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Abstract

We investigate several complexity issues related to branch�and�cut algorithms for
��� integer programming based on lifted cover inequalities �LCIs�� We show that
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� Introduction

Consider the set P of feasible solutions to a �� � knapsack problem with integer coe��
cients� i	e	�

P 
 fx � Bn �
X
j�N

ajxj � bg

where� without loss of generality� we assume aj � � for j � N �since �� � variables can
be complemented
 and aj � b for j � N �since aj � b implies xj 
 �
	 A set C � N is
called a cover if

P
j�C aj � b	 A cover C is minimal if it is minimal with respect to this

property	 For any minimal cover C� the inequalityX
j�C

xj � jCj � �
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is called a cover inequality and is valid for the convex hull of P � which we call the ���
knapsack polytope	

Assuming� without loss of generality� that a� � a� � � � � � an� Laurent and Sassano
������ show that if the sequence an� an��� ���� a� is weakly superincreasing� i	e	� satis�es
an � � � � � aq � aq�� for q 
 n� ���� �� then conv�P 
 is fully described by the cover
inequalities	

Cover inequalities can be strengthened considerably by a process called lifting	 A
sequential lifted cover inequality �LCI
 is of the formX

j�C�
xj �

X
j�NnC

�jxj �
X
j�C�

�jxj � jC�j � � �
X
j�C�

�j�

where �C�� C�
 is a partition of a cover C with jC�j � � and �j for j � N n C and �j
for j � C� are nonnegative integers	 An LCI is obtained by starting from the cover
inequality

P
j�C� xj � jC�j � � and maximally lifting up all variables in N n C� i	e	�

making the coe�cients �j as large as possible� and maximally lifting down all variables
in C�� i	e	� making the coe�cients �j as small as possible� in some speci�ed order	 An
LCI de�nes a facet of the ��� knapsack polytope	 See Gu� Nemhauser� and Savelsbergh
������ for a more detailed discussion of LCIs	

An important special case arises when we take C� 
 � so that C� 
 C	 In this case�
the LCI has the formX

j�C
xj �

X
j�NnC

�jxj � jCj � � ��


and is called a simple LCI	
Padberg ������ generalized simple LCIs to a class of facets called ��� k
�con�guration

inequalities	 He also gave a condition on the knapsack coe�cients for conv�P 
 to be de�
scribed by these inequalities	 It can easily be shown that ��� k
�con�guration inequalities
are in fact LCIs� although not simple LCIs	

LCIs have been used successfully in branch�and�cut algorithms for the solution of ���
integer programs �Crowder� Johnson� and Padberg ������� Ho�man and Padberg �������
Gu� Nemhauser� and Savelsbergh ������
	 However� there are still many interesting open
questions associated with LCIs	

It is well�known that in general LCIs do not completely describe conv�P 
	 Weismantel
������ studies the ��� knapsack polytopes P i for i � f�� ���� b b�cg associated with the ���
knapsack constraintX

k�N�

xk �
X

b b
i��

c�j�b b
i
c

X
k�Nj

jxk � b�

He identi�es a class of facet inducing inequalities that cannot be obtained as LCIs�
but are necessary in a complete description of the polytopes P � and P �	 Balas and

�



Zemel ������ show that all the facets of a ��� knapsack polytope can be obtained by
simultaneous lifting �Padberg ������� Zemel ������
 and complementing �Wolsey ������

of cover inequalities	

In this paper� we focus on three complexity issues associated with simple LCIs	
For a given minimal cover� di�erent lifting sequences may result in di�erent simple

LCIs	 Therefore� it is natural to ask whether it is hard� given a fractional point and a
minimal cover� to determine a simple LCI that is violated by this fractional point	 A
closely related question is whether it is hard� given a fractional point� to determine a
violated simple LCI over all minimal covers	 In Section �� we show that both problems
are NP�hard	

In Section �� we show that not all simple LCIs can be obtained directly from the
original knapsack constraint� i	e	� there exist higher�order simple LCIs that can only be
obtained from previously generated simple LCIs	

Although the ��� knapsack problem is NP�complete �Garey and Johnson ������
� it
is well�known that most instances can be successfully solved by dynamic programming
or branch�and�bound� see for instance Martello and Toth ������	 However� there exist
classes of di�cult � � � knapsack problems� see for instance Jereslow ������� Chv�atal
������� and Chung et al	 ������	 Chv�atal ������ presents a class of ��� knapsack problems
for which he shows that linear programming based branch�and�bound algorithms have to
evaluate an exponential number of nodes to prove optimality	 In Section �� we strengthen
Chv�atal�s result by presenting a class of �� � knapsack problems for which branch�and�
cut algorithms based on simple LCIs have to evaluate an exponential number of nodes
to prove optimality	

� Complexity of identifying violated simple LCIs

In this section� we are concerned with the complexity of identifying violated simple LCIs	
An important result in this area is the fact that for a given minimal cover C a sequen�

tial simple LCI can be computed in O�n�
 by dynamic programming� see Nemhauser and
Wolsey ������ and Zemel ������	 However� in a companion paper �Gu� Nemhauser� and
Savelsbergh ������
� we show that this dynamic programming algorithm may take expo�
nential time to compute a sequential LCI	 It is still an open question whether an arbitrary
LCI can be computed in polynomial time for a given minimal cover C	 Some related
results can be found in Hartvigsen and Zemel ������	 They discuss� among other things�
the complexity of recognizing simple LCIs� i	e	� the complexity of deciding whether a
given inequality is a simple LCI� and show that this can also be done in O�n�
 time	

Let C 
 fj�� j�� � � � � jrg be a minimal cover with aj� � aj� � � � � � ajr � �� 
 ��
�h 


Ph
i�� aji for h 
 �� � � � � r� and � 
 �r � b	

Theorem � �Balas �����	
 Every facet�de�ning simple LCI satis�es the following con�
ditions�

�



�
 If �h � aj � �h�� � �� then �j 
 h


�
 If �h�� � �� � � aj � �h�� � �� then �j � fh� h� �g


Although Theorem � nearly determines all the lifting coe�cients� it does not give
su�cient conditions on the �j to obtain facets since it does not specify whether certain
��s can be equal to h�� or must be equal to h to preserve validity	 The following theorem
extends Theorem � by giving necessary and su�cient conditions on which subsets of ��s
take the larger values in facet�de�ning simple LCIs	 We need the following For k � N nC�
let �k 
 h if �h � ak � �h�� � � and for Q � N nC de�ne ��Q
 


P
i�Q��i � �
	 A set

S � N n C is called independent if for all nonempty Q � S�X
i�Q

ai � ���Q� � �� ��


Theorem � �Nemhauser and Vance �����	
 A simple LCI is facet�de�ning for P if and
only if �j 
 �j � � for all j in a maximal independent set S � N n C and �j 
 �j for
all j � N n �C � S



As a consequence of Theorem �� the problem of determining whether there exists
a violated simple LCI for a given fractional point and a given minimal cover is equiv�
alent to determining whether there exists an independent set S such that

P
j�S x�j �

jCj � ��
P

j�C x�j �
P

j�NnC �jx�j � since
P

j�C x�j �
P

j�NnC �jx�j is equal to
P

j�C x�j �P
j�Nn�C�S� �jx�j �

P
j�S��j � �
x�j 	

Theorem � Given a ��� knapsack constraint� a feasible fractional point x�� and a min�
imal cover C� deciding whether there exists a violated simple LCI is NP�complete


Proof� Transformation from Knapsack	

Knapsack�
Instance� A set N 
 f�� � � � � ng� for each j � N a weight wj � Z� and a pro�t pj � Z��
positive integers P and W � and P � pj � � and W � wj � � for each j � N 	
Question� Does there exist a set S � N such that

P
j�S wj 	 W and

P
j�S pj � P�

Without loss of generality� we assume
P

��j�n wj � W and
P

��j�n pj � P 	 Consider
the ��� knapsack constraint

�nX
j��

ajxj � b�

where

aj 


�
�W � wj � j 
 �� � � � � n�
�W� j 
 n� �� � � � � �n�

�



b 
 ��n� �
W�

the fractional point

x�j 


��
�

pj

�
Pn

j��
pj
� j 
 �� � � � � n�

�
n
�n� �� P��

�
Pn

j��
pj

� j 
 n � �� � � � � �n�

and the minimal cover

C 
 fn� �� � � � � �ng�

Note that x� is a feasible fractional solution to the LP relaxation of the knapsack con�
straint since

�nX
j��

ajx
�
j 


nX
j��

��W � wj

pj

�
Pn

j�� pj
�

�nX
j�n��

�W
�

n
�n� ��

P � �

�
Pn

j�� pj



� W � �W �n� �



 b�

Furthermore� �h 
 �hW for h 
 �� � � � � n� � 
 W and �� � aj � �� � � for j 
 �� � � � � n�
so �j 
 � for j 
 �� � � � � n and ��Q
 
 jQj	 Inequality ���
 becomesX

i�Q
ai 


X
i�Q

��W � wi
 � �jQjW �W 
 �jQj � ��

which is equivalent toX
i�Q

wi 	 W�

It is easy to see that if
P

i�S wi 	 W � then
P

i�Qwi 	 W for all nonempty Q � S	
Therefore S is independent if and only if

P
i�S wi 	 W 	

Now observe thatX
j�S

x�j � jCj � ��
X
j�C

x�j �
X

j�NnC
�jx

�
j �

X
j�S

pj
�
Pn

j�� pj
� n� ��

X
n���j��n

�
�

n
�n� ��

P � �

�
Pn

j�� pj


�

X
j�S

pj
�
Pn

j�� pj
� n� �� n� � �

P � �

�
Pn

j�� pj
�

X
j�S

pj
�
Pn

j�� pj
�

P � �

�
Pn

j�� pj
�

�



X
j�S

pj � P�

Consequently� there exists a violated simple LCI if and only if there is a set S � N such
that
P

j�S wj 	 W and
P

j�S pj � P � i	e	� Knapsack has a solution	 �

Note that we have not shown that x� is a realizable fractional point� i	e	� a fractional
point that occurs as the optimal solution to the current linear programming relaxation	
Although it may not be if we are just solving a ��� knapsack problem� in the context of
solving general � � � integer programs the assumption is reasonable	 Recently Klabjan
and Nemhauser ������ have shown that the separation problem for cover inequalities
is NP�hard	 Their proof explicitly deals with fractional x� that are feasible to the LP
relaxation	

Now we show that being able to choose the cover does not make the problem easier	

Theorem � Given a ��� knapsack constraint and a feasible fractional point x�� deciding
whether there exists a violated simple LCI is NP�complete


Proof� We use the instance de�ned in the proof of Theorem �	 Let C 
 fn� �� � � � � �ng
be the given minimal cover� and C� be an arbitrary minimal cover	 We prove the theorem
by showing

�a� If jC�j 
 n� then the set of simple LCIs for C� is contained in the set of simple LCIs
for C	

�b� If jC �j � n� then any simple LCI for C� is not violated by the given fractional
solution x�	

Since

nX
j��

aj 

nX

j��

��W � wj
 
 �nW �
nX

j��

wj 	 �nW �W 
 b�

C � contains at least one element of fn � �� � � � � �ng	 So �� 
 �W 	 We use ��
j for the

coe�cients of a simple LCI with minimal cover C � and �j for those of a simple LCI with
minimal cover C	 By Theorem �� ��

j � � for j 
 �� � � � � n and ��
j 
 � for j 
 n��� � � � � �n	

Case �a
�
For an arbitrary simple LCI with C�� let S� 
 fj � ��

j 
 �� � � j � ng and
S� 
 f�� � � � � ng n S�	 Then ��

j 
 � for j � S�� since ��
j � �	 We show that this simple

LCI is equal to the simple LCI obtained from C when the variables in S� are lifted �rst
and the variables in S� are lifted last� the order within S� and S� is arbitrary	 Suppose
that the lifting order for S� is fj�� j�� � � � � jkg	 We �rst show that �j 
 � for j � S�	

�



Suppose not� then let jl be the �rst element in fj�� j�� � � � � jkg such that �jl 
 �	 From
the simple LCI with C �� we know that

�nX
j�n��

xj �
lX

i��

xji � n� �

is valid� so �jl � � which contradicts �jl 
 �	 Next� we show that �j 
 � for j � S�	
Suppose not� then the simple LCI with C is stronger than the simple LCI with C � which
contradicts the fact that any simple LCI de�nes a facet for the knapsack polytope	

Case �b
� The violation of the simple LCI for C � is less than or equal to

�nX
j��

ajx
�
j � n 


nX
j��

pj
�
Pn

j�� pj
�

�nX
j�n��

�

n
�n� ��

P � �

�
Pn

j�� pj

� n


 �
�

�
�

P � �

�
Pn

j�� pj
	 ���

� Higher Order Simple LCIs

In this section� we make some observations related to the question of how well the
polyhedron de�ned by simple LCIs approximates conv�P 
	 We show that there exist
facet inducing inequalities of conv�P 
 that are not derivable as a simple LCI from the
original knapsack constraint� but that are derivable from other simple LCIs	 This leads
to the notion of a hierarchy of simple LCIs	

Example �� Consider the set P of feasible solutions to the ��� knapsack constraint

�X
j��

��xj �
	X

j�


�xj �
�
X
j��

�xj � �x�� �

�X

j��


xj � ��� ��


Then C 
 f��� ��� � � � � ��g is a minimal cover with r 
 jCj 
 ��	 This gives �� 
 �� �h 

h � �� for h 
 �� �� � � � � ��� and � 
 ��� � b 
 �� � � � �� 
 �	 By Theorem �� if
h� � � aj � �h� �
 � �� �� i	e	� aj 
 h � �� then �j 
 h 
 aj � �	 So we get a simple
LCI given by

�X
j��

��xj �
	X

j�


�xj �
�
X
j��

�xj �

�X

j���

xj � ��� ��


For this inequality C 
 f�� �� � � � � ��g is a minimal cover with r 
 jCj 
 �	 This gives
�h 
 �h for h 
 �� �� � � � � �� and � 
 �	 � b 
 �� � �� 
 �	 By Theorem �� we have
�j 
 h if �h � aj � ��h� �
� � 
 �h� �	 So

�j 


���
��

� for j 
 �� �� �
� for j 
 �� � � � � �
� for j 
 ��� � � � � ���

�



Thus we have derived a simple LCI from ���
 given by

�X
j��

�xj �
	X

j�


�xj �
�
X
j��

xj � �� ��


Note that this simple LCI cannot be derived directly from the original knapsack con�
straint ���
 since f�� � � � � � ��g is not a minimal cover	 However� it does give a facet�
de�ning inequality for P 	 Consider the matrix�

A 


�
BBB�

B
C

D E F
G H

�
CCCA �

where

B 


�
B� � � �

� � �
� � �

�
CA � C 


�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA �

D 
 ��	��� �	��
� E 
 ��	��� �	��
� G 
 ������� �����
� F 
 I	 and H 
 I��� where
an�m represents an n 	m matrix with elements equal to a and In represents an n 	 n
identity matrix	 It is easy to see that each row of A de�nes a feasible solution to ���

that satis�es ���
 at equality� and that det�A
 

 � �since det�B
 

 � and det�C
 

 �
	
Hence ���
 de�nes a facet of P 	

This example also shows that we can obtain a facet inducing inequality of P by
lifting a non�minimal cover inequality and that this facet inducing inequality cannot
be obtained by lifting a minimal cover inequality	 If we take C 
 f�� �� ���� ��g as a
�non�minimal
 cover and lifting sequence f�� �� � � ��� ��� ��� � � � � ��g� we obtain ���
	

We call facet inducing inequalities order � if they are derivable as a simple LCI
directly from the original knapsack constraint� and we call facet inducing inequalities
order k � � if they are derivable as a simple LCI from a simple LCI of order k� but not
derivable as a simple LCI from the original knapsack constraint or from a simple LCI of
order k�� or lower	 We have shown that simple LCIs of order � exist� but we conjecture
that even higher order simple LCIs exist	 Note that the set of facet inducing inequalities
derivable as simple LCIs �of arbitrary order
 does not de�ne conv�P 
� since the maximal
coe�cient of a simple LCI is less than n	

It is not true that a second order simple LCI can always be obtained by lifting a
non�minimal cover inequality� as shown by the following example	

Example �� Consider the set P of feasible solutions to the ��� knapsack constraint

�X
j��

�kxj �
	X
j�


�kxj �
�
X
j��

�k � �
xj � �x�� �
�
�
kX
j��


xj � �k � �� ��


�



where k � �	 Similar to the above example� we can show that ���
 is a second order
simple LCI of ���
� but it cannot be obtained by lifting any cover inequalities of ���
	

� Branch�and�cut based on simple LCIs

Chv�atal ������ identi�ed a class of instances of the ��� knapsack problem for which
linear programming based branch�and�bound algorithms have to evaluate an exponential
number of nodes to prove optimality	 In this section� we strengthen Chv�atal�s result
by showing that there exists a class of instances of the ��� knapsack problem for which
branch�and�cut algorithms based on simple LCIs have to evaluate an exponential number
of nodes to prove optimality	 More precisely� we show that there exists a class of instances
with ��n variables for which all nodes in the search tree of depth less than or equal to n

cannot be fathomed	 Therefore� the number of nodes that has to be evaluated to prove
optimality is greater than or equal to �n	

Let Pn
� be the set of feasible solutions to the family of ��� knapsack constraints

��nX
j��

ajxj 

��nX
j��

�xj �
��nX

j���n��

�xj � �n� ��


for n � ��	
First� we present two propositions concerning Pn

� 	 Let N 
 f�� �� � � � � ��ng� N� 

f�� �� � � � � ��ng� N� 
 f��n� �� � � � � ��ng� I � N and � � jI j � n	

Proposition 	 If we �x a set of variables xj � j � I� either at their lower bounds or at
their upper bounds� then ���
 becomesX

j�NnI
ajxj � �n�

X
j�I

ajxj � ��


where xj for j � I denotes the value of the �xed variable xj � and ���
 induces a facet of
the ��� knapsack polytope de�ned by the ��� knapsack constraint ���
 for n � ��


Proof� Let b 
 �n �
P

j�I ajxj � let PI denote the set of ��� solutions to ���
� let

F 
 fx � PI �
P

j�NnI ajxj 
 bg� and let F � 
 fx � PI �
P

j�NnI �jxj 
 bg be an
arbitrary facet of conv�PI
 containing F � i	e	� F � � F 	

For presentational convenience� we assume b is even	 At the end of the proof it will
be clear that the same proof technique can be applied in case b is odd	

Since b � �n we need to set at most �n variables in N� to � to construct a feasible
point x � F 	 Furthermore� since jI j � n� we have jN� n I j � ��n	 De�ne

S� 
 fj � N� n I � aj 
 �jg�

S� 
 fj � N� n I � aj 	 �jg�

�



and

S� 
 fj � N� n I � aj � �jg�

Suppose jS�j 	 �n� then either jS�j � �n or jS�j � �n	 Suppose jS�j � �n �the case
jS�j � �n is handled analogously
	 Construct a feasible point x � F using only variables
with an index in S�	 Obviously� x 
� F �� which contradicts F � � F 	

Now suppose �n � jS�j 	 jN� n I j	 Consider any variable xk with k in S� � S�� i	e	�
any variable with �j 

 aj 	 Construct a feasible point x � F using xk and variables with
an index in S�	 Obviously� x 
� F �� which contradicts F � � F 	

Consequently� jS�j 
 jN� n I j and �j 
 aj for all j � N� n I 	
Analogously� we can show that �j 
 aj for all j � N� n I 	 Therefore� �j 
 aj for all

j � N and F 
 F �� i	e	� F is a facet of conv�P 
	 �

Proposition 
 The facet�de�ning inequality ���
 cannot be obtained by lifting a cover
inequality plus �xing at most n variables �The cover inequality can be for the original
knapsack constraint as well as for a simple LCI



Proof� Compare the simple LCI ���
 with ���
	 If we �x some variables of ���
 and
move the corresponding terms to the right�hand side� then the value of the right�hand
side cannot increase	 Suppose that we obtain ���
 by �xing variables of ���
	 Since
the right�hand side of ���
 is greater than or equal to �n� jCj � �n in ���
	 Since ���

has no variables with coe�cients equal to one� we need to �x at least �n variables to
eliminate all the variables with coe�cients equal to one in ���
	 However� we are only
allowed to �x at most n variables	 �

Next� we present two propositions concerning slightly perturbed versions of the above
class of ��� knapsack constraints� namely

��nX
j��

�� 
 �n � �j
xj �
��nX

j���n��

�� 
 �n � �j
xj � �n 
 �n� ��


for n � ��� �j � f�� �� � � � � b�n��
�nc for � � j � ��ng	 Let Pn
� be the set of ��� solutions

to ���
	

Proposition � Pn
� 
 Pn

� 


Proof� If x � Pn
� � then x � Pn

� since �j � �� j � N 	 If x � Pn
� for all �j � then

��nX
j��

�� 
 �n �
�n��

�n
�xj � �n 
 �n

��



�
��nX
j��

xj � �n �
��nX
j��

�

��n
xj � �n�

��n

��n

 �n�

�

�

�
��nX
j��

xj � �n � ��

By ���
� we have

��nX
j��

�xj �
��nX

j���n��

�xj � �n�
�

�n

��nX
j��

�jxj

� �n�
�

�n


�n��

�n

��nX
j��

xj

� �n�
�

�n

 ��n� �


	 �n� ��

Hence x � Pn
� 	 �

Note that if we �x some variables to the same values in Pn
� and Pn

� � they are still
equal	 Therefore� we have

Proposition � Inequality ���
 de�nes a facet of the polytope for Pn
� for n � �� where

all variables xj� j � I are �xed


Now� we are ready to introduce the class of instances for which we will show that branch�
and�cut algorithms based on simple LCIs have to evaluate an exponential number of
nodes to prove optimality	 Consider the following class of instances of ��� knapsack
problems �KP
�

max
��nX
j��

��� � 
j
xj �
��nX

j���n��

��� � 
j
xj

��nX
j��

�� 
 �n � �j
xj �
��nX

j���n��

�� 
 �n � �j
xj � �n 
 �n

x � B��n� n � ��� �j � f�� �� � � � � b�n��
�ncg for � � j � ��n

� 
 ���n 
 �n
��n��� 
j � f�� �� � � � � �ng for � � j � ��n

Proposition 
 Let zKP be the optimal value of KP� then zKP � �n�

��



Proof� Since� by Proposition ��
P��n

j�� �xj �
P��n

j���n�� �xj � �n holds for the solution
vector x� zKP � �n�	 �

Consider the following branch�and�cut algorithm for solving �� � knapsack problems of
the form

max
X
j�N

cjxj �
X
j�N

ajxj � b� x � Bn � n 
 jN j�

Notation�

AN � set of active nodes of the search tree �� is the root node and other nodes are
numbered ����			
	

TN � set of nodes of the search tree	

F i� set of constraints for node i� i	e	�
P

j�N ajxj � b plus LCIs �of any order
 that have
been added to the linear programming relaxation	

I i�� set of variables which are �xed to � at node i	

I i�� set of variables which are �xed to � at node i	

I i� I i� � I i�	

zip� the best objective value of all feasible solutions found so far	

Algorithm�
�	 Initialization	

k �
 �� AN �
 f�g� TN �
 f�g� zip �
 ��� I�� �
 ��
I�� �
 � and F � �
 f

P
j�N ajxj � bg	

�	 While AN 

 � pick a node i � AN and do the following steps�
�	� Solve the LP for node i�

zilp 
 max
X
j�N

cjxj

s�t� all constraints � F i

� � xj � �� for j � N

xj 
 �� if j � I i�

xj 
 �� if j � I i�

to get an optimal solution x� with optimal value zilp	

�	� If x� is integral and bzilpc � zip then

zip �
 zilp and AN �
 fj � zjlp � zip� j � ANg	

��



�	� If bzilpc � zip then fathom node i� i	e	 AN �
 AN n fig	

�	� If x� is not integral and bzilpc � zip then

�	�	� Generate violated simple LCIs from any constraints � F i and
add them to F i� go to step �	�	

�	�	� If we cannot generate violated simple LCIs� then pick a fractional
variable xj � j 
� I i and branch as follows�

AN �
 AN � fk � �� k� �g n fig
TN �
 TN � fk � �� k� �g
Ik��� �
 I i� � fjg� Ik��� �
 I i�
Ik��� �
 I i�� I

k��
� �
 I i� � fjg

F k�� �
 F k�� �
 F i

k �
 k � �	

This description of a branch�and�cut algorithm based on simple LCIs for ��� knapsack
problems allows us to state the main result of this section	

Theorem �� A branch�and�cut algorithm based on simple LCIs for KP has to evaluate
at least �n nodes


Proof� By Propositions �� � and �� inequality ���
 is a facet for the polytope at node i�
if I 
 I i and � � jI ij � n� and it cannot be obtained by lifting a cover inequality and
�xing variables in I i� i	e	 ���
 
� F i	 So there is a feasible fractional solution x� to the
LP at node i and a positive � such thatX

j�NnIi
ajx

�
j 
 �n�

X
j�Ii

ajx
�
j � �

�
��nX
j��

�x�j �
��nX

j���n��

�x�j 
 �n� �

Obviously all simple LCIs in F i have coe�cients � ��n� so the largest value of all coef�
�cients of all constraints in F i is � 
 �n	 By Proposition �	� in Chapter I	� of Nemhauser
and Wolsey �������

� �
�

���n 
 � 
 �n
��n



�

���n 
 �n
��n
�

Then the optimal objective value of the LP at node i�

zilp �
��nX
j��

��� � 
j
x
�
j �

��nX
j���n��

��� � 
j
x
�
j

��




 �n� � �� �
��nX
j��


jx
�
j

� �n� �
���n 
 �n
��n��

���n 
 �n
��n
� ��n 
 �n


 �n� � ��n 
 �n�

Hence by Proposition �� bzilpc � �n� � ��n 
 �n � zKP � i	e	 node i cannot be fathomed�
so all nodes of the branching tree at depth � n cannot be fathomed	 Hence the number
of the nodes of the branching tree is at least �n	 �

It is easy to see that the input length of KP is t 
 O�n�
� so

jTN j 
 ���n
 
 ���
�
p
t
�

Note that even if we add functions commonly found in integer programming solvers� such
as preprocessing and primal heuristics� to the above described branch�and�cut algorithm
Theorem �� remains valid	
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