
  

 
 

 
 

 

 
 

AVR2052: BitCloud Quick Start Guide 

Features 

• Introduces BitCloud Software Development Kit (SDK)  

• Introduces WSNDemo application 

1 Introduction 

This document is intended for engineers and software developers evaluating 
BitCloud ZigBee® PRO stack.  

BitCloud SDK and the supported kits serve as the perfect vehicle to evaluate the 
performance and features of Atmel microcontrollers and radio transceivers as 
devices in a wireless sensor network. The SDK provides a complete software and 
documentation toolkit for prototyping, developing and debugging custom 
applications on top of BitCloud’s application programming interface (API). 

 

 

 

 

 

 

 

 

 

8-bit   
Microcontrollers 

 

Application Note 
 
 
 

Rev. 8200H-AVR-02/10 

 



  
 

 
 

2 AVR2052  
 

8200H-AVR-02/10 

2 References 

[1] AVR2051: BitCloud Stack Documentation 

[2] AVR2050: BitCloud User Guide 

[3] AVR Studio. User Guide. Available in HTML Help within the product.  

[4] WinAVR User Manual – 20090313 

[5] Using the GNU Compiler Collection 

[6] RZRAVEN Firmware Documentation. (AVR2017: RZRAVEN Firmware) 

[7] AVR2015: RZRAVEN Quick Start Guide 

[8] AT91 USB CDC Driver Implementation. 6269A–ATARM–10-Oct-06 
http://www.atmel.com/dyn/resources/prod_documents/doc6269.pdf  

[9] ZigBit Development Kit User’s Guide 
http://www.meshnetics.com/downloads/docs/ 

[10] AVR205X: SerialNet User Guide. Available in BitCloud SDK 
http://www.atmel.com/bitcloud/ 

[11] AVR2054: Serial Bootloader User Guide. Available in BitCloud SDK 
http://www.atmel.com/bitcloud/ 

[12] Java Runtime Environment      
http://java.sun.com/javase/downloads/index.jsp 

[13] IAR Embedded Workbench for Atmel AVR 
http://www.iar.com/website1/1.0.1.0/107/1/ 

[14] ATmega128RFA1 -package Quick Start Guide 

[15] ATSTK600 description 
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4254   

[16] Radio Extender Board REB231 V4.0.2 
http://www.dresden-elektronik.de/shop/prod72.html 

[17] ATEVK1105 description 
             http://www.atmel.com/evk1105 

[18] AVR32 UC3 Software Framework 1.5.0 
http://www.atmel.com/dyn/resources/prod_documents/AVR32-
SoftwareFramework-AT32UC3-1.5.0.zip 

[19] AVR32 GNU Toolchain 
             http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118 

[20] IAR Embedded Workbench for Atmel AVR32 
http://www.iar.com/website1/1.0.1.0/124/1/ 

 

 

 



 
 AVR2052 

 

 
 

 
3 

8200H-AVR-02/10 

3 Overview 

BitCloud is a full-featured, professional grade embedded software ZigBee stack from 
Atmel®. The stack provides a software development platform for reliable, scalable, 
and secure wireless applications running on Atmel microcontrollers and radio 
transceivers. BitCloud is designed to support a broad ecosystem of user-designed 
applications addressing diverse requirements while enabling a full spectrum of 
software customization.  

The following hardware platforms are supported by BitCloud SDK. 

Table 3-1. Supported hardware platforms 

Name in This 

Document 

Platform  

(MCU + RF) 

Supported Modules Supported Evaluation 

Kit 

Appropriate SDK 

ATAVRRZRAVEN AT90USB1287 + 
AT86RF230 

N/A ATAVRRZRAVEN 
(consists of 
ATAVRRZUSBSTICK 
and ATAVRRAVEN 
devices) 

BitCloud for 
ATAVRRZRAVEN 

ATmega1284P + 
ATmega3290P + 
AT86RF230 

ZigBit ATmega1281 + 
AT86RF230  

ATZB-24-B0 (ZigBit B0); 

ATZB-24-A2 (ZigBit A2) 

 

ATZB-DK-24 (ZDK) 

 

BitCloud for ZDK 

 

ZigBit Amp ATmega1281 + 
AT86RF230  

ATZB-A24-UFL (ZigBit Amp) ATZB-DK-A24  

(ZDK Amp) 

BitCloud for ZDK Amp 

ZigBit 900 ATmega1281 + 
AT86RF212  

ATZB-900-B0 (ZigBit 900) ATZB-DK-900 (ZDK 900) BitCloud for ZDK 900 

megaRF ATmega128RFA1 N/A -package and 
ATmega128RFA1 card 
hosted on ATSTK600 

BitCloud for megaRF 

UC3 AT32UC3A0512 
+ AT86RF231 

N/A EVK1105 BitCloud for AVR32 UC3 

 

Please note that this document describes the use of BitCloud with the specific 
modules and evaluation kits listed in the table above. Operation of BitCloud on 
supported MCU/RF combinations realized in a custom hardware application is 
outside the scope of this document. 

BitCloud stack is fully compliant with ZigBee PRO and ZigBee standards for wireless 
sensing and control. It provides an augmented set of APIs which, while maintaining 
full compliance with the standard, offer extended functionality designed with 
developer's convenience and ease-of-use in mind.  



  
 

 
 

4 AVR2052  
 

8200H-AVR-02/10 

The main structure of the BitCloud stack is presented in Figure 3-1. 

Figure 3-1. BitCloud Block Diagram 

 

The topmost of the core stack layers, APS, provides the highest level of networking-
related API visible to the application. ZDO provides a set of fully compliant ZigBee 
Device Object API which enable main network management functionality (e.g. start, 
reset, formation, join). It also defines ZigBee Device Profile types, device and service 
discovery commands implemented by the stack. 

The general guidelines to developing applications with BitCloud are presented in [2]. 
The SDK also includes WSN Monitor PC application in binary format and WSNDemo 
embedded application available in binary format and source code.  

The source code for WSNDemo application can be modified and extended, making it 
possible to develop WSN applications for a variety of application scenarios. WSN 
Monitor and WSNDemo applications are described in detail in Section 5.  

For ZigBit/ZigBit Amp/ZigBit 900 and ATAVRRZRAVEN platforms, the SDK also 
includes other reference applications as described in Section 6.2.1. 

4 Getting Started 

This chapter describes how to quickly get BitCloud running on the selected hardware 
platform. BitCloud SDK is available for several platforms as described in Section 2.  
Before proceeding, select the SDK version that matches your target platform. 

The majority of instructions for setting up BitCloud stack and applications depend on 
specific platform and evaluation kit. To get started, proceed to the platform-specific 
sections listed below. 

Table 4-1. Hardware-Specific Getting Started Sections 

For Platform Refer to Section 

ATAVRRZRAVEN  8.1 

ZigBit / ZigBit Amp / ZigBit 900 9.1 



 
 AVR2052 

 

 
 

 
5 

8200H-AVR-02/10 

For Platform Refer to Section 

megaRF 10.1 

UC3 11.1 

 

After completing the installation, try running WSNDemo application by programming 
the devices with ready-to-use images as described in Section 5.2. 

Finally, Section 5.5 describes how to get started creating new or modifying existing 
applications based on BitCloud C API. 

5 WSNDemo Application   

5.1 Overview 

The network and radio frequency performance of the hardware components is 
demonstrated with WSNDemo application which is based on BitCloud API. This 
application consists of the embedded firmware, which supports functions for 
coordinator, router and end device, and the GUI visualization application, WSN 
Monitor, which is run on a PC. In WSNDemo, the nodes communicate based on a 
proprietary messaging protocol.  

With WSNDemo application installed, the devices are organized into a set of nodes 
forming a ZigBee PRO network.  

For ZigBit /ZigBit Amp / ZigBit 900 platforms, end devices and routers and the 
coordinator read the sensor data from on-board light and temperature sensors, and 
forward collected data to WSN Monitor application for visualization. On 
ATAVRRZRAVEN, megaRF and UC3 platforms, zero values are sent to the network 
coordinator to emulate sensor data and demonstrate data transmission.  

End devices follow a duty cycle (i.e. microcontroller and radio transceiver are put to 
sleep periodically), waking up to transmit the data to the coordinator device. Using 
the serial connection, the coordinator transmits the received packets, along with its 
own sensor data (also 0s for ATAVRRZRAVEN, megaRF and UC3), to WSNMonitor 
application.  Those transmitted values are displayed on WSNMonitor panes as 
temperature, light and battery level measurements (0s for ATAVRRZRAVEN, 
megaRF and UC3). 

WSN Monitor also visualizes the network topology by drawing a tree of nodes which 
have joined the network. For each of the nodes, the parameters like the node’s 
address, its node sensor information and link quality data are displayed. 

Measured in dBm, RSSI indicates a link’s current condition. The RSSI resolution is 3 
dBm. LQI is another numeric parameter defined within the 0 to 255 range to measure 
the link quality. Larger values mean a better link, while values close to zero indicate a 
poor connection. 

In reference to WSNDemo application, Section 5.3 describes how to setup and use 
the boards. The user interface is described in Section 5.5.  

The application is delivered with source code which demonstrates how to develop a 
wireless network application using BitCloud API and provides a number of useful 
programming templates for common application tasks. Development of custom 
applications is described in Section 5.5. 



  
 

 
 

6 AVR2052  
 

8200H-AVR-02/10 

In the WSNDemo, the number of routers and end devices is limited only by the 
network parameter settings described in Section 6.2.1. However, for 
ATAVRRZRAVEN kit additional restrictions apply. These are outlined in Table 5-1. 

Table 5-1. Allowed board role / device type combinations for WSNDemo on 
ATAVRRZRAVEN 

Device Type Allowed Board Role Comments 

Coordinator RZUSBSTICK 
Coordinator needs USB interface to send 
data to PC-side WSNMonitor application 

Router AVRRAVEN or RZUSBSTICK  

End-Node AVRRAVEN 
End-nodes also demonstrate sleep 
capabilities (MCU and RF only) 

5.2 Programming the Boards 

As a first step, WSNDemo images should be loaded onto the boards. The locations 
of WSNDemo image files are platform specific and are provided in sections specified 
in Table 4-1. 

The programming instructions and the sets of pre-built application images provided 
with the SDK also depend on the target platform. The table below provides 
references to the sections that describe how to program each target platform and 
evaluation kit. 

Table 5-2. Platform-Specific Programming Sections 

For Platform Refer to Section 

ATAVRRZRAVEN  8.2 

ZigBit / ZigBit Amp / ZigBit 900 9.2 

megaRF 10.2 

UC3 11.2 

 

Running any ZigBee or ZigBee PRO application, WSNDemo included, requires that 
every device in the network has a 64-bit unique MAC address. See the appropriate 
sections in Table 5-2 for how MAC addresses are assigned for each type of 
supported boards. Typically, there is a number of pre-compiled images provided with 
the SDK that can be used right away without any modification.  

ZigBit, ZigBit Amp, ZigBit 900, ATAVRZRAVEN platforms do not require manual 
assignment of MAC addresses as the evaluation boards are equipped with a 
dedicated unique ID chip, which BitCloud stack uses automatically on start up.  
ATAVRRZRAVEN boards include an external EEPROM chip with an embedded 
unique ID, which is also used by BitCloud automatically on start up. 

Also, note that the default images are configured to use a particular extended PAN 

ID and channel mask. To change those parameters you must also modify the 
Configuration file and rebuild the application.  All and all, special care must be taken 
by the user when configuring an application so that each compiled image contains a 
unique MAC address and all images share the same extended PAN ID. 

5.3 Running WSNDemo 

The details of running WSNDemo differ for each target platform. Please refer to an 
appropriate section listed in the table below for the platform-specific instructions. 



 
 AVR2052 

 

 
 

 
7 

8200H-AVR-02/10 

Table 5-3. Platform-Specific WSNDemo Sections 

For Platform Refer to Section 

ATAVRRZRAVEN  8.4 

ZigBit / ZigBit Amp / ZigBit 900 9.4 

megaRF 10.4 

UC3 0 

5.4 Network Organization 

The coordinator organizes the wireless network automatically. Upon starting, every 
node informs the network on its role. 

If you power on the coordinator, it switches to an active state, even though no child 
node is present. This is normal, and it indicates that the coordinator is ready and 
child nodes can join the network with the coordinator’s extended PAN ID. By default, 
the coordinator uses extended PAN ID 0xAAAAAAAAAAAAAAAA, which is recognized 
by all routers. A short PAN ID is chosen at random. The extended PAN ID can be 
modified by the user through the application Configuration file as described in 
Section 6.2.1.  

Note: If the coordinator is absent or has not been turned on, the routers and end 
devices will remain in the network search mode. In this mode, routers scan the 
channels specified in the channel mask in search of a network with the specified 
extended PAN ID. 

By default, the channel mask for all application images provided with SDK contains a 
single channel. In rare cases, if the frequency corresponding to the radio channel is 
busy, the coordinator node may stay in the network search mode. If this happens, 
you should change the application’s channel mask to select another channel by 
changing the application’s Configuration file, and recompiling the application as 
described in Section 6.2.1. 

5.5 WSN Monitor 

WSN Monitor is a PC GUI application for WSNDemo that is used to display a ZigBee 
network topology and other information about a wireless sensor network. A typical 
WSN Monitor screen is shown in the figure below. It contains topology pane, sensor 

data pane, node data pane and application toolbars.  



  
 

 
 

8 AVR2052  
 

8200H-AVR-02/10 

Figure 5-1. WSN Monitor GUI 

 

Topology pane displays the network topology in real time, which helps the user 
monitor the formation and dynamic changes in the network while the nodes join, 

send data or leave. The network topology is constructed on the basis of next hop 
information for each of the nodes, and each link is also tipped with RSSI and LQI 
values. Each of the nodes displayed is depicted by an icon with the node’s address 
or name below and sensor readings to the right of the icon if required by settings. 

Sensor data pane displays data coming from onboard sensors of the selected node 
(see Section 5.5.2). It is presented in graph and table form. Other parameters can be 
observed for each node in table form. Node data pane includes a sensor selection 

combo-box used to switch between sensor types. 

By default in topology pane nodes are labeled with their short addresses. However 
by a double click another title can be assigned to any desired node. If “Cancel” is 
pressed in opened window short address is set back as node’s title.  

5.5.1 Setting up node timeouts 

The Window/Preferences menu of WSN Monitor contains a number of 
parameters used to control application behavior. Timeouts are used to tune 
visualization of coordinator, routers and end devices as the nodes disappear from the 
network each time a connection is lost, power is down, or a reset has occurred. A 
node timeout corresponds to the time the WSN Monitor application waits for a packet 
from a node before assuming that a node is no longer part of the network.  Note that 
this value does not correspond to the frequency with which data is transmitted by 



 
 AVR2052 

 

 
 

 
9 

8200H-AVR-02/10 

each type of device.  To get smooth topology visualization, setting timeouts to 20 sec 
is recommended for coordinator and router and 30 sec is recommended for end 
device. Assuming default application configuration, these timeouts cover 3 periods 
between sending a packet so at least 3 packets would need to be lost before a node 
is removed from WSN Monitor’s Topology Pane. 

Figure 5-2. WSNMonitor Preferences menu 

 

5.5.2 Sensor data visualization 

Each of the boards sends temperature/light/battery sensors readings (or emulated 
values) to the coordinator, which in turn sends it to the PC. The WSN Monitor allows 
to displays the readings from onboard sensors next to a node icon inside Topology 
Pane (see Section 5.5). For this corresponding option shall be selected in the 
node/link parameters from the Quick Settings Toolbar. 

The user can select any node in Topology Pane to monitor the node’s activity and 
see the node data in three different forms: 

 Text table 

 Chart 

 The onboard sensor’s data displayed next to each node in topology pane. These 
values are also tipped with arrows indicating whether the value increased or 
decreased in relation to the previous sample. 

Note: A given node is selected when clicked on and a dashed frame is drawn around 
it.  

The same values are shown on Sensor Data Pane, so the user can observe how the 
values change over a period of time. 

Sensor Data Pane includes a Sensor Selection combo-box. Use the button on the 
Sensor Control Toolbar to display the desired types of sensor data. 



  
 

 
 

10 AVR2052  
 

8200H-AVR-02/10 

6 Programming with BitCloud API 

6.1 API Overview 

The BitCloud internal architecture follows IEEE 802.15.4 and ZigBee-defined 
convention for splitting the networking stack into its logical layers. Besides the core 
stack containing the protocol implementation, BitCloud contains additional layers 
implementing shared services (e.g. task manager, configuration manager, and power 
manager) and hardware abstractions (e.g. hardware abstraction layer (HAL) and 
board support package (BSP)). The APIs contributed by these layers are outside the 
scope of core stack functionality.  However, these essential additions to BitCloud API 
significantly reduce application complexity and simplify the development effort. 
BitCloud Stack Documentation [1] provides detailed information on the stack’s C API 
and its use. 

The topmost of the core stack layers, APS, provides the highest level of networking-
related APIs visible to the application. ZDO provides a set of fully compliant ZigBee 
Device Object APIs which enable main network management functionality (e.g. start, 
reset, formation, join). ZDO also defines ZigBee Device Profile types, device and 
service discovery commands implemented by the stack. 

There are three service "planes" including: task manager, configuration manager, 
and power manager. These services are available to the user application, and may 
also be utilized by lower stack layers. Task manager is the stack scheduler which all 
multiple internal stack components and the user application to run on the same 
microcontroller. The task manager utilizes a proprietary priority queue-based 
algorithm specifically tuned for multi-layer stack environment and demands of time-
critical network protocols. Power management routines are responsible for gracefully 
shutting down all stack components and saving system state when preparing to 
sleep and restoring system state when waking up.  Configuration manager is used by 
both the internal stack components and the user application alike to provide a 
common way to store and retrieve network parameters like Extended PAN ID and 
channel mask. 

The Hardware Abstraction Layer (HAL) includes a complete set of APIs for using on-
module hardware resources (e.g. EEPROM, app, sleep, and watchdog timers) as 
well as the reference drivers for rapid design-in and smooth integration with a range 
of external peripherals (e.g. IRQ, TWI, SPI, UART, 1-wire), where hardware interface 
is supported by the platform. Board support package (BSP) includes a complete set 
of drivers for managing standard peripherals (e.g. sensors, UID chip, sliders, and 
buttons) placed on development boards such as those provided with ZigBit, ZigBit 
Amp and ZigBit 900 evaluation kits. 

Please refer to [1] and [2] for a more detailed description of the BitCloud API and its 
features. 

6.2 Development Tools  

Development tools consist of (1) a integrated development environment (e.g. AVR 
Studio or IAR Embedded Workbench) where sample applications may be modified, 
compiled and debugged, (2) a corresponding compiler tool chain (e.g. WinAVR, IAR) 
which provides everything necessary to compile application source code into binary 
images, and (3) a programming device (e.g. JTAG), which may be used to program 
and debug the application on a target platform.   



 
 AVR2052 

 

 
 

 
11 

8200H-AVR-02/10 

Atmel’s AVR Studio [3] and/or IAR Embedded Workbench for Atmel AVR [13] may 
be used to develop and debug applications based on BitCloud API on AVR-based 
platforms including ZigBit, ZigBit Amp, ZigBit 900 and ATAVRRZRAVEN. This IDE 
supports editing of application source code, compilation, linking object modules with 
libraries, and application debugging.  AVR Studio is integrated with WinAVR – a 
Windows port of GNU compiler tool chain for the Atmel AVR microprocessors.  More 
information about WinAVR and GNU compiler tools is available in [4] and [5].  

In AVR Studio, each application has a corresponding project file identified by the 
.aps extension. All the necessary information about a project is contained in the 
project file, which can be double-clicked to open the application’s project in AVR 
Studio. Likewise, In IAR Embedded Workbench, each application has a 
corresponding .eww file which can be double-clicked to open the application’s 
project.  For detailed instructions on how to compile and debug applications using the 
supported tools, refer to Section 6.2.2. 

Platform-specific sections which describe development tools installation and setup 
instructions are listed in Table 4-1. 

6.2.1 Sample Applications 

For all platforms, the SDK is supplied with WSNDemo sample application provided in 
source code. WSNDemo is presented in detail in Section 5. To better understand the 
communication between the network nodes and between the coordinator and the 
PC, the user can refer to Section 12 and Section 13. 

For some platforms additional sample applications are available as indicated in the 
table below.  

Table 6-1. Sample Applications Availability 

Application Brief Description 
A

T
A

V
R

R
Z

R

A
V

E
N

 

Z
ig

B
it

, 

Z
ig

B
it

 A
m

p
 

Z
ig

B
it

 9
0
0
 

m
e

g
a

R
F

 

U
C

3
 

WSNDemo Featured SDK application 
demonstrating network functionality 
of software and additional network 
visualization with WSN Monitor. 
See section 5. 

X X X X 

Blink Introduces the simplest application 
that uses timer and LEDs. When 
started, the application makes all 
the LEDs blink synchronously with 
a certain period. 

X X   

Lowpower Show how to collect data from low-
power, sleeping devices employing 
the simplest power management 
strategy. 

X X   

Peer2peer Shows how to organize the 
simplest peer-to-peer link. A simple 
buffering strategy is employed to 
avoid byte-by-byte data transfer.  

X X   



  
 

 
 

12 AVR2052  
 

8200H-AVR-02/10 

Application Brief Description 

A
T

A
V

R
R

Z
R

A
V

E
N

 

Z
ig

B
it

, 

Z
ig

B
it

 A
m

p
 

Z
ig

B
it

 9
0
0
 

m
e

g
a

R
F

 

U
C

3
 

PingPong Shows how process multiple 
simultaneous data transmissions. 
Each node is waiting for a wireless 
message, and then passes it to the 
next node.  

 X   

ThroughputTest Measures wireless UART bandwith 
of ZigBit, ZigBit Amp and ZigBit 
900 boards. 

X X   

 

For more details on sample applications available for a specific platform refer to [1]. 

Once the SDK is installed, the source code for the WSNDemo application can be 
found inside the “./Sample Applications/WSNDemo“ directory. For other sample 
applications (where available), the source code can be found in “./Sample 
Applications/<application-name>“ directories. 

Network parameters and their default values are defined in Configuration file. 
However, when the application is compiled using IAR Embedded Workbench IDE, 
the network parameters are defined in “iarConfiguration.h” file located in 

“iar/AVR” subdirectory of the appropriate application directory.  For the WSNDemo 

application, this file is located in “./BitCloud/Sample 
Applications/WSNDemo/iar/AVR”. In all other cases, including compiling from 
the command line using IAR compiler, Configuration file will be used. 
 

6.2.2 Compiling Applications 

The following development environment options are available for each of the 
supported platforms.  

Table 6-2. Platform-Specific Compilation Options 

For Platform AVR Studio + 

WinAVR 

IAR Embedded 

Workbench 

ATAVRRZRAVEN  X X 

ZigBit / ZigBit Amp / ZigBit 900 X X 

megaRF X X 

UC3  X 

 

In order to compile an application in each of the available development 
environments, the following steps should be taken:  

6.2.2.1 AVR Studio + WinAVR  

 Command line: Compile application by running make utility. Before running make, 
be sure that Configuration file has COMPILER_TYPE variable set to GCC. 

 IDE: Open the .aps file from the appropriate directory with AVR Studio and 
execute “Build/Rebuild All” from the main menu.  



 
 AVR2052 

 

 
 

 
13 

8200H-AVR-02/10 

As a result, .hex, .srec, .bin and .elf application images will be 
generated.  

6.2.2.2 IAR Embedded Workbench  

 Command line: Compile application by running make utility. Before running make, 
be sure that Configuration file has COMPILER_TYPE variable set to IAR. The 
.hex, .srec, .bin and .elf image files will then be generated. 

 IDE: Open the .eww file in the “iar/AVR“ for ZigBit, RZRAVEN platforms, 
subdirectory of the appropriate application directory (for WSNDemo 
WSNDemo.eww file from the “./Sample 
Applications/WSNDemo/iar/AVR“ subdirectory) with IAR Embedded 
Workbench and execute “Rebuild All” item from the Project menu. By 
default the .a90 (for WSNDemo: WSNDemo.a90) file will be generated in the 
“iar/AVR/Debug/exe” subdirectory (for WSNDemo: in “./Sample 
Applications/WSNDemo/iar/ AVR/Debug/exe“ directory) with format as 
specified in Linker Output Options of the IAR project.  

6.3 Reserved Hardware Resources 

Hardware resources provided by the supported hardware include microcontroller 
peripherals, buses, timers, IRQ lines, I/O registers, etc. Many of these interfaces 
have corresponding APIs in hardware abstraction layer (HAL) of the BitCloud stack. 
When building custom applications on top of the BitCloud API, the user is 
encouraged to use the high-level APIs instead of the low-level register interfaces to 
ensure that the resource use does not overlap with that of the stack.  

The hardware resources reserved for the internal use by the stack in BitCloud are 
listed in platform-specific sections specified in the table below. These resources must 
not be accessed by the application code. Please note that the lists of the reserved 
hardware resources differ for each device. 

Table 6-3. Platform-Specific Reserved Resources 

For Platform Refer to Section 

ATAVRRZRAVEN  8.5 

ZigBit / ZigBit Amp / ZigBit 900 9.4 

ATmega128RFA1 10.5 

UC3 11.5 

 

 

 

 

 

 

 

 

 



  
 

 
 

14 AVR2052  
 

8200H-AVR-02/10 

7 Basic Troubleshooting 

In case of any operational problem with your setup, please check the following: 

1. Check the power first, and make sure that all of your equipment is properly 
connected.  

2. Check if your PC conforms to the minimum system requirements (see Section 4).  

3. Check if the PC USB or UART interface is working and the correct drivers are 
installed (see Section 4). 

4. Check hardware kit documentation if you have setup and are using the hardware 
in the right way. See Section 4 for specific hardware setup requirements. 

5. For ATAVRRZRAVEN, check LCD indication of AVRRAVEN nodes to detect the 
cases when they are not responding or behaving unusually.  

6. Make sure you have programmed the right images and set the correct Fuses 
values (see Section 5.2). 

Resetting the node may be required. 

The table below represents some typical problems that you may encounter while 
working with the Development Kit and possible solutions. 

Table 7-1. Typical problems and solutions 

Problem  Solution 

For ATAVRRZRAVEN: 

The AVRRAVEN board 
does not indicate its 
activity on LCD. 

Make sure that WSNDemo image is loaded. The LCD 
controlling logic depends on the application, and may work 
differently for the images built by you. 

WSN Monitor fails to start. Make sure Java machine is properly installed on your PC. 
See Section 4. 

No node is shown on the 
Topology Pane in the WSN 
Monitor 

Check if the WSN Monitor uses the proper COM port and if 
not, change it and restart the program. 

WSN Monitor shows NO 
DATA in the Sensor Data 
Graph Pane. 

No node is selected. Select the required node by mouse-
clicking on it. 

Node titles displayed on the 
Topology Pane do not show 
node destinations. 

The displayed titles do not necessarily relate to the node 
functions but they can be redefined by the user at any time. 
These names are stored in the node title file (see Section 
5.5) along with MAC addresses mapped to the nodes. 



 
 AVR2052 

 

 
 

 
15 

8200H-AVR-02/10 

8 Appendix A-1. ATAVRRZRAVEN Specifics 

8.1 Getting Started 

8.1.1 Required Hardware 

Before installing and using the BitCloud SDK make sure that all necessary hardware 
is available for the kit you would like to use: 

1. One ATAVRRZUSBSTICK 

2. One or more ATAVRRAVEN boards 

3. 100-mil to 5o mil JTAG adapter 

4. JTAGICE mkII 

8.1.2 Hardware Setup 

1. Solder the JTAG headers onto the boards as described in [7]. 

2. Make sure that the boards have fresh batteries. 

8.1.3 System Requirements 

Before using the SDK, please ensure that the following system requirements are met 
by your PC and development environment. 

Table 8-1. System requirements for ATAVRRZRAVEN 

Parameter Value Note 

CPU 
Intel Pentium III or higher, 
800MHz  

RAM 128MB  

Free space on hard disk 50MB  

JTAG emulator 
JTAGICE mkII emulator with 
cable 

Required to upload and 
debug firmware onto the 
boards through JTAG (see 
Section 5.2). 

Operating system Windows 2000/XP  

IDE 

AVR Studio 4.17 and WinAVR 
20090313

 (1)
 

OR 

IAR Embedded Workbench 
AVR 5.3

 

(with IAR C/C++ Compiler for 
AVR 5.30.6 

(2)
) 

Required to upload firmware 
images through JTAG (see 
Section 5.2), and to develop 
applications using API (see 
Section 6.2) 

Java Virtual Machine 
Java Runtime Environment 
(JRE) 5 Update 8, or later 

Required to run WSNMonitor 
application 

Notes: 1,2 Users are strongly recommended to use specified versions of WinAVR 
and IAR C/C++ Compiler for AVR. Other versions are not supported and 
may not work.  



  
 

 
 

16 AVR2052  
 

8200H-AVR-02/10 

8.1.4 Installing the SDK 

Proceed with the following installation instructions: 

1. Download the archive to your PC and unpack it into an empty folder. Make sure 
that path to this folder contains no blank spaces. As a result, the following SDK 
folders and files will be created. 

Table 8-2. The SDK file structure 

Directory/File Description 

./Documentation Documentation on BitCloud software 

./Evaluation Tools/WSNDemo 

(Embedded) 

Ready-to-use image files for evaluating 
WSNDemo. Refer to section 8.3 5.2for the 
description of the images 

./Evaluation Tools/WSNDemo (WSN 

Monitor)/WSNMonitorSetup.exe 

WSN Monitor installer 

./Evaluation Tools/SerialNet Ready-to-use image file for SerialNet 
application. Firmware can be used on 
ATAVRRZUSBSTICK only. Refer to [10] for 
more information on SerialNet. 

./BitCloud/Components Header files for BitCloud Stack 

./BitCloud/Components/BSP/ Source, header and library files for BitCloud 
BSP 

./ BitCloud/Components/BSP/ 
RAVEN/AT3290P 

Source and header files for LCD controller 
firmware 

./BitCloud/lib Library files for BitCloud Stack 

./Sample Applications/ Source files for sample applications. 

./Third Party Software/6119.inf USB to Serial Converter driver  

2. Install desired IDE: 

2.1. For AVR Studio and WinAVR: 

2.1.1. Install AVR Studio [3], if not already installed on your PC.  

2.1.2.  Install WinAVR development suite [4], if not already installed on your 
PC. Be sure to install only the supported version of WinAVR as 
specified in Table 8-1. 

2.2. For IAR Embedded Workbench AVR: 

2.2.1. Install IAR Embedded Workbench for AVR [13], if not already installed 
on your PC. 

2.2.2.  In SDK directory “./BitCloud/lib/” make sure that in files 
“Makerules_AtmlUsbDongle_At90usb1287_8Mhz_Iar” and 
“Makerules_Raven_Atmega1284_4Mhz_Iar” the IAR_PATH 
variable points to the correct installation directory of IAR Embedded 
Workbench. Update, if needed. 

2.2.3.  Add IAR Embedded Workbench “bin” directory (for default installation 
located in “C:\Program Files\IAR Systems\Embedded 

Workbench 5.3\avr\bin”) to the system PATH environment 
variable. To update the PATH variable go to Control Panel > 
System > Advanced > Environment Variables, select “Path” 
variable from the “System variables” list, press “Edit”, and append “;” 
followed by the actual “bin” directory name to the end of the Variable 



 
 AVR2052 

 

 
 

 
17 

8200H-AVR-02/10 

value, then press “OK”. This step is required if you plan to build 
embedded images using IAR Embedded Workbench from command 
line. 

3. Install USB to Serial Converter driver. To install the driver, please attach the 
RZUSBSTICK device to your PC and wait for Windows to request for a specific 
driver for the device. If the RZUSBSTICK already has an assigned driver, or 
Windows assigned driver to it automatically, go to Start/Control 
Panel/System/Hardware/Device Manager, double-click the RZUSBSTICK device 
and select “Update Driver…”. Choose the “Install from a list or 
specific location” option and point to 6119.inf provided with this SDK. 
Please refer to section 4.9.1 of [8] for further details and basic troubleshooting 
options. 

4. Download and install Java Runtime Environment [12], if not already installed on 
your PC.  

8.2 Programming the Boards 

8.2.1 Setting Parameters 

At startup, the software assigns the 64-bit MAC address to the device as follows. If at 
compile time CS_UID parameter is set to 0 BitCloud attempts to load MAC address 
from an external EEPROM chip available on RZRAVEN and RZUSBSTICK boards. If 
there is no such UID then zero MAC address will be assigned to the device. Note 
that for proper operation all nodes in the network shall have unique MAC address 
values. Hence, if address cannot be obtained automatically from external source, 
separate firmware images shall be created for each device with unique CS_UID 
parameter specified in application configuration (see Section 116.2.1) every time an 
image is compiled. 

8.2.2 Programming 

Refer to AVR Studio [3] and IAR Embedded Workbench [13] documentation for the 
description of how the images can be programmed to the boards using JTAG. 

Set the following options in the Fuses tab before uploading the image through JTAG. 
Note the values differ for different types of boards. 

Table 8-3. Fuse bits setting for AT90USB1287 (RZUSBSTICK) 

Option Value 

BODLEVEL Brown-out detection at VCC=2.4 V 

HWBE Disabled 

OCDEN Disabled 

JTAGEN Enabled 

SPIEN Enabled 

WDTON Disabled 

EESAVE Disabled 

BOOTSZ Boot Flash size=4096 words start address=$F000 

BOOTRST Disabled 

CKDIV8 Disabled 

CKOUT Disabled 

SUT_CKSEL Ext. Crystal Osc. 3.0-8.0 MHz; Start-up time: 16K 
CK + 65 ms 

EXTENDED 0xFC 



  
 

 
 

18 AVR2052  
 

8200H-AVR-02/10 

Option Value 

HIGH 0x99 

LOW 0xFD 

 

Table 8-4. Fuse bits setting for ATmega1284p (AVRRAVEN) 

Option Value 

BODLEVEL Brown-out detection at VCC=1.8V 

OCDEN Disabled 

JTAGEN Enabled 

SPIEN Enabled 

WDTON Disabled 

EESAVE Disabled 

BOOTSZ Boot Flash size=512 words start address=$FE00 

BOOTRST Disabled 

CKDIV8 Enabled 

CKOUT Disabled 

SUT_CKSEL Int. RC Osc.; Start-up time: 6 CK + 65 ms  

EXTENDED 0xFE 

HIGH 0x9F 

LOW 0x62 

 

Table 8-5. Fuse bits setting for ATmega3290p (LCD on AVRRAVEN) 

Option Value 

BODLEVEL Brown-out detection at VCC=1.8V 

RSTDISBL Disabled 

OCDEN Disabled 

JTAGEN Enabled 

SPIEN Enabled 

WDTON Disabled 

EESAVE Disabled 

BOOTSZ Boot Flash size=512 words start address=$3E00 

BOOTRST Disabled 

CKDIV8 Enabled 

CKOUT Disabled 

SUT_CKSEL Int. RC Osc.; Start-up time: 6 CK + 65 ms  

EXTENDED 0xFD 

HIGH 0x9D 

LOW 0x62 

 

For additional details, please refer to “readme.html > RZRAVEN: RZRAVEN 

Firmware Documentation > Miscellaneous information > 

Programming the RZRAVEN Firmware with Programmer/Debugger” 
section of [6].  



 
 AVR2052 

 

 
 

 
19 

8200H-AVR-02/10 

8.3 Pre-Built Images 

The SDK comes with ready-to-use binary images of WSNDemo application. There is 
a set of images for different device types: 

1. WSNDemoApp_USB_Coord.hex – for RZUSBSTICK (AT90USB1287 
controller) acting as Coordinator 

2. WSNDemoApp_USB_Router.hex – for RZUSBSTICK (AT90USB1287 
controller) acting as Router 

3. WSNDemoApp_Raven_Router.hex – for AVRRAVEN (ATmega1284p 
microcontroller) acting as Router 

4. WSNDemoApp_Raven_EndDev.hex – for AVRRAVEN (ATmega1284p 
microcontroller) acting as End Device 

5. Raven_3290P_LCD.hex – for AVRRAVEN’s LCD controller 
(ATmega3290p) 

And SerialNet application [10] for RZUSBSTICK: 

6. SerialNet_USB.hex.  

In all ready-to-use binary images MAC address (CS_UID) is loaded automatically 
from a dedicated external EEPROM chip, ensuring that unique MAC addresses are 
assigned to all network nodes. Note that the default WSNDemo images are 
configured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and channel mask with 
only channel 0x0F enabled for operation. 

8.4 Running WSNDemo 

8.4.1 Starting WSNDemo 

To start WSNDemo, do the following: 

1. Setup the hardware as described in Section 8.1.2. 

2. Install BitCloud SDK as described in Section 8.1.4. 

3. Load precompiled WSNDemo firmware images to devices: 

a. On RZUSBSTICK (Coordinator): WSNDemoApp_USB_Coord.hex; 

b. On AVRRAVEN (Router): WSNDemoApp_Raven_Router.hex for 
ATmega1284p microcontroller and Raven_3290P_LCD.hex for 
ATmega3290p LCD controller (the board contains two JTAG 
headers – refer to [6]); 

c. On AVRRAVEN (End-Device): WSNDemoApp_Raven_EndDev.hex 
for ATmega1284p microcontroller and Raven_3290P_LCD.hex for 
ATmega3290p LCD controller (the board contains two JTAG 
headers – refer to [6]); 

4. Plug-in the coordinator USB stick into PC. 

5. Run WSN Monitor (see Section 5.5). 

6. Power ON the rest of the nodes. 

8.4.2 Monitoring WSNDemo Activity 

Network activity can be monitored in two ways: 



  
 

 
 

20 AVR2052  
 

8200H-AVR-02/10 

 observing the LCD screens of AVRRAVEN devices and color LEDs of 
RZUSBSTICK devices (see meaning of LCD information and LEDs described in 
the tables below); 

 viewing the network information through the WSN Monitor installed on PC. 

 

Table 8-6. LCD indication for AVRRAVEN boards used in WSNDemo 

Node State Visual Information on LCD Screen 

Searching for network 
“JOINING” string displayed; red LED blinking; “sun” 
symbol displayed 

Joined to network 
“ROUTER” or “ENDDEV” string displayed, depending on 
the node role; red LED is on; “sun” symbol displayed 

+ receiving data 
“RX” indicator visible (please note the limitations due to 
LCD refresh rate) 

+ sending data 
“TX” indicator visible (please note the limitations due to 
LCD refresh rate) 

Sleeping (end device only) Red LED is off; “moon” symbol displayed 

 

Table 8-7. LED indication for the RZUSBSTICK devices used in WSNDemo 

Node State LEDs indication 

Powered on Blue LED is on 

Searching for network Red LED blinking 

Joined to network Red LED is on 

+ receiving data Yellow LED 

+ sending data to ZigBee 
network (routers and end 
devices only) Green LED 

+ sending data to USB 
(coordinator only) Green LED 

Sleeping Not supported for RZUSBSTICK 

8.5 Reserved Hardware Resources 

Table 8-8. Hardware resources reserved by the stack on RZUSBSTICK devices 

Resource Description 

Processor main clock  8MHz oscillator with external quartz  

SPI Radio interface 

AT90USB1287 ports: PB0, PB1, 
PB2, PB3, PB4, PB5, PB7, PD4 

Radio interface 

Timer/Counter3 Radio interface 

Timer/Counter1 capture input  Radio interface 

Timer/Counter1 System timer 

 



 
 AVR2052 

 

 
 

 
21 

8200H-AVR-02/10 

Table 8-9. Hardware resources reserved by the stack on AVRRAVEN devices 

Resource Description 

Processor main clock 
4 or 8MHz from internal RC-oscillator or external radio 
frequency 

SPI Radio interface 

ATmega ports PB0, PB1, PB3, 
PB4, PB5, PB6, PB7, PD6 Radio interface 

ATmega ports PC6, PC7 Asynchronous timer interface 

Timer/Counter2 Asynchronous timer 

Timer/Counter3 Radio interface 

 

Timer/Counter1 System timer 

Timer1 ICP IRQ Radio interface 

EEPROM 
Storage for user settings accessible via Persistent Data 
Server 



  
 

 
 

22 AVR2052  
 

8200H-AVR-02/10 

9 Appendix A-3: ZigBit, ZigBit Amp and ZigBit 900 Specifics 

9.1 Getting Started 

9.1.1 Required Hardware 

Before installing and using the BitCloud SDK make sure that all necessary hardware 
is available for the kit you would like to use: 

 ATZB-DK-24, ATZB-DK-A24, or ATZB-DK-900:  

o ATZB-DK-24 contains ATZB-EVB-24-B0, ATZB-EVB-24-SMA, ATZB-EVB-
24-A2 (MeshBean evaluation board) with mounted ZigBit modules; 

o ATZB-DK-A24 contains ATZB-EVB-A24-UFL (MeshBean Amp evaluation 
board) with ZigBit Amp modules; 

o ATZB-DK-900 contains ATZB-EVB-900-B0 (MeshBean 900 evaluation 
board) with ZigBit 900 modules. 

 JTAGICE mkII 

9.1.2 Hardware Setup 

No special pre-usage assembly is required for MeshBean boards supplied with ZigBit 
Development Kits. 

Please note that the boards can be powered in one of the three ways: 

 by a pair of AA-size batteries; 

 via the USB port (once connected for data transfer, see also Section 9.1.4);  

 via an AC/DC adaptor. 

  

The nominal voltage is 3V for MeshBean and MeshBean 900 boards, 3.3V for 
MeshBean Amp. Using AC/DC adaptor automatically disconnects AA batteries. 
Using USB port disconnects the AC/DC adaptor. 

9.1.3 System Requirements 

Before using the SDK, please ensure that the following system requirements are met 
by your PC and development environment. 

Table 9-1. System requirements for ZigBit, ZigBit Amp and ZigBit 900 

Parameter Value Note 

CPU 
Intel Pentium III or higher, 
800MHz  

RAM 128MB  

Free space on hard disk 50MB  

JTAG emulator 
JTAGICE mkII emulator 
with cable 

Required to upload and debug 
firmware onto the boards through 
JTAG (see Section 5.2). 

Operating system Windows 2000/XP  



 
 AVR2052 

 

 
 

 
23 

8200H-AVR-02/10 

Parameter Value Note 

IDE 

AVR Studio 4.17 and 
WinAVR 20090313

 (1) 

OR 

IAR Embedded 
Workbench AVR 5.3

 

(with IAR C/C++ Compiler 
for AVR 5.30.6 

(2)
) 

Required to upload firmware 
images through JTAG (see 
Section 5.2), and to develop 
applications using API (see 
Section 6.2) 

Java Virtual Machine 

Java Runtime 
Environment (JRE) 5 
Update 8, or later 

Required to run WSNMonitor 
application 

Notes: 1,2 Users are strongly recommended to use the specified version of WinAVR and 
IAR C/C++ Compiler for AVR. Other versions are not supported and may not work.  

 

9.1.4 Installing the SDK 

Proceed with the following installation instructions. 

1. Download the archive to your PC and unpack it into an empty folder. As a result, 
the following SDK folders and files will be created. 

Table 9-2. The SDK file structure 

Directory/File Description 

./Documentation Documentation on BitCloud software 

./Bootloader Contains Serial bootloader image file and 
installer for PC 

./Evaluation Tools/WSNDemo 

(Embedded) 

Ready-to-use image files for evaluating 
WSNDemo. Refer to section 9.3 for the 
description of the images. 

./Evaluation Tools/WSNDemo (WSN 

Monitor)/WSNMonitorSetup.exe 

WSN Monitor installer 

./Evaluation Tools/SerialNet Ready-to-use image files for SerialNet 
application. Refer to [10] for more information 
on SerialNet. 

./BitCloud/Components Header files for BitCloud Stack 

./BitCloud/Components/BSP Source, header and library files for BitCloud 
BSP 

./BitCloud/lib Library files for BitCloud Stack 

./Sample Applications Source files for sample applications. 

2. Install desired IDE: 

2.1. For AVR Studio and WinAVR: 

2.1.1. Install AVR Studio [3], if not already installed on your PC.  

2.1.2.  Install WinAVR development suite [4], if not already installed on your 
PC. Be sure to install only the supported version of WinAVR as 
specified in Table 8-1. 

2.2. For IAR Embedded Workbench AVR: 



  
 

 
 

24 AVR2052  
 

8200H-AVR-02/10 

2.2.1. Install IAR Embedded Workbench for AVR [13], if not already installed 
on your PC. 

2.2.2.  In SDK directory “./BitCloud/lib/” make sure that in file 
“Makerules_ZigBit_Atmega1281_8Mhz_Iar” and the IAR_PATH 
parameter points to the correct installation directory of IAR Embedded 
Workbench. Modify it, if needed. 

2.2.3.  Add IAR Embedded Workbench “bin” directory (for default installation 
located in “C:\Program Files\IAR Systems\Embedded 

Workbench 5.3\avr\bin”) to the system PATH environment 
variable. To update the PATH variable go to Control Panel > 
System > Advanced > Environment Variables, select “Path” 
variable from the “System variables” list, press “Edit”, and append “;” 
followed by the actual “bin” directory name to the end of the Variable 
value, then press “OK”. This step is required if you plan to build 
embedded images using IAR Embedded Workbench from command 
line. 

3. The board can be connected to host PC via USB port, using USB 2.0 A/mini-B 
cable. USB is a familiar connection option. Furthermore, it provides the 
convenient way to link multiple boards to a single PC, and no battery is required 
once a board is powered via USB. 

4. Alternatively, the board can be connected to host PC via serial port, using a 
serial cable. Please note that USB and serial port (RS-232) share the same 
physical port on the board. They cannot be used at the same time. Keep in mind 
that the connection mode is controlled by setting of jumper on a MeshBean. 
Refer to Section 9.3 for the description of connectors and jumpers on MeshBean 
boards. 

5. If you plan to use USB connection, install USB to UART Bridge VCP driver. To 
install the driver, please do the following:  

1. Download the driver from 
https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.
aspx 

2. Attach the MeshBean board to the USB port of your PC. Windows should 
detect the new hardware. Follow the instructions provided by the driver 
installation wizard. 

3. Make sure that the driver is installed successfully and the new COM port is 
present in the device list. Check that the device is correctly shown in the 
Device Manager window as on the figure below: 



 
 AVR2052 

 

 
 

 
25 

8200H-AVR-02/10 

Figure 9-1. Correctly installed COM port for MeshBean device 

 

6. Download and install Java Runtime Environment [12], if not already installed on 
your PC.  

9.1.5 Selected jumpers on MeshBean boards 

This section defines settings for some of the jumpers used on the MeshBean board. 
For more information on jumper settings and interface pinouts refer to [9]. Note that 
J2 settings differ for ZigBit, ZigBit 900, and ZigBit Amp. 

Table 9-3. J2 jumper settings for ZigBit and ZigBit 900: power source 

Jumper position Description 

J2 bridges POWER pin 
and BAT pin 

ZigBit is powered by primary source (battery, USB or AC/DC 
adapter).  

J2 bridges POWER pin 
and DC/DC pin 

ZigBit is powered by 3.6 V internal voltage regulator. 

 

Table 9-4. J2 jumper settings for ZigBit Amp: power source 

Jumper position Description 

J2 bridges pin 2 and pin 
3 

ZigBit Amp is powered by USB  

J2 bridges pin 2 and 
pin 1 

ZigBit Amp is powered by external DC source or by batteries if 
external DC source is disconnected. 



  
 

 
 

26 AVR2052  
 

8200H-AVR-02/10 

 

Table 9-5. J3 jumper settings for all MeshBean types: Serial/USB selection 

Jumper position Description 

J3 bridges central pin 
and RS-232 pin 

The board will use serial port (available in the Expansion slot) for 
connection to the host. 

J3 bridges central pin 
and USB pin 

The board will use USB for connection to the host. 

 

Warning: Any other position of jumpers J2 and J3 or their omission may 
permanently damage the MeshBean boards. 

9.2 Programming the Boards 

9.2.1 Setting Parameters 

At startup, the software assigns the 64-bit MAC address to the device as follows. If at 
compile time CS_UID parameter is set to 0 BitCloud attempts to load MAC address 
from a dedicated UID chip available on MeshBean board via 1-wire interface. If there 
is no such UID then zero MAC address will be assigned to the device. Note that for 
proper operation all nodes in the network shall have unique MAC address values. 
Hence, if address cannot be obtained automatically from external source, separate 
firmware images shall be created for each device with unique CS_UID parameter 
specified in application configuration (see Section 116.2.1) every time an image is 
compiled. 

9.2.2 Programming 

An image file can be uploaded into the boards in one of two ways: using Serial 
Bootloader utility, or, in AVR Studio, using JTAG emulator.  

Be careful selecting the method of the node programming. Each of MeshBean 
boards provided as a part of ZDK come with the bootstrap uploaded onto the ZigBit’s 
microcontroller, which is needed to run Serial Bootloader. Using a JTAG to program 
the microcontroller will erase the bootstrap, making the loading of application images 
with Serial Bootloader inoperable until the bootstrap is restored.  

To program a board using Serial Bootloader perform the following steps: 

1. Connect MeshBean to the PC via USB or serial port, depending on the position of 
jumper J3 (see Section 9.1.5). 

2. Run Serial Bootloader. In command line or in GUI, specify the image file as 
WSNDemo.srec and the COM port. See [11]  

3. Press reset button on the board. If a node has been configured as end device and 
it is currently controlled by an application, the node should be powered off before 
reprogramming. 

4. Release reset button on the board. Serial Bootloader expects that the button will 
be released within approximately 30 seconds. If this does not happen, the 
booting process will terminate. 

5. Serial Bootloader indicates the operation progress. Once an upload is 
successfully completed, the board would restart automatically. If an upload fails, 
Serial Bootloader would indicate the reason. In rare cases, booting process can 
fail due to the communication errors between the board and the PC. If this 
happened, attempt booting again or try using conventional serial port, instead of 



 
 AVR2052 

 

 
 

 
27 

8200H-AVR-02/10 

USB. If booting fails, the program written to the board recently would be 
corrupted, but the board can be reprogrammed again as the bootstrap should 
remain intact. 

Refer to AVR Studio documentation for the description of how the images can be 
programmed to the boards using JTAG. 

Set the following options in the Fuses tab before uploading the image through JTAG.  

Table 9-6. Fuse bits setting for ZigBit, ZigBit Amp, ZigBit 900 

Option Value 

BODLEVEL Brown-out detection disabled  

OCDEN Disabled 

JTAGEN Enabled 

SPIEN Enabled 

WDTON Disabled 

EESAVE Disabled 

BOOTSZ Boot Flash size=1024 words start address=$FC00 

BOOTRST Disabled* 

If the node is to be programmed with the use of Serial 
Bootloader, enable the BOOTRST option. 

CKDIV8 Enabled 

CKOUT Disabled 

SUT_CKSEL Int. RC Osc.; Start-up time: 6 CK + 65 ms  

 

Make sure the following hex values appear in the bottom part of Fuses tab: 

0xFF, 0x9D, 0x62. 

 
If the node is to be programmed with the use of Serial Bootloader, enable additionally 
the BOOTRST option. Make sure the following hex value string appears at the 
bottom of Fuses tab: 

0xFF, 0x9C, 0x62. 

By default, each of the boards coming in ZDKs is preprogrammed with this fuse 
setting. 

9.3 Pre-Built Images 

The SDK comes with the ready-to-use binary images in .hex, and .elf formats 
for programming using JTAG and in .srec format if using Serial Bootloader [11]): 

 ZigBit/ZigBit Amp 

o WSNDemo application: WSNDemoApp.*.  

o SerialNet application [10] : SerialNet.* 

 For ZigBit 900: 

o WSNDemo application: WSNDemoApp_US.*, WSNDemoApp_EU.* 
and WSNDemo_China.*, with specific settings for indicated regional 
regulatory requirements. 

o SerialNet application [10]: SerialNet.*  



  
 

 
 

28 AVR2052  
 

8200H-AVR-02/10 

The ready-to-use binary images retrieve MAC address automatically from UID 
ensuring that unique MAC addresses are assigned to all network nodes. 

. 

Also note that the default WSNDemo application images are configured to use 
Extended PAN ID 0xAAAAAAAAAAAAAAAA and channel mask with:  

 channel 0x0F enabled for ZigBit and ZigBit Amp (WSNDemoApp.*),  

 channel 0x00 and channel page 0 (WSNDemoApp_EU.*) or channel 0x01 and 
channel page 0 (WSNDemoApp_US.*) for ZigBit 900, 

 channel 0x01 and channel page 5 (WSNDemoApp_China.*) for ZigBit 900.  

9.3.1 Starting WSNDemo 

To start WSNDemo, do the following: 

 Setup the hardware as described in Section 9.1.2.  

 Install BitCloud SDK as described in Section 9.1.4. 

 Program devices as described in section 9.2. 

 Configure one single node as a coordinator, and make the others be routers and 
end devices (see Section 9.3.2). Any of the boards provided can be configured 
with any role. 

 Connect the coordinator node to the PC, using USB port on the coordinator 
board 

 Power on the coordinator node 

 Run WSN Monitor (see Section 5.5) 

 Power ON and reset the rest of the nodes. 

9.3.2 Node Role Configuration 

The role of the node – coordinator, router, or end-device is configured using DIP 
switches on MeshBean board. 

Table 9-7. DIP switches configurations on MeshBean boards used in WSNDemo 

DIP Switches Selected Role 

1 2 3 

ON OFF OFF Coordinator 

OFF ON OFF Router 

OFF OFF ON End-Device 

9.3.3 Monitoring WSNDemo Activity 

Network activity can be monitored in two ways: 

 observing color LEDs of MeshBean boards (see the table below); 

 viewing the network information through WSN Monitor installed on PC. 

Table 9-8. LED indication for MeshBean boards used in WSNDemo 

Node State LED1 (Red) LED2 (Yellow) LED3 (Green) 

Searching for network Blinking OFF OFF 

Joined to network ON   

+ receiving data  Blinking  



 
 AVR2052 

 

 
 

 
29 

8200H-AVR-02/10 

Node State LED1 (Red) LED2 (Yellow) LED3 (Green) 

+ sending data to UART 
(coordinator only)  

 Blinking 

Sleeping (end device only) OFF OFF OFF 

9.4 Reserved Hardware Resources 

Table 9-9. Hardware resources reserved by the stack on ZigBit, ZigBit Amp, and 
ZigBit 900 modules 

Resource Description 

Processor main clock 
8 MHz from internal RC-oscillator or external radio 
frequency 

SPI Radio interface 

ATmega ports PB0, PB1, PB2, 
PB3, PB4, PA7, PE5 Radio interface 

ATmega port PC1 Interface for amplifier (if present) 

ATmega ports PG3, PG4 Asynchronous timer interface 

Timer/Counter 2 Asynchronous timer 

Timer/Counter 4 System timer 

External IRQ4 Wake-up on DTR 

External IRQ5 Radio interface 

EEPROM 
Storage for user settings accessible via Persistent Data 
Server 



  
 

 
 

30 AVR2052  
 

8200H-AVR-02/10 

10 Appendix A-4: ATmega128RFA1 Specifics 

10.1 Getting Started 

BitCloud supports two different development platforms with ATmega128RFA1: -
package development kit [14] and STK600 boards [15]. If in the text below difference 
for these platforms is not stated explicitly then it is valid for both of them. 

10.1.1 Required Hardware 

Before installing and using the BitCloud SDK for ATmega128RFA1 make sure that all 
necessary hardware is available: 

1. For -package: 

 Two or more RCB128RFA1 boards with 2.4GHz antennas and AAA 
batteries 

 one or more RCB Breakout Boards 

 one RS232 interface cable for RCB Breakout Board 

 JTAGICE mkII. 

2. For STK600 boards: 

o Two or more STK600 boards, each with Atmega128RFA1 top card 
and 2.4GHz antenna 

o JTAGICE mkII 

10.1.2 Hardware Setup 

For -package please refer to [14] for hardware setup instructions.  

STK600-ATmega128RFA1 top cards require following modifications: 

1. Cover three bottom-left contacts on the rear side of the top card with non-
conducting material (e.g. paper sticker) as shown by red rectangular on Figure 
10-1. 

Figure 10-1. Contacts to be insulated on STK600-ATmega128RFA1 top card 

 
 
 



 
 AVR2052 

 

 
 

 
31 

8200H-AVR-02/10 

2. Make sure jumper is present at pins as indicated by red arrow on Figure 10-2. 

 Figure 10-2. Jumper setting for STK600-ATmega128RFA1 top card. 

 

3. Assemble top card with STK600 board. 

4. Default output for USART interface is performed via PD2, PD3 pins. In order to 
communicate over RS232 port they shall be connected to RXD and TXD pins of 
RS232 SPARE port respectively. 

Before continuing any further operations, perform the steps required to get started 
with ATSTK6000 [15]. Refer to AVR Studio Help [3] for details on that subject. At 
least, make sure that STK600 firmware is up-to-date, and configure the voltage 
provided by STK600 for ATmega128RFA1 top card. For that, perform the following 
steps: 

a. Attach STK600 to PC using USB cable. 

b. In AVR Studio open Tools > Program AVR > Connect… 
dialogue 

c. Choose the right Platform = STK600 and press Connect. 

d. Update the STK600 firmware, if suggested. 

e. Go to HW Settings tab. 

f. Specify the 3.3V in the VTarget field and press Write.  

You need to perform this procedure only once for each ATSTK600 board. 

10.1.3 System Requirements 

Before using the SDK, please ensure that the following system requirements are met 
by your PC and development environment. 

Table 10-1. System requirements for Atmega128RFA1 

Parameter Value Note 

CPU 
Intel Pentium III or higher, 
1GHz  

RAM 512MB  

Free space on hard disk 200MB  



  
 

 
 

32 AVR2052  
 

8200H-AVR-02/10 

Parameter Value Note 

JTAG emulator 
JTAGICE mkII emulator 
with cable 

Required to upload and debug 
firmware onto the boards through 
JTAG (see Section 5.2). 

Operating system Windows 2000/XP  

IDE 

AVR Studio 4.17 and 
WinAVR 20090313

(1) 

OR 

IAR Embedded 
Workbench AVR 5.3

 

(with IAR C/C++ Compiler 
for AVR 5.30.6 

(2)
) 

Required to upload firmware 
images through JTAG (see 
Section 5.2), and to develop 
applications using API (see 
Section 6.2) 

Java Virtual Machine 

Java Runtime 
Environment (JRE) 5 
Update 8, or later 

Required to run WSNMonitor 
application 

Notes: 1. Users are strongly recommended to use the specified version of WinAVR. 
Other versions are not supported and may not work.  

10.1.4 Installing the SDK 

Proceed with the following installation instructions: 

1. Download the archive to your PC and unpack it into an empty folder with no 
blank spaces present in the directory path. As a result, the following SDK folders 
and files will be created. 

Table 10-2. The SDK file structure 

Directory/File Description 

./Documentation Documentation on BitCloud software 

./Bootloader Contains serial bootloader image file and 
installer for PC 

./Evaluation Tools/WSNDemo 

(Embedded) 

Ready-to-use image files for evaluating 
WSNDemo. Refer to section 0 for the 
description of the images. 

./Evaluation Tools/WSNDemo (WSN 

Monitor)/WSNMonitorSetup.exe 

WSN Monitor installer 

./BitCloud/Components/ Header files for BitCloud Stack 

./BitCloud/Components/BSP/ Source, header and library files for BitCloud 
BSP 

./BitCloud/lib Library files for BitCloud Stack 

./Sample Applications/ Source files for sample applications. 

2. Install AVR Studio [3], if not already installed on your PC. Be sure to install only 
the supported version of AVR Studio as specified in Table 10-1. 

3. Install WinAVR development suite [4], if not already installed on your PC. Be 
sure to install only the supported version of WinAVR as specified in Table 10-1. 

4. Download and install Java Runtime Environment [12], if not already installed on 
your PC.  



 
 AVR2052 

 

 
 

 
33 

8200H-AVR-02/10 

10.2 Programming the Boards 

10.2.1 Setting Parameters 

At startup, the software assigns the 64-bit MAC address to the device as follows. If at 
compile time CS_UID parameter is set to 0 BitCloud attempts to load MAC address 
from a dedicated external EEPROM chip available on RCB128RFA1 as well as on 
Atmega128RFA1 top card via SPI interface. If there is no such chip then zero MAC 
address will be assigned to the device. Note that for proper operation all nodes in the 
network shall have unique MAC address values. Hence, if address cannot be 
obtained automatically from external source, separate firmware images shall be 
created for each device with unique CS_UID parameter specified in application 
configuration (see Section 116.2.1) every time an image is compiled. 

10.2.2 Programming 

An image file can be uploaded into the boards in one of two ways: using Serial 
Bootloader utility or using JTAG emulator.  

Programming a board using Serial Bootloader requires that bootstrap is loaded to the 
device via JTAG. For RCB128RFA1 with RCB breakout board 
Bootloader_ATmega128RFA1_RCB_BB.hex image file shall be flashed via JTAG. 
For STK600 Bootloader.hex file shall be loaded to ATmega128RFA1. In both cases 
in the fuse bit configuration provided in Table 10-3 BOOTRST should be enabled. If 
bootstrap is loaded following steps should be executed to upload the application 
image file to the board: 

1. Assemble board and connect it to PC: 

a. For RCB128RFA1: 

i. Assemble RCB128RFA1 and RCB Breakout boards 
(RCB_BB) together. 

ii. Connect RS232 interface cable to J1 extender on RCB_BB 
and COM1 port on the PC. 

b. For STK600: 

i. Assemble STK600 board and ATmega128RFA1 top card as 
described in Section 10.1.2. 

ii. Connect PC COM1 port to RS232 SPARE port. 

2. Run Serial Bootloader application on the PC. In command line or in GUI, specify 
the .srec image file and the COM port. See [11]. 

3. Perform HW reset on the board if requested. Serial Bootloader expects that the 
reset will be done within 30 seconds. If this does not happen, the booting 
process will terminate. 

4. Serial Bootloader indicates the operation progress. Once upload is successfully 
completed, the board would restart automatically. If an upload fails, Serial 
Bootloader would indicate the reason. In rare cases, booting process can fail due 
to the communication errors between the board and the PC. If this happened, 
attempt booting again. If booting fails, the program written to the board recently 
would be corrupted, but the board can be reprogrammed again as the bootstrap 
should remain intact. 

 

Refer to [14] and [15] for the description of how the images can be programmed to 
corresponding development boards using JTAG.  



  
 

 
 

34 AVR2052  
 

8200H-AVR-02/10 

Note that using a JTAG to program the microcontroller will erase the bootstrap if 
present, thus loading of application images with Serial Bootloader will become 
inoperable until the bootstrap is loaded to ATmega128RFA1 again. 

Set the following options in the Fuses tab before uploading the image through JTAG.  

Table 10-3. Fuse bits setting for ATmega128RFA1 

Option Value 

BODLEVEL Brown-out detection at VCC=1.8 V 

OCDEN Disabled 

JTAGEN Enabled 

SPIEN Enabled 

WDTON Disabled 

EESAVE Disabled 

BOOTSZ Boot Flash size=1024 words start address=$FC00 

BOOTRST Disabled* 

If the node is to be programmed with the use of Serial 
Bootloader, enable the BOOTRST option. 

CKDIV8 Enabled 

CKOUT Disabled 

SUT_CKSEL Int. RC Osc.; Start-up time: 6 CK + 65 ms  

 

Make sure the following hex values appear in the bottom part of Fuses tab: 

0xFE, 0x9D, 0x62. 

 

If the node is to be programmed with the use of Serial Bootloader, enable additionally 
the BOOTRST option. Make sure the following hex value string appears at the 
bottom of Fuses tab: 

0xFE, 0x9C, 0x62. 

10.3 Pre-Built Images 

The SDK comes with the following ready-to-use binary images that can be used on 
STK600 or RCB128RFA1 boards: 

 WSNDemoApp_Coord.hex, WSNDemoApp_Coord.srec – for Coordinator 
node 

 WSNDemoApp_Router.hex, WSNDemoApp_Router.srec – for Router 
nodes 

 WSNDemoApp_EndDev.hex, WSNDemoApp_EndDev.srec – for End 
Device nodes 

These .hex files should be loaded using JTAG, while .srec files can be flashed 
using Serial Bootloader. In all ready-to-use binary images MAC address (CS_UID) is 
loaded automatically from a dedicated external EEPROM chip, ensuring that unique 
values are assigned to all network nodes. Note that the default WSNDemo images 
are configured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and channel mask 
with only channel 0x0F enabled for operation. 



 
 AVR2052 

 

 
 

 
35 

8200H-AVR-02/10 

10.4 Running WSNDemo 

10.4.1 Starting WSNDemo 

To start WSNDemo, do the following: 

 Setup the hardware as described in Section 10.1.2 

 Install BitCloud SDK as described in Section 10.1.4 

 Program one device with coordinator image file and other with either router or 
end device images as described in Section 10.2 

 Connect the coordinator node to the PC, using serial interface 

 Power on the coordinator node 

 Run WSN Monitor (see Section 5.5) 

 Power ON and reset the rest of the nodes. 

10.4.2 Monitoring WSNDemo Activity 

Network activity can be monitored in two ways: 

 observing LEDs of the development boards as described in Table 10-4. LED Dx 
label corresponds to RCB128RFA1 board, and color label to STK600 board. 

 viewing the network information through WSN Monitor installed on PC (see 
Section 5.5). 

Table 10-4. LED indication for RCB128A1 boards used in WSNDemo 

Node State 
LED D2 

(red) 

LED D3 

(yellow) 

LED D4 

(green) 

Searching for network Blinking OFF OFF 

Joined to network ON   

+ receiving data  Blinking  

+ sending data to UART 
(coordinator only)  

 Blinking 

Sleeping (end device only) OFF OFF OFF 

10.5 Reserved Hardware Resources 

Table 10-5. Hardware resources reserved by the stack on Atmega128RFA1 

Resource Description 

Processor main clock 8 MHz from internal RC-oscillator 

TRX24 Radio 

ATmega ports PG3, PG4 Asynchronous timer interface 

Timer/Counter 2 Asynchronous timer 

Timer/Counter 4 System timer 

External IRQ4 Wake-up on DTR 

EEPROM 
Storage for user settings accessible via Persistent Data 
Server 



  
 

 
 

36 AVR2052  
 

8200H-AVR-02/10 

11 Appendix A-4: UC3 Specifics 

11.1 Getting Started 

11.1.1 Required Hardware 

Before installing and using the BitCloud SDK for AVR32 UC3 make sure that all 
necessary hardware is available: 

1. Two or more EVK1105 boards [17] 

2. Two or more radio extender boards REB231 [16] 

3. All necessary connectors 

4. JTAGICE mkII 

11.1.2 Hardware Setup 

To prepare the hardware:  

1. Install J12 and J16 extension headers on the board (if not already installed) 

2. Install JTAG pin header on the board (if not already installed) 

3. Use several 2-wire cables to connect J16 pins to corresponding pins on REB231 
boards as indicated in Table 11-1.  

Table 11-1. EVK1105 to Radio Extender Board REB231 pin mapping 

EVK1105 J16 pin REB231 pin 

1 30 

2 29 

3 28 

4 27 

5 38 

6 26 

8 25 

9 22 

10 20 

11.1.3 System Requirements 

Before using the SDK, please ensure that the following system requirements are met 
by your PC and development environment. 

Table 11-2. System requirements for UC3 

Parameter Value Note 

CPU 
Intel Pentium III or higher, 
1GHz  

RAM 512MB  

Free space on hard disk 200MB  



 
 AVR2052 

 

 
 

 
37 

8200H-AVR-02/10 

Parameter Value Note 

JTAG emulator 
JTAGICE mkII emulator 
with cable 

Required to upload and debug 
firmware onto the boards through 
JTAG (see Section 5.2). 

Operating system Windows 2000/XP  

IDE 

IAR Embedded 
Workbench AVR32

 

(with IAR C/C++ Compiler 
for AVR32 5.20.1

(1)
 ) 

and 

AVR32 GNU Toolchain 
v2.3 

Required to upload firmware 
images through JTAG (see 
Section 5.2), and to develop 
applications using API (see 
Section 6.2).   

AVR32 GNU Toolchain is only 
needed to install USB VCP 
driver. 

Java Virtual Machine 

Java Runtime 
Environment (JRE) 5 
Update 8, or later 

Required to run WSNMonitor 
application 

Notes: 1. Users are strongly recommended to use specified versions of IAR C/C++ 
Compiler for AVR. Other versions are not supported and may not work.  

11.1.4 Installing the SDK 

Proceed with the following installation instructions: 

1. Download the archive to your PC and unpack it into an empty folder with no blank 
spaces present in the directory path. As a result, the following SDK folders and 
files will be created. 

Table 11-3. The SDK file structure 

Directory/File Description 

./Documentation Documentation on BitCloud software 

./Evaluation Tools/WSNDemo 

(Embedded) 

Ready-to-use image files for evaluating 
WSNDemo. Refer to section 0 for the 
description of the images. 

./Evaluation Tools/WSNDemo (WSN 

Monitor)/ 

Contains WSN Monitor installer 

./BitCloud/Components/ Header files for BitCloud Stack 

./BitCloud/Components/BSP/ Source, header and library files for BitCloud 
BSP 

./BitCloud/lib Library files for BitCloud Stack 

./Sample Applications/ Source files for sample applications. 

2. Install IAR Embedded Workbench for AVR32 [20], if not already installed on your 
PC. Be sure to install only the supported version of IAR Embedded Workbench 
as specified in Table 11-2. 

3. Install AVR32 GNU Toolchain [19], if not already installed on your PC.  

4. Download and install Java Runtime Environment [12], if not already installed on 
your PC.  

5. Install USB VCP driver on EVK1105 to allow it to communicate with your PC. 

a. Connect JTAG to UC3B JTAG header, and power on the board. 



  
 

 
 

38 AVR2052  
 

8200H-AVR-02/10 

b. From Third Party Software\EVK1105_UC3B_VCP run 
program_evk1105_at32uc3b-isp-cdc-1.0.1.cmd Windows 
command script.  

c. VCP driver should now be installed on the board. 

6. Attach EVK1105 board to the USB port of your PC using USB 2.0 A/mini-B cable. 
Windows should detect the new hardware. Follow the instructions provided by 
the driver installation wizard.  When prompted, choose to install the driver from 
the specific location, and select the driver located in Third Party Software 
folder of the SDK. 

11.2 Programming the Boards 

11.2.1 Setting Parameters 

For proper operation all nodes in ZigBee network shall have unique MAC address 
values. For UC3 a unique CS_UID parameter must be specified for each node in the 
application configuration (see details in Section 6.2.1), and then the application 
image must be built separately for each board. 

11.2.2 Programming 

An image file from existing project for IAR Embedded Workbench for AVR32 can be 
uploaded into the boards using JTAG emulator as follows: 

7. Assemble board and connect it to PC: 

8. Connect JTAG to UC3A JTAG header.  Power on the board and JTAG ICE mkII. 

9. Start IAR Embedded Workbench for AVR32 

10. From File -> Open -> Workspace navigate to and open desired IAR project 
(e.g. WSNDemoApp.eww file in Sample Applications\WSNDemo\iar\avr32 

folder). 

11. Select Project -> Download and Debug 

12. Once the firmware is loaded, select Debug -> Stop Debugging 

13. Unplug JTAG from UC3A JTAG header. 

14. Reset EVK1105. 

Alternatively it is possible to load ready image file in .elf format using AVR32 GNU 
Toolchain [19] by running following command in console: 

avr32program program -finternal@0x80000000,256Kb -cxtal -e -v 

-O0x80000000 <filename.elf> 

Make sure the following fuse options in JTAGICE mkII -> Fuse handler menu of 
IAR Embedded Workbench for AVR32 are set.  

Table 11-4. Fuse bits setting for AT32UC3A0512 

Option Value 

BODLEVEL Brown-out detection at VCC=1.92 V (63) 

BODHYST Enabled (1) 

BODEN Disabled (3) 

LOCK0 – LOCK15 Unlocked (1) 

EPFL External instruction fetch enabled (1) 

BOOTPROT No bootloader (7) 



 
 AVR2052 

 

 
 

 
39 

8200H-AVR-02/10 

Option Value 

GF29 1 

GF30 1 

GF31 1 

 

11.3 Pre-Built Images 

The SDK comes with ready-to-use binary images of WSNDemo application 
(WSNDemoApp_*.hex). There is a set of images for different roles and with different 
MAC addresses that can be used for creating a small network. 

 WSNDemoApp_Coord_0x01.elf – for node acting as Coordinator 

 WSNDemoApp_Router_0x02.elf – for node acting as Router 

 WSNDemoApp_EndDev_0x03.elf – for node acting as End Device 

The table below specifies MAC addresses pre-programmed in ready-to-use images: 

Table 11-5. AT32UC3A0512 hosted on EVK1105 

Image Name MAC address 

WSNDemoApp_Coord_0x01.hex 0x0000000000000001 (Coordinator) 

WSNDemoApp_Router_0x02.hex 0x0000000000000002 (Router) 

WSNDemoApp_EndDev_0x03.hex 0x0000000000000003 (End device) 

Note that the default images are configured to use Extended PAN ID 
0xAAAAAAAAAAAAAAAA and channel mask with only channel 0x0F enabled for 
operation.  

11.4 Running WSNDemo 

11.4.1 Starting WSNDemo 

To start WSNDemo, do the following: 

15. Setup the hardware as described in Section 11.1.2 

16. Install BitCloud SDK as described in Section 11.1.4 

17. Program one device with coordinator image file and other with either router or end 
device images as described in Section 11.2 

18. Connect the coordinator node to the PC, using serial interface 

19. Power on the coordinator node 

20. Run WSN Monitor (see Section 5.5) 

21. Power ON and reset the rest of the nodes. 

11.4.2 Monitoring WSNDemo Activity 

Network activity can be monitored in two ways: 

 observing LEDs of the development boards as described in Table 11-6. LEDx 
label corresponds to EVK1105 board. 

 viewing the network information through WSN Monitor installed on PC (see 
Section 5.5). 

Table 11-6. LED indication for WSNDemo application on EVK1105 board 



  
 

 
 

40 AVR2052  
 

8200H-AVR-02/10 

Node State LED0 LED1 LED2 

Searching for network Blinking OFF OFF 

Joined to network ON   

+ receiving data  Blinking  

+ sending data to UART 
(coordinator only)  

 Blinking 

Sleeping (end device only) OFF OFF OFF 

11.5 Reserved Hardware Resources 

Table 11-7. Hardware resources reserved by the stack on AT32UC3A0512 

Resource Description 

Processor main clock 48 MHz from external quartz  

AVR32 ports A9, A20, A11, A12, 
A13  Radio interface 

Timer Channel 0 Timer 

AVR32 port B30, B31 Sleep / reset 



 
 AVR2052 

 

 
 

 
41 

8200H-AVR-02/10 

12 Appendix B-1: Over-the-Air Protocol 

This appendix describes the protocol used by the WSNDemo sample application. 
The description includes the format of the messages exchanged over the air between 
the connected nodes. The protocol description allows non-standard nodes (e.g. 
those using 3

rd
 party sensors not available on the standard evaluation boards and 

kits) to transfer sensor readings and have them visualized in the same WSN Monitor 
application.   

12.1 Message Format 

End-devices and routers send messages to the coordinator using the following 
format. 

Table 12-1. WSNDemo message format 

Field Name Length Description 

Message Type 1 byte Type of the messages. Must be 0x01 (0x01 is the only 
supported message type for the current revision of 
WSNDemo) 

Node type 1 byte Type of the sending node: 

0 – coordinator 

1 – router 

2 – end-device 

IEEE address 8 bytes IEEE address of the sending node 

Short address 2 bytes Short address of the sending node 

Version 4 bytes Version of WSNDemo application protocol used by the 
sending node. Currently set to 0x01010100. 

Channel mask 4 bytes Channel mask set on the sending node 

PANID 2 bytes PAN ID of the network to which the sending node is 
attached 

Channel 1 byte The channel on which the sending node operates 

Parent address 2 bytes Short address of the parent node 

LQI 1 byte LQI observed by the node that sends this message 

RSSI 1 byte RSSI observed by the node that sends this message 

<Additional 
fields> 

<Variable> Optional additional fields, see description below in section 
12.2 

 

12.2 Additional fields 

The message may contain zero, one, or more additional fields that follow the 
mandatory fixed-width fields described in the table above. The order of the additional 
fields is not fixed. The size of the additional fields may vary – each field contains a 
sub-field defining its size. Below is the description of the general format of an 
additional field. 
Table 12-2. Additional field format 

Sub-Field Name Length Description 



  
 

 
 

42 AVR2052  
 

8200H-AVR-02/10 

Sub-Field Name Length Description 

Field Type 1 byte 
Type of the additional field. The possible values are listed 
below. 

Field Size 1 byte 
Size of the Field Data in bytes. Note: this size does not 
include the Field Type and Field Size sub-fields 

Field Data <Variable> 
The data depend on the Field Type, the size of the data is 
provided by the Field Size 

 
The following types of additional fields are defined: 
Table 12-3. Additional field types 

Field Type Description 

0x01 
Sensors data for board type 1. Used for ATAVRRZRAVEN kit boards 
and MeshBean boards.  

0x20 Node name. 

 
Please note that in the current version of WSNDemo devices send additional fields of 
type 0x01 (sensors readings for boards of type 1) only. Unrecognized additional 
fields are discarded by WSN Monitor application. The Field Data format for different 
field types are described in the following tables. 
 
Table 12-4. Field Data for type 0x01: Sensors data for board type 1 

Offset Length Data Type Description 

0 4 bytes Unsigned int Battery status reading 

4 4 bytes Unsigned int Temperature sensor reading 

8 4 bytes Unsigned int Light sensor reading 

 
Table 12-5. Field Data for type 0x20: Node name 

Offset Length Description 

0 <Variable> Zero-terminated ASCII string 



 
 AVR2052 

 

 
 

 
43 

8200H-AVR-02/10 

13 Appendix B-2: Serial Protocol 

This appendix describes the protocol and message format used over the serial 
connection between the network coordinator and the WSN Monitor application 
running on the PC. The messages sent on the serial connection are basically the 
messages defined in section 8.1 wrapped as defined below: 

Table 13-1. Serial message format 

Offset Length Description 

0 2 bytes Start sequence: 0x10 0x02 

2 N bytes 

Variable-length payload: the message received from end-
node or router or generated by the coordinator, in the 
format described in section 8 

All 0x10 bytes in this payload are duplicated to avoid 
confusion with Start sequence or End sequence 

N+2 2 bytes End sequence: 0x10 0x03 

N+4 1 byte Checksum: Sum of the bytes [0..N+3] mod 256 

 



 

8200H-AVR-02/10 

 
 

Disclaimer 

Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 
Atmel Asia 

Unit 1-5 & 16, 19/F 

BEA Tower, Millennium City 5 

418 Kwun Tong Road 

Kwun Tong, Kowloon 

Hong Kong 

Tel: (852) 2245-6100 

Fax: (852) 2722-1369 

 

 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 

 

 Web Site 
http://www.atmel.com/ 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts 

 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 

© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or 
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 

 
 
 


	AVR2052: BitCloud Quick Start Guide
	Features
	Introduction
	References
	Overview
	Getting Started
	WSNDemo Application
	Overview
	Programming the Boards
	Running WSNDemo
	Network Organization
	WSN Monitor
	Setting up node timeouts
	Sensor data visualization


	Programming with BitCloud API
	API Overview
	Development Tools
	Sample Applications
	Compiling Applications
	AVR Studio + WinAVR
	IAR Embedded Workbench


	Reserved Hardware Resources

	Basic Troubleshooting
	Appendix A-1. ATAVRRZRAVEN Specifics
	Getting Started
	Required Hardware
	Hardware Setup
	System Requirements
	Installing the SDK

	Programming the Boards
	Setting Parameters
	Programming

	Pre-Built Images
	Running WSNDemo
	Starting WSNDemo
	Monitoring WSNDemo Activity

	Reserved Hardware Resources

	Appendix A-3: ZigBit, ZigBit Amp and ZigBit 900 Specifics
	Getting Started
	Required Hardware
	Hardware Setup
	System Requirements
	Installing the SDK
	Selected jumpers on MeshBean boards

	Programming the Boards
	Setting Parameters
	Programming

	Pre-Built Images
	Starting WSNDemo
	Node Role Configuration
	Monitoring WSNDemo Activity

	Reserved Hardware Resources

	Appendix A-4: ATmega128RFA1 Specifics
	Getting Started
	Required Hardware
	Hardware Setup
	System Requirements
	Installing the SDK

	Programming the Boards
	Setting Parameters
	Programming

	Pre-Built Images
	Running WSNDemo
	Starting WSNDemo
	Monitoring WSNDemo Activity

	Reserved Hardware Resources

	Appendix A-4: UC3 Specifics
	Getting Started
	Required Hardware
	Hardware Setup
	System Requirements
	Installing the SDK

	Programming the Boards
	Setting Parameters
	Programming

	Pre-Built Images
	Running WSNDemo
	Starting WSNDemo
	Monitoring WSNDemo Activity

	Reserved Hardware Resources

	Appendix B-1: Over-the-Air Protocol
	Message Format
	Additional fields

	Appendix B-2: Serial Protocol
	Disclaimer

