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Abstract. We study the problem of keyword search in a data cube with text-rich dimension(s)
(so-called text cube). The text cube is built on a multidimensional text database, where each row
is associated with some text data (e.g., a document) and other structural dimensions (attributes).
A cell in the text cube aggregates a set of documents with matching attribute values in a subset
of dimensions. A cell document is the concatenation of all documents in a cell. Given a keyword
query, our goal is to find the top-k most relevant cells (ranked according to the relevance scores of
cell documents w.r.t. the given query) in the text cube.

We define a keyword-based query language and apply IR-style relevance model for scoring and
ranking cell documents in the text cube. We propose two efficient approaches to find the top-k
answers. The proposed approaches support a general class of IR-style relevance scoring formulas
that satisfy certain basic and common properties. One of them uses more time for pre-processing
and less time for answering online queries; and the other one is more efficient in pre-processing and
consumes more time for online queries. Experimental studies on the ASRS dataset are conducted
to verify the efficiency and effectiveness of the proposed approaches.

1. Introduction

The boom of Internet and different database systems has given rise to an ever increasing amount
of text data associated with multiple dimensions (attributes), which is usually stored in tables. For
example, customer reviews in shopping websites (e.g., Amazon) are always stored and associated
with attributes like Price, Model, and Rate. In NASA’s ASRS database [15], after each commercial
flight in the United States, a report is written to describe how the flight went, with several attributes
specified, like Weather, Light, Flight Phase, and Event Anomaly.

We have extended a traditional OLAP data cube to summarize and navigate structured data
together with unstructured text data in [22]. Such a cube model is called text cube [22]. A cell in the
text cube aggregates a set of documents with matching attribute values in a subset of dimensions.

In this paper, we focus on cell documents, each of which is the concatenation of all documents in a
cell. We study how to support keyword-based search in text cube. More specifically, the goal is to: find
the top-k most relevant cells, ranked according to the relevance scores of cell documents w.r.t. the
given query, in the text cube. It provides insights about the relationship between multidimensional
attributes and text data.

Example 1.1 (Motivation). Table 1 shows a tiny sample from the ASRS database. It has both
structured data (e.g., Weather, Light, flight Phase, and event Anomaly) and Narrative about an
anomalous event written by a pilot or flight attendant after each flight as text data.

Suppose Jim, an analyst for flight safety, wants to know under which condition, the runway
excursion is likely to happen. He types a set of keywords: {“RWY”, “EXCURSION”}. Using
traditional IR techniques, the system can rank all the narratives (or reports) and output the most
relevant ones. However, as there are many reports relevant to the query, Jim have to spend much
time browsing through them one by one and summarizing different conditions by himself.

So, is it more desirable that a system provides users with “aggregated information”, such as “in
a rainy night, the runway excursion is likely to happen in the landing phase” (Weather = Rainy,
Light = Night, Phase = Landing, Anomaly = ∗), instead of returning individual narratives? This
is our intention to study such a new mechanism.
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Table 1. Motivation Example

Weather Light Phase Anomaly Narrative

Rainy Night Landing Equipment . . . RESULTED IN RWY EXCURSION DURING EN-
GINE FAIL . . .

Rainy Night Landing Excursion SMA RWY EXCURSION STRUCK RWY LIGHT . . .

Cloudy Night Landing Excursion RWY EXCURSION DURING TKOF FROM SNOW-
SLUSH COVERED RWY . . .

Sunny Daylight Descent Equipment INITIAL WEIGHT AND BALANCE ERROR . . .

A cell in the text cube is in the form of (Weather = Rainy, Light = Night, Phase = Landing,
Anomaly = ∗), which aggregates the first two narratives. Cell (Weather = ∗, Light = Night, Phase =
Landing, Anomaly = Excursion) aggregates the second and third narratives. Another cell (Weather
= Sunny, Light = Daylight, Phase = ∗, Anomaly = ∗) aggregates only the fourth narratives.

It can be seen that the first two cells are more relevant to Jim’s query than the third one. The
goal of our system is to rank all cells (in different levels and granularities), instead of individual
narratives, according to Jim’s query.

Given a database of text data (documents) associated with multidimensional attributes, tra-
ditional IR techniques to process keyword queries can be used to rank all the individual docu-
ments; however, they do not fully utilize the association between documents and attributes. Key-
word query has also been extended to RDBMSs to retrieve information from text-rich attributes
[2, 4, 7, 25, 13, 14, 16, 10, 11, 21, 23, 24, 19, 17, 18] and provide users with relevant linked struc-
tures: given a set of keywords, existing methods on keyword search in RDBMSs focus on ranking
individual tuples from one table or joins of tuples (e.g., linked by foreign keys) from multiple tables
that contain the keywords.

This paper studies the problem of keyword-based top-k search in text cube, i.e., given a keyword
query, find the top-k most relevant cells in a text cube. Different from keyword search in plain
documents (ranking individual documents) and RDBMSs (ranking relevant linked structures), our
ranking objects are cells. In a data cube model (a multidimensional space induced by the attributes),
e.g., the text cube, a cell aggregates the documents with matching values in a subset of attributes.
In particular, when ranking cells, we focus on cell documents, each of which is the concatenation
of all documents in a cell, and evaluate the relevance of this “big document” to the given keyword
query for each cell.

A collection of documents (or a “big document”, i.e., the concatenation of these documents) is
associated with each cell, corresponding to an analytical object (e.g., “landing phase in a rainy
night” in Example 1.1). This facilitates the analysis of the relationship between relational attributes
and text data, e.g., exploration of relevant cells (objects) w.r.t. a keyword query. When users want
to retrieve information from a text cube using keyword queries, we believe that relevant cells, rather
than relevant documents, are preferred as the answers, because: (i) relevant cells are easy for users
to browse; and (ii) relevant cells provide users insights about the relationship between relational
attributes and text data. While most data cube models can support basic operations like roll-up
and drill-down, it is unclear how to find the relevant cells using only these operations.

1.1. Overview of Model and Techniques. Following is an overview of our work.

Ranking Objects and Relevance Score: Given a keyword query, we want to rank all cells in text
cube. The first question is how to compute the “relevance” of a cell in a text cube for ranking. Note
that a cell corresponds to a collection of documents. Consider the following two different models.

• Average model: Any IR scoring function (e.g., Okapi) can be used to compute the relevance
score of each single document w.r.t. the given keyword query, and the relevance score of a
cell (a document collection) is the average of relevance scores of documents in this cell.

2
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• Cell document model: Documents in a cell are concatenated into a “big document”, called
a cell document. The relevance of the cell is the relevance of this cell document w.r.t. the
given keyword query.

The two scoring models above carry different semantics: the average model promotes the cells where
many documents contain the given keywords; and, the cell document model promotes the cells
which contain as many keywords as possible. Two models are suitable in different scenarios and user
preferences. It is important to mention that our previous work [8] focuses on the average model,
and we will focus on the cell document model in this work. Also note that the model studied in
this work is more general in some sense: to efficiently process keyword queries, we only require the
relevance scoring function (in Equation (2)) to be monotone w.r.t. the term frequencies and the
total length of documents in a cell.

Challenges: The first major computational challenge of this keyword search problem is the huge
number (increasing exponentially w.r.t. the dimensionality) of cells in a text cube, as we want to
rank all cells in different levels and granularities (cuboids). The second computational challenge is,
unlike the scoring formula in the average model (satisfying an apriori-like property called two-side
bound property [8]), we consider the relevance scoring formula in the cell document model, which
does NOT satisfy any monotone or apriori-like property in the cube lattice. This difficulty makes
the problem studied in this work significantly harder and different from the one in [8].

Efficient Algorithms: Unlike [8], which utilize an apriori-like property (two-side bound property)
of scoring formula in the average model to design ranking algorithms, this work introduces two
new ranking algorithms which are appliable in a more general class of scoring formula in the cell
document model. We design two efficient approaches for the keyword-based top-k search in text cube.
The first one, TACell, extends the famous TA algorithm [9] to our problem of keyword search in text
cube. It requires moderate pre-processing but is efficient in online query processing. The second
one, BoundS, estimates upper bounds and lower bounds of the relevance of cell documents in the
search space; upper/lower bounds are compared periodically for the early stop of search process, so
as to explore as few cells in the text cube as possible before outputting the top-k answers.

1.2. Contribution and Organization. In this paper, we study the problem of keyword-based
top-k search in text cube (or multidimensional text data): find the top-k cells relevant to a user-
given keyword query. Flexible keyword-based query language and relevance scoring formula of cells
(aggregation of text data) are developed based on the cell document model. We propose two efficient
approaches, TACell and BoundS, to support the query language in text cube. We also study the
effectiveness of the proposed approach in a case study.

Section 2 introduces the text cube model of multidimensional text data, defines the keyword-based
query language in text cube, and introduces the relevance scoring formula based on the cell document
model. Two algorithms TACell and BoundS are then introduced in Section 3 and 4, respectively,
for finding the top-k most relevant cells given a keyword query. Experimental study is reported in
Section 5, followed by related work in Section 6. Section 7 concludes this paper.

2. Keyword Queries in Text Cube

We first review our data cube model for multidimensional text data (Section 2.1), then formally
define the problem of keyword search in text cube together with the relevance scoring formula based
on cell document model (Section 2.2), and analyze the computational challenges (Section 2.3).

2.1. Preliminary: Text Cube, a Data Cube Model for Text Data. We first review the text
cube model introduced in [22, 8], and formally define the cell document model.

A set D of documents is stored in an n-dimensional database DB = (A1,A2, . . . ,An,D). An
attribute Ai is also said to be a dimension in data cube. Each row of DB is in the form of r =
(a1, a2, . . . , an, d): let r[Ai] = ai ∈ Ai be the value of dimension Ai, and r[D] = d be the document
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Dimensions Text Data

M P T S d (Document)

m1 p1 t1 s1 d1 = {w1, w1, w2, w2}

m1 p2 t1 s2 d2 = {w2, w5, w6}

m1 p3 t2 s2 d3 = {w3, w4, w3, w6}

m2 p1 t2 s2 d4 = {w1, w1, w1}

m2 p2 t2 s2 d5 = {w5, w6, w7, w8}

m2 p3 t1 s1 d6 = {w4, w5, w8, w9}

(a) A 4-Dimensional Text Database DB

Cell M P T S D (Cell Document C[D])

C0 * * * * d1 ◦ d2 ◦ d3 ◦ d4 ◦ d5 ◦ d6
C1 m1 * * * d1 ◦ d2 ◦ d3
C2 m2 * * * d4 ◦ d5 ◦ d6
C3 m1 * * s1 d1

C4 m1 * * s2 d2 ◦ d3
C5 m2 * t1 * d6

C6 m2 * t2 * d4 ◦ d5
C7 m1 * t1 s1 d1

C8 m2 p2 t2 s1 d1

(b) Some Cells in the Text Cube

in this row. A document d is a multi(sub)set of the term set W = {w1, . . . , wM}, i.e., a term wi

may appear multiple times in d.
The data cube model extended to the above multidimensional text database is called text cube

[22]. Several important concepts are introduced as follows.
In the text cube built on DB, a cell is in the form of C = (v1, v2, . . . , vn : D), where vi could either

be a value of dimension Ai or be a meta symbol ∗ (i.e., vi ∈ Ai ∪ {∗}). If vi = ∗, the dimension
Ai is aggregated in C. D is the concatenation of the documents in the rows (of the database DB)
having the same dimension values as C on the non-∗ dimensions. This “big document” D is called
the cell document of C. Formally, for a cell C = (v1, v2, . . . , vn : D),

D = the concatenation of r[D]′s, where for r ∈ DB s.t. r[Ai] = vi if vi �= ∗.

We use C[Ai] to denote the value vi of dimension Ai in the cell C, and C[D] to denote the cell
document D of C. To distinguish a document r[D] in a row of the database DB from the cell
document C[D] (C[D] is the concatenation of some r[D]’s), a document r[D] in a database row is
said to be a row document (distinguished from cell document). For simplicity, a cell is also written
as C = (v1, v2, . . . , vn). A cell is said to be empty if C[D] = ∅.

A cuboid is a set of cells with the same set of non-∗ dimensions. A cuboid with m non-∗ dimensions
is an m-dim cuboid. The n-dim cuboid (all dimensions are non-∗) is called the base cuboid. Cells in
an m-dim cuboid are called m-dim cells, and cells in a base cuboid are called base cells.

Cell C ′ is an ancestor of C (or C is a descendant of C′) iff “∀i : C ′[Ai] �= ∗ ⇒ C′[Ai] = C[Ai]”.
Note cell C is an ancestor (or descendant) of itself. We use ans(C) to denote the set of ancestors of
a cell C, and des(C) to denote the set of descendants of a cell C′. It is well-known that all the cells
in a data cube (or text cube) form a lattice, according to the ancestor-descendant relationship.

Example 2.1 (Text Cube). Table 1(a) shows a text database DB, with four dimensions, M, P, T,
and S. Term set W = {w1, w2, . . . , w8}. A total of six documents are stored.

Table 1(b) shows some cells and the corresponding cell documents in the text cube generated
from DB. Among them, C3, C4 are descendants of C1, and C5, C6 are descendants of C2. Note that
C1, C2 has some other descendants that are not listed in this table.

We use d1 ◦ d2 to denote the concatenation of documents d1 and d2. In this example, we have
d1 ◦ d2 = {w1,w1,w2,w2,w2,w5,w6}. C0 is the 0-dim cell and C8 is one of the base cells.

2.2. Keyword Search Problem in Text Cube. In traditional data cubes, operations like drill-
down and roll-up suffice for users to explore multidimensional data. However, in text cube, a large
portion of data is text. Since keyword query is an effective way for users to explore the text data,
we propose the keyword search problem in text cube.

Keyword Search Problem. A keyword query is a set of terms, i.e., q = {t1, t2, . . . , t|q|} ⊆ W.
Given a keyword query q, the goal is to find k cells C’s with the top-k highest relevance scores in
the text cube of DB.
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Note that a cell relevant to the query q may contain all or some of the terms t1, . . . , t|q|. The
relevance score of a cell C w.r.t. the query q is defined as a function rel(q, C[D]) of the cell document
C[D] and the query q. For brevity, it is also written as rel(q, C). We return the top-k cells in the
non-increasing order of relevance scores, because the total number of cells in the text cube could be
huge and it is not possible for a user to browse all of them. k can be specified by the user.

Relevance Scoring Formula. To rank all the cells and find the top-k ones, we need to define the
relevance scoring function rel(q, C[D]) (or rel(q, C) for brevity). Here, we treat the cell document
C[D] as a “big document”. We compute the relevance score of the cell C w.r.t. a keyword query q as
the relevance of this big document w.r.t. q. For example, we can simply apply the Okapi weighting:

(1) rel(q, C) =
∑

t∈q

ln
N − dft + 0.5

dft + 0.5

(k1 + 1)tft,D

k1((1− b) + b
dlD
avdl

) + tft,D

(k3 + 1)qtft,q
k3 + qtft,q

, (Okapi weighting [27])

where N = |DB|, D is the cell document of C, tf t,D is the term frequency of term t ∈ q in D (the
number of times t appearing in D), dft is the number of documents in DB containing t, dlD is the
length of D, avdl is the average length of cell documents, qtft,q is the number of times t appearing
in q, and, k1, b, k3 are constants.

Our ranking algorithm can handle a more general form of relevance scoring formula:

(2) rel(q, C) = s(tf1, tf2, . . . , tf |q|, |D|).

where tfi is the term frequency of the ith term of q in the cell document D = C[D] of C, and |D|
(dlD) is the length of D. In principle, dft and qtft,q should also be parameters of the function s; but
since they are not critical in our ranking algorithm, we just omit them from (2) for the simplicity.

Note that (1) is a special case of (2), and our ranking algorithms introduced later can handle the
general form (2). We require only two basic property of the function s in (2):

• Monotone w.r.t. tfi: From any i,

tfi ≤ tf ′i ⇔ s(tf1, . . . , tfi . . . , tf |q|, |D|) ≤ s(tf1, . . . , tf
′
i, . . . , tf |q|, |D|).

• Monotone w.r.t. |D|:

l ≥ l′ ⇔ s(tf1, tf2, . . . , tf |q|, l) ≤ s(tf1, tf2, . . . , tf |q|, l
′).

It is important to notice that even though the above two properties about term frequency and
document length, which are quite natural for relevance scores, are satisfied, the function rel does
not have any monotone or apriori-property in the cube lattice. A simple example is as follows.

Example 2.2 (No Monotone/Apriori Property in the Cube Lattice). Suppose the query q has three
terms t1, t2, t3, and there are three cells C1, C2, C3, each of them Ci contains exactly one term ti.
Suppose C is the ancestor of C1, C2, C3, and the cell document C[D] is the concatenation of cell
documents C1[D], C2[D], C3[D]. So C[D] contains exactly the three terms {t1, t2, t3}.

Now we use the relevance scoring formula in (1), and let k1 = 1, b = 1, avdl = 1. Then we have
rel(q, C) > rel(q, C1), rel(q, C2), rel(q, C3). However, if C[D] has a document length 10, then we have
rel(q, C) < rel(q, C1), rel(q, C2), rel(q, C3). So rel does NOT satisfy monotone or Apriori property in
the cube lattice.

Extended Form of Keyword Query. Users may want to retrieve answers from a certain part
of the text cube, by specifying a subset dimensions of interests and/or values of some dimensions,
together with a support threshold. The support of a cell C, denoted by |C|, is the number of
documents that are concatenated in the cell document C[D]. Motivated by this, the simplest form
of keyword queries q can be extended by adding dimension-value constraints and support threshold.

In an n-dimensional text cube, an extended keyword query is in the form ofQ = (u1, u2, . . . , un : q),
where ui ∈ Ai ∪{∗, ?}. We also use Q[Ai] to denote ui. Q[Ai] ∈ Ai specifies the value of dimension
Ai in a cell C; Q[Ai] = ∗ means the dimension Ai in a cell C must be aggregated; and Q[Ai] =?
(question mark) imposes no constraint on the dimension Ai of a cell C. A cell C is said to be feasible
w.r.t. the query Q iff
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(i) for dimension Ai s.t. Q[Ai] = ∗, we have C[Ai] = ∗ (Ai is aggregated in C);
(ii) for dimension Ai s.t. Q[Ai] ∈ Ai, we have C[Ai] = Q[Ai]; and
(iii) for dimension Ai s.t. Q[Ai] =?, we have no constraint on C[Ai].

Given an extended keyword query Q = (u1, u2, . . . , un : q) and a minimum support minsup, our
goal is to find the top-k feasible cells C’s s.t. supports |C| ≥ minsup with the top-k highest relevance
scores rel(q, C)’s in the text cube of DB.

In the rest part of this paper, we will first describe our algorithms for the simple form of keyword
query (i.e., a set of keywords without dimension-value constraints and support threshold), and then
discuss how our algorithm can be simply modified to handle extended form of keyword query.

2.3. Computational Challenges. There are two major challenges of this keyword search problem:
First, as shown in [8], the size of a text cube could be huge, increasing exponentially w.r.t. the

dimensionality of the text cube. There is an n-dimensional database DB = (A1,A2, . . . ,An,D)
with N rows, s.t. the non-empty cells in the text cube of DB is Ω(N · 2n) or Ω(

∏n

i=1
(|Ai| + 1)),

where |Ai| is the number of different values in dimension Ai.
1 Therefore, only when the number of

dimensions is small (2 to 4), we can compute the relevance scores of all cells and then sort them to
find the top-k cells efficiently.

Second, as shown in Example 2.2, the relevance scoring formula rel considered here does NOT
satisfy monotone/Apriori property in the cube lattice. This increases the difficulty of our problem
further, as the early-stop condition for searching top-k is not easy to be obtained.

3. Threshold Algorithm for Finding Top-k Cells

Our first approach TACell naturally extends the famous threshold algorithm (TA) [9] for finding
the top-k relevant cells w.r.t. a given keyword query q. The basic idea is to treat each cell as a
ranking object in TA. Some preprocessing steps and additional space are needed.

Preprocessing: In the preprocessing stage, for each term t in W (the set of all terms), we build a
sorted list of cells Lt, where cells are sorted in the descending order of term frequency of t in each
cell document; then we have another sorted list Llen, where cells are sorted in the ascending order
of the lengths of cell documents. So there are a total of |W|+ 1 sorted list.

Online-processing: When a keyword query q = {t1, t2, . . . , tl} is given, our goal is to find the
top-k cells with the highest relevance scores rel(q, C). In this step, we apply the TA algorithm [9]
on the l + 1 sorted list Lt1 , Lt2 , . . . , Ltl , Llen. Recall rel(q, C) is defined in (2), and TA algorithm is
applied to output the top-k cells with the highest s(tf1, tf2, . . . , tf l, |C[D]|) (refer to Algorithm 2).

1: For each term t ∈ W, construct a sorted list Lt of cells. Cells C’s in Lt are sorted in the
descending order of term frequency of t in the cell document C[D].

2: Construct another sorted list Llen of cells. Cells C’s in Llen are sorted in the ascending
order of the length of cell document |C[D]|.

Algorithm 1: Preprocessing for TACell

Two points to be clarified in Algorithm 2:
First, in line 3, when a cell C is retrieved from some list, there are three possibilities: i) C is in

CAN ; ii) C is not in CAN and it is the first time that C is touched; iii) C is not in CAN but C

1To construct a text cube with N · (2n − 1) = Ω(N · 2n) non-empty cells, consider DB = {(a
(i)
1 , a

(i)
2 , . . . , a

(i)
n , di) | i =

1, . . . , N} with N rows and a
(i)
j �= a

(i′)
j for any j and i �= i′. To construct a text cube with

∏n
i=1(|Ai|+1) non-empty

cells, let N =
∏n

i=1 |Ai| and consider a database whose rows enumerate all possible configurations of the n attributes.
Even when the support threshold minsup (> 0) is nontrivial, the number of cells to be considered (those with support
≥ minsup) is still huge, since a data cube is “fat” in the middle. For example, suppose minsup is large enough s.t.

only d-dim cells with d ≤ n/2 have support ≥ minsup, we may still need to consider N ·
( n
n/2

)

= Ω(N · 2n/2) cells to

select the top-k relevant ones w.r.t. a keyword query.
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1: Candidates of top-k CAN ← ∅. Pointer i ← 1.
2: Do a parallel scan of Lt1 , Lt2 , . . . , Ltl , Llen:
3: In each iteration, retrieve the ith cell of each list of Lt1 , . . . , Ltl , Llen (totally l + 1 cells),

compute its relevance score rel(q, C), and put it into CAN .
4: At any time, CAN keeps only the top-k cells with the highest score rel(q, C) and

the (k + 1)th cell will be deleted from CAN (if any).
5: Let the threshold TA ← s(tf ′

1
, tf ′

2
, . . . , tf ′l, l), where tf ′j is the term frequency of tj in

the ith cell of the list Ltj , and l is the cell document length of the ith cell of the list Llen.
6: If CAN has k cells in it and TA < the lowest score in CAN , then

output CAN and end;
7: Else i ← i+ 1 and goto line 2.

Algorithm 2: Online Processing of TACell

has been touched previously. Besides CAN , we do not keep track of whether C has been touched
before. And, we can observe that a cell would be put in and pop out from CAN for at most once.

Second, in line 5 of Algorithm 2, (tf ′1, tf
′
2, . . . , tf

′
l, l) may not be the term frequency and cell

document length for the same cell. TA = s(tf ′
1
, tf ′

2
, . . . , tf ′l, l) is nothing but the upper bound of

relevance score of any cell untouched by the parallel scan. It is used as a threshold for early-stop.
From Theorem 4.1 in [9] and how the lists Lt’s and Llen are sorted in Algorithm 1, we have the

correctness of Algorithm 2.

Corrollary 1. Given any query q against the text cube of DB, Algorithm 2 outputs the top-k cells
with the highest relevance scores rel(q, C)’s (the ones in CAN), when it terminates.

Handling Extended Form of Keyword Query: TACell (Algorithm 1&2) can be easily adapted
to handle extended keyword query Q = (u1, . . . , un : q) with support threshold minsup specified.
The idea is as follows. In line 3, a cell is put into CAN if and only if it is feasible and has support
no less than minsup. Moreover, to speed up the processing, in each list, we can prune the first p cells
(i.e., start from the (p+ 1)th cell), if all of them have supports less than minsup.

Complexity: The TA algorithm (extended as Algorithm 2 in our problem) is proved to be opti-
mal [9] in the sense that any other algorithm based on Lt1 , . . . , Ltl , Llen cannot stop sooner than
Algorithm 2. On the other hand, the actual running time of Algorithm 2 depends on the input and
parameters (although in the worst case, all the entries in every sorted list need to be scanned).

Moreover, each iteration of Algorithm 2 (line 2-7) can be efficiently implemented: i) if random
accesses of sorted lists are supported, the relevance score of retrieved cells can be efficiently computed
(line 3); and CAN is maintained in a priority queue with the relevance scores of cells in it as the
keys, so any operation (e.g., adding a cell into and deleting the (k + 1)th cell from CAN) (line 3-4)
can be done in O(log k) time [6].

The bottleneck of the TACell algorithm is the space consumption. As discussed in Section 2.3,
the total number of non-empty cells in a text cube is huge. So each list of Lt’s and Llen is very long,
and it might be impossible to put all of them into the main memory if the database is large and the
dimensionality is high (recall there is a list Lt for each term in W). If these lists are stored in the
disk, accessing them (especially the random accesses) in the online processing could be expensive,
not to mention that time consumed in the preprocessing stage could also be long.

So in the next section, we aim to design an algorithm which is more efficient in the preprocessing.

4. Bound-checking Search Algorithm

Our second approach BoundS does not require as much preprocessing as TACell. In the prepro-
cessing, it computes nothing more than the inverted indexes for all terms w.r.t. the documents (not
the cells). In the online processing, given a keyword query q = {t1, t2, . . . , tl}, the top-k cells with
highest relevance scores are output. The basic ideas of online processing in BoundS are as follows.
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• Heuristic Ordering of Row Documents: First, we order the row documents (the ones in the
rows of the database, rather than the cell documents in the cells) in the descending order of
relevance scores (w.r.t. the given keyword query). We later process the documents in this
order. The intuition is: A highly relevant cell documents is likely to consist of highly relevant
row documents; so starting from highly relevant row documents, we can touch the highly
relevant cell documents sooner. We also note that the ordering of these row documents does
NOT affect the correctness of our algorithm introduced in this section.

• Partial Cells and Finalized Cells: Initially, all cell documents are unseen/empty. As we scan
each row document, it is concatenated to the cell documents of cells that contain this row.
Before all the row documents in a cell are concatenated to the cell document, this cell is said
to be partial; and after that, it is said to be finalized.

• Lower Bounds and Upper Bounds: When we scan the row documents, we want to estimate
the lower bounds and upper bounds of the relevance scores of the cells we have seen. For
each cell C, let tf(C)i be the term frequency of ti ∈ q in the current cell document of C. As
we scan more row documents, tf(C)i will possibly increase before C is finalized, so a lower
bound of rel(q, C) is: (assume that the cell document length |C[D]| is precomputed)

(3) rel(q, C) ≥ rel(q, C)lb = s(tf(C)1, tf(C)2, . . . , tf(C)l, |C[D]|).

Let ∆i be the total term frequency of ti ∈ q in the unseen row documents. We assume in
the extreme case, all the rest instances of ti in the unseen row documents are in the cell C,
and from the monotonicity of s w.r.t. tf(C)i, we have an upper bound of rel(q, C) is:

(4) rel(q, C) ≤ rel(q, C)ub = s(tf(C)1 +∆1, tf(C)2 +∆2, . . . , tf(C)l +∆l, |C[D]|).

• Condition for Output: Note that rel(q, C)lb’s and rel(q, C)ub’s are updated as we scan row
documents. Suppose all the cells are maintained in the descending order of rel(q, C)lb, and
let θ be the kth highest value of rel(q, C)lb. A cell can be pruned if rel(q, C)ub ≤ θ. An
obvious condition for output the top-k is that all cells except the top-k ones can be pruned.

In the following part, we present our BoundS in Algorithm 3, and then prove its correctness.

1: (Heuristic Ordering)
Sort all the row documents in the descending order of relevance scores.

2: (Initialization)
Before scanning the row documents:

3: Let tf(C)i ← 0 for any cell C and any term ti ∈ q (all cells are unseen);
4: Let ∆i ← the total term frequency of ti in all row documents;
5: (Scanning Row Documents)

For each row document r = (a1, a2, . . . , an, d) (in the descending order of relevance scores) do:
6: For each term ti ∈ q ∩ d do: (let δi be the term frequency of ti in d)
7: ∆i ← ∆i − δi;
8: For each cell C containing the row r do:
9: tf(C)i ← tf(C)i + δi;

10: For each cell C containing the row r, update its relevance lower bound rel(q, C)lb, as in (3);
11: (Bound Checking and Output Condition Checking)

Compute θ as the kth highest value of rel(q, C)lb;
12: Compute CAN as the top-k cells with highest values of rel(q, C)lb;
13: Let CAN ′ be the cells not in CAN and with rel(q, C)ub > θ (rel(q, C)ub is defined in (4));
14: If CAN ′ = ∅, then output CAN and end.

Algorithm 3: Bound-checking Search Algorithm

Starting from line 5, we scan the row documents one by one, and the lower bounds of relevance
scores are updated for each C containing the row r (line 10) after we update the term frequency
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tf(C)i’s (line 9). Note that when the dimensionality is n, there are 2n cells containing r. And, we
do not need to maintain the relevance lower bounds for the unseen cells.

Bound checking and output condition checking (line 11-14) are NOT executed in every iteration, as
computing the upper bounds of relevance scores in line 13 is expensive (line 11 can be implemented
using the famous Hoare’s selection algorithm [12] in linear time). So in the implementation, we
execute line 11-14 after, e.g., every 1000 iterations of line 6-10.

A relaxation of the output condition in line 14 is: instead of checking whether CAN ′ = ∅, we
check if |CAN ′| ≤ M for a threshold M = 10k; if yes, we compute the relevance score of cells in
CAN ∪ CAN ′ and sort them for finding the top-k.

Theorem 1. Given any query q against the text cube of DB, Algorithm 3 outputs the top-k cells
with the highest relevance scores rel(q, C)’s, when it terminates.

Proof. First, from the above analysis, we know lower bounds rel(q, C)lb and upper bounds rel(q, C)ub
of relevance scores are correctly computed as (3) and (4), respectively. Line 6-9 of Algorithm 3 update
the parameters of these bounds as required.

For the output condition, let θ∗ be the kth highest value of rel(q, C). From the definition, we know
θ ≤ θ∗ (θ is computed in line 11). So for a cell C, rel(q, C)ub ≤ θ implies rel(q, C) ≤ rel(q, C)ub ≤
θ ≤ θ∗, and such a cell can be pruned. CAN ′ keeps the cells that are cannot be pruned and not in
CAN . So if CAN ′ = ∅, then CAN is the real top-k and can be output.

We also need to prove this algorithm will eventually terminate. This is because, sooner or later,
all the cells will be finalized (i.e., all the row document in each of them have been concatenated to
the cell document), and the real top-k ones must be kept in CAN . Then the output condition is
satisfied and the top-k are output.

In the relaxed version, we compute and sort relevance scores of cells in CAN ∪ CAN ′; this is
because all the other cells can be pruned. �

Handling Extended Form of Keyword Query: To handle a extended keyword query Q =
(u1, u2, . . . , un : q) with support threshold minsup, we can simply modify line 8,10,12,13 in Algo-
rithm 3 to filter in only the feasible cells with support no less than minsup. Adding this step cannot
deteriorate the performance of BoundS, as we are now focusing on a smaller number of cells.

5. Experimental Study

In this section, we evaluate the effectiveness of the two algorithms using a real dataset.

5.1. Datasets and Environment Setup. A real dataset NASA’s ASRS database (Aviation Safety
Reporting System) [15] is used in the experiments. We select 10 dimensions in the database together
with the narrative information in each row to form a multidimensional text cube. The 10 dimensions
are: Year, State, Person, Weather, Light, Make/Model, Flight Phase, Primary Area, Event Anomaly,
Resolutory Action. There are two dimensions with too many empty (sensitive) values, so in the
efficiency testing below, we consider only 8 dimensions.

In this database, we have a total of 34873 documents (each associated with 10 dimensions). After
all the stop words are removed, there are 39453 terms remaining (the number of terms may affect
the preprocessing time of TACell). The text cube constructed based on this database has 2634490
nonempty cells. More information about this database can be found in [15].

A demo system (http://inextcube.cs.uiuc.edu/nasa/Default.aspx?func=topcell) is con-
structed to conduct the case study.

All the experiments were conducted on a PC running the Microsoft Windows XP SP2 Professional
OS, with a 2.5 GHz Intel Core 2 Duo T9300 CPU, 3.0 GB of RAM, and 150 GB hard drive. Our
algorithms were implemented in C/C++ and compiled on Microsoft Visual Studio 2008.
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q1 RWY EXCURSION
q2 DOWNWIND RWY
q3 SHUT DOWN ENG
q4 TOOK EVASIVE ACTION
q5 GEAR NOT RETRACT
q6 VISIBILITY LIGHT FOG
q7 SAW OTHER ACFT
q8 RADIO MIDAIR COLLISION
q9 SMOKE FROM ENG GEAR
q10 CALLBACK CONVERSATION REPORTER HAT

Table 2. Example queries

5.2. Efficiency in Preprocessing and Online Processing. We first test the efficiency of our
algorithms in the preprocessing and online processing stages using our real dataset ASRS. Table 2
shows ten example queries used in the following experiments.

5.2.1. Exp-I: Varying the Number (n) of Dimensions. In this experiment, we study the effect of
dimensionality on the efficiency of preprocessing and online processing of TACell and BoundS. We
pick the first 4,6,8 dimensions of the ASRS database, and construct the corresponding text cubes
with 4,6,8 dimensions, respectively. We report preprocessing time and online processing time for both
algorithms. For online processing time, we report the time of outputting top-10 answers (average
of the ten queries in Table 2). In all the following experiments, we report the preprocessing/online
processing time in terms of seconds, if not specified.

TACell

Dimensionality Sorting cells w.r.t. cell document length Sorting cells w.r.t. term frequency
8 82.41 0.982 × 39453 ≈ 10 hours
6 20.24 0.091 × 39453 ≈ 1 hour
4 5.60 0.003 × 39453 ≈ 2 minutes

BoundS

Dimensionality Computing cell document lengths
8 20.66
6 5.14
4 2.00

Table 3. Varying the Number (n) of Dimensions (preprocessing)

Dimensionality 8 6 4
TACell 24.90333333 1.036666667 0.02
BoundS 23.28333333 3.68 1

Table 4. Varying the Number (n) of Dimensions (online processing)

The result is reported in Table 3-4. As we expected, BoundS performs similarly as TACell in online
processing, but is much more efficient than TACell in preprocessing. Note that in the preprocessing
of TACell, sorting cells in the descending order of term frequency (line 1 of Algorithm 1–the third
column in Table 3) can also be done online; but with this modification, the online processing of
TACell will be much slower than BoundS.
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Threshold γ Time # doc accessed total # doc # cells accessed total # cells
5 54.87 14833.33 34873 1356582 2634490
10 23.28 6400 34873 611773.33 2634490
20 5.67 1666.67 34873 219973.33 2634490
40 5.66 1666.67 34873 219973.33 2634490

Table 5. Varying the Parameter in BoundS (online processing)

5.2.2. Exp-II: Varying the Parameter in BoundS. Recall a relaxation of the output condition in
line 14 of Algorithm 2 (BoundS) is: “instead of checking whether CAN ′ = ∅, we check if |CAN ′| ≤ M

for a threshold M = γ · k (we use γ = 10 in Exp-I); if yes, we compute the relevance score of cells
in CAN ∪CAN ′ and sort them for finding the top-k.”

It is also interesting to verify the effect of the threshold γ on the performance of BoundS. We
use the text cube with 8 dimensions and report the performance of BoundS for outputting top-10
results, while varying γ from 5 to 40. The result is reported in Table 5. It can be found that a
reasonably large γ allows BoundS to access less documents and less cells. However, too large γ (e.g.
> 20) does not help much while more time is needed for the sorting CAN ∪CAN ′. So γ = 10 or 20
is a proper threshold for outputting top-10 answers.

5.3. Case Study. In this section, we verify the effectiveness of our model and algorithms by showing
a few example queries and the meaningful retrieval results.

Figure 1. Query results of {“RWY”, “EXCURSION”} in our demo system

5.3.1. Runway Excursion. Suppose we want to find out under which condition, the ”runway excur-
sion” is likely to happen. With these two keywords typed into our system, the result is shown in
Figure 1 (a screen shot from our demo system–each row above represents a cell in the text cube).

The top-1 result implies that this situation is likely to happen in a rainy night, during the phase
of landing roll, when there is a critical equipment problem detected. Moreover, nearly all the top-10
results are related to “rain” or “night”. And, three of the top-5 results are related to some model of
“McDonnell Douglas”.

5.3.2. Fog Weather. We are also interested in what will happen in a fog weather. So we type three
keywords “visibility”, “light”, and “fog”, and the result is shown in Figure 2.

There are four observations from the top-5 results: i) The fog weather is usually reported in the
night (maybe because it is more critical in the night). ii) The fog weather is usually reported during
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Figure 2. Query results of {“VISIBILITY”, “LIGHT”, “FOG”} in our demo system

the early phase of flight, e.g., the “ground: taxi” phase. iii) The anomaly of excursion (either on the
runway or the taxiway) is usually caused by the fog weather. iv) The resolutory action to be taken
could be “rejected takeoff” (that might be the reason why fights are usually delayed by fog).

5.3.3. Gear Does Not Retract. Now we want to know more about the situation when the gear does
not retract. With the three keywords “gear”, “not”, and “retract” typed into our system, the result
is shown in Figure 3.

Figure 3. Query results of {“GEAR”, “NOT”, “RETRACT”} in our demo system

It can be observed from the results that this problem is usually discovered by the lead technician
during the ground maintenance phase, and sometimes, during the “climbout: takeoff” phase. It is
usually categorized as a critical equipment problem.

Besides the above three, there could be many interesting and meaningful cases unreported and
unobserved. We believe that domain experts can better utilize our system than us.

6. Related Work

Keyword Search in RDBMs. Although based on different applications and motivations, keyword
search in text cube is related to keyword search in RDBMSs, which has attracted a lot of attention
recently [5, 3, 30]. Most previous studies on keyword search in RDBMSs model the RDB as a graph
(tuples/tables as nodes, and foreign-key links as edges) and focus on finding minimal connected
tuple trees that contain all the keywords. They can be categorized into two types. The first type
uses SQL to find the connected trees [2, 14, 13, 11, 23, 24]. The second type materializes the RDB
graph and proposes algorithms to enumerate (top-k) subtrees in the graph [4, 7, 16, 19, 10]. Some
of these studies model the keyword search problem as the group (or direct) Steiner tree problem
[26] (an NP-hard problem), and propose parameterized algorithms to find the optimal top-1 answer
[7, 20], and top-k answers (or approximate top-k answers) [19].
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Different from these two types of works, two recent studies [21] and [25] find single-center sub-
graphs from the RDB graph, and multi-center induced subgraphs, respectively.

OLAP on Multidimensional Text Data. The text cube model is firstly proposed in [22]. [22]
mainly focuses on how to partially materialize inverted indexes and term frequency vectors in cells
of text cube, and how to support OLAP queries (not keyword query) efficiently in this partially-
materialized cube.

The topic cube model is proposed in [32]. Different from the text cube, the topic cube materializes
the language model of the aggregated document in each cell. Efficient algorithms are proposed to
compute this topic cube.

The techniques in [22] and [32] cannot be used directly to support keyword search, because the
information materialized in text cube (term frequencies and inverted indexes) and in topic cube
(language model) is query-independent.

Analysis of Text Data with Multiple Attributes. Besides [32], there are some other works on
analyzing text data with multiple attributes, e.g. [28, 29]; though they cannot be directly applied in
our keyword search problem (as the models they focus on are query-independent). [28] introduces
a generative model of entity relationships and their attributes which can simultaneously discovers
groups among the entities and topics among the corresponding textual attributes. [29] generalizes
techniques such as principal component analysis to text with heterogeneous attributes. Note that,
unlike our ranking techniques in the text cube model, [28] and [29] do not start with the aggregation
of entities/rows on subsets of dimensions (i.e., cells and cuboids).

Keyword-based Search and OLAP in Data Cube. [1] studies answering keyword queries on
RDB using minimal group-bys, which is the work most relevant to ours. For a keyword query against
a multidimensional text database, it aims to find the minimal cells containing all (or some of) the
query terms in the aggregated text data. “Minimal” here means there is no descendant of this cell
containing more query terms. But, it unnecessary that documents (cells) with more query terms
are more relevant. And, [1] does not score or rank the answers. So when the number of returned
answers is large (e.g., a thousand), it is difficult for the user to browse all the answers.

Another relevant work is keyword-driven analytical processing (KDAP) [31]. Motivated by an
application scenario different from [1] and our work, it proposes a two-phase framework for effective
OLAP based on user-given keyword queries. In the first phase, differentiate phase, candidate sub-
spaces (i.e., possible join paths between the dimensions and the facts in a data warehouse schema)
are generated and ranked based on the given keyword query. The user is asked to select one of
candidate subspaces. Then it comes to the second phase, explore phase. The system computes the
group-by aggregates from all qualified fact points. Group-by attributes are ranked, and an interface
is provided to explore detailed aggregation. KDAP supports interactive data exploration using key-
words. Candidate subspaces are output to disambiguate the keyword terms. But, [1] and our work
focus on efficient answering of keyword queries. Efficiency is not a major concern in KDAP ([31]
does not report any experiment on the efficiency).

Our previous work [8] solves the same problem as this work, but focuses on another relevance
scoring model, average model. As discussed in Section 1.1, the properties of this model are different
from the ones of the model, cell document model, we are focusing on in this work. The algorithms
designed in [8] cannot be applied in this work. Moreover, two models have different semantics, and
are appliable in different scenarios and different user preferences.

7. Conclusions and Future Work

In this paper, we study the problem of keyword-based top-k search in text cube (i.e., multidi-
mensional text data). Flexible query language and relevance scoring formula are developed based
on cell document model. We design two efficient approaches for this problem. The first one extends
the famous TA algorithm to our problem, which are efficient but requires a large amount of space in
the preprocessing. The second one is based on lower/upper bound estimation and checking to find
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the top-k cells before exploring the whole text cube. It is efficient in both preprocessing and online
processing of keyword queries. We conduct extensive performance studies to verify the effectiveness
of the proposed approaches.

An interesting direction for future work is to evaluate and compare the effectiveness of the two
models average model (studied in [8]) and cell document model (studied in this paper). For this
purpose, user-studies need to be conducted among domain experts. We also believe that domain
experts can better utilize our system than us. It is helpful to know which one performs better in
which situation, when our methods are applied in practice.
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