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First published October 24, 2012; doi:10.1152/jn.00447.2012.—We
developed wavelet-based functional ANOVA (WfANOVA) as a novel
approach for comparing neurophysiological signals that are functions
of time. Temporal resolution is often sacrificed by analyzing such data
in large time bins, increasing statistical power by reducing the number
of comparisons. We performed ANOVA in the wavelet domain
because differences between curves tend to be represented by a few
temporally localized wavelets, which we transformed back to the time
domain for visualization. We compared wfANOVA and ANOVA
performed in the time domain (tANOVA) on both experimental
electromyographic (EMG) signals from responses to perturbation
during standing balance across changes in peak perturbation acceler-
ation (3 levels) and velocity (4 levels) and on simulated data with
known contrasts. In experimental EMG data, wfANOVA revealed the
continuous shape and magnitude of significant differences over time
without a priori selection of time bins. However, tANOVA revealed
only the largest differences at discontinuous time points, resulting in
features with later onsets and shorter durations than those identified
using wWfANOVA (P < 0.02). Furthermore, wfANOVA required
significantly fewer (~%X; P < 0.015) significant F tests than
tANOVA, resulting in post hoc tests with increased power. In simu-
lated EMG data, wfANOVA identified known contrast curves with a
high level of precision (+* = 0.94 = 0.08) and performed better than
tANOVA across noise levels (P < <0.01). Therefore, wfANOVA
may be useful for revealing differences in the shape and magnitude of
neurophysiological signals (e.g., EMG, firing rates) across multiple
conditions with both high temporal resolution and high statistical
power.

electromyogram; time series analysis; repeated measurements; bal-
ance

WE OFTEN WANT TO COMPARE the shapes of waveforms that are
functions of time, but traditional statistical methods cannot
reveal differences between curves without sacrificing temporal
resolution or power. Certain features of the waveforms that are
clearly identifiable based on visual inspection may not be
revealed by traditional statistical tests such as f-tests or
ANOVA applied across time points due to the large number of
comparisons (Fig. 1A; Abramovich et al. 2004; Fan and Lin
1998). For example, many studies present clear differences in
mean waveforms across conditions in electromyograms
(EMGs; Hiebert et al. 1994), H-reflex responses (Frigon 2004),
kinematics (Ivanenko et al. 2005), and neural firing rates
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(Mushiake et al. 1991), but statistical tests are often not
performed or reported due to low power. A common approach
to overcome this problem is to apply statistical analyses to
mean values over a time bin of interest (Frigon 2004; Welch
and Ting 2009). However, this approach sacrifices the temporal
resolution of the interesting feature by approximating it as a
single data point. To address this undesirable trade-off between
temporal resolution and statistical power, we propose perform-
ing statistical inference outside of the time domain.

The wavelet transform is a versatile tool for the analysis of
waveforms with time-varying frequency content because it
reveals not only the different frequency components of the
waveform, but also the temporal structure of those compo-
nents. Because of its power to describe signals containing
events throughout the range of time-frequency localization, the
wavelet transform has been used in many biomedical applica-
tions, including analysis of electroencephalogram and electro-
cardiogram signals and processing for positron emission to-
mography and MRI (see Unser and Aldroubi 1996 for a
review). Like the Fourier transform, the wavelet transform
decomposes the signal of interest into orthogonal basis func-
tions with different frequency characteristics that additively
represent the original signal. In contrast to the Fourier trans-
form, the basis functions used in the wavelet transform are
temporally localized. This property allows the representation
of both frequency and temporal information within the trans-
formed signal and provides a particularly rich description of
biomedical signals, which often have nonstationary frequency
composition and burstlike temporal structure (Cohen and Ko-
vacevic 1996).

Previously, the wavelet transform has been used to identify
features of EMG signals, but it has not been used for statistical
comparison of EMG waveform across conditions (Cohen and
Kovacevic 1996; Unser and Aldroubi 1996). For example, the
wavelet transform has been used to quantify automatically the
timing of bursts within EMG signals in a manner similar to
template matching (Flanders 2002). Wavelet packets have also
been used to quantify the temporal location and width of unit
bursts in EMG signals (Hart and Giszter 2004) as well as for
extraction and classification of motor unit action potentials
from EMG records (Fang et al. 1999; Ostlund et al. 2006; Ren
et al. 2006). Wavelet analyses have also been used to estimate
latent information within EMG signals. For example, time-
dependent power spectra (Huber et al. 2011; von Tscharner
2000; Wakeling and Horn 2009) as well as changes in these
spectra, for example, with fatigue (Kumar et al. 2003), have
been estimated to offer information about underlying muscle
fiber conduction velocity (Stulen and De Luca 1981). How-
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Fig. 1. Schematic illustrating ANOVA applied to waveforms in the time domain and in the wavelet domain. A: waveform comparison in the time domain
(tANOVA). A,: in highly variable waveform data such as electromyograms (EMGs), many noisy individual trials [y(f); gray] can be averaged into mean
waveforms [u(f); black] to estimate unknown underlying signals (green) in a given experimental condition (condition 2, above, or condition 1, below).
A,: ANOVA applied to individual time points identifies significant differences between experimental conditions only at discontinuous time points [u,(#) vs. u,(t);
yellow] due to low power. B: waveform comparison in the wavelet domain (WfANOVA). B;: in WfANOVA, noisy individual trials [y(7); gray lines, left] are
transformed into the wavelet domain [Y(w); gray points, right] before statistical analysis. B,: because of the compression properties of the wavelet transform,
ANOVA identifies differences between experimental conditions in only a few significant wavelet coefficients that represent localized spatiotemporal features
[M (1) vs. M,(1); blue points, right] and that can then be transformed back into the time domain for visualization as continuous contrast curves [u,(#) vs. w,(1);

red line, left].

ever, to our knowledge, the wavelet transform has not been
previously applied in the context of hypothesis testing for
comparison of waveform shapes (Unser and Aldroubi 1996).
Here, we leveraged the beneficial properties of the wavelet
transform to develop a generalized technique called wavelet-
based functional ANOVA (wfANOVA) to compare statisti-
cally the shapes of waveforms that are functions of time
without sacrificing temporal resolution or statistical power.
Our method is related to functional data analysis (Ramsay and
Silverman 2005) because each wavelet is a function of time
rather than a single time point. When expressed in the wavelet
domain, temporally localized waveform features tend to be
well-represented by a few wavelets rather than by many cor-
related time samples (Fig. 1B) or by many independent sinu-
soids as in Fourier analysis. Therefore, applying statistical tests
to wavelet coefficients reduces the number of statistical tests
required while retaining statistical power (Angelini and Vida-
kovic 2003). In contrast to many wavelet-domain techniques
that have been applied to EMG data, wfANOVA does not use
information about the wavelet coefficients themselves to sup-
pose possible physiological mechanisms that may have gener-
ated the EMG signals (e.g., subpopulations of motor units or
muscle fiber types). Rather, wavelets are used only as basis
functions that correspond to these localized time differences
that are easily identifiable by eye. The unique and generaliz-
able attribute of wfANOVA is the reconstruction of the wave-
lets into the time domain after performing functional analyses
to allow the visualization of the effects of experimental ma-
nipulation as contrast curves in the time domain (Fig. 1B)
rather than reporting these effects in the wavelet domain.

As proof of principle, we applied wfANOVA to previously
published EMG data to demonstrate its ability as a general
method for determining differences in the time courses of
waveforms. We first compared the ability of wfANOVA and
time-point ANOVA (tANOVA) to identify contrast curves in
previously published EMG waveforms in response to pertur-
bations during standing balance (Welch and Ting 2009) with-
out picking time windows a priori. Previously, ANOVA was
performed on mean values of EMG calculated during fixed
time bins, demonstrating that peak perturbation acceleration
alters the magnitude of early periods of EMG, whereas peak
perturbation velocity affects later periods (Welch and Ting
2009; Fig. 2). Here, we perform a reanalysis of these data to
test whether the effects of perturbation peak acceleration and
peak velocity can be visualized as continuous contrast curves
without relying on time windows chosen by the experimenter.
Finally, we compared the ability of WwfANOVA and tANOVA
to identify known contrast curves in simulated EMG data with
noise characteristics similar to those of recorded EMG data but
with known temporal structure.

METHODS

EMG data. The experimental protocol was approved by the Insti-
tutional Review Boards of Emory University and Georgia Institute of
Technology. We applied wfANOVA and tANOVA to previously
published EMG waveforms recorded during postural perturbations
elicited by translating the support surface forward or backward in the
horizontal plane. Detailed experimental methods are presented in an
earlier paper (Welch and Ting 2009). Briefly, 7 healthy subjects [2
female, 5 male, mean age 19.4 = 1.4 yr (mean * SD)] stood on a
moveable platform that translated in the horizontal plane. Subjects
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withstood translation perturbations of the support surface that were
designed so that platform peak acceleration and peak velocity could
be varied independently. Perturbations were delivered with peak
velocities of 25, 30, 35, and 40 cm/s and peak accelerations of 0.2, 0.3,
and 0.4 g. Although additional peak acceleration levels were admin-
istered to subjects, only the acceleration levels for which all levels of
velocity could be achieved with the experimental apparatus were
considered for further analysis in a balanced ANOVA design. Con-
ditions were randomized, and each subject was nominally exposed to
each of the conditions 5 times, although in some cases trials were
repeated or sessions ended early due to fatigue. We used all available
trials for each of the 7 subjects, resulting in 33—38 trials in each of the
12 conditions (Table 1). We were particularly interested in the ability
of WfANOVA and tANOVA to identify variation in EMG waveforms
with perturbation characteristics within two 150-ms time bins referred
to as the initial burst (IB) and plateau region (PR), respectively,
beginning 100 ms after perturbation onset (Fig. 2).

EMG was collected during each trial, processed, and registered to
the onset of perturbation acceleration. We examined the activity of
ankle dorsiflexor tibialis anterior (TA) during forward perturbations
and ankle plantarflexor medial gastrocnemius (MG) during backward
perturbations. Raw EMG signals were collected at 1,080 Hz, high-
pass filtered at 35 Hz (3rd-order O-lag Butterworth filter), demeaned,
rectified, and low-pass filtered at 40 Hz (1st-order 0-lag Butterworth
filter). EMG signals were resampled at 360 Hz, registered to platform
onset to within 1 sample (<1 ms), and truncated to be 512 samples

long (1.42 s), including 10 samples (0.03 s) before platform onset.
EMG signals were normalized to the unit interval.

Mean difference curves. Differences in average EMG waveform
shape across levels of peak perturbation velocity and peak perturba-
tion acceleration were visualized as mean difference curves. Grand
mean time courses of EMG activity for each muscle and level of
perturbation acceleration and velocity were calculated. Mean differ-
ence curves across perturbation levels were calculated by subtracting
the grand mean time course from the lowest level of perturbation
acceleration or velocity from each higher level. Mean difference
curves represent the mean effect of increases in perturbation level but
provide no information about whether any part of the curve corre-
sponds to statistically significant effects.

Wavelet decomposition and structure of wavelet-transformed
signals. The structure of the discrete wavelet transform can be
understood as generally analogous to that of the more familiar discrete
Fourier transform in that both are linear transformations. Similar to
the discrete Fourier transform, the discrete wavelet transform results
in a number of wavelet coefficients equal to the number of time
samples of the transformed signal (Fig. 3, A and B), provided the
length of the signal is a power of two. Signals can be padded with
zeroes or symmetrically extended to appropriate length. This one-to-
one correspondence is advantageous for both transforms because it
provides a reversible linear transformation from the original signal to
the wavelet (or Fourier) domain and back. Wavelet basis functions are
typically orthogonal, as are the sinusoidal elements that form the basis

Table 1. Total number of replicates across subjects for each condition
Acceleration Factor Level 1 2 3
Velocity Factor Level Peak Velocity Peak Acceleration 02¢g 03¢g 04¢g Total
1 25 cm/s 37F, 36 B 37,36 37,37 111,109
2 30 cm/s 37,37 37,36 37,36 111, 109
3 35 cm/s 37,37 38,37 34,38 109, 112
4 40 cm/s 38,33 33,37 37,37 108, 107
Total 149, 143 145, 146 145, 148 439, 437

F, number of forward perturbations for which tibialis anterior (TA) is the agonist; B, number of backward perturbations for which medial gastrocnemius (MG)

is the agonist.
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Fig. 3. Schematic comparison of discrete Fou-
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in the Fourier domain. This orthogonality is important for statistical
inference, as multivariate procedures such as multivariate ANOVA
(MANOVA) break down when high correlations are observed be-
tween variables, as in time series data. Because observations in the
wavelet domain or Fourier domains are nearly uncorrelated (Angelini
and Vidakovic 2003; Fan and Lin 1998; Vidakovic 2001), these
effects are minimized.

However, whereas the sinusoids that form the basis in the Fourier
domain are infinite in time (Fig. 3C), wavelets are temporally local-
ized functions that are nonzero only in small regions (Fig. 3D).
Whereas Fourier transforms depend heavily on cancellation (Strang
1989), resulting in a large number of frequencies to reconstruct a
square-wave, for example (Fig. 3C), many wavelet coefficients in the
transformed data may be of small or zero magnitude (Fig. 3D).
Therefore, signals can be compressed into fewer wavelet coefficients
than original time samples by quantizing or eliminating small-mag-
nitude coefficients. This enables the use of the wavelet transform as
part of a data compression scheme (Unser and Aldroubi 1996).

In contrast to the discrete Fourier transform, in which the trans-
formed coefficients are arranged in order of increasing frequency (Fig.
3A), the coefficients of the discrete wavelet transform are arranged in
a blocked structure that is ordered in time as well as in frequency (Fig.
3B). This blocked structure results from the recursive filtering and
downsampling process used to perform the discrete wavelet trans-
form. The first block of coefficients, referred to as the “approxima-
tion” coefficients, comprise a low-pass filtered, downsampled repre-
sentation of the original signal produced by convolving the signal with
a low-pass filter (based on the approximation or “father” wavelet) and
downsampling the filtered signal by a factor of two (Cohen and
Kovacevic 1996). The approximation coefficients are arranged in
order of increasing time, roughly representing the magnitude of the
signal at that time point, which corresponds to the peak of the wavelet
function for the third-order coiflets used here. The remaining blocks of
coefficients, referred to as “detail” coefficients, represent successively
higher frequency information that is absent from the approximation
and are produced by convolving the signal with a high-pass filter

SN

|
approximation detail detail detail detail
level 4 (a4) level 4 (d4) level 3 (d3) level 2 (d2) level 1 (d1)
basis basis

functions functions

based on the detail or “mother” wavelet. The coefficients within each
detail block are also arranged in order of increasing time, although the
length of the detail blocks increases with the frequency content. For
the length 512 signals and level 4 wavelet decomposition used here,
the approximation coefficients (level a4) are arranged in a block of
length 32, followed by blocks of detail coefficients of length 32 (level
d4), 64 (d3), 128 (d2), and 256 (d1) with progressively higher
frequency content (Fig. 3B). To produce a multilevel wavelet decom-
position, the signal is 1st divided into approximation and detail
coefficients, and approximation coefficients are recursively divided
into higher-level approximation and detail coefficients. The maximum
number of recursions during the transform depends on both the length
of the input signal and the particular wavelet chosen.

WfANOVA. Individual EMG waveforms were transformed to the
wavelet domain using the MATLAB wavelet toolbox (http://www.
mathworks.com; The MathWorks) and analyzed with three-factor
ANOVA (velocity X acceleration X subject). EMG signals were
transformed using third-order coiflets (decomposition level 4; wave-
dec.m) with periodic extension. Coiflets were selected because they
are symmetrical and therefore do not introduce phase distortions in the
locations of the transformed signals. We assumed a fixed-effects
three-factor ANOVA model (Sokol and Rohlf 1981) where each
wavelet coefficient was comprised as:

Yijen(W) = M(W) + A(w) + B(w) + C(w) + Ej (W) (1)

where M(w) designates the wavelet coefficients of the grand mean,
A,/(w) designates the effects of the ith peak platform velocity level
(among 25, 30, 35, and 40 cm/s), B,(w) designates the effects of the
Jjth peak platform acceleration level (among 0.2, 0.3, and 0.4 g), C,(w)
designates the effects of the kth subject (among 1-7), and E;, (W)
designates Gaussian random process noise on the nth replicate of that
combination of other factors. Wavelet coefficients corresponding to
significant initial F tests (anovan.m) at significance level a = 0.05
were then evaluated for significant contrast across velocity or accel-
eration levels with separate post hoc Scheffé tests to test the following
null hypotheses:
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Hopt A=Ay, = A3 = Ay 2
Hyp: By =B, = B3 (€))

After initial ANOVA, post hoc tests (multcompare.m) were per-
formed for each of the velocity and acceleration factors at significance
levels Bonferroni-corrected by the number of significant correspond-
ing initial F tests. Contrasts in wavelet magnitude were calculated
with respect to the lowest velocity and acceleration conditions. Sta-
tistically significant contrasts in wavelet coefficient magnitude were
then assembled into wavelet-domain contrast curves and transformed
back to the time domain. All coefficients of wavelet-domain contrast
curves were initially zero; wavelet coefficients corresponding to
significant contrasts were set to the estimate of the contrast. Wavelet-
domain contrast curves were then transformed back to the time
domain for visualization (waverec.m).

tANOVA. tANOVA was performed identically to wfANOVA with
the exception that it was performed entirely in the time domain.
Similar to wfANOVA, three-way ANOVA (velocity X acceleration X
subject) was performed at each time point at significance level a =
0.05. We assumed a fixed-effects three-factor ANOVA model where
each time sample was comprised as

Yijn() = (1) + (1) + Bi(1) + yi(1) + &3, (1) )

where wu(7) designates the grand mean, «,(f) designates the effects of
peak platform velocity level i, B/(f) designates the effects of peak
platform acceleration j, y,(f) designates the effects of subject k, and
€;1,(1) designates Gaussian random process noise on the nth replicate
of that combination of other factors. Time points corresponding to
significant initial F tests were then evaluated for significant contrast
across velocity or acceleration levels with separate post hoc Scheffé
tests to test the following null hypotheses:

Hoa:a1:a2:a3:a4 (5)
Hopg: Bi=B=Bs (6)

As in wfANOVA, post hoc tests were performed for each of the
velocity and acceleration factors at significance levels Bonferroni-
corrected by the number of significant corresponding initial F tests.
All coefficients of time-domain contrast curves were initially zero.
Time samples corresponding to significant contrasts were set to the
estimate of the contrast.

Comparing wfANOVA and tANOVA. We assessed the ability of
wfANOVA and tANOVA to identify the variation in EMG wave-
forms with peak perturbation acceleration and peak perturbation
velocity identified previously using time bin analysis. We predicted
that significant contrasts due to perturbation peak acceleration would
be temporally localized within the IB, whereas significant contrasts
due to perturbation peak velocity would be temporally localized

peak perturbation
magnitude scaling -
varies with perturbation

level

v |

8(-1,)

t‘li El—>
max

within the PR. Contrast curves identified by WwfANOVA and tANOVA
were compared with each other as well as to mean difference curves
by visual inspection and by quantifying the onset times, offset times,
and widths of identified features. Onset and offset times were calcu-
lated as the times of the first and last samples for which curves were
=10% of their positive peak value and were verified manually.
Feature width was quantified as offset time minus onset time. Feature
width for curves containing only zero values was specified as zero.
Differences in onset time, offset time, and feature width between
wfANOVA and tANOVA contrast curves were evaluated using paired
1-tests.

To estimate differences in statistical power obtained with
wfANOVA and tANOVA, we directly compared the number of
significant initial F tests identified by the two methods. The Bonfer-
roni correction for multiple comparisons requires that the significance
level « used in post hoc tests be divided by the number of significant
initial F tests. Therefore, we compared the number of significant
initial F tests (matched r-test, « = 0.05) as a measure of relative
statistical power of the two methods. All values are reported as means =
SD unless otherwise noted.

Performance of wfANOVA and tANOVA on simulated EMG data.
We next tested the ability of wfANOVA and tANOVA to identify
contrast curves in data with temporal structure that was known a
priori. Simulated EMG waveforms were created for all levels of
platform acceleration and velocity by scaling and summing waveform
shapes derived from the average rectified platform acceleration and
velocity for midlevel perturbations and adding noise processed to
approximate recorded EMGs (Fig. 4). Although the acceleration and
velocity waveform shapes overlapped in time, they were indepen-
dently scaled across perturbation levels. Although the independent
scaling of acceleration and velocity means that the waveforms did not
represent physically realizable perturbations, it allowed us to evaluate
the performance of the two methods using a two-factor ANOVA
model with no interaction.

Recorded platform acceleration and velocity traces for peak accel-
eration level of 0.3 g and peak velocity level of 30 cm/s were averaged
and normalized to have unit maximum value. To simulate EMGs
across perturbation conditions, acceleration and velocity traces were
subjected to a common delay and scaled by the appropriate perturba-
tion magnitudes (0.2-0.4 g and 25-40 cm/s) as well as by scaling
factors that were selected manually so that simulated EMG wave-
forms were of comparable magnitude to recorded EMG waveforms in
the 0.3-g, 30 cm/s perturbation condition. See Table 2 for parameter
values.

A combination of Gaussian and signal-dependent noise was added
to each of 30 trials for each condition for a total of 360 trials. Gaussian
noise was taken with mean 0 and standard deviation o = ng sampled
at each time step in the simulations. In signal-dependent noise, the

signal-dependent Gaussian  simulated
noise noise EMG
v .| N, e) O« NOn,) |

filter+rectify

at ‘t" a l—»
fixed fixed scaling
canonical time delay parameters
platform
kinematics

Fig. 4. Simulated EMG waveforms were created by scaling and summing canonical waveforms based on recorded platform kinematic traces from a midrange
perturbation level and adding noise. Average kinematic traces from perturbations with peak acceleration of 0.3 g and peak velocity of 30 cm/s were half-wave
rectified, subjected to a common delay (,), scaled to different magnitudes [maximum acceleration (a,,,,), 0.2-0.4 g; maximum velocity (v,,,,), 25-40 cm/s],
multiplied by fixed scaling factors, summed, corrupted with signal-dependent and Gaussian noise, filtered, and rectified. c¢,, Platform velocity scaling factor; c,,
platform acceleration scaling factor; e, noiseless EMG value; ng,,y, signal-dependent noise parameter; n, Gaussian noise parameter.
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Table 2. Parameters used for simulated EMGs

Parameter Definition Value
c, Platform velocity scaling factor 0.005
c, Platform acceleration scaling factor 0.75
t, Time delay 100 ms
Nspn Signal-dependent noise scaling parameter 0.6
ng Gaussian noise scaling parameter 0.2

EMG, electromyogram.

amplitude of random variability increases with the signal mean.
Therefore, similar to previous studies (Harris and Wolpert 1998;
Tresch et al. 2006; Valero-Cuevas et al. 2009), signal-dependent noise
was modeled as Gaussian noise with mean 0 and standard deviation
Ospy = Ngpne, Where e is the noiseless EMG value. Noise contribu-
tions from both sources were added, and the sum was processed
identically to recorded EMG (see above) to match approximately the
bandwidth of recorded signals. Noise was processed before adding to
the baseline waveforms so that the differences between perturbation
levels would be known exactly. To test the robustness of WfANOVA
to higher noise levels, we varied the amount of Gaussian noise across
an order of magnitude by sweeping the Gaussian noise parameter ng
from 0.1 to 1.0 in increments of 0.1. This range was selected such that
the simulated EMG waveforms produced over this range varied from
almost noiseless to highly degraded. The degree to which the simu-
lated EMG waveforms were corrupted was quantified by calculating

velocity contrasts

r? values between each waveform before and after noise was added
(Tresch et al. 2006). The > was calculated between vectors as the
square of the output of the MATLAB function corr.m.

Simulated EMG waveforms were subjected to wfANOVA and
tANOVA, and the similarity between the identified contrast curves
and the known underlying signals was quantified with > and onset
times, offset times, and widths of identified features. The procedures
for wfANOVA and tANOVA on simulated EMGs were identical to
those performed on experimental data with the exception that the
subject factor was omitted. Goodness-of-fit (+*) was calculated be-
tween identified contrast curves and known difference curves between
baseline EMG waveforms for each level. Onset times, offset times,
and feature widths of identified contrast curves were calculated as in
experimental data and expressed as errors relative to values in known
difference curves. Differences in > values and errors in onset times,
offset times, and feature widths between wfANOVA and tANOVA
contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across pertur-
bation levels. Visual inspection of TA and MG EMG traces
suggested that EMG magnitude during IB increased with
increases in peak platform acceleration (e.g., Fig. 5, blue traces
from left to right), whereas EMG magnitude during PR in-
creased with increases in peak platform velocity (e.g., Fig. 5,

acceleration contrasts
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e
i

mean
difference
wfANOVA —

tANOVA

>

>

| <
N
oy

contrast V,
35 cm/s
vs. 25 cm/s —

contrast V,
30 cm/s
vs. 25 cm/s —p

if

wfANOVA

contrast

___mean
difference

__ tANOVA
contrast

contrast A, contrast A,

03g 04g9
vs.0.2¢g vs.0.2g
IB PR IB PR IB PR

! 40 cm/s

35 cm/s

30 cm/s

25 cm/s

........ group —— subject individual
mean = means trials

Fig. 5. Data and contrast curves of TA EMG across 3 levels of acceleration and 4 levels of velocity. Gray traces: individual TA EMG traces. Blue traces: subject
means for all perturbation levels. Black traces: mean difference curves across contrasts. Red traces: statistically significant identified contrast curves identified
with wfANOVA. Yellow traces: statistically significant identified contrast curves identified with tANOVA. Left: contrasts V5, V,, and V, designating differences
obtained between peak velocity levels. Top: contrasts A, and A, designating differences obtained between peak acceleration levels. Arrows in contrast V;
designate onset and offset times for mean difference and contrast curves. Offset time for mean difference curve (1,210 ms) is beyond scale and not shown.
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Table 3. Number of significant coefficients identified by
WfANOVA and tANOVA for EMG responses to peak acceleration
and velocity

wfANOVA tANOVA
Muscle Factor #F P #Post #F P #Post

TA \% 35 0.0014 6 202 0.0002 63
A 42 0.0012 12 97 0.0005 53
S 88 0.0006 512 0.0001

MG Vv 35 0.0014 6 173 0.0003 25
A 47 0.0011 5 167 0.0003 45
S 88 0.0006 512 0.0001

wfANOVA, wavelet-based functional ANOVA; tANOVA, ANOVA per-
formed in the time domain; V, peak perturbation velocity; A, peak perturbation
acceleration; S, subject. #F, number of coefficients corresponding to significant
initial F tests; #Post, number of coefficients corresponding to significant post
hoc tests.

blue traces, bottom to top), consistent with previous results
(Welch and Ting 2009). These observations were corroborated
by mean difference curves calculated between levels of peak
velocity or peak acceleration (Fig. 5, black traces). However,
the effects of acceleration and velocity were not clearly sepa-
rated, as IB magnitude appeared to scale with both peak
acceleration as well as with peak velocity, and the mean
difference curves calculated between the highest and lowest
peak velocity level were nonzero throughout IB as well as PR
time periods (Fig. 5, black trace, contrast V;). Mean difference
curves were nonzero for almost the entire time course consid-
ered, with nonzero regions spanning 1,016 = 176 ms in TA
and 1,216 = 99 ms in MG and onset times during or before 1B
for differences in both acceleration (~106 ms, TA; ~104 ms,
MG) and velocity (~119 ms, TA; ~69 ms, MG).

Unlike mean difference curves, contrast curves from
wfANOVA only identified statistically significant differences
in EMG during the IB time period due to increases in accel-
eration (Fig. 5, red traces, contrasts A; and A,) and only in the
PR period and later in the response due to increases in velocity
(Fig. 5, red traces, contrasts V,—V;). These results confirmed
previously described scaling relationships but without assum-
ing analysis time bins a priori (cf. Welch and Ting 2009).
Consistent with the previously described relationships, average
wfANOVA acceleration contrast-curve onset times were 107 = 6
and 88 = 2 ms for TA and MG, respectively, whereas average
wfANOVA velocity contrast-curve onset times were 331 =+
127 and 374 = 93 ms for TA and MG, respectively. Acceler-
ation contrast curves for TA and MG were primarily charac-
terized by smooth features of ~150 ms in width centered
within the IB time period with magnitude increasing with the
peak acceleration level (Fig. 5, red traces, A; and A, during
IB). Velocity contrast curves were primarily characterized by
wider (250 ms) smooth features within PR as well as some
nonzero regions after the end of PR. Nonzero regions in the IB
observed in the mean difference curves across velocity were
not significantly different from zero (Fig. 5, V;: black vs. red
during IB). Unlike mean difference curves, which were non-
zero for ~1,000 ms, average feature widths in wfANOVA
contrast curves were 273 = 92 and 235 * 121 ms in TA and
MG, respectively.

Contrast curves from tANOVA identified statistically sig-
nificant differences in time periods generally similar to

wfANOVA but with features that were discontinuous functions
of time with later onset times and smaller feature widths (Fig.
5, red vs. yellow traces). The discontinuities and sharp edges in
tANOVA contrast curves were not observed in data nor in
mean difference curves (Fig. 5, compare yellow traces to red or
black) but were due to the large differences required at a single
time point to reach statistical significance (Fig. 5, yellow
tANOVA contrast V; during PR and contrast A; during IB).
Thus, at smaller contrast levels, features of mean difference
curves identified as significant by wfANOVA were rejected as
insignificant by tANOVA due to reduced power. For example,
small features identified late in the time course (Fig. 5, red vs.
yellow traces at ~550 ms, contrast V;) by wfANOVA were not
significantly different from zero in tANOVA due to reduced
power. Like WfANOVA, tANOVA acceleration contrast-curve
onset times were centered during IB (111 = 8 ms, TA; 110 =
6 ms, MG), and velocity contrast-curve onset times were
centered during PR (303 = 12 ms, TA; 399 = 22 ms, MQG).
However, compared with wfANOVA, tANOVA contrast-
curve onsets were delayed by 37 = 35 ms (P < 0.02, t; =
—2.94; Fig. 5, compare red errors and yellow arrows in
contrast V;). tANOVA contrast-curve offset times were ad-
vanced compared with wfANOVA (57 = 88 ms), although this
difference did not reach statistical significance (P > 0.10). The
combination of delayed onset times and comparable offset
times resulted in a significant overall reduction in feature width
of 91 = 96 ms in tANOVA compared with wfANOVA (P <
0.02, t, = 2.99).

Significant tests in WANOVA and tANOVA. Because of the
compression properties of the wavelet transform, wfANOVA
identified significantly fewer significant F tests than tANOVA,
allowing post hoc tests to be performed at higher significance
levels (Table 3). Considering the velocity and acceleration
factors for TA and MG, the number of significant F' tests was
40 £ 6 in wfANOVA vs. 160 = 45 in tANOVA (P < 0.015,
t; = 5.06). However, there was no significant difference
between the percentage of initial F' tests that led to significant

TA, Peak Velocity MG, Peak Velocity

10 10
IB |PR

Number of
Significant Wavelets
o
o

0+ 0+
0 500 1000 0 500 1000
Location of

Significant Wavelet (ms)

TA, Peak Acceleration MG, Peak Acceleration
10 10
| LﬂL | m
0 0
0 500 1000 0 500 1000
Fig. 6. Distribution of significant wavelet coefficients in the time domain for all
subjects. Bar plots are histograms of locations of significant wavelets in time

for each muscle and factor. Vertical lines designate IB and PR time windows.
MG, medial gastrocnemius.
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post hoc tests in the two methods (25 = 14%; matched t-test,
P <0.11, t; = 2.2). Considering the subject factor, all 512 time
samples for tANOVA were significantly different, whereas 88
wavelet coefficients, including all 32 approximation-level
wavelet coefficients, were significantly different for both TA
and MG. Although we did not perform post hoc tests on subject
factors, these differences demonstrate that there were differ-
ences in the mean waveform shape across subjects. We were
nonetheless able to identify common effects of the acceleration
and velocity factors on these waveforms.

Wavelet coefficients that varied significantly in post hoc
tests were centered at time points consistent with the location
of differences identified in contrast curves (Fig. 6). Across
acceleration contrasts, 5 of 12 significant wavelet coefficients
for TA and 3 of 5 coefficients for MG were centered within IB.
In addition, some wavelet coefficients that varied with peak
acceleration level were identified after the end of PR (TA,
2/12; MG, 2/5). Across velocity contrasts, the majority of
significant wavelet coefficients (TA, 5/6; MG, 6/6) were cen-
tered after PR. Because wavelet coefficients centered later in
the response also contribute substantial energy during earlier
periods, the absence of significant wavelets during the PR
period does not imply that there were no differences in wave-
forms during PR. For example, one of the wavelet coefficients
that varied significantly with perturbation peak velocity for

velocity contrasts

contrast V,

40 cm/s B PR
vs. 25 cm/s 0.1 au|
signal AT T~
mean difference NW,QAW_,K‘_\«/-’\ R2=0.69
WIANOVA ——"] MNW\\_\_ 0.99
tANOVA ——] 006
200 ms
contrast V,
35cm/s | 1 T~—0wW
VS. 25 cm/s ~AAVTITNY M 0.71
—1 [ o9 +
|t ( 088
+
contrast V,
30 cm/s —
VS. 25 cm/s VTV T A, 0.66
——T— 080
0.00 -
; mean tANOVA
— signal " difference 7 contrast

MG was centered at 567.5 ms after perturbation onset, well
after the end PR (400 ms). However, the first nonzero sample
of the wavelet corresponding to that coefficient was much
earlier, at 216.7 ms, and the absolute magnitude of the wavelet
waveform had increased to ~20% of its maximum by 400 ms.

Simulated EMG data. wfANOVA revealed actual contrasts
with high precision, superior to tANOVA, when applied to
simulated EMG signals with nominal noise levels chosen to
resemble experimental EMG data (Fig. 7, green traces, bottom
right). At this noise level, the average % values between
original and noise-corrupted signals was 0.78 = 0.06. Contrast
curves identified by wfANOVA were similar to the known
differences in the signals (Fig. 7, compare red vs. green traces;
2 = 0.94 =+ 0.08). As in the case of experimental data,
tANOVA identified discontinuous contrast curves (Fig. §,
yellow trace, contrast V,) and also failed to find any significant
contrast between the lowest two levels of velocity (Fig. 7,
compare red vs. yellow traces for V,). The r* values between
tANOVA contrast curves and actual contrast curves were
lower than in wfANOVA (* = 0.76 = 0.43), although this
difference was not statistically significant due to the small
sample (paired t-test; P < 0.30, ¢, = 1.19). Compared with
wfANOVA, tANOVA contrast curves also exhibited delayed
onset time (43 £ 41 ms), advanced offset time (39 * 46 ms),
and decreased feature width (82 = 84 ms), similar to the
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Fig. 7. Comparison of waveforms representing mean differences across perturbation levels (mean difference curves; black) identified in simulated EMG data
(gray) with contrast curves identified with wfANOVA (red) and tANOVA (yellow) and with veridical underlying signals (green). Legend as in Fig. 4. Numbers
next to curves indicate 7% values between identified mean difference curve or contrast curve and underlying signals. %Combination of peak acceleration and peak
velocity that was used to generate the remaining perturbation levels. au, Arbitrary units.
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findings using experimental data. However, these differences
did not reach statistical significance (P = 0.079) due to the
small sample size.

Across noise levels, wfANOVA performed superior to
tANOVA in identifying contrast curves in simulated data with
known temporal structure. Simulated EMG waveforms varied
from almost noiseless (average * between original and noise-
corrupted signals 0.93 + 0.02) to highly degraded (¥ = 0.13 +
0.07; Fig. 8, A and B). As expected, both algorithms had
reduced ability to identify significant features of contrast
curves as noise level increased. However, wfANOVA was
more tolerant to noise (Fig. 8C). For example, at the highest
noise level, wfANOVA identified significant contrasts at levels
V,, A;, and A,, whereas tANOVA identified significant con-
trasts only at level A,. Across noise levels, wfANOVA was
able to reveal better the actual contrast curves than tANOVA as
measured by /* (median *+ interquartile range: 0.92 + 0.87,
wfANOVA; vs. 0.29 * 0.90, tANOVA; P < 10~ 7; Wilcoxon
paired signed-rank test), onset time error (33 * 61 vs. 57 *
100 ms; P < 10~°), offset time error (47 * 95 vs. 54 + 86;
P < 10™%), and feature width error (99 * 367 vs. 178 = 428;
P<107).

DISCUSSION

Here, we developed a novel method to compare statistically
the shapes of waveforms that are functions of time that could
be applied to many types of neurophysiological and other data.
The technique can be used to identify temporal features char-
acterizing the differences between waveforms across condi-
tions that may not appear to be statistically significant due to
multiple comparisons required across time points and that are
abolished when analyzing large time bins. Such challenges are

1

—e— WIANOVA —o—tANOVA

median +
range

observed widely across neurophysiological and kinematic data,
which are functions of time, and could be equally useful in the
analysis of EMGs, reflex responses, kinematics, or neural firing
rates. The method can also be extended by using different
statistical procedures on the wavelet coefficients.

An advantage of wfANOVA is that no time windows need
be assumed, removing the bias of the experimenter and possi-
bly aiding in data discovery. The timing of significant differ-
ences in the contrast curves identified using wfANOVA were
consistent with our previous analysis in which we selected time
windows a priori based on previous knowledge, a proposed
hypothesis, and trial and error (Welch and Ting 2009). There-
fore, using wfANOVA can be used to identify the time win-
dows of interest without prior knowledge or bias. Of course,
this approach carries with it the burden of carefully controlling
for false positives, which has been a subject of controversy in
the neuroimaging literature (Bennett et al. 2009). We consider
our implementation of wfANOVA conservative in that it uses
a Bonferroni procedure to control the familywise error rate.
Other approaches, such as false discovery rate controls, are
available and have been applied to neuroimaging data (Geno-
vese et al. 2002).

wfANOVA further revealed that the magnitude of mean
difference curves found by subtracting time traces was not a
reliable predictor of statistically significant differences be-
tween conditions. In our data set, we were able to reveal that
some very small features were statistically significant, whereas
larger ones that presumably had more variability were not
statistically significant. As an example, our data showed small
statistically significant features with changes in acceleration in
a time period that we did not analyze in the prior study (Fig. 5,
e.g., contrasts A, and A, bumps in red curve just before 1st
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vertical line). These differences likely reflect scaling of short-
latency stretch reflex activity, which has been previously
shown to be active during this time period (Carpenter et al.
1999; Gollhofer et al. 1989), starting ~50 ms earlier than the
long-latency response that was the focus of our prior study
(Welch and Ting 2009). Thus wfANOVA can reveal meaning-
ful contrasts across conditions that may not be apparent in
visual inspection due to feature size, potentially providing
novel insight into underlying neural mechanisms.

One primary difference between our approach and wavelet-
domain statistical techniques applied previously to neuroimag-
ing data is that we apply the wavelet transform to all data
replicates within and across conditions rather than averaging
data within each condition or subject before conversion to the
wavelet domain. In addition, we focus on variations in the
temporal rather than spatial domain. In many cases, wavelet-
domain statistical analysis is used in medical imaging data as
a “denoising” filter to estimate the underlying signals from
multiple replicates of data with extremely low signal-to-noise
ratio (Dinov et al. 2005; Fadili and Bullmore 2004; Raz and
Turetsky 1999; Ruttimann et al. 1998; Unser and Aldroubi
1996). Because neuroimaging signals, particularly functional
MRI (fMRI), tend to be noisy and of small magnitude, with
signal intensity changes close to scan-to-scan variability, prior
techniques first obtained averaged fMRI data for each subject
within each experimental condition before performing the
wavelet transformation (Raz and Turetsky 1999; Ruttimann et
al. 1998) and performed statistical tests on a subset of wavelet
coefficients at prespecified levels of detail to increase statistical
power. Because the signal-to-noise ratio is much less problem-
atic in EMG signals, we were able to apply directly the wavelet
transformation to all replicates of EMG collected and to per-
form ANOVA on all wavelet coefficients without any a priori
assumptions about their importance.

We performed some initial analyses suggesting that there is
little benefit to prefiltering data by thresholding wavelet coef-
ficients before performing ANOVA and that, further, such
procedures can introduce unwanted artifacts. To test this idea,
we reanalyzed experimental data from muscle TA presented in
RESULTS with the addition of an initial thresholding procedure.
In our reanalysis, we applied a hard threshold rule before
performing ANOVA and post hoc tests on wavelet coefficients.
Wavelet coefficients for which the grand mean of the wavelet
transform magnitude was below a threshold corresponding to
the 50th, 90th, or 99th percentile of observed wavelet coeffi-
cient magnitudes (Fig. 9A) were set to 0. Reconstructed wave-
forms at the 50th percentile threshold were similar to the
original data (r2 ~ (0.99; Fig. 9B) and almost doubled the
critical value that could be used in the post hoc tests, nominally
increasing power. However, there were no practical benefits to
this power increase because the number of significant post hoc
tests remained unchanged. Thresholding at the 90th percentile
(r* =~ 0.90) introduced a small negative-going artifact in the
signal before EMG onset (Fig. 9B, 2nd to fop trace) and
decreased the number of significant post hoc tests by 25%. At
the 99th percentile threshold, waveforms were considerably
smoothed (#* = 0.45 = 0.19), and the negative-going artifacts
were introduced well before EMG onset, at latencies of ~80
ms. Increased threshold levels also led to the introduction of
artifacts in identified contrast curves (Fig. 9C; note that nega-
tive bump in contrast V, that is apparent at lower threshold
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a4 d4 d3 d2 d1 \ discard 50%
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Fig. 9. Results of initial thresholding of small wavelet coefficients. A: example
wavelet transform magnitude (IY(w)l) with threshold levels indicated. The 7>
values (means * SD) were calculated for all individual TA EMG trials before
and after thresholding for each threshold level. B: example of an individual TA
EMG waveform as thresholding is applied. Vertical lines indicate IB and PR
periods. Because of the compression properties of the wavelet transform, there
are minimal changes in the waveform until the highest level of thresholding
(99%; top purple trace) is applied. C: wfANOVA contrast curves identified at
additional features at increased threshold levels. As threshold is increased (left
to right), overall wfANOVA contrast-curve shapes are retained until the
highest level of thresholding. The 7> values were computed between the
thresholded contrast curves and the original contrast curve.

200 ms

levels is absent at 99th percentile threshold). Although many
more sophisticated thresholding procedures exist and could be
beneficial (Donoho and Johnstone 1994; Donoho et al. 1995),
more research is required to identify recommended practices.

General applications. Although our implementation of
wfANOVA presented a particular statistical model, the underly-
ing concept of performing statistical inference in the wavelet
domain and then transforming back to time domain is general
to ANOVA and other statistical tests. Here, we presented one
particular implementation of wfANOVA based on a fixed-
effects ANOVA model. However, interaction effects could
also be included in the ANOVA model. Similarly, MANOVA
hypothesis tests for different blocks of wavelet coefficients
have been suggested for fMRI data (Raz and Turetsky 1999).
False discovery rate controls (Benjamini and Hochberg 1995)
could also be applied in place of the Bonferroni procedures
presented here.
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Statistical inference can also be applied to transforms other
than the wavelet transform that involve a common orthogonal
basis for all waveforms under analysis. It is possible to perform
analyses similar to wfANOVA using the discrete Fourier
transform rather than the discrete wavelet transform (Fan and
Lin 1998), although the Fourier transform typically provides a
less compact description of biomedical signals. However, al-
though wavelet packets can provide a more compact descrip-
tion of EMG signals (Hart and Giszter 2004) than either the
discrete Fourier transform or the discrete wavelet transform,
they cannot be used in wfANOVA without additional con-
straints on the packet tree. Depending on the way the packet
tree is structured, each waveform may be represented by a
unique set of functions, prohibiting comparisons across wave-
forms. An alternative could be to represent all waveforms by a
common overcomplete basis; however, this would increase the
number of comparisons.

Finally, wfANOVA may also be useful in comparing a
single observation with a population average such as when
comparing data from an impaired individual with controls or
comparing a model prediction with experimental data. Cur-
rently, such comparisons are difficult in part because > values
may penalize high-frequency components while ignoring dif-
ferences in overall waveform shape. Differences in the high-
frequency content are particularly pronounced when compar-
ing model predictions and experimental data, and multiple
goodness-of-fit metrics (such as 7* and variance accounted for)
may be required to reduce sensitivity to noise (Ting and
Chvatal 2011). Another approach is to examine whether the
model predictions fall within standard deviations or confidence
intervals generated from data on a per-sample basis, similar to
the tANOV A approach presented here. However, this approach
leads to problems of multiple comparisons similar to those
described earlier for tANOVA because statistical tests de-
signed for single values are not well-suited to comparing
waveforms or curves (Fan and Lin 1998; Lund et al. 2011). To
address this issue, the wfANOVA framework could be modi-
fied to identify better which features of a single model predic-
tion or experimental measurement are significantly different
from a set of control data and which are not.
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