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Abstract
We investigate several complexity issues related to branch-and-cut algorithms for
0-1 integer programming based on lifted cover inequalities (LCIs). We show that
given a fractional point, determining a violated LCI over all minimal covers is NP-
hard. The main result is that there exists a class of 0-1 knapsack instances for which
any branch-and-cut algorithm based on LCIs has to evaluate an exponential number
of nodes to prove optimality.
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1 Introduction

Consider the set P of feasible solutions to a 0 — 1 knapsack problem with integer coeffi-
cients, i.e.,
P:{xEB”:Zajxjgb}
JjEN

where, without loss of generality, we assume a; > 0 for j € N (since 0 — 1 variables can
be complemented) and a; < b for j € N (since a; > b implies z; = 0). A set C C N is
called a coverif 3 ;cca; > b. A cover (' is minimal if it is minimal with respect to this
property. For any minimal cover ', the inequality
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is called a cover inequality and is valid for the convex hull of P, which we call the 0-1
knapsack polytope.

Assuming, without loss of generality, that a; > as > ... > a,, Laurent and Sassano
[1992] show that if the sequence a,,a,_1,...,a; is weakly superincreasing, i.e., satisfies
Ay + ... +a; < agq for ¢ = n,...,2, then conv(P) is fully described by the cover
inequalities.

Cover inequalities can be strengthened considerably by a process called lifting. A
sequential lifted cover inequality (LCI) is of the form

Yot > ity e <G =1+ ) 7,

JECY JEN\C JEC JECs

where (Cq,C3) is a partition of a cover C' with |Cy| > 2 and «; for j € N\ C and ~;
for 7 € (9 are nonnegative integers. An LCI is obtained by starting from the cover
inequality >-.cc, #; < [C1] — 1 and maximally lifting up all variables in N \ C, i.e.,
making the coefficients a; as large as possible, and maximally lifting down all variables
in (5, i.e., making the coefficients 7; as small as possible, in some specified order. An
LCI defines a facet of the 0-1 knapsack polytope. See Gu, Nemhauser, and Savelsbergh
[1994] for a more detailed discussion of LCls.

An important special case arises when we take Cy = () so that C'; = . In this case,

the LCI has the form
Yoait Y, aju <|C| -1 (1)

jeC JEN\C

and is called a simple LCI.

Padberg [1980] generalized simple LClIs to a class of facets called (1, k)-configuration
inequalities. He also gave a condition on the knapsack coefficients for conv(P) to be de-
scribed by these inequalities. It can easily be shown that (1, k)-configuration inequalities
are in fact LClIs, although not simple LClIs.

LCIs have been used successfully in branch-and-cut algorithms for the solution of 0—1
integer programs (Crowder, Johnson, and Padberg [1983], Hoffman and Padberg [1991],
Gu, Nemhauser, and Savelsbergh [1994]). However, there are still many interesting open
questions associated with LCls.

It is well-known that in general LCIs do not completely describe conv(P). Weismantel
[1994] studies the 0-1 knapsack polytopes P' for i € {1, ..., L%J} agsociated with the 0-1
knapsack constraint

Sapt+ D) > jar <b.

keN L) <i<Lt] REN

He identifies a class of facet inducing inequalities that cannot be obtained as LCls,
but are necessary in a complete description of the polytopes P! and P?. Balas and



Zemel [1984] show that all the facets of a 0-1 knapsack polytope can be obtained by
stmultaneous lifting (Padberg [1975], Zemel [1974]) and complementing (Wolsey [1975])
of cover inequalities.

In this paper, we focus on three complexity issues associated with simple LCls.

For a given minimal cover, different lifting sequences may result in different simple
LCIs. Therefore, it is natural to ask whether it is hard, given a fractional point and a
minimal cover, to determine a simple LCI that is violated by this fractional point. A
closely related question is whether it is hard, given a fractional point, to determine a
violated simple LCI over all minimal covers. In Section 2, we show that both problems
are NP-hard.

In Section 3, we show that not all simple LCIs can be obtained directly from the
original knapsack constraint, i.e., there exist higher-order simple L.CIs that can only be
obtained from previously generated simple LClIs.

Although the 0 — 1 knapsack problem is NP-complete (Garey and Johnson [1979]), it
is well-known that most instances can be successfully solved by dynamic programming
or branch-and-bound, see for instance Martello and Toth [1990]. However, there exist
classes of difficult 0 — 1 knapsack problems, see for instance Jereslow [1974], Chvdtal
[1980], and Chung et al. [1988]. Chvatal [1980] presents a class of 0—1 knapsack problems
for which he shows that linear programming based branch-and-bound algorithms have to
evaluate an exponential number of nodes to prove optimality. In Section 4, we strengthen
Chvatal’s result by presenting a class of 0 — 1 knapsack problems for which branch-and-
cut algorithms based on simple LCIs have to evaluate an exponential number of nodes
to prove optimality.

2 Complexity of identifying violated simple LCIs

In this section, we are concerned with the complexity of identifying violated simple LClIs.

An important result in this area is the fact that for a given minimal cover C' a sequen-
tial simple LCI can be computed in O(n?) by dynamic programming, see Nemhauser and
Wolsey [1988] and Zemel [1989]. However, in a companion paper (Gu, Nemhauser, and
Savelsbergh [1996]), we show that this dynamic programming algorithm may take expo-
nential time to compute a sequential LCI. It is still an open question whether an arbitrary
LCI can be computed in polynomial time for a given minimal cover (. Some related
results can be found in Hartvigsen and Zemel [1992]. They discuss, among other things,
the complexity of recognizing simple LClIs, i.e., the complexity of deciding whether a
given inequality is a simple LCI, and show that this can also be done in O(n?) time.

Let ¢ = {j1,j2,...,jr} be a minimal cover with a; > a;, > ... > @, po = 0,
Wty = Z?:laji forh=1,...,r,and A = p, — b.

Theorem 1 (Balas [1975]) Every facet-defining simple LCI satisfies the following con-
ditions:



1. If pup, < a; < pipgr — A, then a; = h.
2 Ifpppr — A+ 1<a; <ppgr — 1, then oy € {h,h +1}.

Although Theorem 1 nearly determines all the lifting coeflicients, it does not give
sufficient conditions on the a; to obtain facets since it does not specify whether certain
a’s can be equal to h+1 or must be equal to h to preserve validity. The following theorem
extends Theorem 1 by giving necessary and sufficient conditions on which subsets of a’s
take the larger values in facet-defining simple LCIs. We need the following For k € N\ C',
let Bp = hif pj, < ap < ppyr — Land for @ € N\ C define 5(Q) = 3,03 +1). A set
S C N\ Cis called independent if for all nonempty @ C 5,

> 4> pp@) = A (2)
i€Q
Theorem 2 (Nemhauser and Vance [1994]) A simple LCI is facet-defining for P if and
only if a; = ;4 1 for all j in a mazimal independent set S C N\ C and a; = 3; for
allj e N\ (CUS).

As a consequence of Theorem 2, the problem of determining whether there exists
a violated simple LCI for a given fractional point and a given minimal cover is equiv-
alent to determining whether there exists an independent set .5 such that ., .q27 >
O] =1 =3 jec @] + Xjen\c Bz, since 3 co @] + 30 en\o aja; is equal to 37 e af +
Yien\(cus) BT + X ies(By + 1)aj.

Theorem 3 Given a 0-1 knapsack constraint, a feasible fractional point x™, and a min-
wmal cover C', deciding whether there exists a violated simple LCI is NP-complete.
Proof: Transformation from KNAPSACK.

KNAPSACK:

Instance: A set N = {1,...,n}, for each j € N a weight w; € Z* and a profit p; € Zt,
positive integers P and W, and P > p; > 0 and W > w; > 0 for each j € N.

Question: Does there exist a set 5 C N such that > ;cqw; <W and > ,cqp; > P?

Without loss of generality, we assume 3, w; > W and 1., p; > P. Consider
the 0-1 knapsack constraint

2n
g a;r; <0,
i=1

where

0 = 2W —w;, j=1,...,n,
T 2w, j=n+1,...,2n,



b=(2n-1)W,

the fractional point

and the minimal cover
C={n+1,...,2n}.

Note that 2™ is a feasible fractional solution to the LP relaxation of the knapsack con-
straint since

2n § n P_1
;ajxj = Z::QW w;) 22 Z 2W (n—1- 5 1p])

j=1Pj j=n+1
< WH2W(n—1)
b.

Furthermore, pj, = 20W for h = 0,...,n, A=W and po < a; <py —1forj=1,...,n,
so8;=0for j=1,...,nand B(Q) = |Q|. Inequality (??) becomes
Doai =D 2W —wy) > 21QIW — W = pjg| — A,
i€Q i€Q
which is equivalent to
Z w; < W.
i€Q
It is easy to see that if ) ,cqw; < W, then > ;.o w; < W for all nonempty @ C 5.

Therefore S is independent if and only if >~ - g w; < W.
Now observe that

Sl -1-Y e+ Y g e

JES JeC JEN\C
P; 1 P-1
Yoer—>n-1- Y (n-l-ge—)) e
jeSQijlpj n+1<;5<2n 22]:1])]
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ij > P.
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Consequently, there exists a violated simple LCI if and only if there is a set S C N such
that > cqw; < W and ) ,cqp; > P, i.e., KNAPSACK has a solution. O

Note that we have not shown that z* is a realizable fractional point, i.e., a fractional
point that occurs as the optimal solution to the current linear programming relaxation.
Although it may not be if we are just solving a 0 — 1 knapsack problem, in the context of
solving general 0 — 1 integer programs the assumption is reasonable. Recently Klabjan
and Nemhauser [1995] have shown that the separation problem for cover inequalities
is NP-hard. Their proof explicitly deals with fractional z* that are feasible to the LP
relaxation.

Now we show that being able to choose the cover does not make the problem easier.

Theorem 4 Given a 0-1 knapsack constraint and a feasible fractional point ™, deciding
whether there exists a violated simple LCI is NP-complete.

Proof: We use the instance defined in the proof of Theorem 3. Let C' = {n + 1,...,2n}
be the given minimal cover, and C’ be an arbitrary minimal cover. We prove the theorem
by showing

(a) If |C'| = n, then the set of simple LCIs for €' is contained in the set of simple LCIs
for C'.

(b) If |C"] > n, then any simple LCI for C” is not violated by the given fractional
solution z*.

(' contains at least one element of {n + 1,...,2n}. So uy = 2W. We use o} for the
coefficients of a simple LCI with minimal cover C’ and «; for those of a simple LCI with
minimal cover C'. By Theorem 1, a; <lforj=1,...,nand a; =1forj=n+1,...,2n.

Case (a):

For an arbitrary simple LCI with C/, let 5o = {j : o) = 0, 1 < j < n} and
S1={1,...,n}\ So. Then o, =1 for j € 5y, since ) < 1. We show that this simple
LCI is equal to the simple LCI obtained from C' when the variables in 57 are lifted first
and the variables in Sy are lifted last; the order within 57 and Sy is arbitrary. Suppose
that the lifting order for Sy is {j1,j2,...,Jk}. We first show that a; = 1 for j € 5.



Suppose not, then let j; be the first element in {ji, jo,...,jx} such that o, = 0. From
the simple LCI with C’, we know that

2n l
Z z; + ini <n-1
j=n+1 =1

is valid, so a;, > 1 which contradicts a; = 0. Next, we show that a; = 0 for j € So.

Suppose not, then the simple LCI with (' is stronger than the simple LCI with C’ which

contradicts the fact that any simple LCI defines a facet for the knapsack polytope.
Case (b): The violation of the simple LCI for €’ is less than or equal to

2n § P_1

=1 J lpJ j=nt1
B 1 P-1 < 0.0
2 22?:1]’]’ ‘

3 Higher Order Simple LCIs

In this section, we make some observations related to the question of how well the
polyhedron defined by simple LCIs approximates conv(P). We show that there exist
facet inducing inequalities of conv(P) that are not derivable as a simple LCI from the
original knapsack constraint, but that are derivable from other simple LCIs. This leads
to the notion of a hierarchy of simple LClIs.

Example 1: Consider the set P of feasible solutions to the 0-1 knapsack constraint

3 7 14 42
S 1324+ > 9z, + > bu; + 2215+ Y @, < 28 (3)
7=1 7=4 7=8 7=16

Then €' = {15,16,...,42} is a minimal cover with r = |C| = 28. This gives pg = 0, up, =
h+1,for h =1,2,...,28, and A = pog —b = 28 +1 — 28 = 1. By Theorem 1, if
h+1<a; <(h+1)+1-1,ie,a; =h+1,then aj =h =a; — 1. So we get a simple
LCI given by

21290]—|—28x]—|—24x]—|—2x]§27 (4)
7=15
For this mequahty = {8, 9,...,14} is a minimal cover with » = |C'| = 7. This gives
pp = 4h for h = 0,1,...,7, and A = py — b = 28 = 27 = 1. By Theorem 1, we have
a; =hif4h<a; <4(h+1)—-1=4h+3. So

3 for j=1,2,3
a;j =4 2 for j=4,...,7
0 for j=15,...,42



Thus we have derived a simple LCI from (??) given by

3 7 14
Z3$]‘—|—ZQ$]‘—I—Z$]‘§6. (5)
7=1 7=4 7=8

Note that this simple LCI cannot be derived directly from the original knapsack con-

straint (??) since {8,9...,14} is not a minimal cover. However, it does give a facet-
defining inequality for P. Consider the matrix:
B
C
A= D FE F ’
G H
where
0 L 1 101
B = 1 0 1 5 = ’
11 0 1 1 0 1
1 1 1 0

D = (17x1,07x2), £ = (1741,07x3), G = (lagx2,028x1), ¥ = Iz and H = Iy, where
G xm Tepresents an n X m matrix with elements equal to a and I, represents an n X n
identity matrix. It is easy to see that each row of A defines a feasible solution to (??)
that satisfies (?7) at equality, and that det(A) # 0 (since det(B) # 0 and det(C') # 0).
Hence (??) defines a facet of P.

This example also shows that we can obtain a facet inducing inequality of P by
lifting a non-minimal cover inequality and that this facet inducing inequality cannot
be obtained by lifting a minimal cover inequality. If we take C' = {8,9,...,14} as a
(non-minimal) cover and lifting sequence {1,2,...7,15,16,...,42}, we obtain (?7).

We call facet inducing inequalities order 1 if they are derivable as a simple LCI
directly from the original knapsack constraint, and we call facet inducing inequalities
order k + 1 if they are derivable as a simple LCI from a simple LCI of order &, but not
derivable as a simple LCI from the original knapsack constraint or from a simple LCI of
order k — 1 or lower. We have shown that simple LCIs of order 2 exist, but we conjecture
that even higher order simple LCIs exist. Note that the set of facet inducing inequalities
derivable as simple LCIs (of arbitrary order) does not define conv(P), since the maximal
coeflicient of a simple LCI is less than n.

It is not true that a second order simple LCI can always be obtained by lifting a
non-minimal cover inequality, as shown by the following example.

Example 2: Consider the set P of feasible solutions to the 0-1 knapsack constraint

3 7 14 164-6%
> 3ka;+ Y 2kz;+ Y (k+ Daj+ 25+ Y 2; <6k +2, (6)
7=1 7=4 7=8 7=16



where & > 5. Similar to the above example, we can show that (??) is a second order
simple LCI of (?7), but it cannot be obtained by lifting any cover inequalities of (?7).

4 Branch-and-cut based on simple LCIs

Chvatal [1980] identified a class of instances of the 0-1 knapsack problem for which
linear programming based branch-and-bound algorithms have to evaluate an exponential
number of nodes to prove optimality. In this section, we strengthen Chvatal’s result
by showing that there exists a class of instances of the 0-1 knapsack problem for which
branch-and-cut algorithms based on simple LCIs have to evaluate an exponential number
of nodes to prove optimality. More precisely, we show that there exists a class of instances
with 20n variables for which all nodes in the search tree of depth less than or equal to n
cannot be fathomed. Therefore, the number of nodes that has to be evaluated to prove
optimality is greater than or equal to 2.
Let P be the set of feasible solutions to the family of 0-1 knapsack constraints

20n 12n 20n
daje; = 20+ Y 3a; < 6n, (7)
7=1 7=1 7=12n+1

for n > 10.

First, we present two propositions concerning P’. Let N = {1,2,...,20n}, Ny =
{1,2,...,12n}, Ny = {12n+1,...,20n}, I C N and 0 < |I| < n.

Proposition 5 If we fiz a set of variables z;, j € I, either at their lower bounds or at
their upper bounds, then (?7) becomes

Z a;x; < 6n — Za]‘f]‘, (8)

JEN\I J€eI

where T; for j € I denotes the value of the fized variable xz;, and (??) induces a facet of
the 0-1 knapsack polytope defined by the 0-1 knapsack constraint (7?) for n > 10.

Proof: Let b = 6n — Y ;cra;T;, let Pr denote the set of 0-1 solutions to (?7?), let
F=As e Pr: Yy jenrae; = b}, and let F' = {z € Py : 2 jEN\T QT = b} be an
arbitrary facet of conv(Pr) containing F, i.e., F’' D F.

For presentational convenience, we assume b is even. At the end of the proof it will
be clear that the same proof technique can be applied in case b is odd.

Since b < 6n we need to set at most 3n variables in N to 1 to construct a feasible
point z € F. Furthermore, since |I| < n, we have [Ny \ I| > 11n. Define

S1=4{jeNi\I:a; =aq;},

Se={7€ N \I:a; <aj},



and
Ss={j e Ny \I:a; > aj}.

Suppose |91] < 3n, then either |S3| > 3n or |S3] > 3n. Suppose |S3] > 3n (the case
|S5] > 3n is handled analogously). Construct a feasible point # € F using only variables
with an index in S5. Obviously, x ¢ F’, which contradicts F’' D F.

Now suppose 3n < |S7| < | Ny \ I|. Consider any variable z; with k in S5 U 93, i.e.,
any variable with a; # a;. Construct a feasible point 2 € F' using x; and variables with
an index in Sy. Obviously, ¢ F’, which contradicts F' DO F.

Consequently, |S7| = |N1 \ I] and a; = a; for all j € Ny \ 1.

Analogously, we can show that a; = a; for all j € Ny \ I. Therefore, a; = a; for all
JE€N and F = F' ie., I'is a facet of conv(P). O

Proposition 6 The facet-defining inequality (??) cannot be obtained by lifting a cover
inequality plus fizing at most n variables (The cover inequality can be for the original
knapsack constraint as well as for a simple LCI).

Proof: Compare the simple LCI (??) with (??). If we fix some variables of (??) and
move the corresponding terms to the right-hand side, then the value of the right-hand
side cannot increase. Suppose that we obtain (??) by fixing variables of (?7). Since
the right-hand side of (??) is greater than or equal to 3n, |C| > 3n in (??). Since (??)
has no variables with coeflicients equal to one, we need to fix at least 3n variables to
eliminate all the variables with coefficients equal to one in (??). However, we are only
allowed to fix at most n variables. O

Next, we present two propositions concerning slightly perturbed versions of the above
class of 0-1 knapsack constraints, namely

12n 20n
Z(?-Qn—éj)wj—l- Z (3-2" —é;)x; <6n-2", (9)
7=1 7=12n+1

forn > 10, 6; € {0,1,...,[2"71/3n] for 1 < j < 20n}. Let P} be the set of 0-1 solutions
to (?7).

Proposition 7 P' = PjJ.

Proof: If z € P[*, then € P since ¢; > 0,5 € N. If € P} for all §;, then

20n n—1
22" — ;< 6n-2"

10



20n 20n 20m 5
:>Z$]§3R+Z—$]_3 ‘|‘m:3n‘|‘§

20n
= Z z; < 3n+ 1.
i=1
By (?7), we have

12n 20n 20n

ZQJUJ—I— Z Jz; < 6n—|—2in26jxj

7=12n+1 7=1

= 6n+2_” 3n ij
71=1

< 6n—|——-(3n—|—1)

< 6n+1

Hence » ¢ P*. O

Note that if we fix some variables to the same values in P{* and Pj', they are still
equal. Therefore, we have

Proposition 8 Inequality (?7) defines a facet of the polytope for Py for n > 10 where
all variables x;, j € I are fived.

Now, we are ready to introduce the class of instances for which we will show that branch-
and-cut algorithms based on simple LCIs have to evaluate an exponential number of
nodes to prove optimality. Consider the following class of instances of 0-1 knapsack
problems (KP):

12n 20n
maXZ (20 — &)z + Z (30 — &)z
7=12n+1
12n 20n
22—+ Y, (3-2" —6)n; < 6n-2"
7=1 7=12n+1

€ B n>10,6 €{0,1,...,[2"7/3n]} for 1 < j < 20n
0 = (60n-2")*" 1 ¢, € {0,1,...,2"} for 1 < j < 20m

Proposition 9 Let zxp be the optimal value of KP, then zxp < 6nf

11



Proof: Since, by Proposition 8, Z;iﬁ 225 + Z?%MH 3z; < 6n holds for the solution
vector z, zxp < 6nf. O

Consider the following branch-and-cut algorithm for solving 0 — 1 knapsack problems of
the form

maXZ c;xj, Z ajr; <b, v € B", n=|N|
JEN JEN

Notation:

AN: set of active nodes of the search tree (0 is the root node and other nodes are
numbered 1,2,...).

TN: set of nodes of the search tree.

F*: set of constraints for node i, i.e., > jen @;z; < b plus LCIs (of any order) that have
been added to the linear programming relaxation.

I}: set of variables which are fixed to 0 at node i.

Ii: set of variables which are fixed to 1 at node 1.

I': LU I

Z;p: the best objective value of all feasible solutions found so far.

Algorithm:
1. Initialization.
k:=0, AN := {0}, TN := {0}, z;p := —o0, IJ := ¢,
I :=¢and FO := {3, naje; < b}
2. While AN # ¢ pick a node i € AN and do the following steps:
2.1 Solve the LP for node ¢,

T .
zj, = max Z €;T;
JEN
s.t. all constraints € "

0<z; <1, forjeN
zj=1,ifjeli
x;=0,if j el
to get an optimal solution * with optimal value z;p.
2.2 If 2™ is integral and [z],] > 2, then
zip := [, and AN := {j : Zl]p > Zip,j € AN,

12



2.3 If Lz;pj < z;, then fathom node i, i.e. AN := AN\ {7}.

2.4 If 2* is not integral and szpj > 2, then

2.4.1 Generate violated simple LCIs from any constraints € F* and
add them to F*, go to step 2.1.

2.4.2 If we cannot generate violated simple LCIs, then pick a fractional

variable z;, j ¢ I' and branch as follows:
AN == ANU{k+ 1,k + 2} \ {¢}
TN :=TNU{k+ 1,k+2}
= o), =
I+ =15, 1= U {j}
FRHL = pht2 .=
kE:=Fk+2.

This description of a branch-and-cut algorithm based on simple LClIs for 0-1 knapsack
problems allows us to state the main result of this section.

Theorem 10 A branch-and-cut algorithm based on simple LCIs for KP has to evaluate
at least 2" nodes.

Proof: By Propositions 6, 7 and 8, inequality (??) is a facet for the polytope at node 7,
if I = I' and 0 < |I'| < n, and it cannot be obtained by lifting a cover inequality and
fixing variables in I, i.e. (??7) ¢ F'. So there is a feasible fractional solution z* to the
LP at node ¢ and a positive € such that

* _ ¥
g a;xr; = 6n g a;x; + €

JEN\I jer
12n 20n
= Z 296 + Z 396 =6n+¢
7=12n+1

Obviously all simple LCIs in F* have coefficients < 207, so the largest value of all coef-
ficients of all constraints in F* is 3-2". By Proposition 3.1 in Chapter 1.5 of Nemhauser
and Wolsey [1988],

1 1

” (20m - 3 -27)20n (60 - 27)20n

Then the optimal objective value of the LP at node 1:

12n 20n
le > 220 §)as + Z (30 — &)z
7=12n+1

13



20n
= 6nf + 0 — ijxj
7=1
(60n . 2n)20n—|—1
(60n . 2n)20n
= 6nf +40n-2".

v

6n6 + — 200 - 2"

Hence by Proposition 9, Lz;pj > 6m8 + 40n - 2™ > zxp, i.e. node ¢ cannot be fathomed,
so all nodes of the branching tree at depth < n cannot be fathomed. Hence the number
of the nodes of the branching tree is at least 2. O

It is easy to see that the input length of KP is ¢ = O(n?), so
ITN| = Q(2") = Q(2V%).

Note that even if we add functions commonly found in integer programming solvers, such
as preprocessing and primal heuristics, to the above described branch-and-cut algorithm
Theorem 10 remains valid.
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