currency returns by Liu and Brorsen (1995). 
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The top panel of Table 3 reports results from estimating this model as well as a 

restricted homoskedastic model where the scales tc  are constant (equal to c ). The 

characteristic exponent α  is estimated to be 1.55, indicating highly non-normal 

leptokurtic behavior. The volatility persistence parameter β  is estimated to be lower than 

in the GARCH-normal case at 0.25 but the ARCH term δ  is higher at 0.07. The 

likelihood ratio (LR) test for the null hypothesis of no GARCH (test for β δ= = 0 ) is 

reported in the last column of Table 3. Once again, homoskedasticity is strongly rejected 

in favor of GARCH(1,1), although the LR test statistic is now substantially smaller than 

in the GARCH-normal case. Overall, the implied returns exhibit strong volatility 

clustering features, and this behavior persists even after accounting for leptokurtosis in 

implied returns with symmetric stable innovations (see Ghose and Kroner, 1995, and 

Groenendijk et al, 1995, for an elaboration on this issue).  

Figure 6 plots the estimated scales from the model in Equations (10) and (11) 

using the implied returns data. The figure clearly illustrates the time-varying behavior of 

volatility in implied returns.  

The model in Equations (10) and (11) is estimated with monthly value-weighted 

CRSP real stock returns (with dividends) over the 1953-1994 period in Bidarkota and 

McCulloch (2003). From that study, the volatility persistence parameter β  is estimated to 

be 0.80 and δ  is estimated to be 0.04. The LR test statistic β δ= = 0  is found to be 

16.10. Thus, in our framework, the volatility persistence in returns is too low and the 

ARCH parameter is about right. 

The reason why volatility does not persist more in our model is because the 

observations errors tε  are serially independent. In this case, a big movement in the 
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observation ty  is either confirmed to be a signal shift if a similar value is repeated in the 

following period, or is disconfirmed if ty  reverts to its previous value the following 

period. If instead the observation errors were stationary but persistent, it would take 

several periods to find out whether or not a shift in the signal tx  had occurred. In this 

case, there would be a much more persistent GARCH-like process in returns. 

The bottom panels of Tables 2 and 3 (labeled Gaussian Data) report results from 

estimating the GARCH-normal and GARCH-stable models with implied returns obtained 

by filtering simulated data drawn from Gaussian distributions for both tε  and tη , 

respectively. In this case, the Kalman filter is the optimal estimator (see Harvey, 1992, 

chapter 3) and Appendix B provides some details on the estimation of the filter density in 

this case. In summary, the estimates reported in Tables 2 and 3 indicate that implied 

returns from filtering Gaussian data are Gaussian and homoskedastic. Specifically, these 

returns display no volatility clusters unlike the implied returns from filtering non-

Gaussian symmetric stable data. 

 

5. Why Filtering May Generate Volatility Clusters 

In this section, we provide some intuition that helps us to understand the 

simulation results. In section 5.1, we discuss why Gaussian signal shocks driving the firm 

fundamentals and Gaussian observational noise in the data will likely not lead to 

volatility clustering in implied returns. In section 5.2, we elucidate why non-Gaussian 

signal shocks and observational noise would likely lead to volatility clustering.  
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5.1. Why Gaussian Filtering Does Not Generate Volatility Clusters 

 We can reason intuitively why volatility clusters are not likely when the firm 

fundamentals and observational noise are both Gaussian. In this case, the state space set 

up of Equations (1) and (2) reduces to a linear Gaussian framework. Appendix B1 

provides details on filtering in a Gaussian linear state space model. Specifically, the 

celebrated Kalman filter is the optimal estimator of the unobserved fundamental value in 

this setup. From the properties of the Kalman filter (see, for instance, Harvey (1992), 

chapter 3), we know that the filter variance responds only to the variances of the signal 

shock and observational noise, tη  and tε  respectively. Specifically, the filter variance 

does not respond to any outliers that may be present in the observations ty . Given that, 

some time after startup, the filter variance will stabilize to a constant value as long as the 

signal and noise variances are assumed to be time-invariant.  

 Let us now consider how the mean of the Kalman filter ( )tt YxE , that we have 

taken to be the (logarithm of the) quasi-stock price, behaves over time. We can express 

this quantity at any time t  as a weighted average of the filter mean at some specific time 

in the past jt −  and a linear combination (with declining weights on the past 

observations) of all the intervening observations up to the present time 

}y,...,y,y{ t2jt1jt +−+− . After the Kalman filter has stabilized and with a large enough value 

for j , the weights become virtually time-invariant. For a sufficiently large j , the weight 

on the past filter mean ( )jtjt YxE −−  becomes negligibly small. We can then view the 

filter mean at any time t , ( )tt YxE , as a linear combination with constant weights 

declining into the past, of past observations ty .  
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If the observations are generated by a homoskedastic process, then this linear 

combination will also behave as a homoskedastic process and specifically will not exhibit 

any clusters of volatility. Of course, if information about firm performance itself arrives 

in clusters (that is, if the observed data ty  itself exhibits volatility clustering) then the 

filter mean will also exhibit clusters, although these would be heavily damped because 

the filter mean responds to new information with a weight less than one. 

 Thus, when investors observe information about firm performance (such as 

accounting data) that contains signals about the fundamental value of the firm (per share), 

and both the firm fundamentals and noise follow Gaussian stochastic processes, the 

resulting stock returns implied by investor behavior based on signal extraction will not 

exhibit volatility clustering. 

 

5.2. Why Non-Gaussian Filtering Can Generate Volatility Clusters  

With non-Gaussian shocks driving firm fundamentals and noise in observed data, 

the state space set up of Equations (1) and (2) reduces to a linear non-Gaussian 

framework. In this case, the filter density { }tt Yxp  responds strongly to new 

observations ty  and never stabilizes even when the signal and noise variances are time-

invariant. As clearly demonstrated in Bidarkota and McCulloch (1998) and Bidarkota (in 

press), when the disturbances tε  and tη  are both non-Gaussian symmetric stable, the 

filter density typically spreads out in response to big jumps in the observed data ty , at 

times even becoming multi-modal, reflecting an increased uncertainty regarding the 

fundamental value of the firm tx . Gradually the filter density reverts back to a bell-
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shaped curve. Such behavior of the filter density would lead, after an initial jump in the 

stock price, to large absolute future returns as well.   

One implication is that volatility clusters are originated by big shocks in the 

accounting data. This is a testable auxiliary restriction implied by the notion that non-

Gaussian filtering leads to volatility clustering. 

 

6. Conclusions  

 We set up a framework in which investors observe data that contains information 

about the fundamental value of a firm contaminated with noise. Investors then solve a 

filtering problem to probabilistically extract information about the fundamental value of 

the firm. They then use this information to price stocks of the firm. If the innovations 

driving the firm fundamentals and/or the noise in the observed data come from thick-

tailed non-Gaussian probability distributions, the implied stock returns on firms can 

exhibit significant volatility clustering. We illustrate with a simulation study.  

Our results indicate that the implied returns from non-Gaussian filtering display 

statistically significant volatility clustering. The evidence is overwhelming even after 

accounting for thick tails in the returns data with symmetric stable innovations in an 

otherwise standard GARCH model. However, the volatility persistence parameter is 

somewhat low compared to the well-documented estimates for returns data from financial 

markets.  

We conclude by making the observation that our results on volatility clustering 

are equally applicable to returns on foreign exchange. In this instance, the observed data 

could include, for example, macroeconomic news such as balance-of-payments data, 
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political factors, and perhaps news reports on speculative attacks by foreign currency 

traders.  
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Table 1: Estimates from Filtering Simulated Accounting Data 

 

)c,0(S~,xy tttt αεε+=     (3) 

)c,0(S~,xx tt1tt ρηη+= α− .   (4) 

Estimation is done by maximum likelihood. Appendix B provides details on the likelihood function and some estimation details. 

Hessian-based standard errors are in parentheses. 

 

 α  c  ρ  logL 

Stable Data 1.93 (0.01) 6.39 (0.08) 1.50 (0.03) -21410.77 

Gaussian Data 2 (restricted) 1.70 (0.41) 5.74 (1.48) -20371.10 
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Table 2: GARCH-Normal Model Estimates for Simulated Returns 

 

Conditionally Heteroskedastic Model 

t t t t t tr , ~ c z , z ~ iid N(0,2)= µ + ζ ζ    (8) 

2
1t

2
1t

2
t |r|cc µ−δ+β+ω= −−       (9) 

Homoskedastic Model 

t t t t tr , ~ cz , z ~ iid N(0,2)= µ + ζ ζ     

 

Two sets of parameter estimates are reported for each of the two models above. One set of estimates is for stock returns implied by 

filtering of simulated stable data and another set is for stock returns implied by filtering of simulated Gaussian data. Estimation is done 

by maximum likelihood. Hessian-based standard errors are in parentheses. In the last column, 2 log L∆  is the likelihood ratio test 

statistic. The null model is the homoskedastic model and the alternative model is the conditionally heteroskedastic GARCH(1,1) 

model. Two restrictions, namely β δ= = 0 , on the GARCH model yield the null model. Critical values based on the 2
2χ  distribution 

are reported in parentheses.  
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 µ  ω  β  δ  c  logL 2 log L∆

Stable Data        

GARCH(1,1) Model Estimates -53.43 

(38.14)

925544.08 

(134285.99)

0.49 

(0.07)

0.02 

(0.01) 

 -17996.62 217.68 

(5.99) 

Homoskedastic Model Estimates -90.99 

(44.22)

   1468.13

(23.22) 

-18105.46  

Gaussian Data        

GARCH(1,1) Model Estimates 19.87 

(14.85)

2141.98 

(1891.94) 

1.00 

(0.00)

0.00 

(0.00) 

 -17319.00 1.84 

(5.99) 

Homoskedastic Model Estimates 19.87 

(88.44)

   991.06 

(15.67) 

-17319.92  
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Table 3: GARCH-Stable Model Estimates for Simulated Returns 

 

Conditionally Heteroskedastic Model 

)1,0(Siid~z,zc~,r tttttt αζζ+µ=    (10) 

α
−

α
−

α µ−δ+β+ω= |r|cc 1t1tt       (11)  

Homoskedastic Model 

)1,0(Siid~z,cz~,r ttttt αζζ+µ=  

 

Two sets of parameter estimates are reported for each of the two models above. One set of estimates is for stock returns implied by 

filtering of simulated stable data and another set is for stock returns implied by filtering of simulated Gaussian data. Estimation is done 

by maximum likelihood. Hessian-based standard errors are in parentheses. In the last column, 2 log L∆  is the likelihood ratio test 

statistic. The null model is the homoskedastic model and the alternative model is the conditionally heteroskedastic GARCH(1,1) 

model. Two restrictions, namely β δ= = 0 , on the GARCH model yield the null model. Critical values based on the 2
2χ  distribution 

are reported in parentheses.  
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 α  µ  ω  β  δ  c  logL 2 log L∆

Stable Data         

GARCH(1,1) Model Estimates 1.55 

(0.04)

-40.42 

(25.66)

16810.10 

(6089.51) 

0.25 

(0.10) 

0.07 

(0.01)

 -17164.56 57.68 

(5.99) 

Homoskedastic Model Estimates 1.49 

(0.11)

-33.02 

(25.62)

   705.96 

(43.77)

-17193.40  

Gaussian Data         

GARCH(1,1) Model Estimates 2.00 

(0.00)

-19.89 

(22.83)

936889.03 

(46627.13)

0.00 

(0.01) 

0.01 

(0.01)

 -17319.35 1.14 

(5.99) 

Homoskedastic Model Estimates 2.00 

(0.00)

21.53 

(29.45)

   991.04 

(15.68)

-17319.92  
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Appendix A. Symmetric Stable Distributions 

When investors perform signal extraction on the noisy data within a non-Gaussian 

setting, they assume that the disturbances tε  and tη  appearing in Equations (1) and (2) 

are drawn from the symmetric stable family. In this appendix, we briefly describe 

symmetric stable distributions. 

A random variable X  is said to have a symmetric stable distribution S cα δ( , )  if 

its log-characteristic function can be expressed as: 

ln exp( ) | |E iXt i t ct= −δ α .       (A1) 

The location parameter δ ∈ −∞ ∞( , )  shifts the distribution to the left or right, while the 

scale parameter ),0(c ∞∈  expands or contracts it about δ . The parameter α ∈( , ]0 2  is 

the characteristic exponent governing tail behavior, with a smaller value of α  indicating 

thicker tails. The standard stable distribution function has 1c =  and 0=δ .  

The normal distribution belongs to the symmetric stable family with α = 2 , and is 

the only member with finite variance, equal to 2 2c .  Zolotarev (1986) provides a detailed 

description of these distributions and McCulloch (1996a) a comprehensive survey on 

financial applications of these distributions. 

 

Appendix B. Gaussian and Non-Gaussian Filtering 

In this appendix, we provide details on how investors make use of the noisily 

observed data and Equations (1) and (2) to perform filtering or signal extraction and infer 

{ }tt Yxp , where { }11ttt y,...,y,yY −≡  is the entire history of noisy data observed to date. 
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 Equations (1) and (2) constitute a linear state space model where Equation (1) is 

the observation equation and Equation (2) is the state or transition equation. Accordingly, 

the noise tε  in Equation (1) is the observation or measurement error and the disturbance 

tη  appearing in Equation (2) is the signal shock driving the state variable (firm 

fundamentals) tx . 

We consider two alternative filtering scenarios below. One arises when both the 

disturbances tε  and tη  are assumed to be Gaussian. The other arises when both tε  and 

tη  are assumed non-Gaussian. 

 

B1. Gaussian Filtering 

When both disturbances tε  and tη  are Gaussian and both the observation and 

state equations are linear as we have in Equations (1) and (2), we obtain the standard 

linear Gaussian state space framework (the local level model). Here, the filter density 

{ }tt Yxp  turns out to be Gaussian as well, and hence is completely specified by its mean 

and variance. In this case, the celebrated Kalman filter provides recursive formulae for 

calculating the mean and variance of the filter density. These recursions can be found in 

any standard textbook, such as Harvey (1992, chapter 3). 

 

B2. Non-Gaussian Filtering 

When both disturbances tε  and tη  are non-Gaussian, we obtain the non-Gaussian 

state space model. In this case, the filter density { }tt Yxp  too will turn out to be non-

Gaussian as well. Hence, it will not be completely specified by just its mean and variance 
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alone. In this situation, the linear recursive formulae for updating the mean and variance 

of the filter density given by the Kalman filter are no longer optimal. The globally 

optimal filter turns out to be non-linear and is given by the Sorenson-Alspach (1971) 

filtering algorithm (see also Harvey (1992), p.162-165).  

This algorithm provides the following recursive formulae for obtaining one step-

ahead prediction { }1tt Yxp −  and filtering { }tt Yxp  densities for the unobserved state tx : 

p x Y p x x p x Y dxt t t t t t t( | ) ( | ) ( | )− − − − −
−∞

∞

= ∫1 1 1 1 1 ,     (B1) 

p x Y p y x p x Y p y Yt t t t t t t t( | ) ( | ) ( | ) / ( | )= − −1 1 ,    (B2) 

p y Y p y x p x Y dxt t t t t t t( | ) ( | ) ( | )− −
−∞

∞

= ∫1 1 .    (B3) 

When both disturbance terms tε  and tη  in Equations (1) and (2) are normally 

distributed, the Sorenson-Alspach filter collapses to the Kalman filter. In this case, one 

can evaluate the above integrals analytically. However, in general, these integrals cannot 

usually be solved in closed form under non-Gaussian distributional assumptions on the 

error terms. 

 One approach is to evaluate these integrals numerically, as in Kitagawa (1987), or 

Hodges and Hale (1993). An alternative that works well with high-dimensional 

integration is the Monte Carlo integration technique, as in Tanizaki and Mariano (1998) 

or Durbin and Koopman (2000). 

If it is required to estimate the unknown parameters of the model (the 

hyperparameters), namely the parameters of the distributions for tε  and tη , one can 
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make use of the maximum likelihood estimator. The log-likelihood function, conditional 

on the hyperparameters of the model, is given by: 

log ( ,..., ) log ( | ).p y y p y YT t t

t

T

1 1

1

= −
=
∑      (B4) 

 

B3. Numerical Implementation of Non-Gaussian Filtering 

In this paper, filtering in the case when the disturbances tε  and tη  in the state 

space model given in Equations (1) and (2) are non-Gaussian is done by evaluating the 

integrals given in Equations (B1)-(B3) with the numerical integration techniques in 

Bidarkota and McCulloch (1998). They provide details on the accuracy of their 

approximation procedure. 

The probability density for the symmetric stable distributions required for filtering 

and maximum likelihood estimation of all the non-Gaussian stable models is computed 

using the numerical algorithm in McCulloch (1996b).  
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